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Abstract

Many engineering and science processes can be described by ordinary differential equa-
tions (ODEs), for example, the level of protein regulated by a transcription factor in
gene expression data can be modelled by a first order ODE, or the displacement of a
mass induced by the force applied through a system of spring and damper elements
is modelled using a second order ODE. In some tasks involving ODEs, it is of main
interest to recover the forcing function (e.g. the protein in gene expression data, and
the force in a mechanical system). The forcing function can be estimated from output
data by knowing before hand the ODE’s order and how it is parametrized. Taking into
account the above and placing a Gaussian Process (GP) prior on the forcing function, it
is possible to learn system’s parameters and estimate the forcing function by using la-
tent force models (LFMs) (Álvarez et al., 2013). LFMs are hybrid models that combine
a mechanistic model with a data driven model. This is done by encoding the ODE’s
information within the covariance function, by means of the convolution between the
input function (which is modelled with a GP prior) and the system’s impulse response
function. Even though LFMs have been considered as a promising approach to do ex-
trapolation with Gaussian Processes, they assume that the number of latent forces and
the impulse response functions are known.

In this thesis we explore several extensions of these models to address these limi-
tations. In the first proposed method, the number of latent forces (forcing functions)
is automatically selected by means of the non-parametric Indian Buffet Process (IBP)
prior. Additionally, the IBP allows us to estimate the sparse interconnection between
the outputs and the latent forces.

Moving on the next topic, we estimate the impulse response function (IRF) of lin-
ear time-invariant systems using Laguerre functions using LFMs and Sequential LFMs.
Those approaches are tested on multiple-input multiple-output systems and missing data
scenarios.

Lastly, this thesis additionally develops methods focused on the estimation of the
latent forces and IRFs over non-linear dynamical system cases known as Wiener systems.
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Chapter 1

Introduction

Many engineering processes can be described by ordinary differential equations (ODEs),
for example, the level of protein regulated by a transcription factor in gene expression
data can be modelled by a first order ODE, or the displacement of a mass given by
the force applied through a system of spring and damper elements is modelled using
a second order ODE. In some tasks involving ODEs, it is of main interest to recover
the forcing function (e.g. the protein in gene expression data, and the force applied
on a mechanical system). The forcing function can be estimated from output data by
knowing before hand the ODE’s order and how it is parametrized. Taking into account
the above and placing a Gaussian Process (GP) prior over the forcing function, it is
possible to learn system’s parameters and estimate the forcing function by using latent
force models (LFMs) (Álvarez et al., 2013). LFMs are hybrid models that combine
a mechanistic model with a data driven model. This is done by encoding the ODE’s
information within the covariance function, by means of the convolution between the
forcing function (modelled by a GP prior) and the system’s impulse response. Figure
1.1 depicts the convolution process, where the response function, f(t), is obtained from
the convolution of the excitation (u(t)) and the impulse response (G(t)) functions. Note

G(t)

f(t) =
∫
G(t− τ)u(τ) d τ

u(t) f(t)

Figure 1.1: Block diagram representation of the convolution process.

that the excitation function can be referred as forcing or input function in the context
of LFMs.



2 Introduction

As in Rasmussen and Williams (2006, Chapter 5), a broadly interpretation of model
selection is adopted in this thesis. Model selection includes the choice of model parame-
ters as well as the values for covariance function hyperparameters. In this thesis, we are
interested in addressing several problems focused on dynamical systems using LFMs.

1.1 Aims

1.1.1 General aim

To develop probabilistic approaches to perform model selection on the number of latent
functions and non-linear dynamics in latent force models.

1.1.2 Specific aims

1. To formulate probabilistic models which extend the Latent Force framework by
automatically learning the number of latent functions.

2. To design inference methods for learning the number of latent functions.

3. To propose probabilistic models that extend the latent force model to represent
non-linear dynamical systems.

4. To develop inference methods for recovering the forcing function in Non-linear
dynamical systems.

1.2 Outline and contributions

The main contributions are briefly introduced in the following sections.

1.2.1 Number of latent forces

One of the main properties of LFMs is that they are able to straightforwardly explain
multiple-output data using a set of shared latent forces. Figure 1.2 shows a typical set-
up of four outputs explained by three latent forces. Note that the set of shared latent
forces induce dependency among the outputs. This dependency is useful to improve the
predictions. However, despite LFMs’ success for prediction, it is still unclear how to
select the number of the latent forces (Álvarez et al., 2012), i.e. the number of shared
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latent functions must be set by the experimenter or it can be found by testing the
model with different number of latent functions and selecting the one that maximizes
an objective function. In order to automatically infer the number of latent functions,

G1(t) f1(t)+

G2(t) f2(t)+

G3(t) f3(t)+

G4(t) f4(t)+

u1(t)

u2(t)

u3(t)

Figure 1.2: Diagram representation of a multiple-output latent force models explained
by three latent forces.

we extend the LFM framework by controlling the number of latent forces and their
relationship with the outputs by means of the Indian Buffet Process (IBP) prior. The
IBP is a non-parametric prior over binary matrices, that imposes a structure over the
sparsity pattern of the binary matrix (Griffiths and Ghahramani, 2005, 2011). Figure

Z G1(t) f1(t)+

G2(t) f2(t)+

G3(t) f3(t)+

G4(t) f4(t)+

u1(t)

u2(t)

u3(t)

Figure 1.3: Diagram representation of the Indian Buffet process and Latent force models.

1.3 shows the binary matrix Z obtained by sampling from the IBP prior. Note that
the number of latent functions (columns of Z) are unbounded, that is, the IBP prior
considers an infinity number of latent functions. The main idea is to infer the number
of latent functions when the probabilistic model is conditioned on observed data. To do
so, we contribute with a variational approach for Bayesian inference based on the works
described in Doshi-Velez et al. (2009) and the variational LFMs (Álvarez et al., 2009).
From this approach, we are also able to estimate the interconnection between the latent
functions and the outputs. This approach is described in Chapter 3.



4 Introduction

1.2.2 Modelling multiple-input multiple-output data

In the standard LFM, we are able to model multiple output data by assuming that the
dynamical systems are known before hand. Specifically, the dynamical systems are fully
characterized by the impulse response functions (IRF) (e.g. G(t) in figure 1.1). How-
ever, in some practical problems we have no knowledge about which differential equations
regulated the observed data. Thus, we propose to approximate the unknown IRF by
using the orthonormal set of Laguerre functions. Furthermore, Laguerre functions can
be encoded within the covariance function of LFMs, and we are able to point-estimate
the IRFs using the standard learning process of GPs (i.e. maximizing the logarithm of
the marginalized likelihood), or the Kalman filter procedure in sequential LFMs (Har-
tikainen and Särkkä, 2011). In consequence, we contribute with methods aimed to model
multiple-output and multiple-input data with the addition that we are able to point-
estimate the IRFs of linear dynamical systems based on the LFM approaches. These
methods are described in Chapter 4.

1.2.3 Wiener systems and latent force models

A Wiener system is a non-linear dynamic system, that is build by transforming the re-
sponse function of a linear dynamic system using a static non-linear function, as shown
in Figure 1.4. In Chapter 5, we approximate Wiener systems using standard and se-

G(t) gu(t) g(f(t))
f(t)

Figure 1.4: Wiener system representation.

quential LFMs. In the first proposed method, we linearise the non-linear static function
over the posterior mean of the response function, as described in Steinberg and Bonilla
(2014). This model is aimed to infer the posterior of the latent forces as in the standard
LFMs.

Additionally in Chapter 5, we propose to approximate the impulse response function
of Wiener systems using Laguerre functions and sequential LFMs. To do so, we adopt
the Extended Kalman filter at the inference stage (Särkkä, 2013), that allow us to have
a tractable model where the non-linear static function is linearised using Taylor series.
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1.3 Software and publications

The probabilistic model proposed to estimate the number of latent functions is presented
in Chapter 3. This work is based on Guarnizo et al. (2015) and a paper by Guarnizo
and Álvarez, which is in review process at the time of writing this thesis. The software
developed to reproduce the experiments described in Chapter 3.6 is publicly available
at https://github.com/cdguarnizo/IBPLFM.

Chapter 4 presents two different models aimed to estimate the impulse response func-
tions of linear dynamic systems. The model focused on the convolution process is based
on Guarnizo and Álvarez (2017), and the software aimed to reproduce the experiments
is available at https://github.com/cdguarnizo/lag_cgp. On the other hand, the model
developed using the state-space model is based on ideas discussed with M. A. Álvarez
and S. Sarkka, and the experiments shown in section 4.5 can be reproduced by the
software available at https://github.com/cdguarnizo/lag-irf-slfm.

Finally, the Wiener system approximations proposed in Chapter 5 are focused on the
inference of the latent forces and the impulse response functions. The former approach
is based on ideas discussed with M. A. Álvarez, and its code is available at https:

//github.com/cdguarnizo/linearizedLFM. Meanwhile, the latter model is based on ideas
discussed with M. A. Álvarez and S. Sarkka, and its code can be found at https:

//github.com/cdguarnizo/lag-irf-slfm.
Note that the codes based on the latent force model use the GPmat toolbox, available

at https://github.com/SheffieldML/GPmat. On the other hand, the codes based on
the sequential latent force model use the LFM toolbox, which is available at http:

//becs.aalto.fi/en/research/bayes/lfm/.

https://github.com/cdguarnizo/IBPLFM
https://github.com/cdguarnizo/lag_cgp
https://github.com/cdguarnizo/lag-irf-slfm
https://github.com/cdguarnizo/linearizedLFM
https://github.com/cdguarnizo/linearizedLFM
https://github.com/cdguarnizo/lag-irf-slfm
https://github.com/cdguarnizo/lag-irf-slfm
https://github.com/SheffieldML/GPmat
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Chapter 2

Linear latent force models

We start by describing linear time invariant (LTI) systems and GPs in section 2.1.
Next, we show how to incorporate knowledge from Linear Operators within the covari-
ance function of Gaussian process in section 2.1.3. From the above, we introduce the
concept of Latent force models (LFMs) in section 2.2. LFMs can be seen as GPs where
the covariance function incorporates the knowledge of a LTI system. This knowledge is
induced by the convolution integral which represents the inverse linear operation of dif-
ferential equations. Practically, we are able to sample random responses of LTI systems
by sampling a LFM. Thus, linear LFMs are better suited to explain or model the uncer-
tainty of noisy observations from dynamical systems than using GPs based on general
purpose covariance functions.

The original contribution of this chapter is to condense and compare the mathe-
matical foundations of Latent force models.

2.1 Background

2.1.1 Linear dynamical systems

Continuous dynamical systems are usually described by means of differential equations.
We start by reviewing LTI systems. LTI systems can be represented by the following
ordinary differential equation (ODE) of order P ∈ Z,

dP f(t)
d tP + aP −1

dP −1 f(t)
d tP −1 + . . .+ a1

d f(t)
d t + a0f(t) = u(t), (2.1)
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where t ∈ R is the input time, f(t) is the output function, ai ∈ R weights the i-th
derivative of f(t) with respect to t, and u(t) is the forcing function. Here, we review
two approaches to solve ODEs. The first one is known as convolution process, and
the second one is state-space models. For the following approaches, we assume that
observation data is corrupted by an additive noise, as follows

y(t) = f(t) + w(t), (2.2)

where w(t) follows a zero mean white noise process with variance σ2
f .

Convolution process

Notice that in (2.1) the forcing function, u(t), is expressed in terms of the derivatives of
f(t). Interestingly, we are able to interchange the roles of these variables by using the
following convolution,

f(t) =
∫

T
G(t− τ)u(τ) d τ, (2.3)

where T is the input domain (for the ODE case T = {−∞,∞}) and G(t) is the impulse
response or the Green’s function associated to the differential equation (Duffy, 2015).
Note that G(t) is calculated by finding the solution of (2.1) when the excitation becomes
a delta function (also known as the impulse function). Thus, G(t) depends on param-
eters ai and the ODE’s order. To find the solution of (2.3), we require to know both
mathematical descriptions of G(t) and u(t) (e.g. trigonometric function expressions).
However, u(t) may have any form in real-world applications. A block diagram repre-
senting the LTI system is shown in figure 2.1, where the rectangular block represents
the convolution process described in (2.3).

G(t) +u(t) y(t)

w(t)

f(t)

Figure 2.1: Block diagram of a LTI system.

LTI systems can also be modelled by state-space models, as described next.
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State-space models

The LTI system given in equation (2.1) can be transformed into a state-space model
(Wang, 2009), by defining the state vector as x(t) = [f(t), d f(t)/d t, . . . ,
dP −1 f(t)/d tP −1]⊤. Then, the state-space model is represented as follows,

d x(t)
d t = Ax(t) + Bu(t), (2.4)

f(t) = Cx(t), (2.5)

with

A =



0 1 0 . . . 0
0 0 1 . . . 0
... ... . . . . . . ...
0 0 . . . 0 1

−a0 −a1 . . . . . . −aP −1


, B =


0
0
...
1

 , C =


1
0
...
0



⊤

. (2.6)

The form of the matrices A ∈ RP ×P , B ∈ RP and C ∈ RP is known as the companion
form (Wang, 2009).

2.1.2 Gaussian Processes

Gaussian Processes (GPs) are non-parametric probabilistic models that extend multi-
variate Gaussian distributions to a function space of infinite dimension (Rasmussen and
Williams, 2006). To keep the notation consistent across sections, we use t to denote the
index (note that the index in general can be multidimensional), and f(t) is a random
variable indexed by t. A GP is fully defined by a mean function

m(t) = E[f(t)],

and a covariance function

k(t, t′) = E[(f(t) −m(t))(f(t′) −m(t′))].

Thus, the GP can be declared as

f(t) ∼ GP(m(t), k(t, t′)). (2.7)
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One of the main features of GPs is when we consider a finite set of index inputs, t =
[t1, . . . , tN ]⊤, then the vector of function values f = [f(t1), . . . , f(tN)]⊤ is drawn for a
multivariate Gaussian distribution as shown in the following equation

f ∼ N (m,K),

where m is a vector composed by evaluations of m(t) at t, and K is a squared matrix with
elements calculated using k(t, t′) at t. In general, the mean and covariance functions are
controlled by hyper parameters. For instance, let us consider the Squared Exponential
(SE) and Matérn covariance functions,

kSE(t, t′) = s2 exp
(

−(t− t′)2

2l2

)
, (2.8)

and
kMatérn(t, t′) = s2 21−ν

Γ(ν)

(√
2ν(t− t′)

l

)ν

Bν

(√
2ν(t− t′)

l

)
, (2.9)

where Γ(·) is the gamma function and Bν(·) is a modified Bessel-function of order ν
(Rasmussen and Williams, 2006). Note that the overall correlation scale and variability
are controlled by the hyperparameters l and s2, respectively (Hartikainen and Särkkä,
2010). Interestingly, the hyperparameters play a key in

Now, let us consider a standard regression task where we are given a set of training
data points {(tn, yn)}N

n=1. We adopt the relationship defined in equation (2.2), but
considering that f(t) follows a GP prior with zero mean and covariance function k(t, t′).
Thus, we are able to learn the model hyperparameters θGP = [σ2

f ,θkern] (where θkern

comprises the hyperparameters of the covariance function), by maximizing the logarithm
of the marginalised likelihood function, as follows

maximize
θGP

log p(y|t) = −1
2y⊤

(
Kf ,f + σ2

fIN

)−1
y − 1

2 log
∣∣∣Kf ,f + σ2

fIN

∣∣∣−
N

2 log(2π),
(2.10)

with y = [y(t1), . . . , y(tN)]⊤. Note that the first term of (2.10) represents the data
fitting, while the second term indicates the complexity of the model. This allow us
to find a regularized solution that balances between the model complexity and its fit
to the data. Furthermore, the standard GP inference process require O(N3) time to
evaluate the above objective function, then it can only be applied to a few thousands
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observations. After maximizing (2.10), we are able to predict the unknown set of values
f∗ = [f ∗(t∗1), . . . , f ∗(t∗N∗)]⊤ by conditioning on the training data, as follows

f∗|y ∼ N
(
Kf∗,f [Kf ,f + σ2

fIN ]−1y,Kf∗,f∗ − Kf∗,f [Kf ,f + σ2
fIN ]−1K⊤

f∗,f

)
, (2.11)

where Kf∗,f ∈ RN∗×N , with elements calculated using kf,f (t, t′). The above posterior is
also a GP, where its variance shrinks to test points that are near to the training time
values, i.e. this posterior gets confident around the known data.

2.1.3 Gaussian Processes and Linear Operators

In this section, we review the procedure to incorporate knowledge on GPs by using linear
operators. An operator L is consider to be linear if, for any pair of functions f(t) and
g(t), and a scalar α ∈ R satisfies the following conditions,

L[f(t) + g(t)] = L[f(t)] + L[g(t)]

and
L[αf(t)] = αL[f(t)].

The most common linear operators are weighted sums, integrals, derivatives and differ-
ential equations. Let us start by assuming that the function f(t) follows a GP prior,
as

f(t) ∼ GP(0, kf,f (t, t′)).

Furthermore, let us assume that u(t) and f(t) are related by the differential equation
defined in (2.1), which can be re-written as u(t) = Lt[f(t)], where Lt contains the scaled
derivative operations w.r.t. t. Then, we are able to calculate the mean of u(t) as

mu(t) = E[u(t)]

= E[Lt[f(t)]]

= Lt[E[f(t)]]

= Lt[0]

= 0.
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And its covariance as

kuu(t, t′) = E[(u(t) −mu(t))(u(t′) −mu(t′))]

= E[(u(t) − 0)(u(t′) − 0)]

= E[Lt[f(t)]Lt′ [f(t′)]]

= Lt[Lt′ [E[f(t)f(t′)]]]

= Lt[Lt′ [kf,f (t, t′)]]].

Thus, the forcing function u(t) is modelled by the following GP prior,

u(t) ∼ GP(0,Lt[Lt′ [kf,f (t, t′)]]]),

where its covariance function encodes the knowledge from the linear transformation of
f(t). Recall that we are able to express f(t) in function of u(t) by using the convolution
integral described in (2.3). In consequence, this convolution can be seen as the inverse
operation of Lt. Furthermore, we can re-write (2.1) as

f(t) = L−1
t [u(t)].

Now, if we assume that u(t) ∼ GP(0, ku,u(t, t′)), it can be demonstrated that

f(t) ∼ GP(0,L−1
t [L−1

t′ [ku,u(t, t′)]]]). (2.12)

As demonstrated above, we are either able to place the basic GP prior over f(t) or u(t),
and then, build a new GP prior regarding the linear operation that relates both variables.
Hence, we can divide the above process into two main approaches: collocation and latent
force methods. In the former, the basic GP prior is placed over the solution/response
function f(t), as in Graepel (2003); Raissi et al. (2017). While in the latter, the basic
GP prior is instead placed over the forcing function u(t), as in Álvarez et al. (2013);
Boyle and Frean (2005); Lawrence et al. (2006).

2.2 Latent force models

LFMs focus on incorporating knowledge about a linear dynamic system within the co-
variance function of a Gaussian Process. Specifically, LFMs construct a GP prior for
the response function f(t) from the GP prior placed over the excitation function u(t)
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as demonstrated in (2.12). Next, we present the mathematical foundation behind the
LFM approach.

2.2.1 Model definition

In a multi-variate regression setting the likelihood model for each output can be expressed
as

yd(t) = fd(t) + wfd
(t), (2.13)

where t is the input time, {yd(t)}D
d=1 is the collection of D outputs, wfd

(t) is an inde-
pendent noise process with variance σ2

fd
, fd(t) = ∑Q

q=1 fd,q(t) and each fd,q(t) is given
by

fd,q(t) = Sd,q

∫
T
Gd(t− τ)uq(τ) d τ, (2.14)

where Gd(t) is the Green’s function associated to the d-th dynamical system, T is the
input time domain, {uq(t)}Q

q=1 are latent functions also known as latent forces, and
the sensitivities S = [Sd,q] ∈ RD×Q measure the influence of the latent function q over
the output d. Additionally, we assume that each latent force uq(t) is an independent
Gaussian process with zero mean function and covariance function kuq ,uq(t, t′).

Note that although the latent forces {uq(t)}Q
q=1 are independent, the response func-

tions {fd,q(t)}D
d=1 are correlated because they depend on the q-th latent force. Thus, we

are capable to use this dependency to improve the prediction at any output, by using
the information from the other outputs. Next we describe the mathematical foundation
of the covariance functions involved in the LFMs framework.

Due to the linearity and the dependency induced by the latent forces in (2.14), the
set of processes {fd,q(t)}D

d=1 follows a joint Gaussian process with mean function equal
to zero, and the covariance function between any two response functions is defined as

k
(q)
fd,fd′ (t, t

′) =
∫

T

∫
T ′
Gd(t− τ)Gd′(t′ − τ ′)kuq ,uq(τ, τ ′) d τ d τ ′. (2.15)

From the above equation, we are able to find the covariance function between two noise-
less outputs as

kfd,fd′ (t, t′) =
Q∑

q=1
Sd,qSd′,qk

(q)
fd,fd′ (t, t

′).

Besides the covariance function defined above, we are interested in the cross covariance
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function between fd(t) and uq(t), which follows

kfd,uq(t, t′) =Sd,q

∫
T
Gd(t− τ)kuq ,uq(τ, t′) d τ. (2.16)

For some forms of Gd(t) and the covariance function kq(t, t′), the covariance functions
k

(q)
fd,fd′ (t, t′) and kfd,uq(t, t′) can be found analytically. From now on, we refer to the set

of hyperparameters of any covariance function as θkern.
Next, we briefly describe three different Green’s functions. The first two are obtained

from ODEs, meanwhile the third one can be obtained from the Heat equation (Duffy,
2015). For the covariance functions based on ODEs, we assume that kuq ,uq(t, t′) follows
a square exponential covariance function, given by

kuq ,uq(t, t′) = exp
(

−(t− t′)2

l2q

)
, (2.17)

where lq ∈ R+ is the length-scale associated to the q-th latent force. Furthermore, the
convolution described in (2.14) becomes

fd,q(t) = Sd,q

∫ t

0
Gd(t− τ)uq(τ)dτ, (2.18)

given that Gd(t) is defined for t > 0, and the initial conditions are assumed to be zero.
Additionally, we define the following auxiliary functions

hq(α, β, x, z) = 1
α + β

[Υq(β, x, z) − exp(−αx)Υq(β, 0, z)] ,

Υq(β, x, z) = exp
(
l2qβ

2

4 + β(x− z)
)[

erf
(
x

lq
+ lqβ

2

)
− erf

(
x− z

lq
+ lqβ

2

)]
,

where erf(·) is the error function defined as

erf(t) = 1
2π

∫ t

0
exp

(
−τ 2

)
dτ.

Functions hq(α, β, x, z) and Υq(β, x, z) appear on the evaluation of the covariance func-
tions based on ODEs, as shown next.
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2.2.2 First order ordinary differential equation (ODE1)

In this scenario, we assume that the output can be explained using the following first
order ODE,

dfd(t)
dt +Bdfd(t) =

Q∑
q=1

Sd,quq(t), (2.19)

where Bd is the decay constant for output d (Lawrence et al., 2006). Now, the solution
for the Green’s function associated to (2.19) is given by

Gd(t) = exp (−Bdt) , (2.20)

for t ≥ 0 and zero otherwise. It can be demonstrated that after replacing (2.20) in (2.15)
and (2.16), their closed form are

k
(q)
fd,fd′ (t, t

′) =
√
πlq
2 [hq(Bd, Bd′ , t, t′) + hq(Bd′ , Bd, t

′, t)],

and
kfd,uq(t, t′) = Sd,q

√
πlq
2 Υq(Bd, t, t

′),

respectively.

2.2.3 Second order ordinary differential equation (ODE2)

Here, we assume that the dynamic behaviour of each output is described by a second
order differential equation related to a mechanical system as

d2fd(t)
dt2 + Cd

dfd(t)
dt +Bdfd(t) =

Q∑
q=1

Sd,quq(t), (2.21)

where Cd andBd are the damper and spring constants for output d, respectively. Without
loss of generality, we have assumed that the mass value is one and initial conditions equal
to zero, then the solution for the Green’s function associated to (2.21) is given by

Gd(t) = 1
ωd

exp
(

−Cd

2 t
)

sin (ωdt) , (2.22)

for t ≥ 0 and zero otherwise. Where ωd is the natural frequency of (2.21) and it is defined
as ωd =

√
4Bd − C2

d/2 (Álvarez et al., 2013). Besides, it can be demonstrated that
after replacing (2.22) in (2.15), the covariance function between two response functions
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becomes

k
(q)
fd,fd′ (t, t

′) =K0[hq(γd′ , γ̃d, t, t
′) − hq(γd′ , γd, t, t

′) + hq(γ̃d′ , γd, t, t
′) − hq(γ̃d′ , γ̃d, t, t

′)

+ hq(γd, γ̃d′ , t′, t) − hq(γd, γd′ , t′, t) + hq(γ̃d, γd′ , t′, t) − hq(γ̃d, γ̃d′ , t′, t)]

with
K0 =

√
πlq

8ωdωd′
, γd = αd + jωd, γ̃d = αd − jωd

ωd =

√
4Bd − C2

d

2 , αd = Cd

2 ,

where ωd is the natural frequency and j =
√

−1. Furthermore, the cross-covariance,
defined in (2.16), reduces to

kfd,uq(t, z) = lqSd,q

√
π

j4ωd

[Υq(γ̃d, t, z) − Υq(γd, t, z)]. (2.23)

2.2.4 Gaussian smoothing (GS)

We present a general purpose covariance function that has been successfully used for the
explanation of several multi-task regression problems in Álvarez et al. (2009); Zhao and
Sun (2014). We start by assuming that both Gd(t− t′) and kuq(t, t′) have the following
form

kuq ,uq(t, t′) =
(
βuq

2π

)1/2

exp
(

−
βuq

2 [t− t′]2
)
,

where βuq is the precision value and t ∈ R. This Green’s function can be found from
the Heat or Wave equations (Duffy, 2015). Then, it can be shown that the covariance
function k

(q)
fd,fd′ (t, t′) is defined as

k
(q)
fd,fd′ (t, t

′) = 1(
2πp(q)

d,d′

)1/2 exp
− 1

2p(q)
d,d′

[t− t′]2
 ,

with p(q)
d,d′ = p−1

fd
+ p−1

fd′ + p−1
uq

. Parameters pfd
and puq correspond to the precision values

associated to Gd(t) and kuq ,uq(t, t′), respectively.
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2.2.5 Inference

Let us assume that we are given a dataset consisting of the corrupted response observa-
tions of D outputs, declared as {yd}D

d=1 with yd ∈ RNd . Additionally, each yd is indexed
by time vectors {td}D

d=1 with td ∈ RNd , and Nd is the number of data points associated
to output d. We adopt the relationship defined in equation (2.13), where fd(t) follows a
LFM prior with zero mean and covariance function kf,f (t, t′). We start by defining the
model hyperparameters θLFM = [σf ,θkern], where θkern comprises the hyperparameters
of all the covariance functions, and σf contains the D noise variance values. Then, we
learn the hyperparameters by maximizing the logarithm of the marginalised likelihood
function, as follows

maximize
θLFM

log p(y|t) = −1
2y⊤ (Kf ,f + Σf )−1 y − 1

2 log |Kf ,f + Σf |

−N

2 log(2π),
(2.24)

with y = [y⊤
1 , . . . ,y⊤

D]⊤, t = [t⊤
1 , . . . , t⊤

D]⊤, N = ∑D
d=1 Nd, and Kf ,f is a block-wise

matrix, where the elements of the block located at the d-th row and d′-th column are
evaluated using kfd,fd′ (t, t′). Similarly, Σf is diagonal block matrix, where its d-th block
is given by σ2

fd
INd

.

2.2.6 Predictive distributions

As shown in (2.11), we are able to predict values of yd(t) and fd(t) at unknown time
values t∗ = [t∗⊤

1 , . . . , t∗⊤
D ]⊤ using

y∗|y ∼ N
(
Kf∗,f [Kf ,f + Σf ]−1y,Kf∗,f∗ − Kf∗,f [Kf ,f + Σf ]−1K⊤

f∗,f + Σf∗

)
(2.25)

and

f∗|y ∼ N
(
Kf∗,f [Kf ,f + Σf ]−1y,Kf∗,f∗ − Kf∗,f [Kf ,f + Σf ]−1K⊤

f∗,f

)
, (2.26)

respectively. Kf∗,f is a D×D block-wise matrix, where the elements of the block located
at the d-th row and d′-th column are calculated with kfd,fd′ (t∗, t′). Σf∗ is a block diagonal
matrix, where the elements of the d-th block are calculated using σ2

fd
IN∗

d
, and N∗

d is the
number of test points at output d.

Interestingly, we are able to calculate the posterior of the latent forces u∗ = [u∗⊤
1 , . . . ,
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u∗⊤
Q ]⊤, similarly to (2.26), as

u∗|y ∼ N
(
Ku∗,f [Kf ,f + Σf ]−1y,Ku∗,u∗ − Ku∗,f [Kf ,f + Σf ]−1Kf ,u∗

)
. (2.27)

Hence, we are able find the predictive distribution for the inverse problem using the
LFM formulation. The inverse problem is related to finding the function u(t) and ODE’s
parameters solely from the output data. Note that the ODE’s paramaters are point-
estimated by the maximization of the marginal likelihood.

2.3 Sequential Latent Force models

LFMs can be represented as a linear state-space model driven by a white noise process
(Hartikainen and Särkkä, 2011). Furthermore, this state-space model can be extended
to consider different non-linear scenarios as: Wiener, Hammerstein and Drift models
(Hartikainen et al., 2012). We start by defining the sequential model used to approximate
a GP prior.

2.3.1 Sequential Gaussian Process

Sequential Gaussian Process (SGP) aims to represent the random function u(t) with
covariance function ku,u(t, t′) by means of a LTI stochastic differential equation (Har-
tikainen and Särkkä, 2010). Thus, we are able to model u(t) as

d xu(t)
d t = Auxu(t) + Buϵ(t), (2.28)

u(t) = Cuxu(t),

where xu(t) = [u(t), du(t)/d t, . . . , dK−1 u(t)/d tK−1]⊤ comprises u(t) and its derivatives
w.r.t. t, and ϵ(t) ∼ N (0, σ2

ϵ ). Matrices Au, Bu and Cu follow the same form as defined
in (2.6). The above model can be seen as a filtering process over the noise process
ϵ(t). In consequence, u(t) represents a smoothed version of ϵ(t). Furthermore, the above
model is able to straightforwardly represent a GP prior, if the spectral density of the
covariance function has the following form

S(ω) = constant
polynomial in ω2 ,
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where ω is the frequency variable. Spectral density of Matérn class covariance functions
fulfils the above requirement, but for the Squared Exponential covariance function a
Taylor series approximation should be adopted, as shown in Hartikainen and Särkkä
(2010).

2.3.2 Model definition

The GP prior defined in (2.28) can be augmented in order to consider multiple responses
of LTI systems from multiple excitations (Hartikainen and Särkkä, 2011), as follows

d x(t)
d t = Ax(t) + Bϵ(t), (2.29)

f(t) = Cx(t),

with f(t) = [f1(t), . . . , fD(t)]⊤, ϵ(t) = [ϵ1(t), . . . , ϵQ(t)]⊤, ϵ(t) ∼ N (0,Qϵ), x(t) =
[xf (t)⊤, xu(t)⊤]⊤, xf (t) and xu(t) comprises the derivatives w.r.t. t of {fd(t)}D

d=1 and
{uq(t)}Q

q=1, respectively. Matrices A, B and C are constructed such that they operate
appropriately on the augmented state-space model. For example, the second order LFM
described in (2.21), with Q and D equal to one, can be represented using the above
state-space model by setting

A =


0 1 0 0

−B1 −C1 −S1,1 0
0 0 0 1
0 0 −a0 −a1

 , B =


0
0
0
1

 ,

and C = [1, 0, 0, 0]. Let us recall that coefficients ai’s are used for the approximation
of the GP prior over u(t). From now on, we refer to the model defined in (2.29) as
Sequential Latent Force Model (SLFM). Next, we briefly review the procedures used to
estimate the SLFM’s parameters.

2.3.3 Sequential inference

In order to learn the parameters of SLFMs, we convert the continuous model, given in
(2.29), into the following discrete model,

xk = Fxk−1 + qk−1, qk−1 ∼ N (0,Q),
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where the transition process and the covariance matrix related to the noise process can
be solved on sampling time T as

F = exp(AT ), Q =
∫ T

0
exp(Aτ)Qϵ exp(Aτ)dτ.

Note that Qϵ = diag([σϵ1 , . . . , σϵQ
]) is the covariance matrix of ϵ(t), and the above

exponential evaluations are calculated using the exponential matrix. Additionally, we
assume that the observation data is modelled as

yk = Cxk + rk, rk ∼ N (0,Rk),

where xk represents the evaluation x(tk), rk represents the noise process at the obser-
vations, and tk is multiple of the sampling period T , as kT . Typically, to avoid an
exponential increment of the full posterior of the states regarding the number of ob-
servations, the dynamic model is restricted to follow a probabilistic Markov sequence
(Särkkä, 2013). Hence, the linear discrete state-space model is described by

x0 ∼ p(x0), xk ∼ p(xk|xk−1), yk ∼ p(yk|xk), (2.30)

where x0 is the initial (hidden) state-space vector, p(xk|xk−1) describes the system dy-
namics, and p(yk|xk) represents the measurement model. If we assume that the dy-
namical system is described by a linear Gaussian state-space model, then, the posterior
distribution for the state vector is Gaussian distributed and a closed form solution can
be found using the Kalman filter (KF) or the Rauch-Tung-Striebel (RTS) smoother
(Särkkä, 2013). Thus, the state predictive and filtering distributions, and the predictive
distribution at the k-th step are given by

p(xk|y1:k−1) = N (xk|m−
k ,P−

k ),

p(xk|y1:k) = N (xk|mk,Pk),

p(yk|y1:k−1) = N
(
yk|Cm−

k ,Sk

)
,

respectively. The means and covariances m−
k , mk, P−

k and Pk are calculated by the
Kalman filter recursive algorithm given in Algorithm 1. Besides, the total computational
time of the standard KF is O(N(P + K)2), where K and P are the order of the states
space vectors used to model u(t) and f(t), respectively.

On the other hand, the smoothing distributions can be obtained using the RTS
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Algorithm 1 Kalman filter procedure.
1: Input: y1:N
2: Initial state x0 ∼ N (m0,P0).
3: for k ∈ {1, . . . , N} do
4: Prediction:
5: m−

k = Ak−1mk−1 {State predictive mean}
6: P−

k = Ak−1Pk−1A⊤
k−1 + Qk−1 {State predictive covariance}

7: Update:
8: ek = yk − Cm−

k {Observation error}
9: Sk = CP−

k C⊤ + Rk {Observation variance}
10: Kk = P−

k C⊤S−1
k {Kalman gain}

11: mk = m−
k + Kkek {Filter mean}

12: Pk = P−
k − KkSkK⊤

k {Filter variance}
13: end for

smoother, which is based on the filtering distributions found using algorithm 1. The
smoothing marginal distribution for the k-th state given all the measurements is defined
as

p(xk|y1:N) = N (xk|ms
k,Ps

k),

with moments given by the backwards procedure described in algorithm 2 (Särkkä,
2013). Hyperparameters can be learned by maximizing the logarithm of the marginal

Algorithm 2 RTS smoothing procedure.
1: Input: {mk,Pk}N

k=1 calculated using algorithm 1.
2: for k ∈ {N − 1, . . . , 1} do
3: m−

k+1 = Akmk {State predictive mean}
4: P−

k+1 = AkPkA⊤
k + Qk {State predictive covariance}

5: Gk = PkAk

[
P−

k+1

]−1
{Smoother gain}

6: ms
k = mk + Gk

[
ms

k+1 − m−
k+1

]
{Smoother mean}

7: Ps
k = Pk − Gk

[
Ps

k+1 − P−
k+1

]
G⊤

k {Smoother variance}
8: end for

likelihood (Särkkä, 2013), with the objective defined as

maximize
θSLFM

log p(y1:N) = −1
2

N∑
k=1

[
log |2πSk| + e⊤

k S−1
k e⊤

k

]
, (2.31)

where θSLFM comprises the hyperparameters required to describe the model defined in
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(2.29). Note that the k-th sum term from the objective function defined in (2.31) is
calculated at the k-th evaluation of the Kalman filter procedure.

2.3.4 Predictive distributions

We are able to predict the value y(t∗) by including the test time t∗ in the Kalman filter
and smoothing steps. Hence, the moments of the prediction are given by

E[y(t∗)] = Cmt∗ , and V[y(t∗)] = St∗ ,

where mt∗ is the mean vector of the state vector, and St∗ is the observation covariance
matrix. Both matrices are evaluated at time t∗.

2.4 Comparison of Latent Force model approaches

2.4.1 Discrete time or Continuous time

Note that LFMs are fully continuous processes and the correlation among the whole
data (covariance matrix) is used to predict test values at any time. Hence, LFMs are
learned using the information given by all training points simultaneously.

Meanwhile in the SLFM approach, we are only able to train the model and predict
test values at specific time stamps given by the sampling period T . Furthermore, the
prediction of xk, in the best case scenario, uses the information from xk−1 (KF) and
xk+1 (RTS), if available (update step).

2.4.2 Computational complexity

For a dataset consisting of N data points, O(N3) time is required for the LFM approach
during each step of its training phase. However, this computational time can be reduced
to O(NM2) using inducing variables (Álvarez et al., 2009), where M refers to the number
of inducing variables used to approximate the posterior of the latent forces. Additionally,
LFMs can be scaled to large data scenarios as demonstrated in Dai et al. (2014); Gal
et al. (2014).

On the other hand, the KF procedure requires O(N(P + K)3) time, if and only if,
the training data points are in sequence and sampled at a constant time rate. Thus, if
the dataset is non-uniform sampled or includes missing values, then this cost time will
be increased.
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In summary, the computational burden of LFMs highly depends on the number of
data points. Meanwhile, the cost time in SLFMs is mainly driven by the number of
outputs and inputs (length of the state vector), and how the data is sampled.

2.4.3 Non-linear dynamic systems

The first non-linear dynamic system approximated using the LFM framework is intro-
duced in Lawrence et al. (2006). Specifically, gene expression data is explained using a
Hammerstein system. Nevertheless, the convolution operation is approximated by sums
in order to keep the inference process tractable. In contrast, we are able to build all
types of non-linear dynamic systems using SLFMs. As demonstrated in Hartikainen
et al. (2012), Wiener, Hammerstein and Drift systems can be approximated using the
SLFM approach.



Chapter 3

Automatic selection of the number
of latent forces

As mentioned in Chapter 2, LFMs are a powerful tool for modelling data generated
by multi-output linear dynamical systems. LFMs are based on the convolution process
between the dynamical system’s impulse response function (which fully characterizes the
linear system) and a set of shared latent functions (where each latent function follows a
Gaussian Process prior). Note that we are focused in the standard LFM based on the
convolution process, then the Sequential LFM is not considered in this chapter. Within
the LFM framework, a fixed quantity of shared latent functions is used to describe
multiple-output data. In consequence, the dependency induced by the set of shared
latent functions over the outputs can be used to improve prediction tasks. Usually, the
number of latent functions is selected depending on the experimenter assumptions or by
the prior knowledge available about the data. However, in real-world applications, the
number of latent functions is unknown and the interconnection between the outputs and
the latent functions might be sparse. Thus, in order to automatically select the number
of latent functions, we develop an automated variational method based on the Indian
Buffet Process prior which induces sparsity through the network formed by the outputs
and the latent functions. The proposed variational method is tested on synthetic, gene
expression, movement capture and weather datasets. Results indicate that the proposed
model achieves better performance compared with other existing methods.
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3.1 Indian Buffet Process

The IBP is a distribution over binary matrices with a finite number of rows and an
unbounded number of columns (Griffiths and Ghahramani, 2005). This can define a non-
parametric latent feature model in which rows are related to data points and columns
are related to latent features. Thus, the relationship between latent features and data
points can be encoded in a binary matrix Z = [Zd,q] ∈ {0, 1}D×Q with Q → ∞. Besides,
if Zd,q = 1 then feature q is used to explain data point d. Each element Zd,q is sampled
from the following hierarchical model

υj ∼ Beta(α, 1), πq =
q∏

j=1
υj, Zd,q ∼ Bernoulli(πq), (3.1)

where α is a real positive value, and πq is the probability of observing a non-zero value
at the q-th column of the matrix Z, that is, the value πq controls the sparsity pattern of
the q-th latent feature.

3.2 Model definition

Let us assume we are given a dataset consisting of D outputs, as {yd}D
d=1 with yd ∈ RNd .

Additionally, the outputs are indexed by time vectors {td}D
d=1 with td ∈ RNd , and Nd is

the number of data points associated to output d. Regarding the LFM model described
in (2.13) and (2.14), and including the IBP prior variable defined in (3.1), we re-define
the model given in (2.13), as

yd(t) = fd(t) + wfd
(t), (3.2)

with fd(t) = ∑Q→∞
q=1 Zd,qfd,q(t). Note that the binary variable Zd,q plays a key role by

deciding if the q-th latent force contributes in the description of the d-th output. Thus,
the above expression leads to the following likelihood function,

p(y|F,Z, t) =
D∏

d=1
N

yd

∣∣∣∣∣∣
Q→∞∑
q=1

Zd,qfd,q,Σfd

 , (3.3)

where y = [y⊤
1 , . . . ,y⊤

D]⊤ and t = [t⊤
1 , . . . , t⊤

D]⊤ ∈ RN are the stacked versions of the
observed data, and N = ∑D

d=1 Nd is the total number of data points. Furthermore,
Σfd

= β−1
d INd

is the noise covariance matrix, βd is the noise precision value, and INd
is
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the identity matrix of size Nd. While, F = {fd,q}D,∞
d=1,q=1 is the collection of the dynamic

responses from each latent force, with probability defined as

p(F|t) =
Q→∞∏
q=1

N
(
f:,q|0,K(q)

f ,f

)
, (3.4)

where f:,q = [f⊤
1,q, . . . , f⊤

D,q]⊤ ∈ RN , K(q)
f ,f ∈ RN×N is the covariance matrix of the noiseless

outputs given by the q-th latent force and its elements are evaluated using k(q)
fd,fd′ (t, t′).

From (3.1), (3.3) and (3.4) the joint probability of our model is defined as follows

p(y,F,Z,υ) = p(y|F,Z)p(F)p(Z|υ)p(υ). (3.5)

Note that the above probability distributions are evaluated using the hyperparameters
θ = {α,β,θkern}, where β is the collection of noise precision values.

3.3 Variational Inference approach

We are interested in learning the probabilistic model defined above and estimating the
posterior distributions for the latent forces and Z. Unfortunately, these posterior dis-
tributions are intractable due to the IBP prior. Thus, we resort to approximate them
using variational inference methods. Typically, a truncated posterior for Z is used in
variational inference approaches involving the IBP prior, as in Doshi-Velez et al. (2009).

Using an IBP as a prior for a linear Gaussian model, the authors in Doshi-Velez
et al. (2009), derived two variational mean field approximations, referred to as “finite
variational approach” and “infinite variational approach”. For our variational approx-
imation, we adopt the latter approach, this is, the update equations are based on the
true IBP prior over an infinite number of features, but for practical implementation, we
use a level of truncation Q+ as the maximum number of latent functions.

In order to include the inference over the latent forces and reduce the complexity
time, we augment the model using inducing variables uq ∈ RM (as in Álvarez et al.
(2009); Titsias (2009)), which are obtained when evaluating the latent force uq at a set
of M inducing inputs λq = [λq,1, . . . , λq,M ]⊤. We refer to the set of inducing variables as
u = {uq}Q+

q=1 and the set of inducing points as λ = {λq}Q+
q=1. Thus, the prior over F in
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(3.4) is changed to the following conditional distribution

p(F|u) =
D∏

d=1

Q+∏
q=1

N (fd,q|Kfd,uqK−1
uq ,uq

uq,K(q)
fd,fd

− Kfd,uqK−1
uq ,uq

Kuq ,fd
),

where Kfd,uq ∈ RNd×M is the cross-covariance matrix between fd(t) and uq(t), with
elements given by kfd,uq(t, t′). Additionally, the prior over u has the following form

p(u) =
Q+∏
q=1

N (uq|0,Kuq ,uq),

where Kuq ,uq ∈ RM×M is the covariance matrix between u(λ) and uq(λ′), where the
elements are calculated using kq(t, t′). Hence, the joint probability given in (3.5) is
augmented as

p(y,F,u,Z,υ) = p(y|F,Z)p(F|u)p(u)p(Z|υ)p(υ).

For the proposed variational approach, we adopt the mean field approximation (Bishop,
2006), which assumes that the distribution for the variational variables are indepen-
dent. Thus, the approximated posterior distribution is denoted as q(F,u,Z, υ) =
q(F|u)q(u)q(Z)q(υ), where the variational distributions for Z and υ factorize as (Doshi-
Velez et al., 2009)

q(Z) =
D∏

d=1

Q+∏
q=1

q(Zd,q), q(υ) =
Q+∏
q=1

q(υq),

respectively. Additionally, we can assume that u is a sufficient statistic for F, as in
Titsias (2009). Thus, the optimal form for q(F|u) is given by the true posterior p(F|u),
as q(F|u) = p(F|u). In the mean-field variational inference method, the Kullback-
Leibler distance between the variational distribution q(F,u,Z, υ) and the true posterior
p(F,u,Z,υ|y) is minimized by maximizing the following lower bound (Bishop, 2006)

F =
∫
q(F,u,Z,υ) log

(
p(y,F,u,Z,υ)
q(F,u,Z,υ)

)
d F d u d Z dυ.

After expanding the logarithm of the fraction in the above expression, the lower bound



3.3 Variational Inference approach 27

becomes

F =E [log p(y|F,Z)p(u)] + E [log p(Z|υ)]

+ E [log p(υ)] + H(u) + H(Z) + H(υ), (3.6)

where H(q(x)) = −
∫
q(x) ln(q(x))dx represents the Shannon entropy. In order to keep

the notation uncluttered, all the expected values considered in this Chapter are calcu-
lated with respect to the posterior distribution q(f ,u,Z,υ). Besides, the above expected
values are fully described in appendix B.1.

The variational lower bound, given in (3.6), is maximized using an Expectation-
Maximization (EM) algorithm (Bishop, 2006), where the E-step consists of updating
the moments or parameters of the variational distributions while the hyperparameters
are kept fixed. Similarly, the M-step focuses on finding the values of the hyperparameters
that maximizes (3.6) while keeping the value of the posteriors’ parameters fixed.

Before starting the derivation of the variational distributions, we define the following
variables as ξd,q = tr

(
K(q)

fd,fd

)
, ψd,q = K⊤

fd,uq
yd, and Ψd,q,q′ = K⊤

fd,uq
Kfd,u′

q
. In fact, their

entries are calculated as

ξd,q =
Nd∑
j=1

k
(q)
fd,fd

(td,j, td,j),

[ψd,q]i =
Nd∑
j=1

kfd,uq(td,j, λq,i)yd,j,

[Ψd,q,q′ ]i,k =
Nd∑
j=1

kfd,uq(td,j, λq,i)kfd,uq′ (td,j, λq′,k),

where [ψ]i represents the i-th element of column vector ψ, and [Ψ]i,k represents the
element at the i-th row and k-th column of matrix Ψ. Note that the above variables
involve the evaluation of covariance functions over the output data points, and they are
calculated as sums along the output data length. Thus, if Nd is considerably large we
are capable of caching intermediate sums. In consequence, the proposed EM-algorithm
can be scaled in order to deal with large datasets (Dai et al., 2014; Gal et al., 2014).

Continuing with the derivation of the variational approximation, updates for the
moments of each variational distribution are given next.
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3.3.1 Updates for q(υq)

Note that the following variational approach for υq is also given in Doshi-Velez et al.
(2009). The variational distribution for υq is assumed as

q(υq) = Beta(υq|τq,1, τq,2).

Then, the updates for parameters τq,1 and τq,2 are given by

τq,1 =α +
Q+∑

k=q+1

 D∑
d=1

(1 − E[Zd,k])
k∑

j=q+1
qk,j

+
Q+∑
k=q

D∑
d=1

E[Zd,k],

τq,2 =1 +
Q+∑
k=q

D∑
d=1

(1 − E[Zd,k])qk,q,

For the evaluation of p(Z|υ) in equation (3.6), we require to evaluate E[log(1−∏q
i=1 υi)],

which has no closed-form solution. Hence, we resort to a local variational approximation
(Bishop, 2006), where a multinomial distribution qq(y) bounds this expected value as

E[log(1 −
q∏

i=1
υi)] ≥

( q∑
m=1

qk,mψ(τm,2)
)

+
 q−1∑

m=1

( q∑
n=m+1

qq,n

)
ψ(τm,1)


−
( q∑

m=1

( q∑
n=m

qq,n

)
ψ(τm,1 + τm,2)

)
−

q∑
m=1

qq,m log(qq,m),

where ψ(·) is the digamma function. Besides, the update for the multinomial distribution
is calculated as

qk,i ∝ exp
(
ψ(τi,2) +

i−1∑
m=1

ψ(τm,1) −
i∑

m=1
ψ(τm,1 + τm,2)

)
.

3.3.2 Updates for q(Zd,q)

Inspired by Doshi-Velez et al. (2009), we also assume that each variational distribution
for Zd,q is given by

q(Zd,q) = Bernoulli(Zd,q|ηd,q).

Thus, the updates for ηd,q are calculated as

ηd,q = 1
1 + exp(−ϑd,q)

,
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where ϑd,q is obtained from the canonical parametrization of the Bernoulli distribution
and regarding the lower bound defined in equation (3.6), it takes the following form

ϑd,q = tr
(
md,q E[u⊤

q ]
)

−
∑
q′ ̸=q

ηd,q′ tr
(
Pd,q,q′ E[uq′u⊤

q ]
)

− 1
2 tr

(
Pd,q,q E[uqu⊤

q ]
)

− cd,q

2 + E[log πq]

− E[log(1 − πq)],

with

Pd,q,q′ = βdK−1
uq ,uq

Ψd,q,q′K−1
uq′ ,uq′ ,

cd,q = βd

(
ξd,q − tr

(
Ψd,q,qK−1

uquq

))
,

E[log πq] =
q∑

i=1
[ψ(τi,1) − ψ(τi,1 + τi,2)],

md,q = βdK−1
uq ,uq

ψd,q,

where τq,1 and τq,2 are the parameters of the posterior q(υq).

3.3.3 Posterior distribution for the latent forces

Initially, we derive the form of the posterior q(u) by collecting the terms related to u
from (3.6), as

Fu =
∫
q(u)

{
Ep(F|u)q(Z) [log (p(y|F,Z)p(u))] − log q(u)

}
du.

By merging the above logarithms and evaluating the expected value, the above expression
becomes

Fu =
∫

u
q(u) log

[N (u|ũ, K̃u,u)
q(u)

]
d u + 1

2 ũ⊤K̃−1
u,uũ+

1
2 log|K̃u,u|−1

2 log|Ku,u|−1
2

D∑
d=1

Q+∑
q=1

E[Zd,q]cd,q,

(3.7)

where Ku,u ∈ RQ+M×Q+M is a block diagonal matrix with each block calculated using
kuq ,uq(t, t′), and

ũ = K̃u,um, K̃−1
u,u = P + K−1

u,u, (3.8)
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where m = [m⊤
1 , . . . ,m⊤

Q+ ]⊤, mq = ∑D
d=1 E[Zd,q]md,q, and P ∈ RQ+M×Q+M is a block-

wise matrix with blocks given by

Pq,q′ =K−1
uq ,uq

D∑
d=1

E[Zd,qZd,q′ ]βdΨd,q,q′K−1
uq′ ,uq′ .

Note that Fu is maximized when the posterior

q(u) = N (u|ũ, K̃u,u),

and its moments are updated using the expressions defined in (3.8).

3.3.4 Hyperparameter learning

In order to learn the set of hyperparameters θ, we resort to use scaled conjugate gradient
method. The idea is to search for a set of hyperparameters that maximises (3.6), while
the parameters of the variational distributions are fixed.

Note that, as mentioned above, if the covariance function parameters θkern are learned
while the inducing variables u are kept fixed, then, this slows down the learning process
of both variables (Titsias and Lázaro-Gredilla, 2011). Fortunately, we are able to address
this problem by marginalizing the latent forces from (3.6) using the result obtained in
(3.7). Thus, the term for the lower bound used to learn the hyperparameters is

Fθ =1
2 ũ⊤K̃−1

u,uũ + 1
2 log|K̃u,u|−1

2 log|Ku,u|−1
2

D∑
d=1

log|Σfd
|

− 1
2

D∑
d=1

βdy⊤
d yd − 1

2

D∑
d=1

Q∑
q=1

E[Zd,q]cd,q.

(3.9)

The variational EM algorithm adopted to find the number of latent forces is summa-
rized in Algorithm 3. Note that the E-step is comprised in the iterative process defined
in lines 4-8 of Algorithm 3. Additionally, the M-step is defined in line 9. At any iter-
ation of both steps, we require O (N(MQ+)2) time in order to update the posterior of
u and to evaluate the lower bound defined in (3.9). Thus, the computational burden is
controlled by the truncation level Q+ and the number of inducing points M , and it does
not exponentially scale with the number of data points N .
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Algorithm 3 Model selection in Latent force models based on the Indian Buffet Process.
1: Input: Training data (t, y), truncation level Q+ and α.
2: Initialize hyper-parameters θ, and variational factors υ, Z, u.
3: while (3.6) has not converged do
4: repeat
5: Update u as described in section 3.3.3.
6: Update υ as described in section 3.3.1.
7: Update Z as described in section 3.3.2.
8: until (3.6) has converged.
9: Update θ by maximizing (3.9).

10: end while
11: Return: θ, q(υ), q(Z), q(u)

3.4 Predictive distribution

Let us assume we are interested in predicting the output values y∗ = [y∗⊤
1 , . . . , y∗⊤

D ] at
the test time stamps t∗ = [t∗⊤

1 , . . . , t∗⊤
D ], where each y∗

d and t∗
d ∈ RN∗

d , with N∗
d being

the number of test points at the d-th output. Thus, we define the predictive distribution
as

p(y∗|y) =
∫

Z

∫
F∗,u

p(y∗|F∗,Z)p(F∗|u, )q(u)q(Z) d F∗ d u d Z.

We can straightforward marginalize the distributions that are based on normal distri-
butions (i.e. F∗ and u), and obtain the following expression,

q(y∗|Z) =
∫

F∗,u
p(y∗|F∗,Z)p(F∗|u)q(u) d F∗ d u,

= N
(
y∗|Kf∗,uK−1

u,uũ,C
)
,

with C = Kf∗,f∗ − Kf∗,uΓu,uKu,f∗ + Σf∗ , where Γu,u = K−1
u,u − K−1

u,uK̃u,uK−1
u,u. Kf∗,f∗

is a D×D block-wise matrix, with elements of each block evaluated as ∑q Zd,qk
(q)
fd,fd

(t, t′).
Kf∗,u isD×Q+ block-wise matrix, with elements of each block evaluated using Zd,qkfd,uq(t, t′).
Thus, the predictive distribution reduces to

p(y∗|y) =
∫

Z
q(y∗|Z)q(Z) d Z.

Unfortunately, the above integral is intractable because the Zd,q variable appears on
the determinant of q(y∗|Z). Since we are only interested in the mean and variance of
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p(y∗
d|y), we can approximate it as

E[y∗
d] =

Q+∑
q=1

E[Zd,q]Kf∗
d

,uqK−1
uq ,uq

ũq,

and

cov[y∗
d,y∗

d] =
Q+∑
q=1

E[Zd,q]
[
K(q)

f∗
d

,f∗
d

− Kf∗
d

,uqΓuq ,uqKuq ,f∗
d

]

−
Q+∑
q=1

Q+∑
q′ ̸=q

E[Zd,qZd,q′ ]Kf∗
d

,uqΓuq ,uq′ Kuq′ ,f∗
d

+ Σf∗
d
.

3.5 Related work

This section briefly reviews some approaches similar to the latent force multi-output
Gaussian process construction, where the number of latent functions can be selected
regarding the value of an objective function or by Bayesian estimation methods.

In Chai et al. (2009), robot inverse dynamics are modelled by a multi-task Gaus-
sian Process with different numbers of shared latent functions. Once the models are
learned, the number of latent functions is selected according to the model with the
highest Bayesian information criterion value. Hence, this method requires that the ex-
perimenter manually sets the range of values of the number of latent functions to be
tested. In contrast, we propose an approximate Bayesian automatic selection of the
number of latent functions. Furthermore, our approach also allows to estimate the
sparse interconnection between the outputs and latent functions.

In a closely related work Titsias and Lázaro-Gredilla (2011), the problem of model
selection is approached using the spike and slab distribution as prior over the weight
matrix of a linear combination of Gaussian processes latent functions. The inference
step is performed using a variational approach. Besides, this model assumes a factorized
posterior for the latent functions, which not only leads to a looser lower bound, but also
to an expensive Maximization step, where an iterative procedure is required in order to
learn each variational distribution of the latent functions.

Comparing the proposed approach with the work presented in Guarnizo et al. (2015),
we make two major modifications. First, due to the strong dependency between the
sensitivity values and the rest of the covariance function hyperparameters (i.e. the
parameters involved in the ODE are highly correlated), we omitted the spike and slab
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prior over the sensitivities values. Second, in Guarnizo et al. (2015), the posterior
distribution for the latent functions is assumed to be independent across each latent
force. On the other hand, in the proposed approach, this posterior is found from the
distribution that maximizes the lower bound. These changes allow the proposed model
to be less sensitive to the initialization of the parameters and the obtained lower bound
is tighter.

3.6 Results

In this section, we show results from different datasets, including: synthetic, gene ex-
pression, weather and motion capture datasets. Our main focus is to find the number of
latent functions required to adequately described the experiment’s data. Nevertheless,
we also include an analysis of the interconnection matrix Z between the latent forces
and outputs. For some results comparison, we adopt the normalised mean square er-
ror (NMSE) and the negative log probability density (NLPD), which are described in
appendix A.

The proposed variational method is carried out from 10 different initial conditions,
among the trained models we selected the one that achieved the highest lower bound
value. Thus, the results, analysed in the following subsections, are obtained from the
above selected model. Furthermore, the estimated interconnection matrix is represented
by the Hadamard product between the expected value of the IBP’s variable E[Z] and
the estimated sensitivities Ŝ. This allow us to have a better picture of how the latent
forces contribute to explain the data of each output. Additionally, only the values of
E[Z] larger than 1e−2 are considered. Thus, if all the values of a column of E[Z] do
not fulfil this constraint, then this column is removed. Finally, note that the number of
columns that fulfils the above constraint is considered as the estimated number of latent
forces.

3.6.1 Synthetic data

To show the ability of the proposed method to recover the underlying structure between
the output data and the latent forces, we apply the method to a toy multi-output dataset.
Toy data is generated from the model explained in section 3.2, with D = 3, Q = 2 and
α = 1. The covariance function used in this experiment is ODE2, explained in Sect.
2.2.3, with spring values B1 = 4, B2 = 1 and B3 = 1. Damper values C1, C2 and C3 are
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set to 0.5, 4 and 1, respectively. Then we sample Z from the IBP prior defined in (3.1).
Thus, the sensitivities values used according to Z are

Z ⊙ S =


1.34 −0.25

−1.65 0
0 −0.52

 ,

where ⊙ is the Hadamard product (element-wise product). Note that the entries of Z⊙S
different from zero represent the entries of Z equal to one. For the covariance functions
kq(t, t′) of the latent forces, we choose the length-scales as l1 = 0.2 and l2 = 0.4. Finally,
50 data points per output were generated by sampling the model defined in (3.2) using
the above parametrization. This data is corrupted by adding Gaussian white noise with
variance 0.05. Additionally, some data points are used for training and others for testing
as described in Table 3.1. For the variational approach procedure we assume that the
level of truncation is Q+ = 4 and α = 1. Next, we proceed with the inference process as
described in algorithm 3.

Table 3.1: Description of the number of data points used for training and validation for
the toy experiment 3.6.1.

# Training Test
1 36 14
2 40 10
3 50 0

Figure 3.1 shows a comparison between the true Hinton diagram and the one obtained
using the proposed approach. Although the number of latent forces is well estimated,
the interconnection matrix presents some differences. Note that the first latent force,
estimated by the proposed approach, is used to describe not only outputs 1 and 2 (as in
the generative process), but also a small gain response from this latent force is used to
explain the data of output 3. In consequence, the estimated first latent force function
is broadly similar to the true one, except after time 3.5 s where the estimated function
presents a wavy behaviour, as shown in figure 3.2.

On the other hand, the estimated sensitivity values associated to the second latent
force have a contrary sign compared with their ground truth. Thus, the estimated second
latent force is negative with respect to the true one, as shown in figure 3.2.

Next, we proceed to evaluate the performance of the model learned using the varia-
tional approach by predicting the test values of outputs one and two, as shown in table
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True IBPODE2

Z ⊙ S E[Z] ⊙ Ŝ
Figure 3.1: Hinton diagrams for the true network (left side) and the one obtained using
the proposed variational approach (right side).
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Figure 3.2: (Top) True waveform of the latent forces used to generate the toy data.
(Bottom) Mean value (black line), two times standard deviation (grey) and inducing
values (red dots) for the predictive GP of the latent forces estimated using the proposed
approach.

3.2. Notice that the amplitude values for output two are in the range [-0.6,0.2], the noise
added during the generation of the data affected considerably the amplitude values for
this output. Thus, the NMSE value obtained for output two is larger than the one
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Table 3.2: NMSE and NLPD measurements for testing data in toy experiment.
NMSE NLPD

Output 1 0.0013 -2.6281
Output 2 0.5071 -2.2373

obtained for output one. According to the NLPD values, test data for both outputs are
well fitted by the model trained using the variational approach, as shown in figure 3.3.
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Figure 3.3: Mean value (black line), two times standard deviation (grey shadow), training
(red dots) and test (blue dots) data for the predictive GP of outputs estimated using
the proposed approach.

3.6.2 Yeast metabolic cycle data

For this experiment, we are interested in estimating the yeast transcriptional regulatory
network from eight genes that comprises three cycles of yeast respiration measured using
microarrays, as described in Tu et al. (2005). Each gene data consists of 36 time points
sampled at 25 min intervals. The ribosomal production of each gene is regulated by two
transcriptional factors (TFs), known as FHL1 and RAP1 as shown in Table 3.3. The
regulatory network is known from Chip-on-chip data (Opper and Sanguinetti, 2010) and
is shown in the left side of figure 3.4.

In general, the dynamic relationship between gene expression and transcriptional
regulation can be modelled by a first order ODE (Lawrence et al., 2006). Thus, in this
experiment, the gene expression data is represented by the covariance function ODE1,
which is described in Sect. 2.2.2. Additionally, we performed the variational procedures
by assuming a level of truncation Q+ = 8 and the number of inducing variables M = 18.
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Table 3.3: Description of yeast data used in experiment 3.6.2.
# Name Regulated by
1 YLR183C FHL1
2 YLR030W FHL1
3 TKL2 FHL1
4 YOR359W RAP1
5 PFK27 RAP1
6 RPL17B FHL1,RAP1
7 RPS16B FHL1,RAP1
8 RPL13A FHL1,RAP1

ODE1 IBPODE1

Z ⊙ Ŝ E[Z] ⊙ Ŝ
Figure 3.4: Hinton diagrams obtained using the true Z (left side) and the proposed
variational approach (right side).

We compare the results of our proposed approach with a variational LFM (Álvarez
et al., 2009) where the binary matrix Z is assumed to have the form of the Chip-on-
chip data. Hinton diagrams, for both approaches, are shown in figure 3.4. Note that
the number of latent functions estimated by the proposed approach corresponds to the
number of transcription factors involved in the regulation of the eight genes selected for
this experiment. Additionally, the regulatory network given by the second latent force
was inferred accurately from our proposed approach.

Figure 3.5 shows the latent forces estimated using the true Z (first row) and the pro-
posed approach (second row). The first latent force estimated by the proposed approach
is broadly similar to both latent forces estimated by the variational LFM. Consequently,
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in the proposed approach, the first latent force is used to describe the dynamics of all
genes, as shown in figure 3.4. Meanwhile, the second latent force is used to describe the
residual data over the last five genes.
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Figure 3.5: Mean value (black line), two times standard deviation (grey) and inducing
values (red dots) for the predictive GP of the latent forces, which are estimated by
assuming Z known (first row) and the proposed approach (second row).

The reason that the expression data from the eight genes were mainly explained
by one latent force is because the dynamic system modelled in equation (3.2) is linear.
Hence, as stated in Opper and Sanguinetti (2010), if we are interested in obtaining an
adequate approximation of the TFs, then non-linear dynamic effects must be considered.
Nevertheless, if the system is assumed to be linear, then the data from the 8 genes is
mainly driven by the TF RAP1. That is, our proposed approach estimated the TF
RAP1 as the first latent force, and although the estimation of the second latent force
is unrelated to TF FHL1 (due to there is no periodic behaviour), it contributes on the
description of the genes regulated by this TF.

3.6.3 Human motion capture data

For this experiment, we consider the CMU motion capture (MOCAP) dataset, which
consists of measured joint angles from different types of motions. We used the movement
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“walking” from subject 02 motion 03. From the 62 available channels, we selected six
that contained most of variability of the data along the x-axis. Additionally, data were
downsampled by a factor of four. Table 3.4 summarizes the number of data points used
for training and testing, and the names of the channels used for this experiment. Our

Table 3.4: Description of MOCAP angles data used in experiment 3.6.3.
# Name Training Test
1 rhumerus 35 9
2 rradius 44 0
3 rfemur 44 0
4 lhumerus 35 9
5 lradius 44 0
6 lfemur 44 0

objective is to find the number of latent forces and how they contribute in the explanation
of the MOCAP angles. With that in mind, we adopted the covariance function ODE2,
which is adequate to model the motion of a human body.

We performed the variational procedures by assuming a level of truncation Q+ = 6
and the number of inducing variables M = 25.

Figure 3.6 shows the Hinton diagrams obtained from the variational LFM and the
proposed approach. We can see that the proposed variational approach found four latent

ODE2 IBPODE2

E[Z] ⊙ Ŝ E[Z] ⊙ Ŝ
Figure 3.6: Hinton diagrams obtained assuming fixed full connectivity (left side) and
using the proposed variational approach (right side).

forces, where the first two are shared among all outputs. Specifically, the first column is
involved with the natural behaviour of walking cycle. That is, while a person is walking,
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Table 3.5: NMSE and NLPD measurements for testing data in MOCAP experiment.
ODE2 IBPODE2

NMSE NLPD NMSE NLPD
rhumerus 0.0599 4.7309 0.2928 3.8969
lhumerus 0.0660 3.1147 0.0739 3.3267

if the left arm goes forward, then its right arm goes backward. Thus the first latent
force acts positively for the right side channels and negatively for the left side channels.

The performance of the trained models according to the ability of predicting missing
values is summarized in Table 3.4 and figure 3.7. The test data at “rhumerus” and
“lhumerus” outputs is better fitted by the variational LFM. However, its predictive
variance for “rhumerus” output is larger than the one obtained by the proposed approach.
Thus, the predictive distribution obtained by the variational LFM is underconfident. For
that reason, the NLPD value obtained by the proposed approach for rhumerus output is
better than the one obtained by the variational LFM. For lhumerus output, both models
behaved similarly.

rhumerus lhumerus

O
D

E2
A

ng
le

0 0.5 1 1.5

-200

-150

-100

-50

0

50

100

0 0.5 1 1.5

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

IB
PO

D
E2

A
ng

le

0 0.5 1 1.5

-200

-150

-100

-50

0

50

100

0 0.5 1 1.5

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

Time (s) Time (s)
Figure 3.7: Mean value (black line), two times standard deviation (grey shadow), training
(red dots) and test (blue dots) data for the predictive GP of outputs estimated using
variational LFM (first row) and the proposed approach (second row).
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3.6.4 Air temperature data

Here, we consider the problem of modelling and predicting air temperature time series
from a network sensor located at the south coast of England. The dataset used in
this experiment consists of the temperature measurements of four locations known as
Bramblemet, Sotonmet, Cambermet and Chimet. 1 The air temperatures are measured
during the period from July 10 to July 15, 2013. Furthermore, training and test data
are arranged as proposed in Nguyen and Bonilla (2014) and described in Table 3.6.

Table 3.6: Description of Weather data used in experiment 3.6.4.
# Name Train Test
1 Bramblemet 1425 0
2 Cambermet 1268 173
3 Chimet 1235 201
4 Sotonmet 1097 0

Note that temperature measurements at different locations may be correlated and
hence we are able to make predictions about missing data using the available data from
the other outputs at missing time stamps. Usually, the number of latent functions and
how each latent function contribute to each output is assumed known a priori, as in
Álvarez and Lawrence (2009); Nguyen and Bonilla (2014); Osborne et al. (2008). In-
terestingly, in Nguyen and Bonilla (2014) is proposed Collaborative Gaussian Process
(CoGP) which is based on variational inducing points and assumes that each output
is explained by a set of shared latent functions and an individual latent function. For
comparison purposes, we adopted the same set-up used in Nguyen and Bonilla (2014),
which consisted of two shared latent functions and 200 inducing points. The intercon-
nection obtained, by the above parametrization, is presented as the left Hinton diagram
in figure 3.8.2

For the proposed approach, we consider the Gaussian Smoothing covariance function
(see section 2.2.4) and it is configured by setting the level of truncation Q+ = 6 and the
number of inducing variables M = 200, which is the same parametrization assumed by
the CoGP approach. In the right side of figure 3.8 is shown the interconnection obtained
by the best model found during the training phase. Note that the obtained model make
use of the whole set of available latent functions. Furthermore, we can see that most of

1Weather data can be found in http://www.bramblemet.co.uk.
2CoGP is coded in Matlab® and can be downloaded from https://github.com/trungngv/cogp.

http://www.bramblemet.co.uk
https://github.com/trungngv/cogp
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the outputs are explained by 4 shared latent forces, meanwhile the outputs Chimet and
Sotonet required an additional independent latent force.

CoGP IBPGS

Z E[Z] ⊙ Ŝ
Figure 3.8: Hinton diagrams for the CoGP (left side) and using the proposed variational
approach (right side).

Figure 3.9 shows the predictive distribution plots of Cambermet and Chimet outputs
of models trained using CoGP and the proposed approach. For CoGP, we observe that
not only the method poorly fits the training data, but also its variance is overconfident
for the testing and training data. In contrast, the mean of our approach matches ad-
equately the training data and also its variance covers the testing data. These results
are corroborated by comparing the NMSE and NLPD measurements listed in Table 3.7,
where our approach presented the best performance for predicting the testing data of
each output.

Table 3.7: Comparison of IBPLFM and CoGP methods based on NMSE and NLPD
measurements for testing data on the weather experiment.

IBPGS CoGP
NMSE NLPD NMSE NLPD

Cambermet 0.1201 1.2490 0.1718 144.0671
Chimet 0.2975 1.1383 0.7417 97.6113

3.7 Discussion

We remark that estimating accurately both the interconnection matrix and the latent
forces that generated a specific dataset is a complex task. First consider that the poste-
riors of the proposed approach may have multiple modes. Consequently, there are many
different feasible solutions for the number of latent forces and the interconnection matrix
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Figure 3.9: Mean value (black line), two times standard deviation (grey) and inducing
values (red dots) for the predictive GP of the latent functions using the CoGP (first
row) and the proposed approach (second row).

capable of describing the same data. Thus, in general, the parameters of the genera-
tive model are unidentifiable (Murphy, 2012, Chapter 11). However, from the results
obtained in the toy and gene expression experiments, we are able to elucidate how the
latent forces and Z are constructed by the proposed approach. In both experiments, all
outputs are mainly driven by the first latent force. In consequence, the residual data
(remaining data that is not explained by the first latent force) is used to learn the next
latent force function. The same process is followed in the estimation of the rest of the
latent forces. Furthermore, this procedure for estimating the latent forces can be found
in the sampled version of the IBP (Knowles and Ghahramani, 2011). Thus, we are
unable to guarantee that the solution found by the proposed approach is precisely the
parametrization used to generate the data.

Compared to the variational LFM and CoGP methods, the proposed approach is
able to automatically learn both the number of latent functions and how these are
interconnected to the outputs. Hence, if we assume a fixed interconnection in problems
where there is no a priori knowledge about the relationship of the output data, this can
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easily lead to an inadequate estimation of the latent functions. Nevertheless, the major
drawback of the standard variational inference for the IBP prior is the requirement of
a truncation level. Fortunately, this problem can be addressed by using an MCMC
step in order to know if a new latent force is required to explain the remaining data
at a specific output (Chatzis and Kosmopoulos, 2015; Knowles and Ghahramani, 2011).
Still, in every MCMC step, we would require the optimization of the sensitivities and
hyperparameters values related to the covariance function of the latent forces. Thus,
we end up with a highly expensive process, which could be used or not regarding the
acceptance of the MCMC step.

3.8 Conclusions

In this chapter a variational method based on LFMs and the IBP prior for inferring the
number of latent forces in GP dynamic regression models is presented. We note that the
IBP prior also allows to estimate the sparse interconnection between the outputs and
the latent forces.

During the experiments, we found that the number of latent functions is accurately
estimated over the toy data example. Interestingly, the proposed approach is able to
partially estimate the gene regulatory network and the transcription factors solely from
gene expression data.

The flexibility induced by the IBP prior over the LFM framework allows the proposed
approach to avoid over/under-confident predictive distributions, as the ones obtained by
the variational LFM and CoGP methods.



Chapter 4

Modelling multiple-input
multiple-output data using Latent
force models

In LFMs, we are able to estimate the excitation or input function u(t) by assuming a
partial knowledge about the dynamic linear system that models the data, i.e. we know
the order of the differential equation which also lead us to know the parametric form
of the Green’s function or the impulse response function (IRF). In this chapter, we are
instead interested on estimating the IRF from input and output data using the LFM
approach.

IRF estimation tasks have been addressed using Orthogonal Basis Functions (OBFs)
(Reginato and Oliveira, 2007; Stanislawski et al., 2008). Laguerre functions are OBFs
that are characterized by having only one pole or parameter that controls the waveform
of the basis functions. Furthermore, they have been used in system identification tasks,
as in Israelsen and Smith (2014); Wahlberg (1991). Hence, in this chapter, we propose to
estimate the IRF using the Laguerre functions, which can be encoded in the covariance
function of Convolved Gaussian Processes (CGPs). Laguerre parameters can be learned
from the maximization of the CGP’s marginal likelihood function.

This chapter is organized as follows. In section 4.1, Laguerre functions are introduced.
From the Laguerre theory, we propose two models: Convolved Laguerre models and
sequential Laguerre processes, which are described in sections 4.2 and 4.3, respectively.
Additionally, some related works are reviewed in section 4.4. Some results showing the
ability of the proposed models to estimate the IRFs under different scenarios are explored
in section 4.5. Finally, some concluding remarks are discussed in section 4.6.
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4.1 Laguerre functions

Laguerre functions form a complete and orthonormal set of basis. Each Laguerre function
is defined as (Israelsen and Smith, 2014)

lm(t) = Lm(t) exp(−ρt),

where ρ is a free parameter known as the Laguerre scale (Haber and Keviczky, 1999),
and

Lm(t) =
√

2ρ
m∑

i=0

(−1)im! 2m−i

i! [(mi)! ]2 (2ρt)m−i.

The m-th degree polynomial Lm(t) is called the m-th Laguerre polynomial. It is also
interesting to note that the Laguerre function lm(t) has m zero crossings defined by
the zeros of Lm(t). Additionally, each Laguerre function represents a dynamical system
characterized by one pole with multiplicity, e.g. the Laplace transform of the m-th
Laguerre function is given by

Lm(s) =
√

2ρ (ρ− s)m

(ρ+ s)m+1 ,

where the Laguerre scale parameter ρ controls the position of the pole and the zeros of
each Laguerre function. Hence, we are also using a dynamical representation to estimate
the IRF.

4.2 Convolved Laguerre Process

The IRF of LFMs is assumed to be known before hand in order to predict the input
values (latent forces) from the output data. However, we are interested in approximating
the IRF by means of Laguerre functions. In order to do so, we require to make use of
input-output data. Thus, the IRF of the d-th output can be approximated by the
Laguerre functions ld,m(t) as

Gd(t) ≈
M∑

m=0
cd,mld,m(t), (4.1)
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where cd,m weights the m-th Laguerre function of the d-th output. Then, the convolution
defined in (2.14) becomes

fd,q(t) =
M∑

m=0
cd,m

∫ t

0
ld,m(t− τ)uq(τ)dτ. (4.2)

Next, we proceed to define the covariance functions for the new model described in (4.2).
Thus, the covariance function k

(q)
fd,fd′ (t, t′) becomes

∫ t

0

M∑
m=0

cd,mld,m(t− τ)
∫ t′

0

M∑
m=0

cd′,mld′,m(t′ − τ ′)kuq ,uq(τ, τ ′)dτ ′dτ, (4.3)

and the cross covariance kfd,uq(t, t′) is defined as

M∑
m=0

cd,m

∫ t

0
ld,m(t− τ)kuq ,uq(τ, t′)dτ. (4.4)

Note that, if m > 0, then the convolutions for the above covariance functions have no
closed form. Consequently, we approximate the convolutions by using discrete sums as
in Lawrence et al. (2006). This approximation increases the computation time for the
evaluation of the covariance function, but it also allows the model to use any covariance
function to model the inputs.

4.2.1 Hyperparameter learning

Let us assume we are given noisy observations of Q-inputs and D-outputs in vectors
{vq}Q

q=1 and {yd}D
d=1, respectively. By conditioning the proposed GP model on this

finite set of observations, the model becomes into the following multivariate normal
distribution

z =
 y

v

 ∼ N (0,Kz,z) ,

where z is obtained by stacking in one column the observation vectors y and v. Fur-
thermore, the covariance function for z is defined as follows,

Kz,z =
 Kf ,f + Σf Kf ,u

Ku,f Ku,u + Σu

 , (4.5)
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where each Ki,j (i or j can be either f or u) matrix is obtained by evaluating the
covariance function ki,j(t, t′) at the time stamps t associated to the observations z. From
the above definitions, the set of parameters θCLP = {lq, σ2

d, ρd, cd,m}D,Q,M
d=1,q=1,m=0 (where

m indexes the Laguerre functions as described in (4.1)) are learned by maximizing the
logarithm of the marginal likelihood (Rasmussen and Williams, 2006), which is given by

maximize
θCLP

log p(z|t) = −1
2z⊤K−1

z,zz − 1
2 log |Kz,z| − N

2 log(2π),

where N is the total number of training data points represented by the length of vector
z.

4.2.2 Predictive distribution

According to (2.25), we are able to predict the values of the input and output functions
z∗ at unknown time stamp values t∗ by using

z∗|z ∼ N
(
Kz∗,zK−1

z,zz,Kz∗,z∗ − Kz∗,zK−1
z,zKz,z∗ + Σz∗

)
, (4.6)

where Kz∗,z is a (D+Q)×(D+Q) block-wise matrix with elements arranged in a similar
form to (4.5), with the difference that rows are calculated using t∗. Similarly, Σz∗ is
D + Q block diagonal matrix, where the elements of the j-th block are calculated by
σ2

j IN∗
j
, where N∗

j is the number of test points for the input or output located at that
block.

4.3 Sequential Laguerre Processes

The model defined in (4.2) is converted into the following state-space representation,

d x(t)
d t = Ax(t) + Bϵ(t), z(t) = Cx(t) + r(t), (4.7)

where z(t) = [y1(t), . . . , yD(t), v1(t), . . . , vQ(t)]⊤ comprises the noisy versions of the out-
put and input functions, x(t) = [l(t),u(t)]⊤ with l(t) = [l1,1(t), . . .,l1,M(t), l2,1(t), . . .,
lD,M(t)] represents the Laguerre functions used along the outputs, u(t) =

[
u1(t), d u1(t)

d t
, . . .,

dK−1 u1(t)
d tK−1 , u2(t), . . . , dK−1 uQ(t)

d tK−1

]
comprises the derivatives of all input functions, r(t) ∼

N (0,R) models the noise process that corrupts the response and excitation functions,
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with R = diag([σ2
f1 , . . . , σ

2
fD
, σ2

u1 , . . . , σ
2
uQ

]), and ϵ(t) = [ϵ1(t), . . . , ϵQ(t)]⊤ is the vector
of white noise processes used by the SGP prior to model each input function uq(t) (for
q = 1, . . . , Q). Matrices for the model described in (4.7) are given as

C =
Cf 0

0 Cu

 , A =
Af Bfu

0 Au

 , B =
 0
Bu

 ,
where Cf ∈ RD×DM and Af ∈ RDM×DM are diagonal block-wise matrices of D-blocks
with each block given by Cfd

= [cd,1, . . . , cd,M ] and

Afd
=


−ρd 0 . . . 0
−2ρd −ρd . . . 0

... . . . . . .
−2ρd . . . −2ρd −ρd

 ,

respectively. Also, Cu ∈ RQ×QK , Au ∈ RQK×QK and Bu ∈ RQK×Q are diagonal block-
wise matrices of Q-blocks with each block defined as Cuq = [1, 0, . . . , 0] and

Auq =


0 1

. . . . . .
0 1

−aq,0 . . . −aq,K−2 −aq,K−1

 ,Buq =


0
...
0
1

 .

Coefficients aq,i (for i = 0, . . . , K − 1) are used to approximate the Gaussian Process
prior over the latent function uq(t), this GP is built from a Matérn covariance function
(Hartikainen and Särkkä, 2010). Finally, Bfu ∈ RDM×QK is a block-wise matrix where
the block at the d-th row and q-th column is defined as

Bfduq =



√
2ρd 0 . . . 0

√
2ρd 0 . . . 0
...

√
2ρd 0 . . . 0

 .
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4.3.1 Sequential inference

We start by defining the following discrete observation model as

zk = Cxk + rk,

where zk = [y1(tk), . . . , yD(tk), u1(tk), . . . , uQ(tk)]⊤ represents the training data at dis-
crete time tk, and rk models the noise process over the response and excitation time
series.

We are able to learn the model defined in (4.7) by using the KF procedure, described
in algorithm 1. Furthermore, the hyperparameters are found by maximizing the following
objective,

maximize
θSLP

log p(y|t) = −1
2

N∑
k=1

[
log |2πSk| + v⊤

k S−1
k v⊤

k

]
, (4.8)

where θSLP comprises the hyperparameters required to describe the model defined in
(4.7), and the noise variances.

4.3.2 Predictive distributions

We are able to predict the value z(t∗) by including the test time t∗ in the KF steps.
Hence, the moments of the prediction are given by

E[y(t∗)] = Cmt∗ , and V[y(t∗)] = St∗ ,

where mt∗ is the mean vector of the state vector, and St∗ is the observation covariance
matrix. Both matrices are evaluated at time t∗.

4.4 Related work

The IRF can be approximated in a non-parametric manner by placing a GP prior over
this function, except in the LFM approach because of the product of two GPs is in-
tractable. In Tobar et al. (2015) the Gaussian Process Convolution Model (GPCM) has
been introduced. The GPCM is described as a continuous-time non-parametric window
moving average process. One advantage of this model is that it can be considered in
the frequency domain as well. In order to avoid the intractability mentioned above, the
excitation function is assumed to be a white noise process.
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Another non-parametric approximation is proposed in Risuelo et al. (2016), where a
specific covariance matrix is built by using the stable spline kernel. In this method, a
GP prior is placed over the IRF, but the model is only defined in discrete time.

The above mentioned methods require to approximate the posterior distribution of
the IRF by using special algorithms, i.e. the GPCM requires a variational inference
approach, meanwhile the work in Risuelo et al. (2016) an Expectation-Maximization
algorithm is adopted. In contrast, for the model proposed here, the IRF is estimated
using a set of orthogonal basis (Laguerre functions) which included a dynamical repre-
sentation. Additionally, the proposed model is learned using the standard GP training
method (Rasmussen and Williams, 2006).

4.5 Results

In this section, two different numerical problems are given to illustrate the properties
of the proposed models. In both experiments, a grid of 500 points is used for the CLP
approach to approximate the convolutions described in (4.3) and (4.4). For some results
comparison, we adopt the normalised mean square error (NMSE) and the negative log
probability density (NLPD), which are described in appendix A.

4.5.1 Approximation of the impulse response

In this experiment, we show the ability of the proposed models to estimate the impulse
response function by means of the Laguerre functions. First, we generated 50 data points
equally spaced along the range [0, 4]s, by sampling u(t) from the GP based on a square
exponential covariance function with l = 0.8. Then, the output data f is obtained by
applying u through a second order dynamical system characterized by the following IRF

G(t) = 1
ω

exp
(

−b1t

2

)
sinh(ωt),

with b0 = 1, b1 = 4 and ω =
√
b2

1 − 4b0/2. From the data vectors f and u we proceed
to learn the models CLP and SLP with M = 10 Laguerre basis by using the procedure
described in section 4.2.1 and 4.3.1, respectively. The models are learned 10 times
with different parameters initializations. Figure 4.1 shows the mean and two standard
deviations calculated from the 10 IRFs learned for the proposed models. Additionally,
the SMSE’s mean value for CLP and SLP are 0.0919 ± 0.1048 and 0.4743 ± 0.9662,



52 Modelling multiple-input multiple-output data using Latent force models

CLP SLP

0 0.5 1 1.5 2 2.5 3 3.5 4

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1 1.5 2 2.5 3 3.5 4

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Deviation

Mean

True

Time (s) Time (s)
Figure 4.1: Mean and two standard deviations calculated from the impulse response
functions estimated using CLP and SLP for experiment 4.5.1.

respectively. The mean of the SMSE values indicates that the CLP approach estimated
better the IRF. Furthermore, according to figure 4.1 and the standard deviation of the
SMSE values, the IRFs obtained by the CLP approach were the most accurate.

4.5.2 Prediction of missing input/output values

For this experiment, we are interested in predicting missing values of inputs and outputs.
First, we configured a MIMO system with two inputs and two outputs described by the
following equations

d4f1(t)
dt4 + 4d3f1(t)

dt3 + 9d2f1(t)
dt2 + 14df1(t)

dt + 8f1(t) = ū(t),

df2(t)
dt + f2(t) = ū(t),

with ū(t) = ∑2
q=1 uq(t). Then, 50 data points are generated for input and output vari-

ables (we follow similar steps as the ones described in experiment 4.5.1). Additionally,
output data is corrupted by an additive white noise process. We proceed to learn both
proposed models by assuming that the number of Laguerre functions is M = 10. Fur-
thermore, in order to show the ability of the proposed models to deal with missing data,
the dataset is divided into 2 subsets (training and testing) as shown in figure 4.2.
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Figure 4.2: Prediction of missing data (Test data) for the MIMO system described in
section 4.5.2. Predictive distributions are represented by the mean value (black line)
and two times the standard deviation (grey shadow), training (red dots) and test (blue
dots) data.
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According to figure 4.2 and table 4.1, the predictive distributions found by the CLP
approach are better suited to describe the testing data. Unfortunately, the SLP approach
is overconfident to explain the output data, and the missing data from input 1 is not
fitted adequately. The sequential inference for the SLP approach can behave poorly for
consecutive testing points. In contrast, using all the observations (input and output
values) simultaneously allow the CLP approach to better describe consecutive testing
points.

Table 4.1: Comparison of CLP and SLP methods based on NMSE and NLPD measure-
ments for the testing data of experiment 4.5.2.

CLP SLP
NMSE NLPD NMSE NLPD

Output 2 0.0168 -1.5804 0.0521 2.6275
Input 1 0.0011 -3.104 0.2822 1.3418

The IRFs estimated for both outputs using the CLP and SLP approaches are shown
in figure 4.3. We can see that the IRFs estimated from both approaches were affected by
the missing data. Nevertheless, both models adequately matched the dynamic behaviour
of the IRF for output 1, even for the small amplitude values ranging from -0.02 to 0.08.
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Figure 4.3: Impulse response approximation for the MIMO system described in section
4.5.2, using the proposed methods CLP and SLP.

4.5.3 CD-player arm

In this section, we consider the experimental data from a mechanical construction of a
CD-player arm. The system consists of two inputs that are the forces of the mechanical
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actuators, and two outputs involved in the tracking accuracy of the arm. The data was
measured in closed loop, but through a two-step procedure it was converted to open
loop equivalent data (De Moor et al., 1997). The data set contains 2048 sample points
for each input or output. From the 2048 data points, we downsampled by 2 the first 400
data points. Thus, the selected 200 data points are arranged for training and testing as
described in Table 4.2 and figure 4.4.

Table 4.2: Description of CD-player arm data used in experiment 4.5.3.
Name Training Test
Output 1 200 0
Output 2 189 11
Input 1 189 11
Input 2 200 0

The performance comparison between the CLP and SLP approaches related to the
ability to explain the missing or test data is summarized in figure 4.4 and Table 4.3.
Interestingly, the SLP approach better explained the missing data for Input 1, while the
CLP approach performed best to describe the test data for Output 2. Additionally, note
that the CLP approach performed best to describe the test data variability of Input 1
and Output 2 (regarding the NLPD measurements).

Table 4.3: Comparison of CLP and SLP methods based on NMSE and NLPD measure-
ments for the testing data of CD-player arm experiment.

CLP SLP
NMSE NLPD NMSE NLPD

Output 2 0.1350 -0.7355 0.3977 6.3932
Input 1 0.4433 -0.7062 0.1144 -1.3277

Figure 4.5 shows the estimated IRFs using the proposed approaches. The IRFs for
Output 1 estimated by both approaches are similar in shape (they are scaled differently).
However, the IRFs estimated for Output 2 differ in shape and magnitude, because of
the uncertainty induced by the missing data.
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Figure 4.4: Prediction of missing data (Test data) for the CD-player arm system de-
scribed in section 4.5.3. Predictive distributions are represented by the mean value
(black line) and two times the standard deviation (grey shadow), training (red dots)
and test (blue dots) data.
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Figure 4.5: Impulse response approximation for the CD-player arm system described in
section 4.5.3, using the proposed methods CLP and SLP.

4.6 Conclusions

In this chapter, we have proposed two different approaches aimed to model multiple-
input and multiple-output data of LTI systems. Additionally, we are able to point-
estimate the IRFs of each output from the hyper-parameters selected during the learning
procedure. The first approach is based on the convolution construction of LFMs, while
the second approach uses the state-space representation of LFMs.

The experiments demonstrated that the proposed approaches are able to model
MIMO data and estimate the IRFs of LTI systems in the presence of noise corrup-
tion and missing input/output data. Furthermore, the CLP approach performed better,
mostly because it uses all the available data at the prediction stage. However, the in-
ference procedure of the CLP approach is highly expensive compared to the sequential
procedure used by the SLP approach.

These models can be easily extended by using another set of orthonormal basis or
dynamic-related functions. For example, selecting a set of basis which allows to find a
closed form for the CLP’s convolutions is recommended.



Chapter 5

Wiener system approximation using
latent force models

Non-linear dynamical systems are, in general, better suited to described real word prob-
lems than their linear counterparts. In this chapter we focus on Wiener systems that
consist on a non-linear static function applied over the response of a linear dynamical
system as shown in figure 5.1. Specifically, we present two novel approaches that ap-

G(t) g +u(t)

w(t)

y(t)
f(t) g(f(t))

Figure 5.1: Block representation of a Wiener system.

proximate Wiener systems. The first approach is based on LFMs, and it is focused on
estimating the excitation or input function from the output data. On the other hand,
the second approach is based on SLMFs, and it is aimed to estimate the impulse response
function using Laguerre functions (as in Chapter 4). In both approaches the non-linear
static function, g(·), is approximated using linearisation methods, as described next.

5.1 Linearisation Methods

We are able to approximate the values of the non-linear transformation using the fol-
lowing relations:

g(f(t)) ≈ Af(t) + b, f(t) ∼ N (µ, K) , (5.1)
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with µ and K being the mean vector and covariance matrix of f(t) ∈ RD, respectively.
Also, b ∈ RD and A ∈ RD×D. In consequence, g(f(t)) ∈ RD is a column vector with
elements given by g(fd(t)), for d = 1, . . . , D. In order to calculate A and b, we adopt
the Taylor series and Statical linearisation methods, which are described next.

First order Taylor series

The approximation given by a first order Taylor series applied over the non-linear trans-
formation of a Gaussian random variable, as in (5.1), can be represented as

g(f(t)) ≈ g(µ) + J(f(t) − µ),

with
J = ∂g(f(t))

∂f(t)

∣∣∣∣∣
f(t)=µ

.

Hence, we are able to calculate (5.1) using

A = J, b = g(µ) − Jµ.

Statistical linearisation

Statistical linearisation allows us to find the least squares best fit of g(f(t)) around the
point f(t). To do so, we require to evaluate the static non-linear function at multiple
points. These points are selected according to the unscented transform, as in Dezfouli
and Bonilla (2015), which defines 2D + 1 sigma points,

M0 =µ

Mi =µ+
(√

(D + κ)K
)

i
with 1 ≤ i ≤ D

Mi =µ−
(√

(D + κ)K
)

i
with D < i ≤ 2D

Yi =g(Mi) with 0 ≤ i ≤ 2D,

where κ is a free parameter, and (
√

·)i represents the i-th column of the matrix square
root, which can be calculated using the Cholesky decomposition. From the relations
obtained above we define the following statistics,

ȳ =
2D∑
i=0

ciYi, Γ =
2D∑
i=0

ci (Yi − ȳ) (Mi − µf )⊤ , (5.2)
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with weight coefficients defined as

c0 = κ

D + κ
, ci = 1

2(D + κ) with 0 < i ≤ 2D.

We are able to find the requirements of (5.1) by solving the following objective,

arg min
A,b

2D∑
i=0

||Yi − (AMi + b)||22,

which corresponds to a linear least-squares problem with solution given by

b = ȳ − Aµ, A = ΓK−1.

It is worth to mention that unlike Taylor series, the statistical linearisation method does
not require derivative evaluations of the static non-linear function.

5.2 Latent force models for Wiener systems

As shown in figure 5.1, Wiener systems can be modelled as

y(t) = g(f(t)) + w(t), (5.3)

where f(t) follows a LFM prior, g(·) is an arbitrary warping function with scalar input,
and w(t) is a white noise process with variance σ2

g . In order to avoid the intractability
induced by the static non-linear function, we adopt the extended and unscented GP
approach proposed in Steinberg and Bonilla (2014). We start by assuming that we are
given a dataset consisting of N noisy observed values, y ∈ RN , which are obtained
from the transformation of the response function f ∈ RN . Specifically, if we condition
the model given in (5.3) on the dataset, then it can be described using the following
likelihood and prior,

y ∼ N
(
g(f), σ2

gIN

)
, f ∼ N (0,Kf ,f ) . (5.4)

Notice that we are unable to obtain the posterior p(f |y) because of the non-linear trans-
formation of f . Fortunately, we are able to address this problem by using variational
inference (Bishop, 2006), as described next.
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5.2.1 Inference

To overcome the problem imposed by the non-linear function in (5.4), we assume that
the posterior of f takes the form, q(f) = N (f |m,C), where m ∈ RN is the posterior
mean, and C ∈ RN×N is the posterior covariance matrix. Thus, we can place a lower
bound on the log-marginal likelihood as

log p(y) ≥
∫
q(f) log p(y|f)p(f)

q(f) d f .

Similarly to section 3.3, we are able to minimize the Kullback-Leibler distance between
p(f |y) and q(f) by maximizing the above lower bound, which becomes

F = Eq(f) [p(y|f)] − KL [q(f)||p(f)] , (5.5)

where KL(q||p) is the Kullback-Leibler distance between the distributions q and p. Given
that the posterior is assumed to be Gaussian distributed, we can evaluate the expectation
and KL term from the above equation as

Eq(f) [p(y|f)] = −1
2

[
N log 2πσ2

g + 1
σ2

g

N∑
n=1

Eq(f)
[
(yn − g(fn))2

]]
, (5.6)

KL [q(f)||p(f)] = 1
2
[
tr(K−1

f ,f C) + m⊤K−1
f ,f m − log|C|+ log|Kf ,f |−N

]
.

Note that we are able to evaluate the expectation in (5.6) by approximating the static
non-linear function using the linearisation methods described in section 5.1. Besides, in
this case, the linearisation is one-dimensional and it is given by

g(fn) ≈ anfn + bn,

where the coefficients an’s and bn’s are calculated using the linearisation methods de-
scribed in 5.1. Hence, we can approximate the expectation in (5.6) as,

Eq(f) [p(y|f)] ≈ −1
2N log 2πσ2

g − 1
2σ2

g

[
e⊤e + tr(A⊤AC)

]
, (5.7)

with e = y − (Am + b) and A = diag([a1, . . . , aN ]).
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Learning the Variational moments

As in Bonilla et al. (2016); Steinberg and Bonilla (2014), given that there is no close form
to update the posterior mean m, we resort to Newton’s method to find the approximate
posterior mean,

m(k+1) = m(k) − α

(
∂2F

∂m∂m⊤

)−1
∂F
∂m

∣∣∣∣∣∣
m=m(k)

, (5.8)

where α ∈ (0, 1] is a step length. Based on (5.5) and (5.7), we are able to approximate
the gradient of the variational lower bound with respect to the posterior mean, and the
Hessian of the variational objective as

∂F
∂m

≈ 1
σ2

g

A(y − Am − b) − K−1
f ,f m,

∂2F
∂m∂m⊤ ≈ −K−1

f ,f − 1
σ2

g

AA.

Once (5.8) has converged to its optimum, declared as m+, we are able to calculate the
approximate posterior covariance matrix,

C =
(

K−1
f ,f + 1

σ2
g

AA
)−1

. (5.9)

Note that the entries of matrix A depend on the optimum mean m+.

Hyperparameter learning

Using the optimum posterior parameters found in the above section, the approximated
lower bound reduces to

Fθ ≈ −1
2N log 2πσ2

g − e⊤e
2σ2

g

− 1
2
[
m⊤C−1m − log|C|+ log|Kf ,f |

]
. (5.10)

Unfortunately, because the posterior moments depend of the hyperparameters (covari-
ance function hyperapameters and noise variances), we are unable to use optimisation
techniques based on partial derivatives with the aim of finding the optimal set of hy-
perparameters. Thus, as in Steinberg and Bonilla (2014), we resort to a derivative-free
optimisation method known as BOBYQUA (Bound Optimization BY Quadratic Ap-
proximation) and introduced in Powell (2009). Additionally, note that for each iteration
of the optimisation procedure, we require to perform, as an inner loop, the Newton’s
method in order to find the optimal posterior moments, as described in Algorithm 4.
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Algorithm 4 Evaluation of the objective function for the Wiener LFM.
1: Input: Training data: t and y. Hyper-parameters θ, and variational factors m and

C.
2: repeat
3: Update m using Newton’s method (5.8).
4: until (5.8) has converged.
5: Update C according to (5.9).
6: Return: Evaluation of the lower bound (5.10)

5.2.2 Predictive distribution

The predictive distribution for the response function, f∗, at unknown time stamps ,t∗,
can be obtained by evaluating

p(f∗|y) =
∫
p(f∗|f)q(f) d f ,

which can be straightforward calculated as

p(f∗|y) = N
(
Kf∗,f K−1

f ,f m,Kf∗,f∗ − Kf∗,f K−1
f ,f [IN − CKf ,f ] K⊤

f∗,f

)
.

Additionally, we can find the predicted observations,

p(y∗|y) =
∫
g(f∗)p(f∗|y) d f∗,

using quadrature. Interestingly, we are also able to estimate the predictive distribution
for the latent force function, u∗, using

p(u∗|y) =
∫
p(u∗|f)q(f |m,C) d f ,

which becomes

p(u∗|y) = N
(
Ku∗,f K−1

f ,f m,Ku∗,u∗ − Ku∗,f K−1
f ,f [IN − CKf ,f ] K⊤

u∗,f

)
.

5.2.3 Related work

The first non-linear dynamic system approximated using the LFM framework was in-
troduced in Lawrence et al. (2006). Specifically, gene expression data was approximated
using a Hammerstein system. Nevertheless, the convolution operation was approximated
by sums in order to keep the inference process tractable. In contrast, we are able to build
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all types of non-linear dynamic systems using SLFMs. As demonstrated in Hartikainen
et al. (2012), Wiener, Hammerstein and Drift non-linear systems can be approximated
using the SLFM approach.

However, we remark that the non-linear LFM, described in 5.3, can be also ap-
proached using Warped GPs (Lázaro-Gredilla, 2012; Snelson et al., 2004) or Black-box
likelihoods (Dezfouli and Bonilla, 2015).

5.2.4 Experiments

In this section we explore the ability of the proposed approach to recover the latent force
function (excitation function) from the noisy observations of the transformed response
of a LTI system. Unfortunately, we are unable to guarantee that the latent force is
accurately estimated. As argued in Davies and Husmeier (2014), given that the latent
force is unobservable, we are only able to estimate the shape of the latent force function.
Furthermore, recall that the proposed method induces uncertainty from the observed
outputs to the response function (because of the linearisation of the static non-linear
function). Since we adopt two different linearisation methods, we refer to the Wiener
system approximated using the Statistical and Taylor series linearisation methods as
LFM-S and LFM-T, respectively.

For the experiments, we use a single-input single-output second order LFM, as de-
scribed in section 2.2.3, with parameters B = 1, C = 3, S = 5 and l = 0.5. From this
LFM, we sample 400 data points of the response and excitation functions in the interval
[0,3]s. We build the observation vector y by transforming the response data f using
the static non-linear function g(f), and then adding a white noise process with variance
0.01. Next, we divide the dataset into 153 data points for training and 247 data points
for testing. The proposed approach is learned using 10 different initialisations, and the
one that achieved the highest lower bound value is selected as the final solution.

We consider four different static non-linear functions, which are listed in the first
column of Table 5.1. In this table we compare the performance of both linearisation
methods, regarding the estimation of the response function f(t) at the testing points,
using the measurements NMSE and NLPD described in appendix A. Since the first non-
linear static function has no gradients w.r.t. f , we are unable to use the Taylor series
approach to approximate the Wiener system. In consequence, there are no performance
measurements reported for that case. According to the results listed in Table 5.1, we
notice that the statistical linearisation method outperformed the Taylor series approach,
except for the case when g(f) = sin(f). Furthermore, these results indicate that the



5.3 Wiener system estimation based on sequential Laguerre processes 65

Table 5.1: Comparison of the Statistical and Taylor series linearisation methods based on
NMSE and NLPD performance measurements for the prediction of the response function
f(t) at testing data.

LFM-S LFM-T
g(f) NMSE NLPD NMSE NLPD

2sign(f) + f 3 3.8 × 10−4 -4.3618 - -
f 3 + f 2 + f 6.8 × 10−6 -5.6307 9.9 × 10−3 -1.8531

exp(f) 2.8 × 10−5 -4.7888 3.5×10−5 -4.6239
sin(f) 3.8×10−3 1.4255 1.4 × 10−4 -4.2264

amplitude values are not only well fitted (small values of NMSE), and also its variability
is adequately described by the predictive distribution (negative values of NLPD).

Figure 5.2 shows the forcing functions estimated for each Wiener system considered
in Table 5.1. Notice that the forcing functions obtained from the worst fitted response
functions (i.e. LFM-T at the second case, and LFM-S at the fourth considered Wiener
system), are smoother than the true function. In contrast, we can see a coarser behaviour
(but matched amplitudes) of the estimated forcing functions in the first and third Wiener
systems using the LFM-S and LFM-T approaches, respectively. Although the rest of
the forcing functions have different amplitudes (w.r.t. the true function), their waveform
matches (correlates) the shape of the true forcing function.

5.3 Wiener system estimation based on sequential
Laguerre processes

In this proposed approach, we are interested on estimating the impulse response function
of Wiener systems by using the Laguerre functions. We start by defining the continuous
model with its linear and non-linear parts. Then, the linear dynamic part of a Wiener
system can be described by the following continuous state-space model

d x(t)
d t = Ax(t) + Bϵ(t), [f(t), u(t)]⊤ = Cx(t), (5.11)

where A, B, C and w(t) follow the same forms defined in section 4.3 (for Q = 1 and
D = 1). The static non-linear function is included at the following observation model,

y(t) = g(Cx(t)) + r(t), (5.12)
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Figure 5.2: Plot of the forcing functions u(t), true function (blue line), and the mean
(black dashed line) and two times the standard deviation (grey shade) of LFMs predic-
tions for each Wiener system considered in experiments 5.2.4.

with r(t) modelling the noise processes for the input and output functions. Note that
the evaluation of the non-linear function given in (5.12) is only applied over f(t), i.e.
g(Cx(t)) = [g(f(t)), u(t)]⊤.
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5.3.1 Inference

In order to perform the inference procedure, we require to transform the continuous
model given in (5.11) and (5.12) into its discrete time analogous. Fortunately, the linear
part, given in (5.11), can be fully described by the discrete model developed in (4.7). In
contrast, the discrete observation model defined as

yk = g (Cxk) + rk, (5.13)

includes the non-linear static function. Hence, in order to have a tractable inference
procedure for the model described above, we adopt the extended and the unscented
Kalman filter approaches (Särkkä, 2013).

Extended Kalman filter (EKF)

Here, we approximate the non-linear function by using the Taylor series linearisation
described in section 5.1. In consequence, the update steps of the standard Kalman filter,
described in algorithm 1, are changed by the following expressions

vk =yk − g(Cm−
k ),

Sk =JkP−
k J⊤

k + Rk,

Kk =P−
k J⊤

k S−1
k ,

mk =m−
k + Kkvk,

Pk =P−
k − KkSkK⊤

k ,

where the Jacobian matrix is defined as

Jk = ∂g(Cxk)
∂xk

∣∣∣∣∣
xk=m−

k

.

Unscented Kalman filter (UKF)

In this case, we approximate the non-linear function by using the Statistical linearisation
method described in section 5.1. In consequence, the update steps of the standard
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Kalman filter, described in algorithm 1, are changed by the following expressions

Kk =CkS−1
k ,

mk =m−
k + Kk[yk − µk],

Pk =P−
k − KkSkK⊤

k ,

where µk and Ck are the predictive mean and cross-covariance matrix calculated
using the expression given in equation (5.2). The predicted covariance matrix of the
state is calculated as

Sk =
2D∑
i=0

ci (Yi − µk) (Yi − µk)⊤ .

Hyperparameter learning

The model parameters, for both Extended and Unscented Kalman filters, are learned by
maximizing the logarithm of the likelihood function, which is given by

maximize
θSLP

log p(y|t) = − 1
2

K∑
k=1

[
(yk − g(Cmk))⊤S−1

k (yk − g(Cmk))

+ log |2πSk|
]
,

(5.14)

where θSLP comprises the hyperparameters required to describe the model defined in
5.11 and 5.12. Besides, note that Sk and mk depend on θSLP.

5.3.2 Experiments

In this section, we are interested in analysing the ability of the proposed approach to
estimate the impulse response function of Wiener systems by means of the Laguerre
functions. First, we generated 200 data points equally spaced along the range [0, 8]s,
by sampling u(t) from a GP based on a square exponential covariance function with
lengthscale equal to one. Then, the response data {fk}200

k=1 is obtained by applying
{uk}200

k=1 through a second order dynamical system characterized by the following IRF

G(t) = 1
ω

exp
(

−b1t

2

)
sinh(ωt),
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with b0 = 2, b1 = 3 and ω =
√
b2

1 − 4b0/2. Then, the observed output data {yk}200
k=1

is generated by adding white noise (with variance σ2 = 0.01) to the transformed re-
sponse values, as described in (5.13). The non-linear static functions considered in the
experiments are listed in the first column of Table 5.2.

The proposed approach is learned from 10 different initializations using the procedure
described in 5.3.1, and all the available data (i.e. all samples are used for training the
model). In Figure 5.3 and Table 5.2 are summarized the overall performance of the
proposed model to estimate the IRF regarding each non-linear static function. The
standard deviation values, listed in Table 5.2, indicate that the solutions found by the
EKF for a specific non-linear function highly differ one from another. Nevertheless, the
mean values for the UKF show that its main trend, from the estimated IRFs, adequately
fitted the true IRF.

Table 5.2: Mean and standard deviation of the NMSE values obtained from the 10 IRFs
learned for experiment 5.3.2.

g(f) EKF UKF
mean std mean std

f 3 + f 2 + f 0.0763 0.2388 0.0035 0.0099
exp(f) 0.0017 0.0043 0.0016 0.0032
sin(f) 0.1809 0.3049 0.1044 0.2055

For example, most of the IRFs, estimated at the exponential transformation case,
highly matched the form of the true IRF.
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Figure 5.3: Comparison between the true IRF, and the mean and 2 times standard
deviation of IRFs estimated by the proposed approach.

5.4 Conclusions

In this chapter, we have proposed two different approaches based on Wiener systems.
The first approach is aimed to estimate the latent force function using LFMs. From the
experiments, it is evidenced that the proposed approach is able to estimate the shape of
the latent force from the noise corrupted observations of Wiener system outputs.

On the other hand, the second proposed approach estimates the IRF using Laguerre
functions and SLFMs. The experiments demonstrated that the proposed model is able to
accurately estimate the IRFs of Wiener systems in the presence of noise. Furthermore,
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we could consider using the statistical linearisation in order to deal with non-linear
functions from which gradients are intractable.



Chapter 6

Conclusions and Future Work

This chapter summarizes the contributions and research work done in the thesis, besides
some future research lines are presented.

6.1 Conclusions

This thesis focused on developing new approaches and extensions for Latent Force mod-
els.

Number of latent forces. In Chapter 3 a variational framework was developed,
that allows to approximate the posterior of the binary matrix modelled by an Indian
Buffet process for multiple-output LFMs. From this posterior we are not only able
to estimate the number of latent functions required to explain the observed data, but
also to estimate the sparse structure relating the input and output functions. This
variational approach was successfully applied on gene expression, motion capture and
weather datasets. Specifically, for the gene expression data we were able to estimate the
correct number of transcription factors.

Modelling multiple-input multiple-output data. Chapter 4 extended LFMs and
SLFMs usage. Instead of focusing on the estimation of the latent forces, the proposed
approaches (CLPs and SLPs) were aimed to model multiple-input multiple-output data.
By capturing the correlations among the inputs and outputs we are able to point-estimate
the impulse response functions (IRFs) using Laguerre functions. These approaches were
compared regarding their performance on the estimation of the IRF and predictions of
missing data in multiple-input multiple-output scenarios. From the experiments, we
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evidenced that the CLP approach performed better than the SLP, due to the former
uses the correlation from the whole training data in order to make predictions at any
time.

Approximation of Wiener systems. In Chapter 5 two different approaches were
developed. In the first approach, we considered the estimation of the latent forces on
Wiener systems. The problem imposed by the static non-linear function is addressed
using linearisation techniques. The approximated linear model is evaluated at the mean
of the posterior of the response function. Besides, the posterior of the response function
is approached using variational inference. We demonstrated the capacity of the proposed
approach to estimate the form of the latent forces.

On the other hand, the second approach was instead aimed to estimate the impulse
response function of a Wiener system. In this approach, the extended Kalman filter was
applied over sequential latent force models in order to deal with non-linear static func-
tions. We demonstrated that this approach successfully estimated the impulse response
function for different non-linear static functions.

6.2 Future Work

Here we discuss some potential research lines.

Number of latent functions. The main drawback for the variational approach pro-
posed in Chapter 3 is the requirement of the truncation level in order to have a tractable
model. Nevertheless, we are able to use Markov chain Monte Carlo (MCMC) steps aimed
to find the number of latent functions, as in Chatzis and Kosmopoulos (2015); Knowles
and Ghahramani (2011); Teh (2007). Hence, we could resort to a Hybrid inference,
where the number of latent functions is estimated using the MCMC step and the rest of
the random variables are estimated using the proposed variational approach. However,
we must take special care with the MCMC step because for each latent force that is
added, we require to select the length-scale and the sensitivity values.

Modelling multiple-input multiple-output data. As discussed in Chapter 4, the
main issue of the CLP approach is that we approximate the convolutions (and hence the
covariance functions) using discrete sums. This problem can be addressed by using a set
of orthonormal functions from which the convolutions have closed forms or approximat-
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ing the squared exponential covariance functions using Kernel Fourier features (Rahimi
and Recht, 2008).

Besides, we could consider to add more flexibility to the proposed approaches, by
assuming that each input function contributes to each output using a different linear
system. Figure 6.1 depicts how each input function generates a different response from
different IRFs, which are added to obtain the output function.

G1,1(t)

G1,2(t)
f1(t)+

u1(t)

u2(t)

Figure 6.1: Block representation of a mutiple-input single-output system.

Non-linear dynamical systems. From the approach presented in section 5.3, we
are also able to model another non-linear dynamical systems, such as, Hammerstein
systems and the combination Wiener-Hammerstein dynamical system. This can be
done by extending the examples presented in Hartikainen et al. (2012) using the SLP
approach.

On the other hand, we are able to combine the variational approach proposed to
estimate the number of latent functions, with the approach proposed in section 5.2.
Hence, this new model would be able to infer the number and form of latent forces for
Wiener systems. Additionally, we could consider to model multiple output data, with
the aim of increasing the accuracy on estimating the latent force (excitation) function.
This can be done by considering the work presented in Bonilla et al. (2016).



Appendix A

Performance metrics

In order to compare the results obtained by using different configurations or methods, we
evaluate the performance of predicting missing data using the normalised mean square
error (NMSE) and the negative log probability density (NLPD) (Tan et al., 2016). These
measurements are defined per output as

NMSE =
1

N∗
d

∑N∗
d

j=1(y∗
d,j − µ∗

d,j)2

1
N∗

d

∑N∗
d

j=1(y∗
d,j − ȳd)2

,

NLPD = 1
2N∗

d

N∗
d∑

j=1

[
(y∗

d,j − µ∗
d,j)2

σ∗2
d,j

+ log
(
2πσ∗2

d,j

)]
,

where y∗
d,j is the j-th true test value of output d. Similarly, µ∗

d,j and σ∗2
d,j are the mean

and variance values of the predictive distribution for the d-th output at the j-th test
time, respectively. Meanwhile, ȳd is the average value of the training values yd.



Appendix B

Extension for the estimation of the
number of latent forces

B.1 Lower Bound terms description

Lower bound term defined in section 3.3 are mathematically described next:

E[p(y|−)] =
Q+∑
q=1

tr
(
mq E[u⊤

q ]
)

− 1
2

Q+∑
q=1

Q+∑
q′=1

tr
(
Pq,q′ E[uq′u⊤

q ]
)

− 1
2

Q+∑
q=1

tr
(
K−1

uq ,uq
E[uqu⊤

q ]
)

− 1
2

Q+∑
q=1

log|Kuq ,uq |

+ 1
2

D∑
d=1

Nd log βd − 1
2

D∑
d=1

βdy⊤
d yd − 1

2

D∑
d=1

Q+∑
q=1

ηd,qcd,q

− MQ+

2 log 2π − N

2 log 2π,

E [log p(Z|υ)] = − 1
2 log 2π

D∑
d=1

Q+∑
q=1

E[Zd,q] +
D∑

d=1

Q+∑
q=1

E[Zd,q]E[log πq]

+
D∑

d=1

Q+∑
q=1

(1 − E[Zd,q])E[log(1 − πq)],

E [log p(υ)] =(α− 1)
Q+∑
q=1

[ψ(τq1) − ψ(τq1 + τq2)] + log(α)Q+,
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with
E[uq′u⊤

q ] = K̃uq′ ,uq + ũq′ũ⊤
q ,

Meanwhile, the entropies are defined as

H(υ) =
Q+∑
q=1

[
log

(
Γ(τq1)Γ(τq2)
Γ(τq1 + τq2)

)
− (τq1 − 1)ψ(τq1)

− (τq2 − 1)ψ(τq2) + (τq1 + τq2 − 2)ψ(τq1 + τq2)
]
,

H(Z) = −
D∑

d=1

Q+∑
q=1

[(1 − ηd,q) ln(1 − ηd,q) + ηd,q ln ηd,q],

and

H(u) = Q+M

2 (1 + log(2π)) + 1
2

Q∑
q=1

ln|K̃uq ,uq |,

where Γ(·) is the gamma function.

B.2 Predictive distribution for latent forces

Let us assume we are interested in predicting the values u∗ = [u∗⊤
1 , . . . , u∗⊤

Q+ ]⊤ at testing
inputs t∗ = [t∗⊤

1 , . . . , t∗⊤
Q+ ]⊤. Thus, we are able to approximate the predictive distribution

for u∗ as
p(u∗|y) =

∫
p(u∗|u)q(u) d u.

where p(u∗|u) = N (u∗|Ku∗,uK−1
u,uu,Ku∗,u∗ − Ku∗,uK−1

uq ,uq
Ku,u∗) and q(u) is defined in

section 3.3.3. Note that the above integral is tractable since both probabilities are
normally distributed. Thus, the above predictive distribution is reduced to

p(u∗|y) = N (u∗|µu∗ ,Σu∗) ,

with
µu∗ = Ku∗,uK−1

u,uũ,

Σu∗ = Ku∗,u∗ − Ku∗,u
(
K−1

u,u − K−1
u,uK̃u,uK−1

u,u

)
Ku,u∗ .
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