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Resumen amplio

En las últimas décadas los activos financieros derivados, y en concreto las opciones,

han recibido mucha atención tanto en el ámbito profesional como en el ámbito académico.

En general, los precios de los activos son vistos como la esperanza de los futuros

flujos de caja descontados. En el caso particular de las opciones, teniendo diferentes

opciones sobre el mismo subyacente y con la misma fecha de vencimiento, podemos obtener

información sobre la forma y los diferentes parámetros de la función de densidad con la

cuál los agentes valoran los activos derivados, y en definitiva cómo ponen precio a unidades

de consumo en diferentes estados de la naturaleza futuros. Existe una gran corriente en

la literatura que se dedica a la extracción de las densidades impĺıcitas en el precio de

las opciones, siendo estas densidades neutrales al riesgo (que son las que se utilizan en

valoración de activos). Por lo tanto, a partir del precio de las opciones podemos obtener

las densidades neutrales al riesgo (RND por sus siglas en inglés Risk-Neutral Densities),

las que a su vez nos permiten analizar diferentes aspectos de los mercados financieros.

Esta información impĺıcita en el precio de las opciones es considerada información

forward-looking (con miras al futuro). Diferentes estudios han probado su superioridad en

diferentes aplicaciones tales como predicción, modelización y valoración, entre otros; en

detrimento del uso de medidas estad́ısticas tradicionales basadas en el análisis de datos

históricos.
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2 Resumen amplio

Consecuentemente, el conocimiento de las RNDs nos permite analizar diferentes as-

pectos de los mercados financieros. Uno de los principales objetivos de los inversores es

la elaboración de previsiones precisas sobre realizaciones de los precios futuros del sub-

yacente, mejorando aśı la valoración de activos y gestión de carteras, entre otros. Pero,

¿podemos confiar en la capacidad predictiva de las RNDs impĺıcitas en el precio de las

opciones?

Entre toda la información adquirida, uno de los aspectos de más preocupación entre

los inversores son los movimientos extremos de los precios, principalmente los movimientos

a la baja (que son los que forman la cola izquierda de las RNDs). Una de las técnicas

más usadas para evitar pérdidas es mediante la diversificación internacional. Sin embargo,

hoy en d́ıa los mercados internacionales desarrollados presentan un mayor grado de inte-

gración, por lo que es de especial interés para los inversores saber si su exposición a las

pérdidas esperadas está siendo bien diversificada, aśı como conocer su grado de exposición

a impactos en mercados extranjeros.

Sin embargo, las distribuciones impĺıcitas en el precio de las opciones son neutrales al

riesgo, por lo que difieren de las distribuciones reales o subjetivas (SPD por sus siglas en

inglés Subjective Probability Distributions), ya que estas últimas incluyen las preferencias

de los agentes. Por lo tanto, existe una medida de aversión al riesgo (RA por sus siglas

en inglés Risk Aversion) que recoge estas diferencias entre las RNDs y las SPDs. Pero,

¿presenta esta aversión al riesgo patrones similares a lo largo del tiempo en diferentes

páıses? ¿Cuáles son las causas de esta heterogeneidad?

En la presente tesis pretendemos abordar estos temas a lo largo de tres caṕıtulos.

Cada uno de estos caṕıtulos está enfocado a analizar diferentes aspectos de los mercados

financieros y contestar las preguntas anteriores analizando el contenido informacional de

los precios de las opciones.

2



3

En el caṕıtulo 1 analizamos la capacidad de las RNDs para predecir futuras realiza-

ciones de los precios del subyacente, aśı como la aproximación de las colas de las RNDs.

En el caṕıtulo 2 estudiamos los cuantiles de pérdidas esperadas de las RNDs impĺıcitas en

los precios de las opciones y cómo impactos en los cuantiles de un mercado se transmiten a

mercados financieros extranjeros. El caṕıtulo 3 extrae la aversión al riesgo para tres mer-

cados internacionales y mide patrones sistemáticos entre ellas, tanto en series temporales

como transversales.

Cada uno de los caṕıtulos que componen la tesis están explicados en las diferentes

secciones que siguen.

R.1 ¿Podemos descartar la capacidad predictiva de las RNDs

impĺıcitas en el precio de las opciones?

El primer caṕıtulo tiene como objetivo esclarecer si las RNDs poseen capacidad pre-

dictiva de las realizaciones futuras de los precios del subyacente. Para ello extraemos las

RNDs para tres ı́ndices de Estados Unidos: S&P 500, Nasdaq 100 y Russell 2000. Anal-

izamos una muestra amplia de series de precios para el periodo que comprende desde el

año 1996 hasta el año 2015 abarcando aśı dos crisis financieras. Los tests tradicionales

usados previamente con el propósito de testear dicha capacidad predictiva de las RNDs

están basados en supuestos restrictivos: normalidad e independencia, principalmente. Con

el fin de relajar estas restricciones, en este trabajo calculamos valores cŕıticos utilizando la

técnica de re-muestreo Block-Bootstrap. A diferencia de anteriores estudios, nuestros re-

sultados no proporcionan evidencia contra la hipótesis nula de capacidad predictiva de las

RNDs. Además, éstos son consistentes para diferentes métodos, horizontes temporales e

ı́ndices considerados. En este caṕıtulo también analizamos las colas de las RNDs y encon-

tramos que, por lo general, los diferentes métodos tienden a sobreestimar la frecuencia de

3



4 Resumen amplio

ocurrencia de eventos en la cola izquierda; pero śı proporcionan una buena aproximación

de la cola derecha.

Los métodos para extraer las RND se pueden agrupar en 2 categoŕıas: métodos

paramétricos y métodos no-paramétricos. Los métodos paramétricos se basan en la apli-

cación de densidades utilizando una función de probabilidad conocida y a partir de ella se

ajustan los parámetros que mejor se ciñen a nuestros datos. Véase Jondeau and Rockinger

(2000), Bliss and Panigirtzoglou (2002) o Anagnou et al. (2002), entre otros.

Por otra parte, los métodos no-paramétricos se basan en el método propuesto por

Breeden and Litzenberger (1978) el cual nos permite obtener las densidades calculando la

segunda derivada de la función de valoración con respecto al precio de ejercicio.

A pesar de esto, no hay consenso en la literatura sobre qué método es el más apropiado

para la extracción de las RNDs. Por lo general, la literatura concluye falta de capacidad

predictiva de las RNDs, véase Lynch and Panigirtzoglou (2008) y Anagnou et al. (2005).

Por otra parte, en su estudio para el mercado financiero español Alonso et al. (2005)

rechazan la capacidad predictiva de las RNDs cuando consideran la totalidad de la muestra.

Sin embargo, cuando consideran sub-periodos, no presentan evidencia en contra de la

hipótesis nula.

A pesar de todo, los diferentes estudios pueden presentar diferencias debido a la uti-

lización de muestras y métodos distintos para la extracción de las RNDs. En nuestro

estudio, con el fin de evitar sesgos procedentes del método utilizado, ampliamos el aban-

ico aplicando en nuestro análisis diferentes métodos (paramétricos y no-paramétricos),

diferentes ı́ndices (S&P 500, Nasdaq 100 y Russell 2000) y para diferentes horizontes tem-

porales (30, 45, 60 y 90 d́ıas, los cuales son determinados por la fecha de vencimiento de

las opciones).
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R.1.1 Metodoloǵıa

Como método paramétrico aplicamos una mixtura de distribuciones Log-Normales

que consiste en realizar una media ponderada de dos distribuciones Log-Normales. Entre

sus ventajas destacamos su gran flexibilidad y capacidad de aproximar distribuciones de

diferentes formas (incluso bimodalidad), aśı como la garant́ıa de obtener probabilidades

positivas para todo el rango de la muestra.

Referente a los métodos no-paramétricos, éstos están basados en el método de Breeden

and Litzenberger (1978). La aplicación de este método requiere un rango continuo de

precios que abarque todas las posibles realizaciones futuras. Sin embargo, el número de

opciones con diferentes precios de ejercicio que se negocian para un mismo subyacente y

un mismo vencimiento es limitado, por lo que éstos tienen que ser interpolados dentro del

rango de la muestra. Para la interpolación usamos dos técnicas principales: regresiones

no-paramétricas y splines de tercer grado.

Para las regresiones no-paramétricas usamos el estimador propuesto por Nadaraya

(1964) y Watson (1964) con el fin de obtener un rango continuo de precios. Sin embargo,

con este método estamos limitados a extraer solamente la parte de la RND para aquel

rango de precios observados. Por lo tanto, perdemos masa probabiĺıstica en los extremos

de las densidades, ya que, en tales zonas, las observaciones son escasas o incluso nulas.

Para lidiar con este problema, aplicamos el método propuesto por Birru and Figlewski

(2012) y aproximamos las colas con una distribución Pareto.

Para el segundo método en el que interpolamos con splines, nos encontramos con el

mismo problema con respecto a la falta de observaciones en las colas. En este caso comple-

tamos el área de dos maneras distintas: la primera es aproximándolas con distribuciones

Pareto (igual que se ha hecho para el caso de las regresiones kernel); y la segunda es ex-

trapolando el rango de puntos observados, siguiendo las ĺıneas de Bliss and Panigirtzoglou

5



6 Resumen amplio

(2004).

En cualquiera de los dos métodos, en lugar de realizar la interpolación sobre un espacio

precio-precio de ejercicio, interpolamos sobre un espacio de volatilidad impĺıcita-deltas,

propuesto por Malz (1997). La ventaja de este método es que las deltas están acotadas

entre 0 y 1, a diferencia de los precios de ejercicio que en principio son ilimitados; a la vez

que agrupa las observaciones más alejadas.

Una vez extráıdas las RNDs para cada d́ıa de la muestra, para los diferentes ı́ndices,

horizontes temporales y métodos, evaluamos su capacidad predictiva. Para ello, la lit-

eratura propone principalmente el test de Berkowitz (2001); sin embargo basándose en

este test, la mayoŕıa de ésta literatura rechaza la hipótesis nula de capacidad predictiva.

Para nuestras RNDs, el test de Berkowitz también rechaza la hipótesis nula, lo cual es

consistente con la literatura previa.

No obstante, el test de Berkowitz asume independencia y normalidad de las observa-

ciones, siendo estos supuestos restrictivos y violados debido a la naturaleza de los precios

(los cuales presentan autocorrelación). Para verificar la fiabilidad del test, construimos

distribuciones bootstrap de los estad́ısticos Berkowitz. Con el fin de preservar la estructura

de dependencia en los datos, simulamos 5,000 muestras bootstrap en bloques de m obser-

vaciones consecutivas (block-bootstrap). Una vez simuladas las muestras, calculamos los

estad́ısticos de interés para cada una de ellas, los cuales a su vez forman una distribución

(a la que llamaremos distribución Block-Bootstrap).

Otra manera de evaluar la normalidad e independencia en los datos, es aplicando el

test Cramer-von-Mises propuesto por Cramer (1928) y von Mises (1931). Del mismo modo

que con el test de Berkowitz, calculamos la distribución Block-Bootstrap de los estad́ısticos

con el propósito de corroborar los resultados de Berkowitz Block-Bootstrap.

En este caṕıtulo también analizamos las colas de las distribuciones y cómo éstas se

6
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ajustan a la realidad. Para ello, y siguiendo las ĺıneas de Anagnou et al. (2005) y Alonso

et al. (2006), calculamos el estad́ıstico de Seillier-Moiseiwisch and Dawid (1993) que se

basa en el cálculo de Brier Score y mide su diferencia con el valor esperado. A lo largo del

caṕıtulo nos referiremos a este test como el test de las colas.

R.1.2 Muestra

Nuestra muestra está formada por opciones europeas para tres ı́ndices americanos: el

S&P 500, el Nasdaq 100 y el Russell 2000. La bateŕıa de datos abarca el periodo com-

prendido entre Enero 1996 y Octubre 2015, y está formado por opciones con vencimientos

a 30, 45, 60 y 90 d́ıas.

Se usan opciones out-of-the-money (OTM) y at-the-money (ATM). Para todas las

opciones tipo put in-the-money (ITM), se ha calculado su call equivalente mediante la

fórmula de la paridad put-call. De esta manera la información impĺıcita en las opciones

tipo put es trasladada a su opción call equivalente. Consecuentemente las opciones tipo

put son eliminadas de la muestra.

R.1.3 Resultados y conclusiones

En este caṕıtulo valoramos la capacidad predictiva de las RNDs sobre las realizaciones

futuras de los precios del subyacente. Las diferentes RNDs han sido extráıdas de los

precios de las opciones mediante métodos paramétricos (mixtura de distribuciones Log-

Normales) y no-paramétricos (Breeden-Litzenberger con regresiones kernel y splines). Se

han obtenido RNDs para diferentes ı́ndices (S&P 500, Nasdaq 100 y Russell 2000) y

horizontes temporales (30, 45, 60 y 90 d́ıas). Los resultados muestran RNDs consistentes

con lo que se espera en la literatura ya que todas ellas presentan una skewness negativa y

kurtosis superior a 3.
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Para testear su capacidad predictiva, siguiendo la literatura, calculamos el test de

Berkowitz el cual, efectivamente, rechaza la hipótesis nula. Sin embargo, cuando cal-

culamos las distribuciones asintóticas mediante simulaciones Block-Bootstrap, éstas no

presentan evidencia en contra de la hipótesis nula. Para reforzar los resultados del test de

Berkowitz con Block-Bootstrap, aplicamos el test Cramer-von-Mises, el cual corrobora las

conclusiones obtenidas con el primero.

Por otra parte, los resultados del test de colas apuntan que las RNDs tienden a

sobreestimar la frecuencia de ocurrencia en la cola izquierda, mientras que para la cola

derecha presentan buenas aproximaciones.

Nuestra muestra comprende dos periodos de grandes crisis financieras, la crisis del

2000 y la crisis del 2007. Para evitar que nuestros resultados estén afectados por los

movimientos extremos que se dieron durante estos periodos, realizamos nuestro análisis

sobre una submuestra en la que hemos eliminado los periodos de grandes turbulencias,

esto es el periodo de Marzo 2000 a Octubre 2002, y el periodo de Octubre 2007 a Marzo

2009.

Las conclusiones presentadas para el análisis sobre la totalidad de la muestra se

mantienen para el análisis sobre la submuestra, por lo que concluimos que las crisis no

son responsables de los resultados obtenidos. Además, los resultados obtenidos son con-

sistentes para los diferentes métodos de extracción de las RNDs usados, para los distintos

ı́ndices aśı como también para diferentes horizontes temporales testeados, dando aśı ro-

bustez al análisis.
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R.2 Transmisión del riesgo de pérdidas impĺıcito en el precio

de las opciones

La conectividad entre los diferentes mercados financieros internacionales es un tema

recurrente en la literatura, especialmente en épocas de crisis y periodos turbulentos. En-

tender los nexos y conexiones de los diferentes mercados financieros internacionales es

fundamental para la gestión de carteras y cobertura de riesgos, ya que, de existir una

fuerte conexión entre ellos, tendŕıa consecuencias como por ejemplo reducir el beneficio de

la diversificación.

En este caṕıtulo se pretende contrastar si existe transmisión de los cambios en los

cuantiles de pérdidas esperadas de las RNDs entre diferentes mercados financieros inter-

nacionales. Para ello usamos información impĺıcita en el precio de las opciones. Esto nos

permite calcular el nivel de pérdidas esperadas para un horizonte temporal determinado,

ya que dicha información es considerada forward-looking (con miras al futuro). En con-

creto, analizamos la transmisión entre tres mercados desarrollados principales: Estados

Unidos, Eurozona y Japón, representados por los ı́ndices S&P 500, EuroStoxx 50 y Nikkei

225, respectivamente. En este estudio tenemos en cuenta la existencia de riesgos globales,

los cuales medimos a través del ı́ndice VIX de volatilidad. En los resultados hallamos

evidencia de trasmisión de shocks en el S&P 500 al resto de mercados; siendo la relación

inversa nula.

La transmisión de volatilidad ha sido ampliamente documentada en la literatura, ver

Eun and Shim (1989) o Hassan and Malik (2007). Sin embargo estos estudios valoran

la transmisión de volatilidad basándose en información histórica de los precios. No ob-

stante, a ráız de los trabajos de Poon and Granger (2003), Poon and Granger (2005)

y Bollerslev and Zhou (2006), se evidencia superioridad del contenido de la información

impĺıcita (forward-looking). Esto supone un giro en la literatura la que, a partir de este
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momento, empieza a estudiar la transmisión del riesgo desde el punto de vista de la in-

formación impĺıcita, ya no solo en volatilidades sino también en otros momentos de las

distribuciones; ver Nikkinen and Sahlstöm (2004) o Siropoulos and Fassas (2013) entre

otros.

R.2.1 Metodoloǵıa

Siguiendo las ĺıneas del caṕıtulo anterior, para la extracción de las RNDs diarias,

usamos el método no-paramétrico basado en la técnica propuesta por Breeden and Litzen-

berger (1978). Esta nos permite extraer las RNDs calculando la segunda derivada de la

función de valoración de las opciones con respecto al precio de ejercicio. En este caṕıtulo

interpolamos dentro del rango observado usando el método de splines en un espacio volatil-

idad impĺıcita-delta.

Como en el caso anterior, la falta de observaciones más extremas hace que nos falte

área en las colas de las RNDs. Para completar dicha área añadimos dos pseudo-puntos en

cada uno de los extremos de la serie de deltas y extrapolamos la spline, como se propone

en Bliss and Panigirtzoglou (2004). Una vez extráıdas las RNDs, calculamos cuantiles

para los niveles 5%, 10%, 15%, 20% y 25%, los cuales son cuantiles de pérdidas esperadas

impĺıcitos en el precio de las opciones.

En este análisis consideramos tres principales mercados desarrollados: Estados Unidos,

la Eurozona y Japón. Por el hecho de considerar páıses localizados en diferentes zonas

horarias, incurrimos en una desincronización en los cierres de los diferentes mercados. Esto

hace que en el momento del cierre del mercado Europeo la información del cierre de Japón

ya sea conocida. Lo mismo ocurre en el mercado de Estados Unidos, al ser éste el último

en cerrar, toda la información de los otros dos mercados ya está incorporada en su precio

de cierre. En cambio, Japón solo podrá reflejar la información de los otros mercados al d́ıa
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siguiente. Por lo tanto, debemos considerar en nuestro modelo relaciones contemporáneas

entre algunos de los mercados considerados según las relaciones anteriores.

Con la finalidad de analizar cómo shocks en un mercado se transmiten a otros merca-

dos, modelizamos cada uno de los cuantiles con un Structural-VAR (S-VAR). Este modelo

es muy conveniente porque permite a los cuantiles de cada mercado depender no solo de

sus propios retardos y de los retardos del resto de mercados, sino que también permite la

incorporación de relaciones contemporáneas entre los mercados.

Con el propósito de aislar el efecto de shocks espećıficos de esos cambios generales

en los cuantiles debido a variaciones en la volatilidad agregada, contemplamos en nuestro

modelo como variable exógena series del ı́ndice de volatilidad CBOE VIX. Este ı́ndice es

considerado de referencia para la volatilidad global.

Otra forma de lidiar con el problema de la no sincronización en los mercados, es

transformando las series diarias en series de menor frecuencia; véase Yang and Zhou (2017).

En el presente estudio, hemos transformado nuestras series diarias en series semanales. De

esta manera, los cuantiles ya no son modelizados mediante el modelo S-VAR sino con un

modelo VAR, ya que al haber combatido la desincronización de los mercados mediante el

cálculo de medias semanales, ya no existen relaciones contemporáneas entre los mercados.

Con el objetivo de analizar los flujos de transmisión de los cuantiles de pérdida entre

los diferentes mercados, aplicamos el análisis de impulso-respuesta propuesto por Pesaran

and Shin (1998). Este análisis nos permite obtener información de cómo shocks unitarios

en uno de los mercados se transmiten a los otros mercados, aśı como también conocer la

duración de tales efectos hasta su absorción. También llevamos a cabo el análisis de la

descomposición de la varianza, el cual nos proporciona información sobre la proporción de

la varianza de un mercado causada por sus propios shocks y la proporción que se debe a

shocks en mercados extranjeros.
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R.2.2 Muestra

Para el cálculo de las RNDs, se han tomado datos de la volatility surface. Éstas nos

proporcionan datos para un rango de deltas de 0.2 a 0.8, junto con sus correspondientes

volatilidades impĺıcitas. Los datos han sido obtenidos de IVY OptionMetrics para tres

ı́ndices: S&P 500, EuroStoxx 50 y el Nikkei 225. Además, se han tomado también series

de precios diarios sobre el ı́ndice de volatilidad CBOE VIX.

Las volatility surfaces proporcionan datos para diferentes horizontes temporales; es de-

cir, para opciones con diferentes vencimientos. En este estudio centramos nuestra atención

en horizontes temporales de 30, 60 y 91 d́ıas.

R.2.3 Resultado y conclusiones

En el presente caṕıtulo analizamos la transmisión de los cuantiles de pérdidas esper-

adas impĺıcitos en las RNDs entre tres principales mercados desarrollados: Estados Unidos

(S&P 500), Eurozona (EuroStoxx 50) y Japón (Nikkei 225). Para ello consideramos los

cuantiles de las RNDs previamente calculadas, para los niveles de 5%, 10%, 15%, 20% y

25%, para diferentes horizontes temporales: 30, 60 y 91 d́ıas.

Los resultados emṕıricos obtenidos del análisis impulso-respuesta revelan que sólo la

transmisión de los shocks en los cuantiles de pérdida del S&P 500 al resto de mercados es

significativa. Siendo la transmisión de EuroStoxx 50 y Nikkei 225 al resto de mercados no

significativa.

Analizamos también las diferencias en la transmisión entre los diferentes cuantiles del

S&P 500 a EuroStoxx 50 y Nikkei 225, para un mismo horizonte temporal. Sin embargo,

no encontramos diferencias significativas entre éstos. De la misma manera, analizamos

posibles diferencias en la transmisión de cuantiles para diferentes horizonte temporales.
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Los resultados revelan que la magnitud de la transmisión de shocks en el S&P 500 al resto

de mercados es más fuerte para horizontes temporales mayores (60 y 91 d́ıas), mientras

que la magnitud de la transmisión es más suave para horizontes temporales de 30 d́ıas.

Por lo que respeta al análisis de la descomposición de la varianza, los resultados

apuntan a que la varianza de cada uno de los mercados viene principalmente explicada

por sus propios shocks, lo que revela un comportamiento autoregresivo de los shocks en

los cambios de los cuantiles de la cola izquierda.

Cualitativamente los resultados se mantienen para las diferentes metodoloǵıas (S-VAR

con datos diarios y VAR con datos semanales), para diferentes niveles de pérdida esperada

(cuantiles del 5% al 25%) y distintos horizontes temporales (30, 60 y 91 d́ıas). Esto nos

permite verificar la robustez de nuestros resultados.

R.3 El comportaminento de la aversión al riesgo en economı́as

desarrolladas.

El conocimiento y estudio del comportamiento de la aversión al riesgo es de gran

importancia en poĺıtica macroeconómica y en valoración de activos. Según la teoŕıa

económica, la integración de los mercados desarrollados debeŕıa dar lugar a patrones sim-

ilares en el comportamiento de la aversión al riesgo en los diferentes páıses.

En este caṕıtulo pretendemos adentrarnos en el análisis de las series de aversión al

riesgo para diferentes economı́as desarrolladas: Estados Unidos (S&P 500), Eurozona

(EuroStoxx 50) y Japón (Nikkei 225); estudiar las causas de la heterogeneidad entre ellas,

aśı como el comportamineto de las mismas en diferentes momentos de tiempo. Uno de los

principales objetivos es determinar si el comportamiento de la aversión al riesgo obedece a

factores globales o idiosincráticos. Para ello usamos la información impĺıcita en el precio
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de las opciones.

Como hemos visto en los caṕıtulos anteriores, las distribuciones extráıdas de los precios

de las opciones son distribuciones neutrales al riesgo (RND). Sin embargo, en la realidad los

individuos no son indiferentes al riesgo, por lo que existen distribuciones de probabilidad

reales o subjetivas (SPD) las cuales incorporan las preferencias de los inversores.

De acuerdo con la literatura, la aversión al riesgo para un determinado mercado se

puede obtener directamente de la relación existente entre las RNDs y las SPDs. Ver

Jackwerth (2000) y Aı̈t-Sahalia and Lo (2000). En este caṕıtulo las RNDs se extraen de

los precios observados de las opciones, mientras que la estimación de las SPDs se hace

mediante técnicas econométricas basadas en un modelo GARCH asimétrico, propuesto

por Glosten et al. (1993).

Una vez hemos extráıdo las series de aversión al riesgo, el análisis de componentes

principales indica que hay una fuente de comunalidad en las series. Analizamos esta

comunalidad proyectando los coeficientes estimados frente a diferentes variables macroe-

conómicas de carácter global y espećıfico de cada páıs.

Igualmente, con el objetivo de profundizar en el análisis de las series de aversión al

riesgo, regresamos estas series frente a un conjunto de variables macroeconómicas suscep-

tibles de poder explicar las series contemporáneas de la aversión al riesgo. Paralelamente,

estudiamos también la aversión al riesgo en series temporales, mediante un análisis VAR.

R.3.1 Metodoloǵıa

La extracción de las RNDs se hace de acuerdo a la metodoloǵıa presentada en el

caṕıtulo anterior, usando para ello el método no-paramétrico propuesto por Breeden and

Litzenberger (1978) junto con el método de ajuste de splines para la interpolación de los
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datos observados. Para completar la falta de área en las colas, añadimos dos puntos delta

a cada uno de los extremos del rango de observaciones y extrapolamos la spline.

Por otra parte, la estimación de las SPDs se hace mediante observaciones históricas de

precios. Sin embargo, al ser las RNDs para un horizonte temporal determinado (forward-

looking, es decir, con miras al futuro), debemos estimar las SPDs para el mismo horizonte

temporal. Para ello usamos el método ARMA-GJR de predicción de volatilidad, seguido

de una densidad Kernel. La eficiencia de éstos métodos ha sido probada por diferentes

autores, siendo Rosenberg and Engle (2002) un ejemplo.

Una vez extráıdas las RNDs y las SPDs, las series de aversión al riesgo son calculadas a

partir de la relación existente entre las dos densidades, ver Jackwerth (2000) y Aı̈t-Sahalia

and Lo (2000). De esta manera evitamos imponer funciones de utilidad paramétricas.

Una vez tenemos las series de aversión al riesgo para los diferentes mercados, mediante

una regresión OLS analizamos la relación de cada serie con variables macroeconómicas.

Aplicamos también un análisis de componentes principales, con el que obtenemos infor-

mación sobre comunalidades entre las series en diferentes páıses.

Paralelamente, analizamos el comportamiento de las series temporales mediante el

estudio de un modelo VAR. Con este modelo pretendemos examinar las dependencias

de cada una de las series no solo con sus retardos sino también con los retardos de las

otras series. Una vez conocemos las relaciones temporales entre las variables, mediante

el análisis impulso-respuesta examinamos cómo shocks unitarios en la aversión al riesgo

de un determinado mercado es transmitido al resto de mercados. Aśı como también el

tiempo que tarda el mercado afectado en incorporar tal efecto.
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R.3.2 Muestra

Para la extracción de las RNDs, usamos una muestra compuesta por pares de volatilidad-

deltas extráıdos de la volatility surface proporcionada por la base de datos IVY Option-

Metrics. Para la estimación de las SPDs, utilizamos datos de precios de los subyacentes

de los diferentes ı́ndices: S&P 500, EuroStoxx 50 y Nikkei 225.

Las series de aversion al riesgo son extráıdas para el periodo desde Mayo 2004 hasta

Septiembre 2015.

Para entender y analizar el comportamiento de las diferentes series de aversión al

riesgo, usamos una bateŕıa de las principales variables macroeconómicas para cada uno de

los mercados, estas variables son: el ı́ndice de precios al consumo, el ı́ndice de producción

industrial, el desempleo, el ı́ndice de incertidumbre poĺıtica, el ı́ndice de confianza del con-

sumidor, los tipos de cambio dólar/euro, yen/euro y yen/dólar, y finalmente consideramos

los tipos de interés a 5 años de bonos soberanos y el spread calculado como la diferencia

entre los tipos de interés a 10 años y 1 año.

R.3.3 Resultados y conclusiones

En general concluimos que las series de aversión al riesgo cambian en el tiempo,

llegando a tomar incluso valores negativos durante algunos periodos puntuales. También

se aprecian diferencias entre niveles de moneyness. Se han analizado series de aversión al

riesgo para moneyness 0.97, 1 y 1.03, y observamos como aumentan los niveles de aversión

al riesgo al disminuir el nivel de moneyness (riqueza), esto es, cuando nos adentramos en

la cola izquierda de pérdidas.

El análisis de componentes principales, indica la existencia de una fuente de comunal-

idad entre las series temporales al concluir que un sólo componente explica el 55% de la
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variabilidad conjunta. Mediante una regresión de éste con las principales variables macroe-

conómicas consideradas, concluimos que un componente común a las series de aversión al

riesgo podŕıa ser explicado por medidas de incertidumbre global como son el el ı́ndice VIX

de volatilidad o la pendiente de la curva de tipos de interés.

Con la finalidad de explicar si las series de aversión al riesgo se pueden explicar me-

diante factores globales o espećıficos, éstas se han regresado respecto a una bateŕıa de

variables macroeconómicas. Los resultados muestran como la aversión al riesgo en difer-

entes páıses es explicada por diferentes variables, presentando aśı heterogeneidad entre

ellas. Vemos también que son los factores idisincráticos los que lideran las series contem-

poráneas de aversión al riesgo.

Referente al estudio de su evolución a través del tiempo, éstas son modelizadas con un

VAR con el que concluimos que solo los propios retardos son significativos, excepto para

el EuroStoxx 50 el cual depende también del retardo del S&P 500, por lo que observamos

un componente autoregresivo en las series de aversión al riesgo. Los resultados del análisis

de impulso-respuesta concluyen que tan solo shocks en el S&P 500 afectan al EuroStoxx

50, siendo estos resultados corroborados por el test de causalidad de Granger.

R.4 Conclusiones

Como hemos visto, a partir de diferentes opciones sobre el mismo subyacente podemos

extraer las densidades neutrales al riesgo (RND) para los diferentes mercados, siendo el

conocimiento y el estudio de estas RNDs de gran importancia entre inversores y agentes

del mercado.

Entre los principales objetivos de los inversores encontramos la necesidad de realizar

predicciones sobre los precios futuros del subyacente, aśı como analizar las pérdidas esper-
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adas y su transmisión entre los diferentes mercados financieros internacionales. Aśı mismo,

al ser estas densidades neutrales al riesgo difieren de las reales (SPD). De la relaci’on ex-

istente entre las dos, podemos extraer una medida de aversión al riesgo para los diferentes

mercados financieros, la cual es de gran importancia en poĺıtica macroeconómica y en

valoración de activos.

A lo largo de los tres caṕıtulos en los que está dividida esta tesis, hemos contestado a

las preguntas anteriores basándonos en información impĺıcita en el precio de las opciones.

En el caṕıtulo 1 hemos analizado la capacidad predictiva de las RNDs. Para ello

hemos analizado diferentes ı́ndices americanos (S&P 500, Nasdaq 100 y Russell 2000) y

hemos usado métodos paramétricos y no-paramétricos para la extracción de las RNDs para

diferentes horizontes temporales (30, 45, 60 y 90 d́ıas). Analizamos la capacidad predictiva

las RNDs basándonos en simulaciones block-bootstrap sobre estad́ısticos Berkowitz. Los

resultados no presentan evidencia en contra de la hipótesis nula, por lo que la capacidad

predictiva de las RNDs no puede ser descartada. Los resultados son robustos para todos

los métodos analizados aśı como para los diferentes ı́ndices y horizontes temporales. La

exclusión de los periodos de crisis en los que se observan movimientos más extremos y

puntuales, no tiene efectos sobre los resultados obtenidos.

En este caṕıtulo también se analizan las colas de las distribuciones y se concluye que

éstas tienden a sobreestimar la frecuencia de ocurrencia en la cola izquierda, presentando

buenas aproximaciones para la cola derecha.

El caṕıtulo 2 analiza la transmisión de las pérdidas esperadas entre los diferentes mer-

cados internacionales. En este estudio consideramos los mercados de Estados Unidos (S&P

500), la Eurozona (EuroStoxx 50) y el mercado japonés (Nikkei 225). Para ello se estiman

las RNDs mendiante el método no-paramétrico propuesto por Breeden-Litzenberger junto

con interpolaciones spline. Seguidamente, se calculan los quantiles (5%, 10%, 15%, 20% y
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25%) para cada uno de los mercados considerados y para horizontes temporales de 30, 60

y 91 d́ıas.

Mediante el análisis de impulso-respuesta concluimos que solo shocks en los cuantiles

de pérdida del S&P 500 tienen efectos en el resto de mercados estudiados. Éstos efectos

son de mayor magnitud para horizontes temporales más largos (60 y 91 d́ıas) en com-

paración con horizontes temporales más cortos (30 d́ıas). El análisis de la descomposición

de la varianza concluye que la varianza de cada uno de los mercados viene principalmente

explicada por los shocks en el propio mercado.

Finalmente, el caṕıtulo 3 estudia la naturaleza de las series de aversión al riesgo en

diferentes mercados desarrollados: Estados Unidos (S&P 500), Eurozona (EuroStoxx 50)

y Japón (Nikkei 225). Para ello extraemos las RNDs impĺıcitas en el precio de las opciones

mediantes el método no-paramétrico propuesto por Breeden-Litzenberger junto con inter-

polaciones mediante splines. Por otra parte, las SPDs se estiman mediante modelos de

predicción de volatiliad ARMA-GJR seguido de una densidad Kernel.

Una vez extráıdas las series de aversión al riesgo para los diferentes mercados, el

análisis de componentes principales rebela la existencia de un componente común el cuál

explica un 55% de la variabilidad conjunta. Este componente viene explicado en parte

por factores globales como el VIX y la pendiente de tipos de Estados Unidos. Mediante

el cálculo de una regresión de las diferentes series con una bateŕıa de variables macroe-

conómicas, concluimos que las series de aversión al riesgo son heterogéneas ya que en

cada mercado y para diferentes periodos considerados (pre- y post-crisis) éstas covaŕıan

con diferentes variables. Un análisis VAR indica que tan solo el retardo del S&P 500 es

significativo en el mercado europeo; mientras que para el resto de series, solo los pro-

pios retardos son significativos. Estos resultados son corroborados con los obtenidos en el

análisis de impulso-respuesta y el test de causalidad de Granger.
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Introduction

Over the last decades, financial options have received a lot of attention among aca-

demics and practitioners. In general, security prices can be seen as discounted future cash

flows. In the particular case of the options, by having di↵erent options written on the

same underlying and with the same time to expiration, we can obtain information about

the shape and di↵erent parameters of the probability distribution from which investors

and market participants take their expectations about future states of the economy. There

exists a big strand of the literature which is devoted to extract option-implied distributions

from option prices; being these distributions based on a risk-neutral world (which is used

for pricing). Therefore, we can obtain information about the whole Risk-Neutral density.

The analysis of the information embedded in option prices is not new and has been

highly exploited by the literature due to its convenient forward-looking features to the

detriment of traditional statistical measures based on historical data (which are backward-

looking). Furthermore, implied measures have been proved to be superior in di↵erent

applications such as forecasting, modeling, etc.

Therefore, knowledge of Risk-Neutral distributions (heretofore referred as RND) al-

lows us to analyze many di↵erent aspects of financial markets. One of the major concerns

among investors and market participants is to obtain accurate estimate forecasts about

future realizations of the underlying. This is of special interest in order to improve se-

21



22 Introduction

curity valuation and manage their investments, among others. But, can we rely on the

forecasting ability of the RNDs about future realizations of the underlying?

Among all the information attained, investors are highly concerned about extreme

price movements in the markets, mainly the expected downward movements (which form

the left tails of the RNDs). Because investors do not like losses they try to diversify

their exposure to them via foreign investment, for instance. But because international

developed financial markets are nowadays more integrated across border, it is of special

interest and concern to investors to know whether their exposure to expected losses is

well-diversified as well as how exposed they are to shocks in foreign markets.

As hereinabove mentioned, distributions extracted from option prices are risk-neutral

and therefore di↵erent to the actual or real-world ones. The di↵erence between them is

mainly due to the preferences of the market agents; thus, the risk aversion is seen as a

measure which depicts the deviations between the real and the risk-neutral world. But,

does risk aversion in di↵erent countries exhibit a similar pattern over time? What are the

sources of heterogeneity in its behavior?

This thesis aims to shed some light on the previous concerns along three main chapters.

Each of these chapters is devoted to tackle di↵erent aspects of the financial markets and

answer the previous questions by analyzing the informational content embedded in option

prices.

In chapter 1 we aim to answer the question of whether RNDs are indeed good fore-

casters of future underlying realizations. In order to answer this question we analyze the

forecasting ability of option-implied RNDs for three US indexes: S&P 500, Nasdaq 100

and Russell 2000, for a long series (from 1996 to 2015) which encompass two major crisis.

Traditional tests rely on restrictive assumptions (mainly normality and independence).

In order to overcome these assumptions, we calculate block-bootstrap-based critical val-

22



23

ues. Di↵erent to existent literature, our results conclude failure to reject their forecasting

ability, being these results consistent across di↵erent forecast horizons, methodologies and

indexes considered. We also analyze the fit of the tails of the RNDs separately, finding that

they tend to overestimate the frequency of occurrence of events in the left tail, providing

a good fit for the right tail.

Chapter 2 exploits the information embedded in the loss tail of the estimated RNDs

by analyzing how shocks in the option-implied risk-neutral loss quantiles are transmitted

internationally. Option-implied information has been proved to be more accurate in pre-

dicting future volatility, returns and downturns. Moreover, the information embedded in

the tails is linked to macroeconomic variables. In this chapter we analyze for the first time

the international transmission of option-implied loss quantiles. For this we use data from

the S&P 500, the EuroStoxx 50 and the Nikkei 225 index options, we compute the RNDs

and calculate impulse-response functions and variance decomposition analyses. Results

confirm that shocks in the S&P 500 risk-neutral loss quantile changes have an impact to

the quantiles in the other markets, whereas foreign shocks have no e↵ects on the S&P 500

quantiles. These results are robust for di↵erent maturities and left-tail quantiles (from 5%

to 25%).

Chapter 3 analyses the nature of risk aversion in main developed economic areas.

We delve into the systematic patterns describing its time series behavior, disentangling

whether risk aversion is driven by global or idiosyncratic forces. Risk aversion series are

built using the informational content embedded in option and stock prices from high liquid

indexes: S&P 500, EuroStoxx 50 and Nikkei 225. Empirical evidence from a principal

component analysis shows an important source of commonality among risk aversion series.

OLS estimates also show that risk aversion betas are statistically significant for global

uncertainty variables like VIX; however, idiosyncratic covariates like unemployment or

interest rates seem not exhibit a clear systematic pattern. A statistically significant lead-
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lag relationship from US to Europe is also found.

Finally, chapter 4 presents the main conclusions and gives some guide to open ques-

tions for future research.
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Chapter 1

Can we really discard forecasting

ability of option-implied

Risk-Neutral distributions?

It is well known that option-implied Risk-Neutral distributions (RND) are of great use

for several purposes: pricing derivatives, hedging, forecasting, inference of preferences, etc.

A natural question is whether realized observations are consistent with estimated RNDs.

This question arises because on the one hand, RNDs are forward-looking and should be

more informative about future prices than statistical methods based on historical data

(which is backward-looking). On the other hand, RNDs do not incorporate any risk

premium, so they are biased with respect to the distributions under the physical measure.

In this study we contribute to this question by assessing the forecasting ability of the

RNDs on a larger dataset and, contrary to existent literature, we can not reject the RNDs

as the true distributions from where returns are drawn.
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Jackwerth and Rubinstein (1996) document that RNDs became skewed and leptokur-

tic after the crash in 1987. Therefore, di↵erent methods have been proposed to infer

the RNDs from option prices, which can be classified as parametric and non-parametric.

Among the parametric methods, the Log-Normal mixture has been widely used in di↵erent

fields such as the analysis of the interest rates, see Bahra (1997) and Söderlind and Sevens-

son (1997), among others; Campa et al. (1998) and Jondeau and Rockinger (2000) who use

it on exchange rates; as well as Bliss and Panigirtzoglou (2002), Anagnou et al. (2002) and

Liu et al. (2007), who apply this technique to equity indexes. Other approaches are the

Generalized Beta distribution of the second kind, proposed by Bookstaber and McDonald

(1987) and also used by Anagnou et al. (2002) to approximate the RND for options on

the S&P 500 and for the GBP/USD exchange rate; or the Variance Gamma Process by

Madan et al. (1998).

Non-parametric methods rely on the approach proposed by Breeden and Litzenberger

(1978), which needs a continuum of option prices (implied volatilities) with the corre-

sponding strike prices. Representatives include Aı̈t-Sahalia and Lo (1998) and Bliss and

Panigirtzoglou (2002) who use either polynomials or splines in order to have a spectrum

of strike prices.

Some of the existent literature focuses on deciding which of the above methods ap-

proximates the RNDs more accurately. Bliss and Panigirtzoglou (2002) compare the spline

method versus a mixture of two Log-Normal distributions, and they find the first technique

is better. In the same line, Bu and Hadri (2007) compare the splines method versus a

parametric confluent hypergeometric density and conclude that the latter performs better.

Alonso et al. (2005) use splines and a mixture of two Log-Normal distributions and find

that both methods produce very similar results.

Even though there is no consensus on which method to use, estimation of the RNDs

has been practiced for a long time now and one of the main purposes is to test its forecasting
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ability, that is, how well they can predict future movements of the underlying. Related

literature such as the work of Lynch and Panigirtzoglou (2008) conclude that RNDs are

not useful at predicting future realizations but markets do react to events such as crisis.

A group of researchers such as Anagnou et al. (2005) for the UK market, Craig et al.

(2003) for the German market and Bliss and Panigirtzoglou (2004) for the UK and US

market, they all conclude that implied RNDs do not produce accurate forecasts of price

realizations. Alonso et al. (2005) study the Spanish market and they can not reject the

null hypothesis when they consider the whole sample period, however they do reject it for

the sub-periods considered. In general, the di↵erent literature advocates that di↵erences

between the RND and the actual distribution is due to the presence of risk aversion of the

representative agent, and so actual distributions would be more appropriate because they

do incorporate investors’ beliefs and preferences.

In this study we aim to estimate daily RNDs and assess their forecasting ability. For

this, we use option data on three major indexes which are S&P 500, Nasdaq 100 and

Russell 2000 and use di↵erent time horizons of 15, 30, 45 and 60 days. As previously

mentioned, literature is mixed about the method to use to approximate RNDs and no

method has been proved to stand out; therefore, we propose to study the forecasting

ability of RNDs approximated using di↵erent methods: one parametric (mixture of two

Log-Normal distributions) and two non-parametric (Breeden-Litzenberger with kernel and

with spline techniques). By doing this, we check whether our results hold for di↵erent

methods.

Previous literature appraise the forecasting ability of the RNDs based on the Berkowitz

test; however, we suspect that the hypotheses over which this test is built are not appro-

priate for this type of data, and so di↵erently from previous works we run block-bootstrap

re-sampling to check the forecasting ability of our RNDs. In order to reinforce the re-

sults obtained, we also perform Cramer-von-Mises test, which also assesses the forecasting
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ability of the densities.

We contribute to the literature by analyzing the longest series of data, ranging from

1996 to 2015, which is of special interest since it embraces two major crisis and increases the

size of the test. We compare our results across di↵erent existent methods and maturities

and prove consistency in the results across all of them. Furthermore, in this analysis we

deal with the tail area, whose estimation still remains a challenge in the literature due to

the scarcity of data in these regions. Tails are assessed through a tail test based on the

Brier Score. Finally, our results prove that, contrary to the common findings on the topic,

RNDs can not be rejected as good forecasters of future price realizations.

The chapter is organized as follows: in section 1.1 we present the di↵erent methods

used to extract the RNDs, section 1.2 contains the tests applied, section 1.3 presents

the data, in section 1.4 we find the results and discussion, and finally in section 1.5 we

conclude.

1.1 Methodology

There exists a vast literature concerning the extraction of the RNDs. Most of these

methods have to do with two techniques: parametric methods, to which major contributors

include Banz and Miller (1978) and Rubinstein (1994) among others; and non-parametric

methods, being Aı̈t-Sahalia and Lo (1998) and Bliss and Panigirtzoglou (2002) relevant

references. In order to provide some robustness to our results we consider three di↵erent

alternatives to extract the RNDs from option prices, being one parametric and two non-

parametric.

Due to its simplicity, the most common method is the parametric approach, which

is based on choosing a certain option pricing model built on a flexible parametric return
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distribution which allows for thick tails and skewed shapes. Then, RND parameters are set

to be those that best fit the observed prices. This approach is fairly easy to implement and

yields to well-behaved distributions (non-negative RNDs). For the parametric methods

we use the well-known Log-Normal mixture distributions (heretofore LNM).1

The non-parametric methods rely on the Breeden and Litzenberger (1978) technique

to obtain the RNDs. These methods do not assume any specific form of the probability

distribution function and they are based on weaker assumptions. However, they are built

on a continuous range of option prices across moneyness, therefore interpolation of the

data is needed. Following the works of Aı̈t-Sahalia and Lo (1998) and Bliss and Panigirt-

zoglou (2002), we use the kernel regression and the spline approaches for interpolating and

smoothing the data before applying the Breeden-Litzenberger technique to finally obtain

the RNDs.

1.1.1 Parametric RNDs

Mixture of Log-Normal distributions has been widely used in the literature in di↵erent

fields. This approach consists on a weighted average of Log-Normal distributions. The

main advantage of this approach is that non-negativity of the distribution is ensured, as

well as being easy to implement and flexible enough to fit a broad range of di↵erent shapes,

allowing for bimodality.

We derive the estimated RNDs, f
Q

(x), as a mixture of two Log-Normal distributions

as follows,

f
Q

(x) = p (x|F
1

,�
1

, T ) + (1� p) (x|F
2

,�
2

, T ) (1.1)

where  (x|F, �, T ) is a Log-Normal density function with x being the domain of forward

1To implement this approach we follow the lines of Taylor (2005). We refer the reader to the book for
further details.
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prices over which the density is defined, F is the expected forward price of the underlying

at maturity T , and � is the standard deviation. Subscripts 1 and 2 indicate the two

di↵erent Log-Normal distributions being mixed. The weight placed on each Log-Normal

distribution is determined by the parameter p, and consequently (1�p), which takes values

between 0 and 1. More details about the derivation of such distributions can be found in

the Appendix A.1.

1.1.2 Non-parametric RNDs

As per Breeden and Litzenberger (1978) the whole RND can be extracted by taking

the second partial derivative of the option pricing function with respect to the strike price.

Hence, the RND of the underlying asset at expiration f(S
T

), is given by

f (S
T

) = er(⌧)
@2C (S

t

, X, T, t)

@X2

|
X=ST (1.2)

being r the risk-free rate, C (S
t

, X, T, t) the European call price function, S
t

the current

value of the underlying asset, X the strike price of the option, T the expiration date, t

the current date and ⌧ = T � t the time to expiration. The corresponding cumulative

Risk-Neutral distribution function can be obtained as follows,

F (X) = er⌧
@C

@X
+ 1 (1.3)

However, non-parametric methods are challenged with two hurdles due to the nature

and availability of the data. To compute numerically equation (1.2) by finite-di↵erences, a

thin grid of strike prices encompassing all possible future payo↵s is needed. Nevertheless,

available data is sparse in the strike domain, hence option prices must be interpolated.

The second drawback is that option prices may be noisy, so a smoothing technique needs

to be applied. To overcome these drawbacks, we use both the kernel regression and the
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spline technique.

For the interpolation of the data, instead of interpolating on prices, Malz (1997)

suggests that it is better practice to interpolate on implied volatilities, and instead of

interpolating across the strike price domain he also proposes to interpolate across deltas

(that is on an implied volatility-delta space). The advantage of this method is twofold:

first, it groups away-from-the-money options more closely permitting the data to have a

more accurate shape at the center of the distribution where information is more reliable;

and second, call option deltas are bounded between [0; 1], in contrast to the strike price

domain which is theoretically unbounded. In order to convert option prices into implied

volatilities (iv) and exercise prices into deltas, Black-Scholes-Merton (BSM) formula is

used. Once the ivs and the deltas are fitted into the corresponding smoothing technique

in order to get the continuum of data, they are converted back into option and strike prices

using the same formula.2

1.1.2.1 Kernel Regression

We propose the kernel regression estimator of Nadaraya (1964) and Watson (1964) as

our first non-parametric method to smooth and interpolate the data, namely

m̂
h

(x) =
n�1

P
n

i=1

K
h

(x� x
i

)Y
i

n�1

P
n

i=1

K
h

(x� x
i

)
; K

hn(u) = h�1

n

K

✓
u

h
n

◆

being x and Y
i

the delta (�) and the implied volatility (iv) of the observed options,

respectively; K
hn a kernel function and h the bandwidth (smoothing) parameter.

We choose as K
hn the gaussian kernel, however as mentioned in Aı̈t-Sahalia and Lo

2Note that, at this point the use of the BSM pricing formula does not presume that such formula
correctly prices the options, it is merely a tool to change from prices to iv and from X to deltas, being
reverted back in future steps into exercise price domain. In order to change from exercise price domain to
Black-and-Scholes-delta domain we use the same volatility for all observations, which is obtained from a
weighted average of the di↵erent implied volatilities.
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(1998) the choice of the kernel function has not as much influence on the result as the

choice of the bandwidth, h, being the outcome very sensitive to this value. A wide range of

alternative approaches to calculate h are studied in Silverman (1986) and Härdle (1990).

However, there is no consensus in the literature about the optimal h nor the best method

to use to calculate it. In this work, we choose among di↵erent values calculated using

both leave-one-out cross-validation and Silverman’s Rule-of-Thumb. See Appendix A.2

for more details on how h is calculated.

At this point we are faced with the limitation of being able to estimate only the part

of the RND corresponding to the observed range of strikes. Extreme strike observations

are scarce or even non-existent, being most of them illiquid and therefore the information

embedded in such prices may be misleading and unreliable. Not because extreme events,

which form the tails of the distribution, are rare means that they cannot occur; but the

contrary, the information contained in the tails is of major importance in risk management

to carry out value-at-risk analysis, as well as in asset allocation, among others.

We find a scarce literature exploring the issue of the tails which still remains a chal-

lenge for researchers. To make estimations beyond the range of observed values, we need

to extrapolate somehow the available data. One approach is to assume a parametric

probability distribution to approximate the tail zone. Figlewski (2008) states that as per

Fisher-Tippett Theorem, a large value drawn from an unknown distribution will converge

in distribution to one of the Generalized Extreme Value distributions (GEV) family. Based

on this, Birru and Figlewski (2012) propose the use of the Generalized Pareto distribution

(GPD), which also belongs to the extreme value distributions family. The attractiveness

of this method is that it has only two free parameters, which are ⌘, the scale parameter

and ⇠, the shape parameter. We follow this approach to complete the tails of the RNDs,

and we append GPD tails to our kernel-based RNDs. More details about these procedures

are given in the Appendix A.3. An illustrative example is depicted in figure 1.1.
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Figure 1.1: Kernel RND with pareto tails appended. The figure shows a RND calculated for the

S&P 500 for a 30 days time horizon using kernel technique with pareto tails appended. We can distinguish:

the central part (solid line) which is the main body of the distribution, which has been calculated using

the kernel method; the most extreme regions (also depicted with a solid line) which show the pareto tails

appended to the main body of the distribution; and finally the graph depicts the overlapping zone between

↵0 and ↵1 (dotted line) which has been estimated using a weighting scheme. The RND is for 17 December

2009.

1.1.2.2 Splines

Following Bliss and Panigirtzoglou (2004), we also consider to fit iv using cubic

smoothing splines (piece-wise polynomials). The smoothing spline is defined by the knots

and polynomial coe�cients that minimize the following function,

S
�

=
nX

i=1

m
i

(Y
i

� g(�
i

, ✓))2 + �

Z
+1

�1
p00(x; ✓)2dx (1.4)
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where m
i

is a weighting value of the squared error, Y
i

is the implied volatility of the

ith option observation, g(�
i

, ✓) is the fitted iv which is a function of �
i

and a set of

spline parameters, ✓; g(�
i

, ✓) is any curve which can have any form and whose coe�cients

are estimated by least-squares. � is the smoothing parameter, which following Bliss and

Panigirtzoglou (2004) takes value 0.99, and p(x; ✓)2 is the smoothing spline.

For the m
i

weight in equation (3.2), Bliss and Panigirtzoglou (2004) use the BSM

vegas of the observed options. However, we slightly modify this weighting scheme using

squared vegas, which places more weight to those near-to-at-the-money observations and

therefore it performs better.

Like in the kernel-based method, we are faced with the limitation of being able to

estimate only the part of the RND corresponding to the observed range of strikes, missing

some probability at the extremes. For the spline method we deal with the tails using

two di↵erent approaches. First, we simply extrapolate the spline outside the observed �

domain; however it can cause implausible or negative ivs, as well as kinks at the ends of

the RNDs. Following Bliss and Panigirtzoglou (2004) before extrapolating we add two

extra points at both ends of the moneyness domain and assign them the iv value of the

corresponding end point. By doing this, we get an extended moneyness range over which

we extrapolate the spline. The second approach is to fit pareto tails, the same way as it

is done for the kernel method.

To illustrate the di↵erent methods used in this work, figure 1.2 exhibits the extracted

RNDs calculated for S&P 500 index options with 30 days to maturity for two di↵erent

days: one RND is from 21 July 2005 (left hand side plots), just before the global financial

crisis; while the second RND is from 23 July 2009 (right hand side plots), just after the

crisis. The top plots represent the RNDs from parametric method (Log-Normal mixture),

while the bottom plots depict the non-parametric ones (kernel with pareto tails appended,

splines with extrapolation and splines with pareto tails). From this figure, two facts arise:
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first, the di↵erent methods used in this work seem capable to capture the main features

of option-implied RNDs (skewed shapes, fat tails, etc.); second, comparing the x-axis of

the pre and post crisis RNDs, it is clear that the domain (dispersion of futures outcomes)

has spread out.

1.2 The tests

In order to verify whether RNDs accurately forecast realized ex-post returns, we rely

on three tests. First, we analyze the performance of the Berkowitz (2001) test that jointly

tests independence and uniformity, which has been used by Bliss and Panigirtzoglou (2004)

and Alonso et al. (2006), among others.3 Second, we focus on the tails using the Brier

Score, which is based on the realized frequency for a certain (extreme) quantile (i.e. 5%,

10%, 90%, 95%). In order to verify the reliability of these tests, we compute the bootstrap

distribution of the test statistics. Finally, we re-inforce the findings of the previous with

the Cramer-von-Mises test.

Given a set of implied RNDs for each date t
i

with a specific ⌧ -horizon, f̂
ti,⌧ (Sti+⌧

),

where S
ti+⌧

are the values at expiration; the Berkowitz test first transforms S
ti+⌧

into a

new variable z
ti using the probability integral transform,

z
ti,⌧ = ��1

✓Z
Sti+⌧

�1
f̂
ti,⌧ (u) du

◆
(1.5)

where ��1(. . .) stands for the inverse of the standard Normal distribution function.

Under the null hypothesis that f̂
ti,⌧ (. . .) = f

ti,⌧ (. . .) and the assumption that S
ti+⌧

are independent, the new variable z
ti,⌧ ⇠ iid N(0, 1). In this test, independence and nor-

mality of z
ti,⌧ are tested using a likelihood ratio test by estimating by maximum likelihood

3According to Bliss and Panigirtzoglou (2004), this test performs better than several non-parametric
tests, such as, Kolmogorov-Smirnov, Chi-squared or Kupier tests.
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Figure 1.2: RNDs before and after the crisis. The figure compares a pre-crisis (21 July 2005)

RND (left-hand side plots) and a post-crisis (23 July 2009) RND (right-hand side plots) for the S&P 500

at 30 days maturity for each of the di↵erent methods proposed. Both top panels depict parametric RNDs:

Log-Normal mixture. The bottom plots show the two non-parametric RNDs: kernel with pareto tails

appended (solid line), splines with extrapolation (dashed line) and splines with pareto tails (dotted line).
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the following AR(1) model,4

z
ti,⌧ � µ = ⇢ (z

ti�1,⌧

� µ) + ✏
ti,⌧ , ✏

ti,⌧ iidN(0,�2
✏

) (1.6)

Under the null hypothesis, the estimated parameters should be
⇥
µ, �2

✏

, ⇢,
⇤
= [0, 1, 0].

Therefore, the likelihood ratio test

LR
3

= �2
⇥
L (0, 1, 0)� L

�
µ̂, �̂2

✏

, ⇢̂
�⇤

(1.7)

is asymptotically distributed as �2 (3) under the null hypothesis.

The presence of overlapping or non-overlapping but serially correlated data may lead

to a false rejection of the null hypothesis. For that, Berkowitz (2001) suggests testing the

independence assumption separately as follows,

LR
1

= �2
⇥
L
�
µ̂, �̂2, 0

�
� L

�
µ̂, �̂2, ⇢̂

�⇤
(1.8)

which under the null hypothesis is asymptotically distributed as �2 (1). As per the pre-

vious, LR
3

results will be more reliable when LR
1

fails to reject. Should both LR
3

and

LR
1

reject, we cannot ascertain whether the reason is lack of predictability of the RNDs

or the presence of serial correlation in the data.5

Due to the features of the data (short samples and dependence), the empirical dis-

tribution of the statistics in equation (1.7) may di↵er from the asymptotic ones, yielding

to di↵erent critical values, and thus wrong decisions about rejection of the null hypothe-

sis may be taken. To overcome this problem, we compute bootstrap-based critical values.

Since it is of interest to maintain the structure present in the data, we use block-bootstrap.6

4Even though dependency can arise from a more complex structure than an AR(1), this dependence
structure is the most evident and intuitive, specially in overlapping data.

5Note that failure to reject does not necessary imply that the null hypothesis is true.
6When re-sampling, note that the outcome will be only as good as the ability of the data generating
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This method was first introduced by Künsch (1989) and it divides the sample into di↵erent

blocks (which may be overlapped) of b consecutive observations. Then, bootstrap samples

are built by randomly concatenating blocks to match the original sample size. Künsch

(1989) proposes that a reasonable block length would be n1/3, where n is the length of

the original sample. We have also tried with n1/3 + 3, n1/3 + 8, n1/3 + 13 and n1/3 � 1

observations. These values generate blocks of length 10, 15, 20 and 6 observations, re-

spectively, for the S&P 500 case. In our analysis, results are very similar and lead to the

same conclusions regardless the length of the block. Once m bootstrap samples have been

generated, the statistics of interest are calculated for each sample.

Another way of assessing whether the estimated densities, f̂
ti,⌧ (. . .), are the true

densities, f
ti,⌧ (. . .), is the Cramer-von-Mises test (CM henceforth), which was proposed

by Cramer (1928) and von Mises (1931). This test is based on the probability integral

transform of the realized prices of the underlying at maturity given our estimated densities,

y
ti,⌧ =

Z
Sti+⌧

�1
f̂
ti,⌧ (u) du (1.9)

Should the null hypothesis that the estimated densities are the true densities hold, the

transformed realizations y
ti,⌧ should be uniformly distributed. To check that, von Mises

(1931) proposes the following statistic,

dCM =

Z
1

0

⇣
F
ti,⌧ � F̂

ti,⌧ (Sti+⌧

)
⌘
2

(u) du (1.10)

where F
ti,⌧ is the Uniform (0,1) distribution function and F̂ is the estimated cumulative

RND.

In order to approximate the asymptotic distribution of the CM test, we perform a

bootstrap-based test. The same way as it is done for the Berkowitz, we bootstrap m

process (bootstrap samples) to fairly mimic the actual data and their structure.
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di↵erent samples of series of y
ti,⌧ in blocks, over which CM test is calculated, having a

series ofmCM statistics (dCM
BB

) which form a distribution. We reject the null hypothesis

in favor to the alternative when the estimated statistic dCM is in the upper tail of the series

of dCM
BB

. Specifically we calculate

bp
BB

⇣
dCM

⌘
=

1

m

mX

i=1

1{d
CMBBi

>

d
CM} (1.11)

being 1{...} an indicator function which takes value 1 when the expression in brackets is

true.

As per the previous, we reject the null hypothesis whenever bp
BB

⇣
dCM

⌘
is smaller

than some probability level ↵, which is equivalent to rejecting it when dCM exceeds the

1� ↵ quantile of the dCM
BB

density.

Following Anagnou et al. (2005) and Alonso et al. (2006), we also test the goodness

of fit of the tails separately. They propose the statistic suggested by Seillier-Moiseiwisch

and Dawid (1993) to test whether Brier Score departs from its expected value (Tail test

henceforth). Brier Score is defined as

B =
1

T

TX

t=1

2
⇣
F̂ tail

t,⌧

�R
t,⌧

⌘
2

(1.12)

and measures the accuracy of the probabilistic predictions based on the distance between

a selected probability mass in the tail, F̂ tail

t,⌧

, and a binary variable, R
t,⌧

, which takes value

1 if the true realization of the underlying falls into the tail being tested, or 0 otherwise.

The statistic is defined as follows,

Y =

P
T

t=1

⇣
1� 2F̂ tail

t,⌧

⌘⇣
R

t,⌧

� F̂ tail

t,⌧

⌘

P
T

t=1

⇣
1� 2F̂ tail

t,⌧

⌘
2

F̂ tail

t,⌧

⇣
1� F̂ tail

t,⌧

⌘�
1

2

(1.13)
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which is asymptotically distributed as a Standard Normal.

1.3 The Data

We have a set of European call and put options written on three of the major traded

indexes, S&P 500, Nasdaq 100 and Russell 2000, from the OptionMetrics database. We

have observations ranging from January 1996 until October 2015. We use daily closing

prices for all the indexes and calculate the mid-point of the bid and ask price of the options.

The risk-free rate used in our analysis is the zero-coupon yield provided by OptionMetrics.7

Because extreme observations are considered to be very-far-away-from-the-money and

therefore illiquid and fairly unreliable, following Panigirtzoglou and Skiadopoulos (2004)

we discard observations with delta values (�) beyond the range [0.01; 0.99].

We calculate a RND for those days of the sample with options maturing in 15, 30, 45

and 60 days. Data can present some anomalies, and therefore a filtering is required before

the implementation of the di↵erent models. Under the assumption of complete markets,

those options which do not satisfy the arbitrage conditions are discarded from the sample.

Those options which are very-far-away-from-the-money are also dropped from the sample

since they are poorly traded and thus illiquid, so the information embedded in their prices

can be unreliable and of no use. Therefore, following the literature, we keep only in the

sample those observations whose moneyness lies within 0.75 and 1.25. We also require a

minimum of 8 observations to perform any estimation.

When working with options we need to deal with the presence of the dividends.

Such variables are unobservable and di�cult to estimate. We will follow in this study

7Bliss and Panigirtzoglou (2004) studied the e↵ect of the risk-free proxy and concluded that a change of
100 basis points in the risk-free rate leads to a two basis points change in the measured implied volatility
for a one-month horizon, and this change will be up to 5 basis points for the six-months horizon. Therefore,
the proxy used will have little impact on the results.
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1.3. The Data 41

the approach proposed by Aı̈t-Sahalia and Lo (2000), in which they work with forward

quotes of the underlying instead, therefore dividends go out from the formulas. Since

the assumption of complete markets holds, we can infer the forward prices, F , for the

underlying from the put-call parity formula,

F = (C � P ) er⌧ +X (1.14)

where C and P are the prices for the call and put options respectively, r is the risk-free

rate, ⌧ is the time left to maturity of the option and X is the strike price

Given a certain day and maturity, there exist a call and a put option for each exercise

price. Following Aı̈t-Sahalia and Lo (2000), we remove those call and put contracts that are

in-the-money (ITM), which are less liquid. Out-of-the-money put options are translated

to their counterpart ITM call options by using the put-call parity, being these put options

removed from the sample. By doing this, all the options kept in the sample are OTM.

We consider call options to be ITM when their moneyness ratio F/X is higher than 1.03,

while puts are ITM when their F/X is below 0.97.

For the non-parametric cases, we consider an additional filter: once RNDs have been

estimated and before appending tails, we discard those RNDs which account for less than

the 70% of the probability mass. The rational of this filter is to include only those sample

days where a large portion of the RNDs have been estimated directly from option prices

and not by extrapolating a spline or appending pareto tails.

In case no RND is successful in matching the above criteria, we try to fit the RND

on the previous or the following day instead. If the fit at time t is discarded due to the

reasons exposed above in this section, we try to fit the RND from the previous day, t� 1

(in this case the same options will mature in 16, 31, 46 or 61 days). Should this second fit

be also discarded, we try to fit data from the following day, t+1 (in this case the options
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42 Can we really discard forecasting ability of option-implied Risk-Neutral distributions?

will mature in 14, 29, 44 or 59 days). Should the method fail to obtain a successful

distribution, then that specific day is discarded from the sample. As explained before a

weak point of the previous research which focuses on the forecasting ability of RNDs is

the (short) sample size when running the tests. We proceed in this way in order to get

more observations and increase the sample size to run the tests explained in section 1.2.

1.4 Results and discussion

The RNDs have been estimated using di↵erent parametric and non-parametric meth-

ods from options on three di↵erent indexes: S&P 500, Nasdaq 100 and Russell 2000. In

figure 1.3 we plot the volatility, skewness and kurtosis implied from the estimated RNDs

for the S&P 500 index options with 30 days to maturity. We calculate these moments

by numerical integration of the already estimated RNDs.8 In general, we can appreciate

that the implied volatility (top plot) is almost the same for the di↵erent techniques. We

also see that implied skewness is negative, as expected, but in this case di↵erences across

methods are more evident. And finally we can observe a similar pattern for the implied

kurtosis: in general it is higher than 3, but with noticeable di↵erences across methods.

Regarding the similarities between the di↵erent methods they are clearer for spline-based

methods. In consequence, to avoid results conditioned by the selected method of extract-

ing the RNDs, it is relevant to check the forecasting ability for RNDs obtained with all

di↵erent techniques.

Table 1.1 shows the p-values of the LR
3

Berkowitz test statistic for the di↵erent

methods, maturities and indexes considered in this work, as well as the LR
1

p-values

for testing the independence separately. For all cases considered, both tests reject their

respective null hypothesis, therefore we can not ascertain the reason of rejection: poor

8Similar figures for Nasdaq 100 and Russell 2000 risk-neutral moments are available upon request.
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Figure 1.3: Standard deviation, Skewness and Kurtosis for the RNDs extracted using

all di↵erent methods. The figure compares the risk-neutral volatility (30 days), skewness and kurtosis

implied in the RNDs calculated for the S&P 500 using all methods used in this study: Log-Normal

mixture (LNM), kernel with pareto tails (K+PT), splines with pareto tails (Spline+PT) and splines with

extrapolation (Spline). Implied moments are calculated from numerical integration of the obtained RNDs.

forecasting ability or lack of independence of the transformed variables (see equation (1.5)).

Note that during this period financial markets have been hit by two major crisis, one

from March 2000 to October 2002; and one from October 2007 until March 2009. The fact

that such periods present extreme movements in stock prices might mislead the results of
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44 Can we really discard forecasting ability of option-implied Risk-Neutral distributions?

⌧ model S&P 500 NASDAQ 100 RUSSELL 2000

LR
3

LR
1

LR
3

LR
1

LR
3

LR
1

15 days LNM 0.0000 0.0000 0.0013 0.0007 0.0000 0.0000

Kernel 0.0000 0.0000 0.0004 0.0003 0.0000 0.0000

Spline 0.0000 0.0000 0.0004 0.0006 0.0000 0.0000

Sp+PT 0.0000 0.0000 0.0004 0.0007 0.0000 0.0000

30 days LNM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Kernel 0.0000 0.0000 0.0000 0.0000 0.0009 0.0001

Spline 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Sp+PT 0.0000 0.0000 0.0000 0.0000 0.0013 0.0002

45 days LNM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Kernel 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Spline 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Sp+PT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

60 days LNM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Kernel 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Spline 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Sp+PT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 1.1: Berkowitz test p-values. The table shows the LR3 and LR1 Berkowitz test corresponding

p-values. The test is run on the RNDs based on the S&P 500, Nasdaq 100 and Russell 2000 indexes for

the di↵erent maturities (column ⌧) and methods used in the work: Log-Normal Mixture (LNM), kernel

with pareto tails (Kernel), spline with extrapolation (Spline) and splines with pareto tails (Sp+PT). The

analysis is applied to the whole data set which goes from January 1996 until October 2015.
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the tests. In order to consider this, both statistics have been calculated on a restricted

data set which excludes the above turmoil periods. Results are presented in table 1.2 and

they yield to the same conclusion than when testing using the whole sample: rejection of

the null hypotheses (both forecasting ability and independence). Thus, we can conclude

that observations from the bear markets during the crisis periods are not responsible for

those rejections.

⌧ model S&P 500 NASDAQ 100 RUSSELL 2000

LR
3

LR
1

LR
3

LR
1

LR
3

LR
1

15 days LNM 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000

Kernel 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Spline 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

Sp+PT 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

30 days LNM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Kernel 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Spline 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Sp+PT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

45 days LNM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Kernel 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Spline 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Sp+PT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

60 days LNM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Kernel 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Spline 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Sp+PT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 1.2: Berkowitz test p-values, excluding crisis. The table shows the LR3 and LR1

Berkowitz test corresponding p-values. The test is run on the RNDs based on the S&P 500, Nasdaq 100

and Russell 2000 indexes for the di↵erent maturities (column ⌧) and methods used in the work: Log-

Normal Mixture (LNM), kernel with pareto tails (Kernel), spline with extrapolation (Spline) and splines

with pareto tails (Sp+PT). The complete sample contains observations from January 1996 until October

2015. However, in this table periods of crisis (that is the period from March 2000 until October 2002; and

the period comprised between October 2007 and March 2009) have been excluded from the analysis.

Due to the nature of the data, one may suspect that the observations indeed present
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46 Can we really discard forecasting ability of option-implied Risk-Neutral distributions?

some kind of auto-correlation structure, specially for longer maturities, where overlapping

manifests. Should this be the case, then Berkowitz assumptions would not be accurate. In

order to check whether LR
3

statistic is indeed distributed following a �2

3

, we estimate new

p-values by applying the block-bootstrap technique. This estimation is based on 5, 000

di↵erent samples. These samples are obtained by re-sampling z
ti,⌧ (see equation (1.5)) in

blocks with the same length up to reach the original data length. We calculate the LR
3

statistic over each bootstrap sample, obtaining a set of 5, 000 LR
3

values which provide a

distribution of the statistic itself.

Tables 1.3 and 1.4 show the 90th and 95th percentile of the block-bootstrap distribu-

tion of the statistic. In general, for shorter maturities, these percentiles are higher than

the sample Berkowitz LR
3

statistic, suggesting failure to reject the null hypothesis, which

states that we can not discard RNDs as good forecasters. However, for longer maturities,

we can reject the null hypothesis with confidence level of 90% for S&P 500 and Russell

2000 indexes. Same conclusions are obtained when performing the analysis on the data

set without the crisis periods.

Besides Berkowitz test, the Cramer-von-Mises test is also performed in order to assess

the forecasting ability of the estimated RNDs for the di↵erent methods, indexes and matu-

rities. Results are presented in table 1.5 which shows the CM statistic calculated for all the

estimated RNDs (column dCM), the 95th percentile of the series of the block-bootstrapped

CM statistics (column BB
95%

) and the proportion of dCM
BB

statistics which are greater

than the dCM , as per equation (1.11).

Results show that the null hypothesis cannot be rejected, being so for all di↵erent

methods, indexes and maturities. This confirms the results of the Berkowitz test with

block-bootstrap. We also perform the CM test on the restricted data set which excludes

the crisis periods, see table 1.6, which also concludes failure to reject the null hypothesis

of good forecasters. Figure 1.4 shows the distance of the series of the integral transform
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y
ti,⌧ and the 45� line for all the di↵erent estimated RNDs for the S&P 500 index with

30 days time horizon.9 In this figure we can appreciate that in general all methods yield

to similar results, and the integral transform variables are not significantly di↵erent from

the 45� line; in particular, the test shows best fit for the right tail observations for all the

methods.

Tail tests based on Brier Score (see equations (1.12) and (1.13)) have been performed

to test how accurate the tail fitting is based on a given probability mass. In this analysis

we focus on the 5% and 10% probability mass levels in both left and right tails. Tables

1.7 to 1.9 show the observed frequency for each percentile, the Tail test statistic and the

corresponding p-value for the left and right tails separately, for the di↵erent maturities,

methods and indexes considered in this work. Tables 1.10 to 1.12 repeat the same analysis

excluding the observations from the crisis periods.

For the left tail, which reflects the losses, in general we observe that the RNDs over-

estimate the frequency in which the observations fall into the extreme tail (5% and 10%),

being the observed frequency lower than the predicted one. See for instance the case of

the RNDs of the S&P 500 extracted with splines with pareto tails appended (SP+PT)

for ⌧ = 30 days in table 1.7. For these, the observed frequency of realizations below the

5% and 10% thresholds are 2.1% and 4.5%, respectively. Similar results are obtained for

all methods, indexes and maturities tested. This fact leads to a general rejection of the

null hypothesis of good fitting of the left tail. Some exceptions are found to this general

rejection, such as those RNDs on the Nasdaq 100 at 30 days. Once we exclude the crisis

periods from the sample, the test yields to the same conclusions.

Regarding the fit of the right tail, in contrast to the left tail results, the tests for

the 10% threshold conclude no rejection, in general. This result holds across maturities,

indexes and methods and also for the restricted sample. For the 5% probability mass for

9Results for other indexes and maturities are available from the authors upon request.
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the S&P 500 index there is mixed evidence of rejection while for Nasdaq 100 and Russell

2000, in general we cannot reject the null hypothesis, except for those RNDs for the Russell

2000 at 30 days, and those for the Nasdaq 100 at 60 days. These conclusions hold when

we exclude observations from the crisis periods.

Regarding the tail fitting results (left tail rejection and right tail failure to reject),

they are in line with figure 1.4, where the probability integral transform (PIT) is depicted.

We can appreciate that the PIT is more separated from the 45� line in the left tail than

in the right tail, where observations are closer to the 45� line.
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Figure 1.4: Probability Integral Transform. The figure compares the 45� line (Uniform(0,1)

cumulative distribution) with the probability integral transform of the realized prices of the underlying

given the estimated denstities using Log-Normal mixture (top-left plot), kernel with pareto tails (top-right

plot), spline with extrapolation (bottom-left plot) and spline with pareto tails (bottom-right plot). Under

the null hypothesis, the integral tansform variables should not be statistically di↵erent from the 45� line.

Plots are for the S&P 500 index with 30 days to maturity.
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52 Can we really discard forecasting ability of option-implied Risk-Neutral distributions?
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58 Can we really discard forecasting ability of option-implied Risk-Neutral distributions?
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60 Can we really discard forecasting ability of option-implied Risk-Neutral distributions?

1.5 Conclusions

RNDs are of great importance for portfolio and risk managers. Many studies have

focused on their ability of forecasting future underlying realizations. In order to check the

latter, previous literature has relied on Berkowitz test and concluded that RNDs do lack of

such ability. Nevertheless, Berkowitz test is based on the assumption that the probability

integral transform is i.i.d.N(0, 1). In this work we propose to run block-bootstrap re-

sampling in order to check the asymptotic distribution of the Berkowitz LR
3

statistic

when the assumptions are violated. In order to reinforce the previous, Cramer-von-Mises

test is also performed.

Using a sample from 1996 until 2015 for three US index options (S&P 500, Nas-

daq 100 and Russell 2000) and di↵erent numerical procedures to extract the RNDs from

option prices, Berkowitz test rejects the forecasting ability of RNDs. This result holds

when removing observations from crisis periods. However, when we calculate 5,000 block-

bootstrap statistics, results suggest that Berkowitz assumptions do not hold for our data

set since the statistic is not distributed following a �2

3

, and what is more, block-bootstrap

test fails to reject RNDs as good forecasters. This conclusion is sustained by Cramer-von-

Mises test, which yields to the same results.

Regarding the fit of the tails, the Tail test suggests a general rejection for the left

tail fit, due to a systematic overweighting of the probability mass (observed frequency in

the left tail is lower than the estimated one). On the other hand, the fit of the right tail

cannot be rejected. These results hold when excluding those observations from the crisis

periods.
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Chapter 2

When the (expected) loss

quantiles go marching in

Connectedness across international financial markets, specially during turbulent pe-

riods, has been a recurrent topic in financial research. In this chapter we propose a novel

approach to explore how expected tail risk is transmitted between three international de-

veloped financial markets. We analyze the transmission of changes in the (loss) quantiles

of the option-implied distributions of three representative indexes of the main developed

economic areas: United States, Eurozone and Japan, proxied by the S&P 500, EursoStoxx

50 and Nikkei 225 indexes, respectively.

The main contribution of our work is the use of forward-looking (expected) infor-

mation implied in option prices, instead of historical returns (backward-looking). After

controlling for global risks, measured by the VIX index, our results confirm the existence

of transmission from S&P 500 risk-neutral loss quantiles to both EuroStoxx 50 and Nikkei

225 option-implied quantiles, being the transmission in the opposite direction not sig-

nificant. This result holds for di↵erent quantiles in the left tail and di↵erent maturities
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62 When the (expected) loss quantiles go marching in

(horizons).

First studies, such as Eun and Shim (1989), focus on the transmission of shocks in

returns from one market to other markets. However, the e↵ects of transmission seemed

to be stronger through the second moment. Therefore, literature started studying the

transmission e↵ect in volatility which was mainly modeled using the well-known GARCH

models, by Bollerslev (1986b). Some representatives are the works of Engle et al. (1990)

in monetary markets or Kearney and Patton (2000), Ewing and Malik (2005), and Hassan

and Malik (2007) who use the BEKK methodology of Engle and Kroner (1995). Other

authors also demonstrate transmission on higher order moments, such as Hong et al.

(2009) who use a generalized Student-t, or Hashmi and Tay (2012) who use a skewed-t

distribution to analyze the transmission e↵ects in both skewness and kurtosis.

A strand of the literature such as Poon and Granger (2003), Poon and Granger (2005)

and Bollerslev and Zhou (2006) show that implied volatility is a better choice in terms of

forecasting and is at the same time a better measure of volatility and uncertainty in stock

markets. Thus, given the superior informational content of implied volatility, Nikkinen

and Sahlstöm (2004), Siropoulos and Fassas (2013), Kenourgios (2014) and Thakolsri et al.

(2016) use implied volatilities not only for forecasting purposes, but also to analyze the

integration of the markets and the transmission of shocks across countries.

Beyond focusing on implied volatility only, some works confirm the importance of the

information embedded in the tails of the option-implied risk-neutral distributions. Works

such as Wang and Yen (2017) and Leiss and Nax (2018) show that option-implied risk

measures can predict both future returns and large return downturns, respectively. In

addition, Almeida et al. (2017) and Massacci (2017) prove the link between the tail risk

and macroeconomics.

In consequence, we consider it is worth analyzing the transmission of the option-
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2.1. Methodology 63

implied risk-neutral loss quantiles across international markets. Extraction of the Risk-

Neutral distributions (RND) from option prices does not only provide us with a forward-

looking measure, but it also allows us to analyze di↵erent time horizons. Therefore,

by looking at implied measures allows us to have a better understanding of the market

expectations and future uncertainty for the desired time horizon. Understanding the

linkages of the probability of occurrence of certain level of losses across markets can assist

investors, risk managers and policy makers in terms of forecasting, portfolio diversification

as well as in managing potential risks and anticipation of adverse shocks.

The rest of the chapter is organized as follows, section 2.1 presents the methodology

used to extract the RNDs and the econometric model. Section 2.2 contains a description

of the data used. Section 2.3 presents the results and finally section 2.4 concludes.

2.1 Methodology

In order to study the transmission e↵ect in the quantiles of the di↵erent markets,

this study is based on two main steps. First, we need to obtain the daily RNDs from

option prices in order to be able to calculate the di↵erent quantiles. Afterwards, the

dynamics between the di↵erent markets are designed by constructing a Structural-VAR

model (S-VAR heretofore). Once this is done, we perform impulse-response and variance

decomposition analyses, which will provide us with information about the impact of shocks

in one market to the others.

2.1.1 Extraction of the Risk-Neutral Distributions

For the extraction of the RND we use a non-parametric approach based on the tech-

nique of Breeden and Litzenberger (1978), which allows us to obtain the whole state
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64 When the (expected) loss quantiles go marching in

density from observed option prices. This is done by simply taking the second partial

derivative of the option pricing function with respect to the strike price. Therefore, we

can write the RND of the underlying asset at expiration, f(S
T

), as

f (S
T

) = er(⌧)
@2C (S

t

, X, T, t)

@X2

|
X=ST (2.1)

where r is the risk-free rate, C (S
t

, X, T, t) is the European call price function, S
t

is the

current value of the underlying asset, X is the strike price of the option, T is the expiration

date, t is the current date and ⌧ = T � t is the time to expiration of the option.

In order to be able to extract the RND, equation (2.1) requires a continuum of strike

prices encompassing all possible future payo↵s. However, because options trade at discrete

prices, we need to interpolate across strike prices. Malz (1997) proposes to interpolate on

an implied volatility (iv) - delta (�) space instead of on a price - strike price space.

The convenience of this is that away-from-the-money options are brought more closely

together. Besides, being � bounded between 0 and 1 has some advantages over the strike

price space which is theoretically unbounded.

Once the interpolation is done, implied volatilities and �s are translated back into

prices and strike prices in order to extract the RND by applying Breeden-Litzenberger

technique.10 Nevertheless, due to the availability of the data, we are only capable to

extract that part of the RND which is within the range of traded strikes (�s). Extreme

observations, which form the tail of the distribution, are scarce or even non-existent, there-

fore the tail area needs to be approximated. Following the lines of Bliss and Panigirtzoglou

(2004), we add two pseudo-points at both ends of the observed range of �s and their cor-

responding implied volatility is assumed to be the same as the closest observed �. Once

these points are added, we interpolate within the range by calculating a cubic smoothing

10Black-Scholes and Merton formula (BSM) is used to translate prices into implied volatilities and strike
prices into deltas, reverting them back to prices and strike prices after the interpolation is done. Note that
BSM formula is used as a mere tool and we are not stating that such formula correctly prices the options.
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spline of the form,

S
�

=
nX

i=1

m
i

(Y
i

� g(�
i

, ✓))2 + �

Z
+1

�1
p00(x; ✓)2dx (2.2)

where m
i

is a weighting value of the squared error, Y
i

is the implied volatility (iv) of the

ith option observation, g(�
i

, ✓) is the fitted iv which is a function of delta, �
i

, and a set of

spline parameters, ✓; g(�
i

, ✓) is any curve which can have any form and whose coe�cients

are estimated by least-squares. � is the smoothing parameter, which takes value 0.9, and

p(x; ✓)2 is the smoothing spline.11

2.1.2 Econometric Methods

Once the RNDs are fitted, we have information about the whole distribution. There-

fore, in order to analyze the transmission in the risk-neutral loss quantiles of the di↵erent

markets, we compute the 5%, 10%, 15%, 20% and 25% quantiles of these option-implied

risk-neutral distributions.

In order to analyze the impact of shocks in the risk-neutral expected loss quantiles of

a certain market to the loss quantiles of foreign markets, we model each of the quantiles

using a S-VAR(n) model. The use of a S-VAR(n) process is needed because, as we will

mention later, we have contemporaneous relationships between some of the markets. In

order to isolate specific quantile shocks from general quantile changes due to variations

in the aggregate volatility, we add the CBOE VIX volatility index (VIX heretofore) as

exogenous variable in our S-VAR(n) model. This index is considered the main driver of

global volatility based on options on the S&P 500 index and is at the same time considered

as reference of the market volatility.

11Bliss and Panigirtzoglou (2004) propose a value of 0.99 for parameter �; however, in this analysis we
assign to this parameter the value 0.9 in order to get a smoother fit.

65



66 When the (expected) loss quantiles go marching in

The analysis has also been performed without considering the VIX index as exogenous

variable in our S-VAR(n) model; however, the results show that when the VIX is considered

the Hannan-Quinn information criteria (HQIC henceforth), as per Hannan and Quinn

(1979), improves. Table 2.1 shows the coe�cients and standard errors in parenthesis

for the VIX index series included in the S-VAR(n) process as exogenous variable. All

coe�cients are significant with p-values lower than 0.001 for all cases.

In this particular analysis, we are challenged with the non-synchronicity in trading

hours for the di↵erent markets due to the time zone di↵erence. That is, on day t the

European market closes after the Japanese market does; therefore, the closing prices of

the Japanese market may impact the contemporaneous closing prices of the European

market, while the reverse is not possible. The same happens for the US market. Since this

is the last market to close, closing prices on day t may incorporate the information of the

contemporaneous closing prices in Europe and Japan. On the other hand, the Japanese

market will only be a↵ected by the lags of the European and the US markets, since at the

closing Japanese investors only have information about the closing of the previous day of

the European and the US market. Furthermore, not only the trading hours di↵er between

countries, but also the trading days may be di↵erent from one country to another due

to various reasons such as di↵erent national bank holidays or unexpected events, among

others.

In order to account for contemporaneous relationships between the di↵erent markets,

we consider a S-VAR(n) process which accounts for both lagged as well as contemporaneous

dynamics between the variables.
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⌧ market quantile

5% 10% 15% 20% 25%

30 JP -0.034 -0.025 -0.017 -0.011 -0.006
(0.003) (0.002) (0.001) (0.001) (0.001)

EU -0.070 -0.054 -0.042 -0.031 -0.022
(0.002) (0.001) (0.001) (0.001) (0.001)

US -0.103 -0.079 -0.059 -0.044 -0.031
(0.001) (0.001) (0.001) (0.001) (0.001)

60 JP -0.031 -0.023 -0.016 -0.010 -0.006
(0.002) (0.002) (0.002) (0.001) (0.002)

EU -0.073 -0.058 -0.047 -0.037 -0.028
(0.002) (0.001) (0.001) (0.001) (0.001)

US -0.108 -0.084 -0.065 -0.049 -0.035
(0.001) (0.001) (0.001) (0.001) (0.001)

91 JP -0.029 -0.020 -0.013 -0.008 -0.003
(0.003) (0.002) (0.002) (0.002) (0.002)

EU -0.073 -0.060 -0.050 -0.039 -0.031
(0.002) (0.002) (0.002) (0.002) (0.002)

US -0.109 -0.086 -0.067 -0.052 -0.037
(0.001) (0.001) (0.001) (0.001) (0.001)

Table 2.1: Coe�cients of the VIX index series included as exogenous variable in the S-

VAR(n) analaysis. The table shows the significant coe�cients of the VIX index series included in the

S-VAR(n) model as exogenous variable. Results are provided for the di↵erent markets under study: Nikkei

225 (JP), EuroStoxx 50 (EU) and S&P 500 (US). Standard errors are shown in parenthesis. Coe�cients

for the VIX are negative and statistically significant for the di↵erent maturities (⌧ = 30, 60, 91 days) and

di↵erent left-tail quantiles (5%, 10%, 15%, 20% and 25%).
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being JP↵, EU↵ and US↵ the series of changes of the ↵%-quantile being modeled corre-

sponding to the Nikkei 225, the EuroStoxx 50 and the S&P 500 indexes, respectively. The

subscript t indicates each day in the sample for the period considered, � is the constant

term, B
0

contains the contemporaneous coe�cients and B
i

are the matrices of coe�cients

measuring the e↵ect of the lagged variables (t � i) to the variable being analyzed. V IX

is the change in the CBOE VIX index and C its coe�cient. Finally, ✏
i,t

is the error term

for each market JP, EU and US. In order to determine the optimal number of lags (n) we

rely on the HQIC.

The S-VAR(n) model in equation (2.3) can be written as,

B
0

y
t

= � +B
1

y
t�1

+ . . .+B
n

y
t�n

+ V IX + ✏
t

(2.4)

This expression can be presented in reduced form,

y
t

= A
�

+A
1

y
t�1

+ . . .+A
n

y
t�n

+ V + w
t

(2.5)

where A
�

= � ·B�1

0

, A
i

= B�1

0

B
i

, i = 1, 2..., n, V = B�1

0

V and w
t

= B�1

0

✏
t

.

Therefore, knowledge of B�1

0

(hence B
0

) enables us to recover �, B
i

, V and w
t

, but the

main issue now is how to recover B
0

. One popular way is by using recursively identified

models, which is based on an orthogonalization of the reduced-form errors. However,

in order to be able to apply this methodology, we need to define a matrix P , such as

PP 0 = ⌃
w

, where ⌃
w

is the covariance matrix of the reduced-form innovations. Matrix P

needs to be lower triangular in order to apply Cholesky decomposition of ⌃
w

. It follows

that from ⌃
w

= B�1

0

B�1

0

0

that B�1

0

= P .

Application of this method will be accurate as long as our data guarantees that matrix
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P is lower-triangular.12 The di↵erent closing times of the three markets do support such

restrictions. Specifically, our matrix B
0

of contemporaneous e↵ects is lower-triangular as

follows,

B
0

=

0

BBBBBB@

�JP
JP

0 0

�JP
EU

�EU

EU

0

�JP
US

�EU

US

�US

US

1

CCCCCCA
(2.6)

where �j
i

measures the contemporaneous impact of quantile changes from market j in

the quantile changes of market i. �JP
EU

and �JP
US

measure the impact of Japan closing

prices in the Eurozone and US, respectively; and �EU

US

collects the impact of the Eurozone

closing prices in the US. However, the Japanese market does not have contemporanous

information of neither the US nor the European market, and the European market does

not know the contemporaneous closing prices from the US market, being the relations

between these, zero.

Alternatively to the S-VAR(n), the non-synchronicity problem can be tackled by

transforming the daily series to lower-frequency series such as two-days or weekly. See for

instance Yang and Zhou (2017) who calculate two-days rolling average series. However,

one drawback of using lower-frequency data is the reduction of the sample size. In order

to check for robustness, in addition to the S-VAR(n) process we have also fitted a VAR(n)

model using weekly series which have been calculated by averaging the daily observations

for each week. By doing it this way, we avoid both the issue of contemporaneous e↵ects

and the non-matching trading days due to national bank holidays, etc. On the other

hand, our sample size reduces from 2,678 to 596 observations. Nonetheless, results for

both analyses yield to the same qualitative results. Our VAR(n) model also includes the

12A deep analysis of Structural-VAR(n) can be found in Kilian and Lutkepohl (2017).
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VIX as exogenous variable and is defined as,
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Hovewer, one recognized problem about fitting a VAR(n) or S-VAR(n) model is that

the coe�cients have no straightforward identification, as mentioned by Brooks (2008).

In order to alleviate this problem, we construct the Granger causality test, see Granger

(1969). Nevertheless, as mentioned in Brooks (2008), this test only captures information

about the correlation between the current value of one variable and the past values of all

the variables, but it does not provide information of whether movements of one variable

cause movements to another variable, nor the sign of the e↵ects.

Hence, in order to see the response of the quantile changes in one market due to shocks

in quantiles from other markets, we rely on the generalized impulse-response analysis as

per Pesaran and Shin (1998).13 Impulse-response functions trace the e↵ect that one unit

shock in one of the foreign markets provokes to the domestic market being analyzed (that

is, S-VAR(n)/VAR(n) dependent variable). They also provide information about the sign

and significance of the response, as well as the persistence of the e↵ect in time through

the dynamics of the S-VAR(n)/VAR(n) model. As per Pesaran and Shin (1998), the

generalized impulse-response functions are defined as,

IRF
i

(n) = �
�1/2

jj

B
n

⌃e
j

(2.8)

being �
jj

the variance of market j, B
n

the coe�cient matrices where n = 0, 1, 2, ...; ⌃ the

covariances of the innovations term and e
j

is the vector of shocks taking value 1 for the

13The generalized impulse-response analysis is preferred to orthogonalized impulse-response analysis
since its results do not depend on the ordering of the variables, being not the case for the orthogonalized.
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variable being shocked and 0 elsewhere.

Additionally, the variance decomposition analysis is used in order to obtain infor-

mation about the proportion of the variance of a market (i) caused by their own shocks

as well as the proportion due to other market’s shocks (j). The variance decomposition

analysis is defined as,

V D
ij

(n) =
��1

jj

P
n

l=0

(e0
i

B
l

⌃e
j

)2
P

n

l=0

e0
i

B
l

⌃B0
l

e
i

(2.9)

2.2 The Data

The period covered in this analysis is from May 2004 to September 2015. We analyze

the S&P 500, the EuroStoxx 50 and the Nikkei 225 indexes as representatives of the US,

Eurozone and Japanese markets, respectively. We include a volatility index as exogenous

variable represented by the CBOE VIX volatility index, which is constructed on S&P

500 index options. Since it was launched it has been considered the most representative

measure for investor sentiment and global market volatility.

To obtain option-implied RNDs for the S&P 500, the EuroStoxx 50 and the Nikkei

225, we use the volatility surface files from IVY OptionMetrics database. These files

contain daily information of the implied volatilities for di↵erent maturities and deltas

(strikes) for calls and puts separately. We use implied volatility surfaces obtained from

puts since they are more traded than calls, and the put deltas (domain) are passed to the

corresponding call deltas. In this work we focus on the three shortest maturities available

in the database: 30, 60 and 91 days. The risk-free rate proxy is considered to be the

zero-coupon yield provided by OptionMetrics.14

14Bliss and Panigirtzoglou (2004) document that the risk-free rate used has little impact on the overall
results. They state that for a one-month period, a 100 basis points variation in the risk-free rate is
translated in a two basis points change in the measured implied volatility. This variation goes up to 5
basis points change for a six-month period.
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As mentioned in section 2.1.1, in order to extract the RNDs we need a continuum of

options-implied volatility (iv) - delta (�) pairs. The volatility surface files already provide

us with these iv�� pairs, in which the � domain goes from 0.2 to 0.8 spaced in intervals

of 0.05 (13 points) with their corresponding implied volatilities. By restricting the range of

�s we are missing some probability in the tails, which are of special interest in this work.

As mentioned before, in order to overcome this issue, we add two pseudo-points at both

ends of our delta range spaced also 0.05, which is done following Bliss and Panigirtzoglou

(2004). Afterwards, we assign to each pseudo-point the implied volatility of the closest

observed delta. This way, we increase the number of �/iv points from 13 to 17 and so

we are forcing the estimated spline to be flat at the extremes. Once this is done, we

interpolate within the range by using a cubic smoothing spline.

In this analysis we use daily data which forms a sample containing 2,678 observations.

However, we also use weekly data as an alternative way to deal with the non-synchronicity

problem of the daily data. Weekly data is based on the calculation of weekly averages of

the daily quantiles and volatility index observations. This leaves us with a sample formed

by 596 weeks to perform the analysis. One of the drawbacks about using weekly data

is the loss of the sample length; however, in our case we still have a fairly large sample.

Anyways, the use of weekly data in this analysis is used to check for robustness only.

2.3 Results

Figure 2.1 exhibits the time series of the daily (top plot) and weekly (bottom plot)

15%-quantiles for a time horizon of 60 days for all markets considered.15 In general, for

both the daily and the weekly series plots, we can observe a common behavior in the

three markets, although Nikkei 225 (JP) quantiles reveals more pronounced idiosyncratic

15Plots for di↵erent quantiles and maturities are not shown because they present a very similar pattern.
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spikes. In order to ensure all series are stationary, we apply the augmented Dickey-Fuller

test as per Dickey and Fuller (1979). The test concludes stationarity for all series on first

di↵erences.

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0
Quantiles in daily series

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

-0.6

-0.4

-0.2

0
Quantiles in weekly series

JP EU US

Figure 2.1: Risk-neutral option-implied 15%-quantile changes for 60 days horizon. The

figure shows the time series of the daily (top plot) and weekly (bottom plot) 15%-quantiles with 60 days

maturity for all the markets considered: Nikkei 225 (JP), EuroStoxx 50 (EU) and S&P 500 (US). The

weekly quantiles have been calculated as the weekly average of daily observations.

Table 2.2 collects the average correlation between the series of quantile changes of the

di↵erent underlyings together with the VIX index. In brackets we show the minimum and
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US EU JP VIX

US 1

EU 0.930 1
(0.879 ; 0.959)

JP 0.849 0.794 1
(0.807 ; 0.876) (0.724 ; 0.845)

VIX -0.972 -0.910 -0.862 1
(-0.994 ; -0.942) (-0.937 ; -0.850) (-0.894 ; -0.815)

Table 2.2: Average Correlation of Quantile Di↵erences. The table shows the average corre-

lation of quantile changes between di↵erent markets: S&P 500 (US), EuroStoxx 50 (EU) and Nikkei 225

(JP), as well as the VIX index. In parentheses we show the minimum and maximum correlation. The aver-

age, minimum and maximum values have been calculated considering di↵erent maturities (⌧ = 30, 60, 91

days) and di↵erent quantiles in the left tail (5%, 10%, 15%, 20% and 25% quantiles).

maximum correlation.16 In general, we observe that the contemporaneous correlation be-

tween S&P 500 and EuroStoxx 50 quantile di↵erences is higher than correlations involving

Nikkei 225 quantiles. Nonetheless, the average correlations are fairly high (averages above

0.7). The correlations between the di↵erent series and the VIX changes are the highest

and negative for all cases, as expected. Among them, the correlation between the VIX

and Nikkei 225 quantiles are the weakest.

To choose the optimal number of lags to include in each S-VAR(n) (VAR(n)) model,

we rely on HQIC. Optimal lag lengths di↵er across the di↵erent quantiles and maturities

considered, as well as for the type of data used (daily or weekly series). Table 2.3 summa-

rizes the optimal number of lags used for each of the quantiles analysis individually using

both daily as well as weekly data. We can see that for the case in which daily series are

used, the optimal number of lags is 4 for all the model specifications under consideration.

16For each pair, the average, minimum and maximum correlations have been calculated using the di↵erent
maturities and ↵%- quantiles considered in this work.
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quantile

daily series 5% 10% 15% 20% 25%

30 days 4 4 4 4 4

60 days 4 4 4 4 4

90 days 4 4 4 4 4

weekly series

30 days 5 5 5 6 7

60 days 5 5 5 5 6

90 days 5 5 5 5 6

Table 2.3: Optimal lags as per HQIC. The table shows the optimal number of lags to include in

the VAR(n) systems as per the Hannan and Quinn Information Criterion (HQIC) for each of the quantiles

analyzed (5%, 10%, 15%, 20% and 25%).

Granger causality is checked and results are presented on table 2.4. In general, we

observe that the S&P 500 option-implied risk-neutral quantile changes Granger cause

changes in the same quantile of the Nikkei 225, but it only Granger cause the EuroStoxx

50 risk-neutral loss quantile changes for the most central quantiles. We also see that

both the EuroStoxx 50 and the Nikkei 225 loss quantiles Granger cause the S&P 500

ones. Nevertheless, as mentioned before, this test is not the best option to check on the

transmission of the e↵ects, nor the strength or the sign.

Information about the propagation of the e↵ects caused by an unit shock in one

market to the other markets is provided by the impulse-response analyses. These analyses

also provide us with information about the persistence of this e↵ect in time, until it dies

away. The analysis has been performed for all di↵erent quantiles (5%, 10%, 15%, 20%

and 25%) and maturities (30, 60 and 91 days), using both daily and weekly observations.

Results are very similar for all of them yielding to the same conclusions.

Figure 2.2 shows the impulse-response results for the 15% risk-neutral quantile changes

with 60 days to maturity calculated using daily data (S-VAR(n)), as a representative ex-

ample. In general, results suggest that changes in the S&P 500 quantiles impact the other
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5% 10% 15% 20% 25%

⌧ = 30 days quantile quantile quantile quantile quantile

JP causes EU Y Y Y X X

JP causes US Y Y Y Y Y

EU causes JP Y Y Y Y Y

EU causes US Y Y Y Y Y

US causes EU Y X Y Y Y

US causes JP Y Y Y Y Y

⌧ = 60 days

JP causes EU Y X X X Y

JP causes US Y Y Y Y Y

EU causes JP Y X X Y Y

EU causes US Y Y Y Y Y

US causes EU X X X Y Y

US causes JP Y Y Y Y Y

⌧ = 90 days

JP causes EU X X Y Y Y

JP causes US Y Y Y Y Y

EU causes JP X X Y Y Y

EU causes US Y Y Y Y Y

US causes EU Y X Y Y Y

US causes JP Y Y Y Y Y

Table 2.4: Granger causality test results. The table shows the Granger causality relations between

the di↵erent markets for all the quantiles analyzed with maturities 30, 60 and 91 days. Relationships

between markets are established in the first column. For each quantile, cells with Y show Granger causality

from one market to the other; however, those pairs of markets with an X, Granger causality has been

rejected at 5% level. JP represents the Japanese market (Nikkei 225), EU the European (EuroStoxx 50)

and US the US market (S&P 500).
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markets. One unit shock in the S&P 500 quantiles is transmitted to both Nikkei 225 and

EuroStoxx 50 quantiles, being these e↵ects very similar in trend, in both Japanese and

European markets but stronger in magnitude for the former. Impulse-response analyses

show that the transmission between Nikkei 225 and EuroStoxx 50 quantiles as well as

impulses from these two markets to the S&P 500 quantiles are very small and not signifi-

cant. Results hold for the analysis performed using weekly data (VAR(n)) as we can see

in figure 2.3, which shows the corresponding impulse-response function representation for

the 15%-quantile changes with 60 days horizon. Since only shocks in the S&P 500 quan-

tiles are significantly transmitted to the other foreign markets considered, only results of

the e↵ects caused by shocks in the S&P 500 quantile changes will be reported from here

onwards.

Figure 2.4 (for daily data) and 2.5 (for weekly data), show a comparison between the

impact of a shock in the S&P 500 risk-neutral implied quantiles to the Nikkei 225 (top

plot) and the EuroStoxx 50 (bottom plot) indexes for the di↵erent quantiles for a 60 days

horizon. Graphs show no significant di↵erences of a unit shock across quantiles, therefore

we can conclude that the level of the quantile being checked has no e↵ect on the magnitude

of the impact that a shock in the US quantiles has on the Japanese and the European

quantiles.

On the other hand, the e↵ects of option maturity in the impulse-response functions

can be appreciated in figures 2.6 and 2.7. These figures show how the 15%-quantiles of

the Japanese (top plots) and European (bottom plots) quantiles respond to a shock in

the US quantiles for di↵erent maturities using daily and weekly data, respectively. These

figures show a bigger impact in the change of quantiles for the longest horizons (60 and

91 days), being the impact softer for the shortest maturity (30 days). Therefore, there

are di↵erences in the magnitude of the impact across di↵erent maturities for both the

Japanese and the European quantiles.
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Figure 2.2: Impulse-response function for the 15%-quantile changes at 60 days time

horizon (daily frequency). The figure shows the impulse-response functions for each pair of markets.

First column shows the response of the European market to an unit shock in the European market (top

plot), the Japanese market (central plot) and the US market (bottom plot). Second column contains the

response of the Japanese market to an unit shock in the European market (top plot), the Japanese market

(central plot) and the US market (bottom plot). And finally, the third column shows the response of the

US market to an unit shock in the European market (top plot), the Japanese market (central plot) and

the US market (bottom plot). Impulse-responses are shown in a solid blue line and confidence intervals

are plotted in a dashed light blue line. The analysis is based on daily data.

Regarding the variance decomposition analyses, figure 2.8 shows the portion of the

variance of each quantile change that is due to its own shocks and due to shocks in other

markets’ risk-neutral quantiles. As we can see, for all the markets, almost the whole

variance is explained by its own shocks. Results in this figure are based on the analysis

performed using daily data. This finding reveals an autoregressive behavior of the changes

in the left-tail quantile shocks. In the case for which we use weekly data, figure 2.9 shows

the same results except for the S&P 500 quantiles, whose variance is now about 60� 70%

due to its own shocks, being the rest of the variance equally caused by changes in the
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Figure 2.3: Impulse-response function for the 15%-quantile changes at 60 days time

horizon (weekly frequency). The figure shows the impulse-response functions for each pair of

markets. First column shows the response of the European market to an unit shock in the European

market (top plot), the Japanese market (central plot) and the US market (bottom plot). Second column

contains the response of the Japanese market to an unit shock in the European market (top plot), the

Japanese market (central plot) and the US market (bottom plot). And finally, the third column shows

the response of the US market to an unit shock in the European market (top plot), the Japanese market

(central plot) and the US market (bottom plot). Impulse-responses are shown in a solid blue line and

confidence intervals are plotted in a dashed light blue line. The analysis is based on weekly data.

quantiles in the other two foreign markets, the EuroStoxx 50 and the Nikkei 225 indexes.

2.4 Conclusions

Realized and option-implied volatility transmission across international financial mar-

kets is a proved stylized fact. In this chapter we analyze the transmission of the option-

implied loss quantile changes in three developed markets: US, Eurozone and Japan, rep-

resented by the S&P 500, EuroStoxx 50 and the Nikkei 225 indexes, respectively.
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Figure 2.4: Risk-neutral option-implied daily quantile changes for 60 days horizon. The

top plot shows the impact of a shock in the S&P 500 quantiles to the di↵erent daily Nikkei 225 quantiles

(5%, 10%, 15%, 20% and 25%) for a 60 days maturity. The bottom plot shows how shocks in the S&P 500

quantiles a↵ect the di↵erent EuroStoxx 50 daily quantiles (5%, 10%, 15%, 20% and 25%) for a 60 days

maturity.

Di↵erent levels of quantiles (5%, 10%, 15%, 20% and 25%) have been obtained from

daily option-implied risk-neutral densities, which have been calculated using the Breeden-

Litzenberg non-parametric approach. The observed range of data has been extrapolated

at the extremes, as per Bliss and Panigirtzoglou (2004), in order to capture more area at

the tails. Calculation of the RNDs allows us to analyze di↵erent ↵%-quantiles as well as

di↵erent time horizons.

However, due to the di↵erent time zone of our target markets, we face the problem

of non-synchronous data. We use two di↵erent approaches to tackle this. In the first

approach, the dynamics of the di↵erent markets are modeled using a S-VAR(n) process

using series of daily risk-neutral quantile changes. The S-VAR(n) model is convenient since
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Figure 2.5: Risk-neutral option-implied weekly quantile changes for 60 days horizon.

The top plot shows the impact of a shock in the S&P 500 quantiles to the di↵erent weekly Nikkei 225

quantiles (5%, 10%, 15%, 20% and 25%) for a 60 days maturity. The bottom plot shows how shocks in the

S&P 500 quantiles a↵ect the di↵erent EuroStoxx 50 weekly quantiles (5%, 10%, 15%, 20% and 25%) for a

60 days maturity. Weekly quantiles are calculated by averaging daily quantile observations for each week.

it allows for both contemporaneous and lagged e↵ects between the markets. The second

approach uses a VAR(n) process to design the dynamics of the markets. This approach

is based on weekly averages of the daily risk-neutral quantile changes calculated for each

week in the sample and it only contemplates lagged e↵ects between markets.

In order to study the transmission e↵ects across markets, their magnitude and persis-

tence in time, we perform the generalized impulse-response analysis as well as the variance

decomposition analysis.

By using information from options on the S&P 500, EuroStoxx 50 and Nikkei 225

indexes and controlling the e↵ects of shocks in the VIX index, we find that shocks in the

left-tail quantiles of the US index have a response in the left-tail quantiles of the Euro-
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Figure 2.6: Risk-neutral option-implied daily 15%-quantile changes for di↵erent time

horizons. The top plot shows the impact of a shock in the S&P 500 quantiles to the Nikkei 225 daily

15%-quantile for the di↵erent maturities considered (30, 60 and 91 days). The bottom plot shows how

shocks in the S&P 500 a↵ect the EuroStoxx 50 daily 15%-quantile for the di↵erent maturities considered

(30, 60 and 91 days).

zone and Japan indexes. These e↵ects hold for di↵erent ↵%-quantiles and di↵erent time

horizons. Therefore, we can conclude that the S&P 500 quantile changes are transmitted

to the EuroStoxx 50 and the Nikkei 225 quantile changes. However, transmissions from

both EuroStoxx 50 and Nikkei 225 quantiles to the other markets are non-significant.

We can also appreciate that the responses that a unit shock in the S&P 500 index

has to the other foreign indexes are slightly di↵erent across maturities, the larger the time

horizon, the stronger the impact caused. On the other hand, e↵ects are very similar across

di↵erent ↵%-levels of the quantiles, responding all of them in a similar fashion.

Variance decomposition analyses show that for all series the biggest portion of quantile

82



2.4. Conclusions 83

0 1 2 3 4 5 6 7 8 9 10

-0.2

0

0.2

0.4

0.6

0.8
US impact on Japan

0 1 2 3 4 5 6 7 8 9 10

-0.2

0

0.2

0.4

0.6

0.8
US impact on Europe

30 days 60 days 91 days

Figure 2.7: Risk-neutral option-implied weekly 15%-quantile changes for di↵erent time

horizons. The top plot shows the impact of a shock in the S&P 500 quantiles to the Nikkei 225 weekly

15%-quantile for the di↵erent maturities considered (30, 60 and 91 days). The bottom plot shows how

shocks in the S&P 500 a↵ect the EuroStoxx 50 weekly 15%-quantile for the di↵erent maturities considered

(30, 60 and 91 days). Weekly quantiles are calculated by averaging daily quantile observations for each

week.

variance is due to its own quantile shocks (lagged). This finding suggests an autoregressive

pattern in the loss quantiles.

The transmission analysis has been performed using both daily and weekly data,

using a S-VAR(n) process and a VAR(n) process, respectively, to model the dynamics

of the di↵erent markets. Qualitative results hold for the di↵erent methodologies used,

di↵erent ↵%-quantiles and di↵erent time horizons targeted, confirming the robustness of

the results.
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Figure 2.8: Variance decomposition for the 15%-quantile changes at 60 days horizon

(daily frequency). The figure shows the variance decomposition analysis for each pair of markets.

First column shows the response of the European market to an unit shock in the European market (top

plot), the Japanese market (central plot) and the US market (bottom plot). Second column contains the

response of the Japanese market to an unit shock in the European market (top plot), the Japanese market

(central plot) and the US market (bottom plot). And finally, the third column shows the response of the

US market to an unit shock in the European market (top plot), the Japanese market (central plot) and

the US market (bottom plot). Results for the variance decomposition analysis are shown in a solid blue

line and confidence intervals are plotted in a dashed light blue line. The analysis is based on daily data.
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Figure 2.9: Variance decomposition for the 15%-quantile changes at 60 days horizon

(weekly frequency). The figure shows the variance decomposition analysis for each pair of markets.

First column shows the response of the European market to an unit shock in the European market (top

plot), the Japanese market (central plot) and the US market (bottom plot). Second column contains the

response of the Japanese market to an unit shock in the European market (top plot), the Japanese market

(central plot) and the US market (bottom plot). And finally, the third column shows the response of the

US market to an unit shock in the European market (top plot), the Japanese market (central plot) and

the US market (bottom plot). Results for the variance decomposition analysis are shown in a solid blue

line and confidence intervals are plotted in a dashed light blue line. The analysis is based on weekly data.
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Chapter 3

Why so di↵erent? The behavior of

risk aversion in developed

economies

According to the economic theory, the integration of developed markets should permit

a perfect risk sharing across economies. For instance, mutual funds located in developed

Europe are indexed in US stocks, and viceversa. These continuous flows of funds across

borders result in an equilibrium between supply and demand, where consumption risk is

e�ciently shared across countries. Within this context, what is the nature of risk aversion

among well-integrated economies? Is this risk aversion driven by global or local forces?

Does its time series exhibit a similar pattern over time across economies? If not, what are

the sources of heterogeneity in its behavior? Characterizing the behavior of risk aversion

is of paramount importance for macroeconomic policy and asset pricing issues.

This chapter analyzes the evolution of risk aversion within main developed economic

areas. We delve into the systematic patterns, both in the time-series and cross-section,
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88 Why so different? The behavior of risk aversion in developed economies

that describe its behavior. To infer the evolution over time of the risk aversion, this work

exploits the informational content embedded in option and stock prices from a compre-

hensive database of most liquid market indexes. The main contribution of this study is

twofold: first, an important source of commonality in risk aversion series is observed. A

principal components analysis (PCA, hereafter) reveals that 55% of variability is explained

by one component. The time series of risk aversion change over time, exhibiting negative

values occasionally. For a moneyness of 1.00, its magnitude ranges from 0 to 30. Con-

sistent with the economic theory, the higher (lower) the degree of moneyness, the lower

(higher) the level of risk aversion.

Interested in explaining the sources of commonality in risk aversion, we project the

estimated coe�cients onto a set of macroeconomic global and country-specific variables.

A second contribution of this study is that country-specific variables have a leading role

on explaining contemporaneous values of risk aversion. A dynamic analysis using a vector

autoregressive (VAR) model shows a statistically significant lead-lag relationship from the

US to Europe. However, alternative linkages among the markets under study are not

found.

Since risk aversion represents a fundamental tool in this study, its estimation con-

stitutes a central issue to us. The methodology for estimating the risk aversion series is

directly implied from the relationship between risk-neutral (RND) and actual or subjective

(SPD) densities. Instead of imposing parametric utility functions, we closely follow the

non-parametric approach of Aı̈t-Sahalia and Lo (2000) and Jackwerth (2000).17 Within the

context of this methodology, RNDs are implied from option prices using a non-parametric

approach, and SPDs are estimated by forecasting the future volatility using an ARMA-

17This novel course gave rise to two di↵erent ways to calculate risk aversion. On the one hand, some
authors are devoted to parametrize the risk aversion with one of the standard utility functions supported
by the literature; see Bartunek and Chowdhury (1997) and Bliss and Panigirtzoglou (2004), among others.
However, this approach requires specification of a parametric form of such preferences. Alternatively, the
approach adopted in this work requires prior estimation of the RNDs and SPDs.
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GJR process followed by the fitting of Kernel densities.18 RNDs and SPDs are inferred

from a comprehensive database of international indexes and their associated options from

May 2004 to September 2015, covering more than 10 years of data and the recent financial

crisis.

This study attempts to enrich the general understanding of risk aversion when inferred

from asset prices. Lucas (1978) already states that in a consumption-based asset pricing

model, the pricing kernel can be well approximated by the marginal rate of substitution

(MRS). Using option prices, Jackwerth (2000) documents a negative risk aversion around

the center of the distribution. This author also documents a pricing kernel puzzle, showing

that the risk aversion is positive and monotonically decreasing across wealth for the period

prior to the crisis in 1987, a result consistent with the economic theory. However, after

the crisis, risk aversion locally increases near to those starting levels of wealth. These

findings are still under debate: Rosenberg and Engle (2002) and Perignon and Villa (2002)

find evidences agreeing Jackwerth (2000), but Aı̈t-Sahalia and Lo (2000) and Bliss and

Panigirtzoglou (2002) seem not to support those results. In recent dates, Bedoui and

Hamdi (2015) study the e↵ect of the time to maturity to the risk aversion. To the best of

our knowledge, this is the first analysis exploring the commonalities in risk aversion series

between developed markets.

In parallel to this literature, this study also belongs to the research interested in the

estimation and forecasting of densities from market prices. Because real world investors are

not indi↵erent towards risk –SPDs incorporate investors’ preferences, contrary to RNDs,

in which investors are risk neutral– the financial literature addresses di↵erent approaches

for the estimation of price densities.19 Regarding the risk-neutral world, the extraction of

18The subjective densities are unobservable, and their estimation is not an easy task. Financial literature
suggests the usage of historical time series of the financial indexes to approximate actual estimates. For
instance, Aı̈t-Sahalia and Lo (2000) estimate both RNDs and SPDs using Kernel densities for the S&P 500
index; and Jackwerth (2000) approximates the RNDs using a slightly modified Jackwerth and Rubinstein
(1996) approach, using Kernel densities to approximate the SPDs.

19Risk-neutral and real worlds are di↵erent because investors value di↵erently an extra unit of payo↵

89



90 Why so different? The behavior of risk aversion in developed economies

RND distributions from option prices has been widely studied by the literature due to its

convenient forward-looking features since the seminal paper of Breeden and Litzenberger

(1978). Perignon and Villa (2002) use Kernel densities to approximate RNDs on the

CAC40 index. Coutant (2000) also studies the CAC40 index using Hermite polynomials.

Rosenberg and Engle (2002) use the volatility smile to calculate the RNDs. With respect

to SPDs, an extensive literature stresses the usage of historical data to construct SPD

forecasts; see, for instance, Perignon and Villa (2002), Coutant (2000) and Rosenberg and

Engle (2002), among many others.

This chapter is organized as follows: section 3.1 introduces the methodology to infer

RNDs and SPDs. Section 3.2 presents the data, and infers the risk aversion series. A

dynamic analysis of risk aversion is presented in section 4. Finally, section 5 concludes.

3.1 Estimation of densities from market prices

This section introduces the foundations for extracting RNDs and SPDs. The method-

ology for inferring the implied risk aversion is also presented.

3.1.1 Risk-Neutral Distributions

RNDs are daily estimated using the non-parametric approach in Breeden and Litzen-

berger (1978). This technique permits to infer the whole state price density, f(S
T

), from

option prices by calculating the second partial derivative of the option pricing function,

f (S
T

) = er(⌧)
@2C (S

t

, X, T, t)

@X2

|
X=ST (3.1)

depending on the state (wealth level); they are, in fact, not indi↵erent to risk. In case that investors were
risk neutral, both RND and SPD distributions would match. The pricing kernel captures the risk aversion
adjustment to obtain the SPDs.
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3.1. Estimation of densities from market prices 91

where r is the risk-free rate, C(·) the European call price function, S
t

the current value of

the underlying asset, X the strike price of the option, T the expiration date of the option,

t the current date, and ⌧ = T � t the time to expiration of the option.

Expression (3.1) requires a continuum of strike prices encompassing all possible future

payo↵s. Since options trade at discrete prices, some data interpolation is needed. This

technique is implemented following the lines of Malz (1997), who proposes to interpolate

on an implied volatility (iv)-delta (�) space, instead of on a price-strike price space, as it

was common in previous literature. This is a more convenient approach, since it gathers

away-from-the-money options closely together. Besides, � is bounded between 0 and 1,

introducing some advantages over the strike price-space, which is theoretically unbounded.

Once the interpolation is done, we use the Black and Scholes (1973) formula to transform

implied volatilities and �s back into prices and strike prices, in order to apply the Breeden

and Litzenberger (1978) technique.20

An additional challenge in the estimation of RNDs is the limited range of strike prices

at which options trade. This circumstance impedes the estimation of the RND mainly

in the tails, since extreme observations are scarce. In order to overcome this issue, Bliss

and Panigirtzoglou (2004) suggest to add two pseudo-points at both ends of the observed

range of �s, assigning to them the volatility of its closest observed �. Once these points

are included, we interpolate within the range by calculating a cubic smoothing spline of

the form,

S
�

=
nX

i=1

m
i

(Y
i

� g(�
i

, ✓))2 + �

Z
+1

�1
p00(x; ✓)2dx , (3.2)

where m
i

is a weighting value of the squared error, Y
i

is the implied volatility (iv) of

the ith option observation, and g(·) is the fitted iv, a function of delta (�
i

) and ✓ spline

20Black and Scholes (1973) formula (BSM) is used to transform prices into implied volatilities and strike
prices into deltas, reverting them back to prices and strike prices after the interpolation is done. Note that
BSM formula is used as a mere tool; we are not stating that such formula correctly prices the options.
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92 Why so different? The behavior of risk aversion in developed economies

parameters. Finally, � is the smoothing parameter, and p(·) is the smoothing spline.21

3.1.2 Subjective Densities

The estimation of SPDs di↵ers from their risk-neutral counterparts. RNDs are based

on implied volatilities from option prices, so they are forward-looking measures for a ⌧ -

period ahead by themselves. Instead, SPDs are based on realized index returns and,

consequently, the usage of econometric tools is required to forecast the future outcomes of

the underlying index ⌧ -periods ahead.

In order to construct our index forecasts, a model that accounts for leptokurtosis,

volatility clustering and leverage e↵ects is required. To capture these stylized facts pre-

sented in the sample, we propose an ARMA-GJR model, which has also been used by

Rosenberg and Engle (2002). ARMA processes are a combination of an autoregressive

(AR) and a moving average (MA) process which allow current values of the return series

to depend on their own lags and some error term,

y
t

= µ+ �
1

y
t�1

+ �
2

y
t�2

+ . . .+ �
p

y
t�p

+ ✓
1

u
t�1

+ ✓
2

u
t�2

+ . . .+ ✓
q

u
t�q

+ u
t

, (3.3)

where y
t

are the returns of the index at time t, and u
t

is a disturbance assumed to obey

standard assumptions. Parameters p and q are the number of lags for the AR(p) and

MA(q) processes, respectively.

The conditional variance is modeled using Glosten et al. (1993), who propose an

asymmetric GARCH (GJR) model which includes a term to account for asymmetries,

besides the volatility clustering presented in the sample. This version has been widely

used within the literature in volatility modeling and forecasting; see, for instance, Brooks

21Bliss and Panigirtzoglou (2004) propose a value of 0.99 for parameter �; however, in this analysis we
assign to this parameter the value 0.90 in order to get a smoother fit.
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(2008) for a more detailed analysis of the di↵erent models.22 The expression of the GJR

model is,

�2
t

= ↵
0

+ ↵
1

u2
t�1

+ ��2
t�1

+ �u2
t�1

1{yt�1<0} (3.4)

where, ↵
1

captures the impact of recent shocks on contemporaneous variance, � reflects

the variance persistence and � > 0 accounts for the leverage e↵ect. 1{...} is an indicator

function that equals to 1 if the expression in brackets is true, and 0 otherwise.

Relying on the Bayesian Information Criteria, we set the lags of the mean equation

to p = q = 1. Thus, the proposed model for the SPD becomes an ARMA(1,1)-GJR, as

follows,

y
t

= µ+ �y
t�1

+ ✓u
t�1

+ u
t

(3.5)

u
t

⇠ N(0,�2
t

) (3.6)

�2
t

= ↵
0

+ ↵
1

u2
t�1

+ ��2
t�1

+ �u2
t�1

I{yt�1<0} (3.7)

Regarding the model estimation, some articles analyze the leverage e↵ect puzzle, which

consists on some estimations yielding an inverse leverage e↵ect (negative � estimates in our

case).23 This anomaly can be explained, in part, by the existence of extreme observations

in the sample, that bias the coe�cient estimation. In order to prevent this issue, we carry

out a robust estimation of the ARMA-GJR model assuming Student-t innovations.24

Some details about the model estimation follow. The ARMA-GJR model is fitted

22The Generalized Autoregressive Conditionally Heteroscedastic (GARCH) models have been widely
used for volatility modeling and forecasting purposes, as a more accurate alternative to simply calculating
the variance of historical observations; see, for instance, Bollerslev (1986a) and Taylor (1986). These
models allow to fit conditional variances dependent upon their own past information. A common critique
shared by standard GARCH models is that they do not capture leverage e↵ects –empirical volatility does
not respond similarly to both positive and negative shocks–. This work employs Glosten et al. (1993), an
extension of the standard GARCH models which overcome this issue.

23The main reference about the leverage e↵ect puzzle is Aı̈t-Sahalia et al. (2013).
24The assumption of Student-t innovations is done in order to get a robust estimation, and not because

we believe that the true distribution of innovations is a Student-t. More details about this technique can
be found in Carnero et al. (2007) and Carnero et al. (2012).
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94 Why so different? The behavior of risk aversion in developed economies

using three years of index return data. We then employ the estimated model to construct

forecasts with di↵erent ⌧ horizons, being ⌧ = 30, 60 and 91 days. Similarly to Aı̈t-

Sahalia and Lo (2000) and Jackwerth (2000), forecasts are built using 1,000 Monte Carlo

simulations, which are then used to fit the density of the data by means of a non-parametric

Kernel estimator,

f̂
h

(x) =
1

n

nX

i=1

K
h

(x� x
i

) =
1

nh
K

✓
x� x

i

h

◆
, (3.8)

with K a kernel smoothing function, and h the bandwidth parameter. In line with the

literature, we choose a Gaussian kernel for K, and bandwidth parameter h is calculated

according to Silverman’s rule-of-thumb. A detailed review of the di↵erent methods to

calculate K and h can be found in Silverman (1986) and Härdle (1990).

3.1.3 Implied Risk Aversion

Risk aversion is implied from the RNDs and the SPDs following the approach in Aı̈t-

Sahalia and Lo (2000) and Jackwerth (2000). Under the assumption of complete markets

and in equilibrium, there exists a representative investor with a utility function U such

that (Constantinides, 1982),

S
t

= E
t

[ (C
T

)M
t,T

], M
t,T

⌘ U 0(C
T

)

U 0(C
t

)
, (3.9)

with S
t

the security price at the current date t,  (C
T

) the payo↵ at terminal date T ,

and M
t,T

the stochastic discount factor, or pricing kernel, approximated by the MRS of

consumption.

In equilibrium, the investor optimally invests all her wealth W
T

at final date T in the

market portfolio. Thus, the security price, her wealth and consumption at T coincides
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(S
T

= W
T

= C
T

). The investor maximization problem is,

max

Z 1

0

f
P

(S
T

)U(S
T

)dS
T

, (3.10)

with f
P

(S
T

) the SPD, the initial endowment is normalized to one,

1

r

Z 1

0

f
Q

(S
T

)S
T

dS
T

= 1 (3.11)

and f
Q

(S
T

) is the RND.

All things considered, the Lagrange function becomes,
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with � the shadow price, f
Q

(S
T

) the RND, f
P

(S
T

) the SPD and r the risk-free rate. It

derives,
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)
(3.13)
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and the absolute risk aversion function is,

A(S
T

) = �U 00(S
T

)

U 0(S
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=

f 0
P

(S
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f
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)
(3.15)

As long as RNDs (f
Q

(S
T

)) and SPDs (f
P

(S
T

)) are good approximations of the risk-

neutral and subjective density functions, respectively, accurate estimates of the risk aver-

sion can be implied from expression (3.15) without imposing any parametric utility func-

tion.
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3.2 Empirical results

3.2.1 The Data

A comprehensive dataset for estimating RNDs and SPDs is at our disposal. In this

study, we focus on three main economic areas: US, proxied by the S&P 500 index; the

Eurozone, proxied by the EuroStoxx 50 index; and Japan, where the Nikkei 225 index

is used. The analysis covers the period ranging from May 2004 to September 2015, and

captures the subprime mortgage crisis 2007-2010, and the European sovereign crisis 2010-

2012. Data frequency is daily.

RNDs are daily inferred from option prices, and are downloaded from the IvyDB

Global Indexes of OptionMetrics. This database provides information of historical prices

and implied volatilities for listed index options markets worldwide. Data about pairs of

implied volatilities and deltas is obtained from the volatility surfaces files also provided in

our dataset. We use the information of put options because they are more traded than

calls. This information is passed to their corresponding iv-�s call counterparts to be

employed in the calculations. The volatility surfaces are given for a range of �s from 0.2

to 0.8, constituting a range with 13 equidistant observations in increments of 0.05. As

previously mentioned, the area in the tails is computed by adding two � pseudo-points

beyond each end, assigning to each of the new �s the implied volatility of the closest

observed �. Once obtained, a cubic smoothing spline is used to interpolate within the

extended range (17 points). The risk-free rate proxy is considered to be the zero-coupon

yield provided by OptionMetrics. Lastly, our analysis is based on options with 30, 60

and 91 days to expiration, which form the time horizon of the densities. Concerning the

estimation of the SPDs, daily closing prices for the S&P 500, EuroStoxx 50 and Nikkei 225

indexes are employed. This information is extracted from Datastream Thomson Reuters.
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3.2.2 Estimated RND and Subjective Densities

From previous data, daily RNDs and SPDs have been calculated for a period of time

from May 2004 to September 2015. For the ease of explanation, the reported densities

correspond to the 91-days time horizon. The remainder outlooks provide quite similar

results, and they are available upon request.

Figure 3.1 compares the RNDs (blue line) and SPDs (red line) for the indexes un-

der study. First to third columns are densities for the S&P 500, the EuroStoxx 50 and

the Nikkei 225, respectively. As shown, this figure provides an accurate snapshot of the

situation of the financial markets at di↵erent periods: before the financial crisis (upper

graphs), which depict the densities in 20 March 2006; Lehman Brothers’ collapse (central

graphs), which represent densities of 15 September 2008; and the European sovereign crisis

(bottom graphs), showing densities for 28 September 2011. Lastly, x-axes represent the

moneyness.

Some interesting conclusions arise from inspection of figure 3.1. First, we observe that

during calmed periods (upper graphs) the RNDs and SPDs di↵er, having both of them

significantly di↵erent means. We observe that the SPD is shifted to the right with respect

to the RND for the 3 underlyings considered, which is consistent with the economic theory

and the existence of a risk premium in the markets. Moreover, as one would expect, the

volatility is higher during the crisis periods (central and bottom graphs) in which the

moneyness range spreads out significantly. Furthermore, by looking at the plots, it seems

that during the crisis the mode of the RNDs and SPDs are fairly similar; however, when

looking at the left tail of the densities, we can appreciate that this tail is thicker for the

RNDs. This result shows how in crisis periods agents overprice assets with positive payo↵s

on bad states (left tails).
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3.2.3 The time series of risk aversion

The RNDs and SPDs computed in previous section 3.1 permits to obtain daily series

of the risk aversion using equation (3.15). Within each month we average the daily risk

aversion estimates, therefore, we get a monthly series of risk aversion. We proceed this

way for two reasons: first, daily series of risk aversion have outliers, then averaging on a

monthly basis we mitigate this problem. Second, our interest is to analyze domestic and

foreign macro determinants of risk aversion; therefore we need risk aversion series with

the same frequency than the macro variables. The estimated time series are provided

in figure 3.2, which depicts the evolution of risk aversion for S&P 500 (dark blue line),

EuroStoxx50 (red line), and Nikkei 225 (light blue line) indexes. The graphs show the risk

aversion coe�cients for di↵erent degrees of moneyness: 0.97 (upper graph), 1.00 (middle

graph) and 1.03 (lower graph).

We can see that the level of risk aversion drops as the level of moneyness increases;

that is, market participants exhibit higher (lower) risk aversion for those expected levels of

wealth for which they are worse-o↵ (better-o↵). From these series we can also appreciate

that for some periods the risk aversion takes negative values (being these more frequent

for higher levels of moneyness). Additionally, the figure also depicts the existence of some

commonalities across series over time, which are explained by di↵erent components.

Another perspective about these results is provided in table 3.1. This table provides

the descriptive statistics sample mean, median and standard deviation for the monthly

risk aversion series for the three underlyings and three di↵erent degrees of moneyness.
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Jan05 Jan06 Jan07 Jan08 Jan09 Jan10 Jan11 Jan12 Jan13 Jan14 Jan15

-10

0

10

20

30

40

S&P 500 EuroStoxx 50 Nikkei 225

Moneyness - 1.00

Jan05 Jan06 Jan07 Jan08 Jan09 Jan10 Jan11 Jan12 Jan13 Jan14 Jan15

-10

0

10

20

30

40

S&P 500 EuroStoxx 50 Nikkei 225

Moneyness - 1.03

Jan05 Jan06 Jan07 Jan08 Jan09 Jan10 Jan11 Jan12 Jan13 Jan14 Jan15

-10

0

10

20

30

40

S&P 500 EuroStoxx 50 Nikkei 225

Figure 3.2: Time series of risk aversion for di↵erent markets and moneyness. The figure

shows the evolution over time of the time series of the risk aversion for the S&P 500 (depicted in a dark

blue line), the EuroStoxx 50 (red line) and the Nikkei 225 (light blue line). Top plot depicts risk aversion

series for a moneyness level of 0.97, central plot is for moneyness 1 and bottom plot represents moneyness

1.03. These plots depict monthly risk aversion series based on a 91-days time horizon.
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102 Why so different? The behavior of risk aversion in developed economies

At first glance, it is striking the negative values of the mean and median risk aversion

for various series. Specifically, these negative values are concentrated on at-the-money

and in-the-money EuroStoxx 50 risk aversion series. However, for out-of-the-money (OTM

hereafter) risk aversion series, all cases exhibit positive means and medians, ranging from

2.0082 to 19.6025, which are normal values. Moreover, for moneyness 0.97, we also observe

an inverse relationship between risk aversion and time horizon: the larger the time to

maturity, the lower the average risk aversion. This result means that agents are prone

to pay a higher (risk) premia in order to hedge the immediate (30 days) negative wealth

shocks with respect to the premia paid to hedge intermediate term (91 days) wealth shocks.

As previously mentioned, figure 3.2 suggests the existence of commonalities among

the estimated series. To provide further insights about this issue, we run a principal

component analysis (PCA) on the risk aversion series. Principal components and their

corresponding loading factors for di↵erent degrees of moneyness are provided in table 3.2.

In addition, the explained variance of each component is also shown. The main conclusion

of this table is the existence of a notable source of commonality among the risk aversion

series. Independently of the moneyness, a first principal component (PC) accounts for

more than 50% of the joint variability observed in the data. This magnitude increases a

30% when a second PC is considered.

An interesting aspect of table 3.2 is that loadings seem to be sensible to the degree

of moneyness. The more distant to moneyness 1.00 we are, the more even the PC loading

coe�cients are. See, for instance, the case of the first PC: its loading coe�cients for

moneyness 1.00 rely on EuroStoxx 50 and Nikkei 225 indexes, and no weight for S&P 500.

Surprisingly enough, a lower moneyness of 0.97 results in an (almost) equally-weighted

contribution of these three indexes to the first PC – a similar result is found for moneyness

1.03 –. A possible economic interpretation of these results is that risk aversion tends to

be higher in more extreme scenarios, leading to a common systematic pattern among the
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3.2. Empirical results 103

risk aversion series.

PC 1 PC 2 PC 3

Panel A.- Moneyness: 0.97

S&P 500 0.4362 0.8897 0.1346

EuroStoxx 50 0.6213 -0.4059 0.6730

Nikkei 225 0.6510 -0.2088 -0.7298

Expl. variance (%) 65.44 26.19 8.37

Panel B.- Moneyness: 1.00

S&P 500 0.0091 0.9985 0.0544

EuroStoxx 50 0.7069 -0.0449 0.7059

Nikkei 225 0.7073 0.0320 -0.7062

Expl. variance (%) 54.80 33.40 11.73

Panel C.- Moneyness: 1.03

S&P 500 0.2161 0.9613 0.1706

EuroStoxx 50 0.6773 -0.2735 0.6830

Nikkei 225 0.7032 -0.0321 -0.7102

Expl. variance (%) 55.85 32.89 11.26

Table 3.2: Principal Component Analysis. The table shows the loading factors resulting from

the principal component analysis. Panel A provides results for the risk aversion estimates for a moneyness

level of 0.97, panel B contains results for moneyness level of 1 and panel C for levels of moneyness 1.03.

The first three rows of each panel contain the loading factors for the S&P 500, the EuroStoxx 50 and

the Nikkei 225, respectively; and the last row contains the amount of variance explained by each of the

components. The di↵erent components are shown in columns PC1 (for the first component), PC2 (for the

second component) and PC3 (for the third component). Information is based on monthly averages of the

risk aversions series for a 91–days time horizon.

Intrigued by the possible sources of covariance of this first principal component, we

project the scores of the first PC onto a set of global variables that include the implied

volatility index VIX; the exchange rates US dollar to Euro (US/EUR) and Yen to US dollar

(Yen/US); and the slope of the US Treasury curve, an estimate of future growth; see Pan

and Singleton (2008) for a similar exercise with CDS risk premia. The OLS estimates and

their standard errors are provided in table 3.3. Notably, global variables like VIX and

the slope of the US Treasury curve are economically relevant and statistically significant
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104 Why so different? The behavior of risk aversion in developed economies

at standard confidence levels. The performance of the regression model is not bad, and

adjusted-R2 coe�cients are close to 18% when all variables are considered. According to

these results, it seems that a common component of risk aversion is driven by proxies of

global uncertainty like VIX or the US Treasury slope.

Principal Component 1

vix -0.0551⇤⇤⇤ -0.0571⇤⇤⇤

(-4.78) (-4.49)

us eur 4.753 1.988

(1.38) (0.58)

y us 0.0833 0.0184

(1.83) (0.39)

slope sp 0.996⇤ 1.309⇤⇤

(2.02) (2.87)

cons 1.084⇤⇤⇤ 0.0146 0.00703 0.0197 1.146⇤⇤⇤

(4.36) (0.13) (0.06) (0.18) (4.24)

N 137 136 136 136 136

adj. R-sq 0.139 0.007 0.017 0.022 0.179

t statistics in parentheses

⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001

Table 3.3: OLS regression on the first component (PC1). The table shows coe�cient estimates

from the regression of the first principal component against a set of macroeconomic variables. Column

1 shows the macroeconomic variables considered: implied volatility index (vix), the exchange rates US

dollar to Euro (us eur) and Yen to US dollar (y us) and the slope of the term structure for the US market

(slope sp). We find also the constant term (cons). The last two rows show the number of variables used

in the regression (N) and the Adjusted–R2 (adj. R-sq). Columns 2-5 contain the coe�cient estimates

obtained by regressing the first principal component against each of the variables individually and the last

column presents the coe�cient estimates from the regression against all the variables contained in column

1. Results are for monthly risk aversion estimates for a moneyness level of 1 and for a 91-days time horizon.
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3.3. The dynamics of risk aversion 105

3.3 The dynamics of risk aversion

Previous results exhibit a strong source of commonality between Eurozone and Japan

economic areas, and an orthogonal behavior for US. Interested in exploring the global

or local nature of risk aversion, we analyze the sources of covariance of our risk aversion

estimates with some global and local macroeconomics variables. To this end, we project

our monthly series of risk aversion onto a comprehensive pool of variables that capture

di↵erent characteristics of these economic regions. Additionally, the possible lead-lag

relationships between series are explored using a vector autoregressive (VAR) model.

3.3.1 Variable descriptions

We study to which extent risk aversion can be explained by systematic or idiosyncratic

macroeconomic variables, in a similar way that Longsta↵ et al. (2011) for credit spreads.

Since there is an unlimited amount of variables which could potentially be linked to the

time series behavior of risk aversion, we follow Rosenberg and Engle (2002) and Schwert

(1989) to build a set of variables that capture some major features of the economy.

The economic variables are structured in two groups: global and local. With regard

to global variables, we consider the CBOE VIX volatility index, or VIX. This index is

based on the S&P 500 index options, and it is considered as the reference of the global

market volatility and, more generally, an index of global uncertainty; see, for instance,

Whaley (2009). Data about VIX is downloaded from Datastream.

A second global variable is the Economic Political Uncertainty Index (EPUI ) of Baker

et al. (2016), a novel variable based on textual analysis that captures the political uncer-

tainty on media. This index is built on three di↵erent components: one is based on the

news about uncertainty collected from 10 largest newspapers, another component is the
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106 Why so different? The behavior of risk aversion in developed economies

federal tax code provisions and the last one is a measure of disagreement among economic

forecasters. This index is directly obtained from the web page of the authors.25 Further-

more, we include the Consumer Confidence Index (CCI ) in the analysis, which is based

on the households’ plans for major purchases as well as their economic situation. Data

about the Consumer Confidence Interval is provided by the OECD (2018).

The set of local variables seek to capture the idiosyncratic component of risk aversion.

Along these lines, we consider the inflation index (INFL), proxied by the Consumer Price

Index which is computed as a monthly average price changes of goods and services. Sim-

ilarly, unemployment (UNEMP) and the industrial production index (IPI ) are included

as potential local variables that could covariate with risk aversion. Information about

previous series for US and Japan have been retrieved from the Federal Reserve Bank of

St. Louis. Data concerning the Eurozone has been provided by the European Central

Bank (ECB).

The analysis is completed by including information about currency and interests

rates. For the exchange rates, we use the US Dollar to Euro (US/EUR), the Yen to

Euro (Y/EUR) and the Yen to US Dollar (Y/US ). For the interest rates, the 5-year con-

stant maturity government yield (IR) is employed as a proxy of the level of interest rates.

Additionally, the spread between 10- and 1-year government bonds yields (Slope) is our

proxy for the slope of the term structure. Data about interest rates has been provided by

Thomson Reuters. As standard in research, Germany has been taken as benchmark for

the Eurozone yields.

The correlation matrix among regressors is computed to avoid collinearity issues. Cor-

relations are reported in Appendix B.1, where we observe that correlations are relatively

low, therefore rejecting the inclusion of redundant variables. Finally, the existence of a

unit root is rejected for the increments of all regressors considered, with the exception of

25See http://www.policyuncertainty.com/
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3.3. The dynamics of risk aversion 107

the VIX series, which is stationary in levels.

3.3.2 OLS estimates

Based on the previous set of explanatory variables, we consider the following OLS

regression specification for each of the risk aversion series, i, under study,

RA
i,t

= ↵
i

+ �
1,i

V IX
t

+ �
2,i

EPUI
i,t

+ �
3,i

CCI
i,t

+ �
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i,t

+ �
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UNEMP
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+ �
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, i = 1, 2, 3, t = 1, ..., T (3.16)

with RA
i,t

the monthly risk aversion time series, and �
j,t

is the vector of coe�cients for the

set of global and local variables described in section 3.3.1. Lastly, ✏
i

denotes the random

disturbances.

Table 3.4 shows the OLS estimates from expression (3.16) for at-the-money risk aver-

sion series. Three sets of regressions are performed: first, the whole period considering

from May 2004 to September 2015. To isolate the e↵ect of the financial crisis, the sample

is then split into a pre-crisis (observations prior to August 2008) and a post-crisis period

(after August 2008). Some relevant conclusions arise from table 3.4. First, the covariance

of risk aversion with economic variables disagree across economic areas. OLS estimates

show that, for the whole sample period, there is no statistically significant variable that

explains the risk aversion of the S&P 500 index. By contrast, EuroStoxx 50 and Nikkei 225

exhibit statistically significant betas for unemployment (UNEMP) and Consumer Confi-

dence Index (CCI ), for the former index; and the VIX, for the latter. The sign of the CCI

coe�cient is negative, as expected: the higher the consumer confidence, the lower the risk

aversion. However the sign for the unemployment and the VIX are not the expected ones.
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108 Why so different? The behavior of risk aversion in developed economies

These variables seem to capture an important proportion of variability in sample, with

adjusted-R2 coe�cients of 15.3% (EuroStoxx 50) and 19.0% (Nikkei 225).

The comparison by subperiods provides additional insights about the nature of risk

aversion. An interesting conclusion is that covariates of risk aversion change over time:

within the pre-crisis period, both the implied volatility index (VIX ) and the level of interest

rates (IR) are statistically significant for the S&P 500 risk aversion series, being both

coe�cients positive and significant. These results are consistent with those of Rosenberg

and Engle (2002), who find that the implied volatility is statistically significant and positive

for their sample which covers the period from 1991 to 1995. Nevertheless, no estimates

seem to covariate with EuroStoxx 50 and Nikkei 225 risk aversion series for this period.

This situation changes after the crisis. For the S&P 500 index, just the VIX re-

mains significant whose sign changes with the crisis, becoming this coe�cient negative.

Regarding the Eurozone and Japan, results are the same as for the whole period, that

is, unemployment (UNEMP) and the Consumer Confidence Index (CCI ) are statistically

significant for the EuroStoxx 50; and only the implied volatility index (VIX ) appears as

being statistically significant for the Nikkei 225. Their signs remain unchanged for this

period.26

These results yield to the conclusion that the risk aversion series do not respond to the

same macroeconomic variables in the di↵erent markets considered, or even for di↵erent

periods of time for which economic conditions di↵er. This suggests that risk aversion

series are heterogeneous across markets and in time periods in which the economic reality

changes.

26These results are for monthly risk aversion series for a level of moneyness 1; however, results hold for
a moneyness value of 0.97.
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3.3. The dynamics of risk aversion 109

3.3.3 VAR analysis

Interested in the existence of lead-lag relationships among the risk aversion series, we

jointly model the monthly behavior of these series with a Vector AutoRegressive process

(VAR). This model choice allows us to not only permit each of the variables to depend

on their own lags, but also on the others’ series lags. The number of lags relies on the

Bayesian Information Criteria. The VAR model is designed as follows,

0
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, (3.17)

with RASP

t

, RAEU

t

and RAJP

t

stand for the risk aversion series at time t of S&P 500,

EuroStoxx 50 and the Nikkei 225 indexes, respectively; ↵ is a column vector of constants;

� is a 3x3 matrix for the coe�cient estimates of the lagged risk aversion terms, and ✏ is

the vector of error terms.

Table 3.5 reports the maximum likelihood estimates of the � matrix. In general,

risk aversion series just depend on their own lags. These coe�cients are positive and

statistically significant, being their magnitude comparable and higher than 0.75. This

result manifests the high persistence in risk aversion series. Interestingly enough, the

lagged term of S&P 500 is statistically significant and negative for the equation of the

contemporaneous risk aversion value of EuroStoxx 50 index. It seems that European

investors keep an eye on the US events to construct their risk aversion.

Previous results seem to establish a linkage between the US and European risk aver-

sion. Deepening on this observation, our modeling choice in (3.17) permits to explore

the responses in the risk aversion of one certain area to shocks in other areas. This is

the well-known generalized impulse-response (IRF) analysis, defined by Pesaran and Shin
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110 Why so different? The behavior of risk aversion in developed economies

(1998) as,

IRF
i

(n) = �
�1/2

jj

B
n

⌃e
j

(3.18)

with �
jj

the variance of market j, B
n

the coe�cient matrices of the di↵erent periods,

where n = 0, 1, 2, ...; ⌃ the covariances of the innovations term, and e
j

is the vector of

shocks taking value 1 for the variable being shocked and 0 elsewhere.

The results of IRF analysis are presented in figure 3.3. This figure shows, in rows,

the impulse of one standard deviation in the risk aversion series of S&P 500 (first row),

EuroStoxx 50 (second row) and Nikkei 225 (third row), and the response provoked in other

indexes. The main result is that shocks in the risk aversion series from S&P 500 seem to

exhibit a significant e↵ect in the EuroStoxx 50 ones. Contrarily, the remainder series do

not present significant responses to shocks in foreign markets. These results are in line

with those obtained for the VAR model.

Interested on a causality pattern between US and Eurozone risk aversion series, we

perform a Granger causality test (Granger, 1969). Table 3.6 provides the results. In

line with previous findings, the null hypothesis that S&P 500 risk aversion series Granger

causes the risk aversion of EuroStoxx 50 cannot be rejected. Nevertheless, the existence

of causality in the sense of Granger is rejected for the rest of cases under study.

3.4 Conclusions

The behavior of the risk aversion is of major importance in macroeconomic policy as

well as in asset pricing. This chapter is devoted to study the risk aversion inferred from

option prices in three main developed economic areas: United States (S&P 500 index),

the Eurozone (EuroStoxx 50 index) and Japan (Nikkei 225 index) and their patterns and

relationships across the di↵erent markets.
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Impulse: S&P 500; Response: EuroStoxx 50 Impulse: S&P 500; Response: Nikkei 225
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Figure 3.3: Impulse-response analysis of the risk aversion series. This figure shows the

impulse-response function for the di↵erent markets under study. Top row shows impulses (shocks) in the

S&P 500 index and their response in the EuroStoxx 50 index (left plot) and in the Nikkei 225 index

(right plot). Second row represents impulses in the EuroStoxx 50 index and the e↵ect provoked in the

S&P 500 market (left plot) and in the Nikkei 225 market (right plot). Finally, the last row contains the

plots of impulses in the Nikkei 225 and how they are transmitted to the S&P 500 index (left plot) and

to the EuroStoxx 50 index (right plot). The impulse-response function is depited in a solid blue line and

confidence intervals are represented in a dashed light blue line.
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Risk aversion series have been obtained directly from the existent relationship between

RNDs and SPDs. By doing this, we escape from making assumptions about the correct

parametric form of the utility function in the di↵erent markets under study. Our RNDs

are embedded from observed option prices (forward-looking) using a non-parametric tech-

nique. On the other hand, SPDs are estimated using observed prices of the underlying

together with GJR methods to make predictions which are then fitted using a Kernel

Density.

As one would expect, risk aversion time series exhibit di↵erent behavior across di↵er-

ent levels of moneyness. In this study we consider moneyness levels of 0.97, 1 and 1.03,

and we can see that the level of risk aversion lessens as the moneyness increases. Likewise,

and only for the lowest moneyness levels (0.97), the longer the time horizon considered,

the lower the risk aversion is. This is consistent with the fact that investors are willing to

assume a higher risk premia to avoid negative wealth shocks in the short term (30 days).

We can see that risk aversion time series manifest negative values during some specific

periods. Furthermore, comparing the series across markets, we can recognize a common

pattern suggesting the existence of commonalities which are further explored by performing

a PCA. Indeed, this analysis concludes the existence of a first principal component which

explains more than the 50% of the joint variability by itself. This result is consistent across

di↵erent moneyness levels. For moneyness of 1, this component is mainly represented by

the EuroStoxx 50 and the Nikkei 225, whereas for more extreme moneyness values the load

of each market is more evenly distributed. In order to dig deeper in such commonalities,

we regress this component against some macroeconomic variables to find out that global

uncertainty variables such as the VIX index and the US Treasury slope could well drive

this common component of the risk aversions.

An OLS regression of the risk aversion series against a pool of macroeconomic vari-

ables is performed and concludes that, the risk aversion series from each market covariate
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with di↵erent macroeconomic variables. We also find di↵erences in the covariates across

di↵erent periods. When we consider the whole period of observations, no macroeconomic

variable seems to explain the series of the S&P 500 index. However, for the subperiod

prior to the crisis, both VIX and the interest rate appear as statistically significant and

positive. For the post-crisis period, only the VIX index is significant, being its sign now

negative. Regarding the EuroStoxx 50 both the unemployment and the Consumer Con-

fidence Index are statistically significant and negative; and for the Nikkei 225 we find

negative statistically significance of the VIX index. These results for both markets hold

for the post-crisis period as well. However, for the pre-crisis period, none of these two

markets seems to be explained by any of the macroeconomic variables considered. These

results suggest heterogeneity in the risk aversion series of the di↵erent economic areas

under study.

A lead-lag relationship between the di↵erent series is explored by performing a VAR

analysis. Results show how the di↵erent series depend on their own lags only, except for

the EuroStoxx 50 which also depends upon the S&P 500 lagged series. These results are

in line with the findings of the impulse-response analysis, which shows that, among all the

markets considered, only a unit shock in the S&P 500 index has some significant impact

in the EuroStoxx 50. Likewise, the Granger causality test concludes that only the S&P

500 index Granger causes the risk aversion of the EuroStoxx 50.
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Whole sample period Pre-crisis period Post-crisis period

sp eu jp sp eu jp sp eu jp

vix 0.063 0.039 -0.22⇤⇤⇤ 0.84⇤ 0.793 -0.085 -0.291⇤⇤ 0.058 -0.166⇤⇤⇤

(0.67) (0.39) (-4.64) (2.08) (1.28) (-0.21) (-3.37) (0.67) (-3.88)

infl 0.211 -0.177 0.263 1.625 -0.327 1.598 0.122 2.181 -0.058

(0.14) (-0.08) (0.27) (0.80) (-0.04) (0.55) (0.08) (1.13) (-0.07)

ipi -0.755 0.153 0.010 0.0152 0.908 1.098 -0.817 -0.105 -0.029

(-0.85) (0.27) (0.06) (0.01) (0.63) (1.24) (-1.03) (-0.20) (-0.22)

unemp -6.610 -31.31⇤⇤⇤ 0.496 -1.640 -37.62 -0.045 -0.236 -19.12⇤⇤ 0.280

(-1.58) (-3.74) (0.19) (-0.18) (-1.22) (-0.01) (-0.06) (-2.64) (0.12)

epui 0.005 -0.005 0.007 0.009 0.028 0.065 -0.001 -0.011 0.005

(0.26) (-0.28) (0.51) (0.16) (0.50) (0.93) (-0.09) (-0.69) (0.44)

cci -0.429 -9.687⇤⇤ 0.013 -2.414 28.66 -6.640 0.436 -9.077⇤⇤ 0.950

(-0.16) (-2.81) (0.01) (-0.68) (1.21) (-0.86) (0.16) (-3.21) (0.65)

us eur 10.10 18.07 11.23 -25.21 -13.39 18.44

(0.45) (0.81) (0.20) (-0.40) (-0.68) (0.93)

y us 0.385 0.215 -0.248 0.447 0.123 0.308

(1.15) (1.13) (-0.35) (0.96) (0.37) (1.64)

y eur 0.236 -0.025 0.735 0.537 0.228 -0.084

(1.04) (-0.20) (0.93) (1.03) (1.16) (-0.79)

ir 1.234 2.369 3.075 9.695⇤ 10.85 9.503 2.068 -1.275 -3.163

(0.40) (0.67) (0.63) (2.17) (0.91) (0.84) (0.68) (-0.41) (-0.63)

slope 4.578 1.805 1.341 6.033 -0.822 -2.687 0.285 1.360 4.167

(1.51) (0.59) (0.28) (0.99) (-0.06) (-0.24) (0.11) (0.54) (0.91)

cons 2.121 1.083 6.700⇤⇤⇤ -14.54⇤ -8.912 5.760 12.25⇤⇤⇤ -1.098 4.625⇤⇤⇤

(1.07) (0.54) (6.63) (-2.52) (-0.97) (1.01) (6.21) (-0.60) (4.65)

N 136 136 136 38 38 38 97 97 97

adj. R2 -0.015 0.153 0.190 0.174 0.114 -0.026 0.131 0.145 0.165

t statistics in parentheses

⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001

Table 3.4: OLS estimates for the risk aversion series against macroeconomic variables.

This table shows the coe�cient estimates from the OLS regression performed on each of the risk aversion

series against a pool of macroeconomic variables shown in column 1. The regression is performed on three

di↵erent periods. Columns 2-4 contains the estimates when the whole period of data is considered (from

May 2004 to September 2015), columns 5-7 for the pre-crisis period (prior to August 2008) and columns

8-10 for the post-crisis period (after August 2008). All these regresssions are performed for the three

markets under study: S&P 500 (sp), the EuroStoxx 50 (eu) and the Nikkei 225 (jp). The regression is

performed on monthly series of risk aversion for a moneyness level of 1 and 91-days time horizon.
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SP Risk Aversion EU Risk Aversion JP Risk Aversion

Lag sp 0.852⇤⇤⇤ -0.0747⇤ -0.0301

(19.25) (-2.40) (-0.98)

Lag eu -0.0447 0.901⇤⇤⇤ 0.0625

(-0.74) (21.19) (1.49)

Lag jp 0.0208 0.0330 0.757⇤⇤⇤

(0.23) (0.51) (11.92)

cons 0.597 0.352 0.594⇤

(1.57) (1.32) (2.25)

adj. R2 0.7332 0.8559 0.6797

t statistics in parentheses

⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001

Table 3.5: VAR estimation coeficients. The table shows estimates of the VAR model for the risk

aversion series of the S&P 500 index (SP Risk Aversion), the EuroStoxx 50 (EU Risk Aversion) and the

Nikkei 225 (JP Risk Aversion). Second row shows the coe�cient estimates corresponding to the e↵ect of

one lag in the S&P 500 (Lag sp), third row contains the e↵ect of one lag in the EuroStoxx 50 (Lag eu)

and the fourth row is for a lag in the Nikkei 225 (Lag jp) and fifth row is for the constant term (cons).

Information about the adjusted-R2 for each of the series is provided in the last row (adj. R2). The analysis

is based on monthly series of risk aversion for a moneyness of 1 and 91 days time horizon.
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Equation Excluded chi2 df Prob > chi2

S&P 500 EuroStoxx 50 0.54609 1 0.460

S&P 500 Nikkei 225 0.05145 1 0.821

S&P 500 ALL 0.65569 2 0.720

EuroStoxx 50 S&P 500 5.7754 1 0.016

EuroStoxx 50 Nikkei 22 5 0.2628 1 0.608

EuroStoxx 50 ALL 5.9103 2 0.052

Nikkei 225 S&P 500 0.96123 1 0.327

Nikkei 225 EuroStoxx 50 2.2192 1 0.136

Nikkei 225 ALL 3.352 2 0.187

Table 3.6: Granger causality. The table shows the Granger causality test results for the risk aversion

series of the di↵erent indexes (S&P 500, EuroStoxx 50 and Nikkei 225). First column shows the market for

which the Granger causality is being tested. Second column shows the variable which is excluded from the

chi-squared test of jointly significance; this is, the market assumed by the null hypothesis to not Granger

cause the risk aversion series for the market in column 1. Third column (chi2) contains the �2 statistic,

column (df) shows the number of lags of the dependent variables, and the last column (Prob > chi2)

contains the p-value of the test. The analysis is based on monthly series of risk aversion for a moneyness

of 1 and 91-days time horizon.
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Chapter 4

Conclusions and future work

By having a spectrum of option prices written on the same underlying we can obtain

information about the whole Risk-Neutral Distribution (RND). Such RNDs are of great

importance for portfolio and risk managers, thus being their analysis of major interest.

Among all investors’ concerns, we spot mainly the forecasting ability of the embedded

RNDs, as well as the transmission e↵ects of the risk-neutral implied expected losses and

how this a↵ects the diversification and exposure of their portfolios. Concurrently, the

patterns and changes over time of the risk aversion measure – which depicts the deviations

from the risk-neutral and the real-world (investors’ preferences) – is of paramount interest

in macroeconomic policy and asset pricing.

Throughout these chapters and based on the information embedded in the option

prices, we answered the previous questions by implementing di↵erent analyses and method-

ologies.

In chapter 1 we learned about the ability of the RNDs to predict future realizations

of the underlying. Results showed that the conclusions reached so far by the literature,

117



118 Conclusions and future work

which were based on the Berkowitz test results, are not accurate for this type of data,

since the assumptions over which the test is built (normality and independence) are too

restrictive and continuously violated. To overcome these issues, we performed block-

bootstrap distribution of the Berkowitz statistics. Likewise, in order to double check on

the forecasting ability of the RNDs, we also calculated the block-bootstrap distribution of

the Cramer-von-Misses statistics. Furthermore, the fit of the tails of the RNDs was also

studied.

The analysis was performed on three major US index options: S&P 500, Nasdaq 100

and Russell 2000 for a range of data from 1996 to 2015. In order to avoid biases due to

the techniques used to extract the RNDs, both parametric and non-parametric methods

were used for di↵erent markets and for RNDs with di↵erent time horizons (30, 45, 60 and

90 days).

Contrary to the literature, Berkowitz block-bootstrap results could not reject the

forecasting ability of any of the estimated RNDs. This conclusion was reinforced by

the Cramer-von-Mises block-bootstrap findings. Regarding the fit of the tails, the test

suggested that the RNDs tended to overestimate the frequency of occurrence of the left

tail, providing a good fit for the right tail.

Additionally, when we removed from the sample those turbulent periods from the

crises, results still held. Therefore, results also claimed that the crisis periods were not

responsible for such conclusions.

Analysis in chapter 2 helped us to gain some knowledge about the connectedness of

di↵erent markets and how shocks in the expected (loss) quantiles of the option-implied

distributions are transmitted across borders. We considered three main developed financial

markets: United States, Eurozone and Japan, represented by the S&P 500, EuroStoxx 50

and Nikkei 225 indexes, respectively.
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We calculated the RNDs non-parametrically for each day in the sample for di↵erent

time horizons (30, 60 and 91 days) and for di↵erent indexes. The period covered by this

analysis is from May 2004 until September 2015. In order to obtain the implied expected

losses, we calculated di↵erent quantiles (5%, 10%, 15%, 20% and 25%) of the extracted

RNDs. Furthermore, to deal with the non-synchronicity of the data due to the time-zone

di↵erence of the markets, we modeled the dynamics of the markets using an S-VAR process

(which accounts for contemporaneous relationships) as well as a VAR model by computing

weekly averages of the observations. Global risk e↵ects were considered by including series

of the VIX index as exogenous variable in both of the previous approaches.

Impulse-response analyses concluded transmission only of shocks in the S&P 500 ex-

pected loss quantiles to the rest of the markets; however, there was no significant evidence

of the transmission of shocks from the other markets. Results also showed that the e↵ects

provoked by shocks in the S&P 500 index to other markets were the same regardless of

the level of the quantile considered (5% to 25%). However, di↵erences did exist depending

on the time horizon considered, being the e↵ects of the transmission softer for shorter

horizons (30 days) and stronger for longer horizons (60 and 91 days).

Finally, variance decomposition analyses concluded that most of the variance was

explained by shocks in its own quantile (lagged), suggesting an autoregressive pattern in

the loss quantiles. Empirical results qualitatively held for the di↵erent methodologies,

quantile levels and time horizons, proving robustness of the results.

Chapter 3 enriched our knowledge about risk aversion series in di↵erent developed

markets: US (S&P 500), Eurozone (EuroStoxx 50) and Japan (Nikkei 225). This chapter

studied the patterns and evolution of risk aversions over time and within di↵erent markets.

Time series showed an inverse relationship between the risk aversion and the level of

moneyness tested, presenting occasionally negative values. A principal component analysis

confirmed the existence of a source of commonality which explained more than the 50%
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of the joint variability (being so for di↵erent levels of moneyness tested). After an OLS

regression, we concluded that this could be well explained by global factors such as the

VIX index and the US Treasury slope.

In order to gain insight into the relationship between risk aversion series and some

major macroeconomic variables, an OLS regression is run for each of the market series.

Results concluded heterogeneity since each of them covariate with di↵erent factors. Besides

this di↵erence was also notable not only across markets, but also between di↵erent periods

considered (pre- and post-crisis). The analysis concluded that country-specific forces led

the contemporaneous risk aversion series. We also found a lead-lag relationship between

US and Europe, where lags of the S&P 500 risk averion series had significant e↵ects in

the EuroStoxx 50 series. These results were further confirmed by the impulse-response

analysis and the Granger causality test.

4.1 Future research

The analyses done in this thesis have enriched our knowledge about important ques-

tions such as the forecasting ability of the RND and expected loss transmission across

di↵erent countries. Furthermore, it has also provided us with a broader vision about the

nature and evolution of the risk aversion series in di↵erent markets.

Nevertheless, there is still room for further improvement, and while doing this thesis

we have spotted some interesting issues which will set the course of forthcoming research

during these years to come.

First of all, even though the analysis of the implied expected loss transmission in

chapter 2 gives some guides on the transmission e↵ects across markets, further analyses

are required in order to determine whether there is in fact a driving market. Moreover, by
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replicating the analysis of the transmission e↵ects for longer maturities, we will be able to

recognize whether option-implied risk-neutral quantile shocks are permanent or transitory.

Furthermore, from the results in chapter 3, interesting features are captured in the

left tails of the RNDs and SPDs; therefore, lower levels of moneyness are worth to study

so to gain knowledge about the risk premia and bad states fear.

Moving a step forward, the previous sets the foundations for a new line of research

using information retrieved from option prices (forward-looking) to the study of portfolio

choice.
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Appendix A

Can we really discard forecasting

ability of option-implied

Risk-Neutral distributions?

A.1 Derivation of Mixture of Two Log-Normal Distribu-

tions

A mixture of two Log-Normal distributions is equivalent to a weighted average of two

Log-Normal distributions. Therefore, being  (x|F, �, T ) a Log-Normal density function,

the estimated Risk-Neutral distribution f
Q

(x) is of the form,

f
Q

(x) = p (x|F
1

,�
1

, T ) + (1� p) (x|F
2

,�
2

, T ) (A.1)

where x is the domain of forward prices over which the density is defined, F
1

(F
2

) is

the expected forward price of the underlying at a specific time T for the first (second)
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Log-Normal distribution and �
1

(�
2

) is the standard deviation for the first (second) Log-

Normal distribution in the mixture. Parameters p and (1 � p) are the weights placed on

each of the two Log-Normal distributions being mixed and are defined within 0  p  1.

In order to fit the mixture of two Log-Normal distributions to estimate the RNDs,

five parameters need to be calibrated, ✓ = {F
1

, F
2

, �
1

, �
2

, p}. However, as it is explained

in Taylor (2005), for equation (A.1) to be a Risk-Neutral distribution (RND) we must

ensure that,

F = pF
1

+ (1� p)F
2

At this point, there is no need to estimate F
2

any longer since it can be inferred from

the previous as follows,

F
2

=
F � pF

1

(1� p)

therefore, we carry out the calibration on the remaining four parameters, ✓ = {F
1

, �
1

, �
2

, p}.

The theoretical price for a call option whose underlying distribution is a LNM is given

by,

c(X|✓, r, T ) = p · C
BS

(F
1

, T,X, r, r,�
1

) + (1� p) · C
BS

(F
2

, T,X, r, r,�
2

) (A.2)

where C
BS

(F
i

, T,X, r, r,�
i

) is the theoretical price for a call option using Black-Scholes

formula, F
i

the forward price at time T , X the exercise price, r the risk-free rate and �
i

its standard deviation, for i = 1, 2.

The value of the unknown parameters ✓ = {p, F
1

,�
1

,�
2

}, can be fairly easily estimated

by minimizing the sum of the squared pricing errors,

✓⇤ = argmin

njX

i=1

⇣
Cm

i,j

� bC
i,j

(✓)
⌘
2

(A.3)
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where n
j

is the number of observations on day j, Cm

i,j

are the observed market option prices

on day j and bC
i,j

(✓) stands for the corresponding theoretical option prices estimated under

the selected model (LNM in this case).

A.2 Chossing the bandwidth

RNDs are very sensitive to the choice of the bandwidth parameter (h). Therefore,

setting parameter h is crucial in order to obtain good estimates of the RNDs. If we set a

small bandwidth we will get a rough estimation, reflecting all the noise of the data and

yielding to inconsistent densities (densities with negative portions). On the other hand,

choosing a large value for the bandwidth will result in the data being oversmoothed.

Since our goal is the second derivative of the smoothed function, in general we will need

to oversmooth the fit using values of h slightly higher than usual.

In order to obtain the bandwidth parameter h, the most common approaches are the

Silverman’s Rule-of-Thumb (h
RoT

) and leave-one-out cross-validation (h
cv

). For a given

day in our sample, we first set as the bandwidth parameter that value obtained by the

cross-validation approach. Should the density have negative regions, we then set a grid

formed by 50 points between the range [h
cv

; 2 · h
RoT

], and choose that minimum value of

h that yields to a well-behaved density (smooth and positive in all its domain).

A.3 Adding Generalized Pareto tails

As mentioned previously, with the kernel and spline techniques we are only capable

to estimate the central part of the distribution where available observations lay, having

a missing probability at the extremes of the density. Once we have the extracted RNDs,

in order to append tails we require to have a missing amount of probability in the tail
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to be fitted of at least 0.1%. Should we have a lesser amount of missing probability, no

estimation of the tails is required since almost all the density is explained by the observed

data.

In case tails are needed, we follow Birru and Figlewski (2012) and use the GPD to

approximate the tails of our estimated distributions. In order to do so, we first define one

extreme point for each tail called X
↵0R and X

↵0L which leave ↵
0R

and ↵
0L

probability in

the right and left tail respectively. In case one or both ↵
0R

and ↵
0L

are smaller than 1%,

we will manually set such ↵ values to be 1%.

We also set an inner second point for each tail called X
↵1R and X

↵1L , leaving ↵1R

and

↵
1L

probability in their respective tails. We define ↵
1R

and ↵
1L

as

↵
1R

= ↵
0R

� p

↵
1L

= ↵
0L

+ p

(A.4)

being p some amount of probability. In our case p is set to be 1% probability.

In order to find the GPD parameters, some matching conditions need to be satis-

fied. We denote the extracted RND and cumulative probability function by f (. . .) and

F (. . .), respectively. First, we require that the amount of probability contained in each

of the GPD tails is the same as the amount contained in the estimated RND tails. And

second, we force the new GPD density to pass through the exact f (X
↵0R) (f (X

↵0L)) and

f (X
↵1R) (f (X

↵1L)) points, thus matching the shape of the estimated RNDs. That is,

both distributions match at the following points,

F (X
↵0L) = FGPD (X

↵0L) F (X
↵0R) = FGPD (X

↵0R)

f (X
↵0L) = fGPD (X

↵0L) f (X
↵0R) = fGPD (X

↵0R)

f (X
↵1L) = fGPD (X

↵1L) f (X
↵1R) = fGPD (X

↵1R)

(A.5)
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However, between X
↵0R and X

↵1R , as well as between X
↵0L and X

↵1L , both the

estimated RND and the fitted GPD are overlapping, having di↵erent values for each strike

price contained within this overlapping zone. In order to approximate the distribution of

this overlapping zone we define a weighting function which will give di↵erent weights to

the strike prices based on their distance to X
↵0R , X↵0L , X↵1R and X

↵1L ,

w =
f (X

↵0R)� f (X
i

)

f (X
↵0R)� f (X

↵1R)
(A.6)

for those i observations which lay within X
↵1R and X

↵0R . By doing this we avoid abrupt

jumps next to the matching points so to reach a smooth transition between both distri-

butions. The smoothed density values for each i data point is then calculated by,

fnew

Xi
= w

i

f
Xi + (1� w

i

) fGPD

Xi

The equivalent equations for the left overlapping zone are,

w =
f (X

↵1L)� f (X
i

)

f (X
↵1L)� f (X

↵0L)
(A.7)

and

fnew

Xi
= (1� w

i

) f
Xi + w

i

fGPD

Xi

Figure 1.1 shows the RND calculated on the S&P 500 for a time horizon of 30 days on

the 17 December 2009. In this figure we can appreciate the main body of the distribution

(central solid line), which in this case has been calculated using kernel technique; the

extreme solid lines which represent the pareto tails which have been appended in each

case; and finally the figure depicts with a dotted line what we call the overlapping zone,

that is the region between ↵
0

and ↵
1

which has been approximated using a weighting

scheme as per equations (A.6) and (A.7).
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Appendix B

Why so di↵erent? Understanding

the behavior of risk aversion in

developed economies

B.1 Correlation matrix between macroeconomic variables

When regressing the risk aversion series against the set of macroeconomic variables

chosen, we could be facing a problem of collinearity. This is, we might be including

in the analysis highly correlated variables which will be explaining some of the same

variance, and therefore their statistical significance in the model will be reduced. In order

to avoid collinearity in our model defined in expression (3.16), we calculate the correlations

between the macroeconomic variables for each of the markets considered. Correlations are

presented in the following table B.1, where we can see that the correlations between the

pairs of variables are fairly low, therefore rejecting the inclusion of redundant variables.
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PANEL A - Correlation matrix for the S&P 500

vix infl ipi unemp epui cci us eur y us ir slope

vix 1.0000

infl -0.0345 1.0000

ipi -0.3333 -0.1924 1.0000

unemp 0.4634 -0.0088 -0.3529 1.0000

epui 0.0220 0.1298 -0.1389 0.0636 1.0000

cci -0.0863 -0.0405 0.0168 -0.1488 -0.2082 1.0000

us eur -0.2108 0.2394 0.0071 0.0527 -0.0284 -0.1457 1.0000

y us -0.3299 -0.0944 0.0676 -0.0738 -0.1995 0.2774 -0.2506 1.0000

ir -0.2102 -0.0512 0.1441 -0.0188 -0.1516 0.0862 -0.1024 0.4694 1.0000

slope 0.1344 -0.0030 -0.0020 0.0466 -0.0531 -0.0156 -0.0274 0.0148 0.3138 1.0000

PANEL B - Correlation matrix for the EuroStoxx 50

vix infl ipi unemp epui cci us eur y eur ir slope

vix 1.0000

infl -0.2484 1.0000

ipi -0.3923 0.2046 1.0000

unemp 0.6652 -0.2725 -0.3708 1.0000

epui 0.0898 0.0680 0.0511 0.0288 1.0000

cci -0.3845 0.0041 0.3946 -0.3077 -0.1562 1.0000

us eur -0.2108 0.1631 0.0709 -0.1336 -0.0498 0.2199 1.0000

y eur -0.4431 0.1426 0.1432 -0.1055 -0.2249 0.2970 0.6070 1.0000

ir -0.3496 0.1872 0.1890 -0.2455 -0.1949 0.2883 0.3037 0.5190 1.0000

slope 0.3634 -0.0926 -0.1443 0.2382 0.0581 -0.2159 -0.2084 -0.2012 0.1659 1.0000

PANEL C - Correlation matrix for the Nikkei 225

vix infl ipi unemp epui cci y eur y us ir slope

vix 1.0000

infl -0.0195 1.0000

ipi -0.2432 -0.0702 1.0000

unemp 0.1918 0.0376 -0.0739 1.0000

epui 0.0455 0.0637 0.0324 -0.0974 1.0000

cci 0.1010 -0.0788 0.2672 0.1733 -0.0527 1.0000

y eur -0.4431 0.0604 0.0874 0.0061 -0.2163 0.0035 1.0000

y us -0.3299 -0.0210 0.1074 -0.0154 -0.1610 0.1399 0.6064 1.0000

ir -0.1404 0.0130 0.1193 -0.1274 -0.0253 0.0099 0.2137 0.2647 1.0000

slope 0.0240 -0.1115 0.0513 -0.0261 -0.2195 0.0592 0.1828 0.2669 0.7214 1.0000

Table B.1: Correlation matrix between macroeconomic variables. The table contains the

correlation matrices between the macroeconomic variables considered in this study for each of the markets

considered. Panel A shows the correlation matrix for the variables corresponding to the US market (S&P

500 index), panel B contains the correlation matrix of those macroeconomic variables corresponding to

the Eurozone market (EuroStoxx 50 index) and finally panel C shows the correlation matrix for those

macroeconomic variables corresponding to the Japanese market (Nikkei 225 index).
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