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Abstract

User-Generated Content (UGC) was born out of the so-called Web 2.0 — a
rethinking of the World Wide Web around content produced by the users.
Social media posts, comments, and microblogs are examples of textual UGC
that share a number of characteristics: they are typically short, sporadic, to
the point and noisy.

In this thesis we propose new pre-processing and normalization tools,
specifically designed to overcome some limitations and difficulties com-
mon in the analysis of UGC that prevent a better grasp on the full potential
of this rich ecosystem. Machine learning was employed in most of these
solutions that improve (in a substantial way some times) over the baseline
methods that we used as comparison. Performance was measured using
standard measures and error were examined for better evaluation of limi-
tations.

We achieved 0.96 and 0.88 F1 values on our two tokenization tasks (0.96
and 0.78 accuracy), employing a language-agnostic solution. We were able
to assign messages to their respective author from a pool of 3 candidates
with a 0.63 F1 score, based only on their writting style, using no linguistic
knowledge. Our attempt at identifying Twitter bots was met with median ac-
curacy of 0.97, in part due to the good performance of our stylistic features.
Language variant identification is much more difficult than simply recogniz-
ing the language used since it is a much finer problem; however we were
able to achieve 0.95 accuracy based on a sample of 100 messages per user.
Finally we address the problem of reverting obfuscation, which is used to
disguise words (usually swearing) in text. Our experiments measured a
0.93 median weighted F1 score in this task. We have also made available
the Portuguese annotated corpus that was created and examined for this
task.
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Sumário

Os Conteúdos Gerados por Utilizadores (CGU) nasceram da chamada Web
2.0 — uma revisão da World Wide Web em torno de conteúdos produzi-
dos pelos utilizadores. Exemplos dos CGU são as mensagens colocadas
nos media sociais, os comentários em websites e os microblogs. Todos eles
partilham algumas características típicas como a sua brevidade, serem es-
porádicos, diretos e ruidosos.

Nesta tese propomos novas ferramentas de pré-processamento e nor-
malização que foram criadas explicitamente para superarem algumas limi-
tações e dificulades típicas na análise de CGU e que impedem uma melhor
compreensão do verdadeiro potencial deste ecossistema rico. Na maioria
dos casos foi empregue aprendisagem automática, o que permitiu superar
(por vezes de forma substancial) os sistemas usados para comparação. O
desempenho foi calculado recorrendo a métricas padronizadas e os erros
foram examinados por forma a avaliar melhor as limitações dos sistemas
propostos.

Alcançámos valores F1 de 0,96 e 0,88 nas nossas duas tarefas de ato-
mização (0,96 e 0,78 de exatidão), empregando uma solução sem qualquer
dependência linguística. Conseguimos atribuir a autoria de uma mensa-
gem, de entre 3 candidatos, com uma pontuação F1 de 0,63 baseada apenas
no seu estilo de escrita, sem qualquer atenção à língua em que foi redigida.
A nossa tentativa de identificar sistemas automáticos no Twitter recebeu uma
mediana de exatidão de 0,97, em parte graças ao bom desempenho das ca-
racterísticas estilísticas mencionadas anteriormente. A identificação de vari-
antes da língua é um problema muito mais complexo do que a simples iden-
tificação da língua, dado que é uma questão de granularidade mais fina;
no entanto consguimos alcançar 0,95 de exatidão operando sobre 100 men-
sagens por cada utilizador. Por fim, abordámos o problema de reverter a
ofuscação, que é empegue para disfarçar algumas palavras (regra geral, pa-
lavrões) em texto. As nossas experiências apontaram uma pontuação me-
diana ponderada do F1 de 0,93 nesta tarefa. Disponibilizámos livremente
o nosso corpus anotado em português que foi criado e examinado para esta
tarefa.
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Chapter 1

Introduction

Contents
1.1 Research questions . . . . . . . . . . . . . . . . . . . . . . 3

1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Methodology used . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . 8

When the movable type printing press gained presence in Europe, in
the middle of the 15th century, many profound alterations took place in the
society of the time. It changed sciences, religions, politics, the economy, and
paved the way to the Renaissance [Eis05]. Before that, books were rare and
precious items, inaccessible to the common man for fear of theft or wear.
Clerics had the monopoly on the written word, and would dedicate them-
selves mostly to produce (inexact) copies rather than creating new works.

As books became much more accessible through mass production (a
scribe’s manual work was quite dear), people outside the literate elite fi-
nally had reasons to learn to read. Book production started to be dictated
only by demand, meaning that Latin was no longer the language of choice
for writing [Bra70, Eis05] (leading to a standardisation of the local lan-
guages [Coh61, Eis05]), and it became much easier for a person of the time
to have their work published. Finally, knowledge and ideas could survive
and travel longer in the form of many accessible tomes and avoiding the
inevitable result of the concentration of documents [Eis05], of which the
burning of the Ancient Library of Alexandria is the better known example.

Such significant revolution in information dissemination would not hap-
pen again until the end of the 20th century, with the World Wide Web. Inter-
net publishing became simple enough that almost anyone was capable of
creating their own website through the so-called blog services. As the infor-
mation is now divorced from its physical medium, its cost of production,

1



2 CHAPTER 1. INTRODUCTION

propagation and storage is further reduced, providing a more unencum-
bered circulation of knowledge and ideas. Millions of readers may now be
within instant reach, and could also interact with the original author using
special mechanisms (e.g. comments).

Microblogs — like other forms of User-Generated Content arising from
the so-called “web 2.0” — bring this form of communication to a differ-
ent level. Every reader/consumer can also be an author/producer. This
“single role” means that all interactions are made in equal standing (as op-
posed to blog’s author-moderator/commentator two class system), further
fostering dialog. However, the most noteworthy aspect of microblogging
is its ubiquity, as any cell phone can be used to access it. People can write
and publish on a whim, leading to spontaneous remarks and informal, self-
centred messages. This constant “up-to-the-minute” nature of microblog-
ging is central to the interest of this new medium.

Twitter, the most well-known microblogging service reached perhaps
its peak popularity during the 2017 US presidential election campaign and
the months that followed it, due to its significant use by candidate and
president Donald J. Trump, of which resulted some memorable moments,
like the “covfefe” word1 [Her17]. But, entertainment aside, it also raised
some careful thoughts regarding the possible impact of a misused commu-
nication channel with such impact [Ber17]. This question is not limited to
microblogs and does not affect only the popular users; hard questions are
being asked regarding these newer forms of communication [Che18].

One advantage that microblogs have over many other forms of digi-
tal communication (like social networks that share many of the relevant
characteristics we describe here) is that data is more easily available since
most accounts are public. Twitter has been used to predict elections out-
come [TSSW10], to detect epidemics [Cul10], to study earthquakes [SOM10],
to analyse brand associated sentiments [JZSC09] and to perceive public
opinions [OBRS10] among others.

What is special about User-Generated Content is the way in which it
can mirror what is on the minds and souls of people. We can see that many
publications are sporadic, unfiltered and not entirely thought through; they
are also a habit for many users that post somewhat regularly (or semi-
regularly) about their personal lives or simply the first thing they think

1That garnered ample news coverage from different angles. Just four examples:
https://www.nytimes.com/2017/05/31/us/politics/covfefe-trump-twitter.html
https://edition.cnn.com/2017/05/31/politics/covfefe-trump-coverage/index.
html
https://www.independent.co.uk/life-style/gadgets-and-tech/news/
\covfefe-donald-trump-tweet-twitter-what-mean-write-negative-press\
-us-media-president-late-night-a7764496.html
http://www.nationalreview.com/corner/448148/covfefe-donald-trumps-twitter\
-habits-white-house

https://www.nytimes.com/2017/05/31/us/politics/covfefe-trump-twitter.html
https://edition.cnn.com/2017/05/31/politics/covfefe-trump-coverage/index.html
https://edition.cnn.com/2017/05/31/politics/covfefe-trump-coverage/index.html
https://www.independent.co.uk/life-style/gadgets-and-tech/news/\covfefe-donald-trump-tweet-twitter-what-mean-write-negative-press\-us-media-president-late-night-a7764496.html
https://www.independent.co.uk/life-style/gadgets-and-tech/news/\covfefe-donald-trump-tweet-twitter-what-mean-write-negative-press\-us-media-president-late-night-a7764496.html
https://www.independent.co.uk/life-style/gadgets-and-tech/news/\covfefe-donald-trump-tweet-twitter-what-mean-write-negative-press\-us-media-president-late-night-a7764496.html
http://www.nationalreview.com/corner/448148/covfefe-donald-trumps-twitter\-habits-white-house
http://www.nationalreview.com/corner/448148/covfefe-donald-trumps-twitter\-habits-white-house
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of, by sheer impulse2. Most users share their publications with a close cir-
cle — just their friends and family (and for this reason feel safe to express
themselves), but incidentally they also open the door to whoever may be
interested — and several users do make an effort to increase the number of
followers they have.

A number of research projects were developed at LIACC3, SAPO Labs4

and the REACTION work group5, sharing the objective of gaining knowl-
edge through the analysis of User-Generated Content, with particular in-
terest in the Portuguese community. The work we present here is the result
of our contributions to those efforts, and was developed with the aim of ad-
dressing particular needs that we felt were not being adequately addressed
by the more usual methods. It focuses mostly on the pre-processing of mes-
sages, either removing or handling “noisy” tokens or identifying unwanted
user accounts that could introduce “noise” into our message collection. Ig-
noring either of those possibilities could result in less accurate final results.

When we say “noise” we refer to irrelevant or meaningless data. We
noticed that very few studies involving microblogs even mention pre-proc-
essing of the messages (the stage in the processing pipeline when noise is
ideally handled), or how they handled situations containing noise. From
what we are to believe that no significant attention was given to the matter.
Is it because it is accepted that noise is inevitable? Is it because researchers
are able to sacrifice a significant number of messages to errors among the
many thousands available? Is it due to the lack of awareness of the impact
of noise in the message processing? While we cannot prevent noise at the
source, it is possible that some of it be converted into “signal” or simply
avoided.

1.1 Research questions

Natural Language Processing, for a long time and for historical reasons,
was dedicated to the handling of well-crafted corpora, such as literary or
journalistic works. Those texts were carefully created: well structured, with
strong coherence and usually focusing on one topic. The authors, abiding
by the rules of writing, used proper syntax and grammar, and employed
correct punctuation and capitalisation. The nature of most source material
was either informative (like news articles), formal (e. g. legal documents) or

2Microblogs may be called a “write-only medium” by some, due to number of irrelevant
posts that are of interest only for the author. These are often mocked as “what I had for
breakfast” kind of posts. However, in our opinion such posts demonstrate how unfiltered
microblog posts can be.

3Artificial Intelligence and Computer Science Laboratory, http://www.liacc.up.pt
4http://labs.sapo.pt
5http://dmir.inesc-id.pt/reaction/Reaction

http://www.liacc.up.pt
http://labs.sapo.pt
http://dmir.inesc-id.pt/reaction/Reaction
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literary. But today most text being produced is informal and randomly in-
cludes smileys, hashtags, mentions and URL. Being “in the moment” mus-
ings (a “write-and-forget” affair), users typically put in the minimum effort
required for “good enough” posts where being understood is sufficient.
The number of creators is also expanding rapidly — which only increases
the variety in writing styles — making it more difficult to keep track of each
author or knowing some background information to provide better context
to their writings — things that could be done with printed authors.

Our work revolves around such questions pertaining to a new type of
medium and aiming better understand what people are saying. We have
grouped them into sets of two or three intimately connected research ques-
tions that we enunciate here.

First set of questions

Generally we can say that text is comprised of words, numbers and punc-
tuation; words are formed by letters, numbers are formed by digits and
punctuation is made up by a small set of specific symbols. Yet current
microblog messages can also take in new types of tokens which need to
be treated with different rules, like smileys, mentions, hashtags and URL;
each can contain letters, symbols and/or digits. At the same time the “old”
tokens need to be handled differently, due to abbreviations and creative
writing (e. g. “YES WE CAN / YES WEE.KEND”). Our first research ques-
tions, treated in Chapter 3 are as follows:

Can a classification-based approach to tokenization of UGC clearly
outperform a tokenizer based on rules specifically crafted for
this purpose? If so, how much training data is required for
achieving such performance? What amount of contextual infor-
mation does the classifier need to obtain optimal tokenization
performance?

Second set of questions

While we may call it “creative writing”, it is not clear if the structure dis-
played by microblog messages reflects some sort of personal signature or if
it is more or less random. In other words, we would like to know if there
are any idiosyncrasy in a text containing 13 or less words, and if users can
find enough freedom to express themselves through their own voice or if
we are facing linguistic anarchy without gaining anything. We researched
the following questions on Chapter 4:

What set of language-agnostic stylistic markers can we extract
from microblog messages in order to differentiate between the
writings of different people? How reliably could we attribute
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authorship among a small set of possible authors / suspects?
And how large a sample would we require from each user in
order to obtain solid results?

Third set of questions

It is impossible for us to know who truly sits behind a given user account
across the internet, but some accounts clearly show some noticeable pat-
tern too strict for us to consider that a person is actively trying to engage
with the community. Some are clearly identified as a news feed, others are
dedicated to advertisement or simply spam (some times masquerading as
a regular account).

We call such accounts “bots” (short for “robot” to indicate automated
activity) and they are of significance because they can skew results from
community analysis. For example, news feeds can give the impression
that people are actually interested and tweeting about a given event when
they are actually ignoring it. As an anecdote, when Pope Benedict XVI vis-
ited Portugal, in 2010, we noticed that about 1/3 of all tweets mentioning
the event were published by news organisations. Therefore, the work pre-
sented in Chapter 5 was developed to answer the questions:

What language-independent features can we use to identify non-
human operated microblogging accounts? How dependable
would such a system be (assuming the number of messages is
no problem since bots are quite prolific)?

Fourth set of questions

Just as we cannot be sure of who is behind an account, we also cannot tell
where that person may be. We know that Twitter, for instance, has a user
profile for each account, but that information

a) may be no longer true;

b) may be unrelated to their nationality (e. g. a tourist),

c) may be incomplete (e. g. a village or street name);

d) may be ambiguous (e. g. Lagos, Portugal or Lagos, Nigeria) or

e) may be intentionally misleading (e. g. Narnia, Hogwarts or the Moon).

In our projects we wanted to follow only users from Portugal. Selecting
only users stating “Portugal” in their location would be too strict and leave
many accounts out, while selecting users posting in Portuguese would be
excessively tolerant due to the many Brazilian users using the same lan-
guage. The resulting questions, that we treat in Chapter 6 are thus:
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Is it possible for us to reliably identify the nationality of a user
based on the content (not metadata) of their messages? If so,
how much text would we need for an accurate identification?
What features would be the most telling?

By using only the content of the messages we may use this result on any
environment, not just on microblogs.

Fifth set of questions

Finally, while a lot can be said about swearing, it is unquestionably a form
of expression, even if often treated with contempt. As such, it is somewhat
common to find alternate forms of writing such words, either to disguise
it (to make it pass through a filter) or to show a minimum of respect for
the sensibility of other people who may be reading. We call this “obfus-
cation” and is not exclusive of dirty words — any kind of taboo word can
be disguised, it just happens that profanity is nearly universal and in more
common use than other special words.

Disguised words are most commonly ignored (and may introduce ad-
ditional noise into the message). This can be interpreted as information that
is being left on the table, unusable. Certainly a swear word is a swear word,
and they should not be taken literally; but still they are not interchangeable
and therefore contain value.

While profanity lists are common, tolerant and robust methods of recog-
nising them are few. In Chapters 7 and 8 we try to address the following
research questions related to this matter:

What methods are used by the authors to obfuscate their swear-
ing? Can we make use of this information to construct a deob-
fuscation mechanism that improves on the state of the art?

While we did not seek absolute and final proof on all our answers, we
were satisfied with the conclusions we reached.

1.2 State of the art

As we stated previously, noise in microblogs is not uniform, and manifests
itself differently based on the task being performed. This is reflected on
the way researches typically approach noise: they either acknowledge its
presence and multi-faceted nature in a shallow way when discussing the
general view of their system [PPSC+12, BDF+13], or they focus their atten-
tion only on an individual task and address only a particular kind of noise
that is relevant for their work [DMAB13]. This is understandable since the
noise is not the main subject of either type of work.
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We were unable to find a work dedicated to the in-depth study of noise
in UGC, which leads, in part, the less usual structure of the present work,
where we attempt to do just that. We discuss several forms of noise that
was met performing multiple tasks in microblogs and other forms of UGC.
In each chapter (starting with the third) we present the works we found
relevant to that matter, and in this way we address then the state of the art
in a more specific way.

1.3 Methodology used

After consideration and evaluation of each problem and research questions,
we deliberate on the best way to approach it. The state of the art is con-
sulted and compared to our solutions; occasionally we were unable to con-
tribute with any improvements to it, but those situations are not described
here.

Each work presented here was framed as a classification problem. This
was not according to a plan, but it does mean that we present a very sim-
ilar methodology and evaluation process across the work presented. The
details can be found on the proper section in each chapter.

We collected relevant data in an unbiased way and performed the anno-
tation that was required to produce a ground truth. This may then be used
to create a model (training a machine learning algorithm for example) and
for testing our classifiers. To ensure we work with a reasonable variance of
inputs we shuffle the data and perform a N-fold cross validation test.

We use the standard evaluation metrics of precision, recall, F1 or accuracy
to quantify performance and, where possible, compare those results with
state of the art. On some occasions we implement multiple solutions to
provide a better comparison using the same data and evaluation method.

1.4 Contributions

Our first contribution lies on the usage of machine learning and a classifi-
cation approach in the process of tokenization. This is a task that is tradi-
tionally performed through hard-coded rules, usually expressed through
regular expressions. The improvement of the results were significant.

A second contribution lies on the study of the significance of the relation
between the stylistics that can be observed in very short messages and their
authorship and, in a more innovative way, determining the nationality of
the author and human/robot accounts.

Another contribution we wish to highlight is our expansion of the Lev-
enshtein edit operations with variable costs for the specific task of decoding
disguised words in text.
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Besides the more intangible knowledge resulting from our research and
the solutions we describe in the present work, our contribution also in-
cludes the same tools we developed and used to perform our experiments.
They are distributed at the SAPO Labs website through an OSI-approved
free license.

While the license terms of Twitter makes it impossible for us to dis-
tribute the microblog messages datasets we worked with, we do include
our binary models that we derived from them. This means that anyone in-
terested in one of our solutions may start using it immediately and does not
need to annotate data and generate their own models (but that possibility
is always present).

Our work on obfuscation did not use data from Twitter, but from SAPO.
We received official permission to distribute out annotated SAPO Desporto
dataset, and do so hoping it will be useful for other researchers. More in-
formation can be found on Section 7.5.3, on page 119.

1.5 Thesis Structure

The following chapter will go into some depth explaining the relevance
and challenges of microblogs (and User-Generated Content in general). It
is meant to provide an introduction to User-Generated content, with strong
focus on microblogs, which constitute most of the data we worked with.

As we stated, the problem sets we addressed are treated on their respec-
tive chapters, in the order in which we presented them. Each of these chap-
ters is mostly self-contained but share a similar structure. They begin with
an introduction and background to the problem and refer to related work.
The methodology, experimental set-up and results obtained are then pre-
sented, discussed in detail and commented. They end with the conclusions
we reached and with the identification of opportunities for improvement
we would like to experiment with next.

To reiterate, on Chapter 3 we present our work on tokenization; on
Chapter 4 we study the feasibility of performing forensic analysis on short
messages; Chapter 5 describes our efforts detecting automatic posting ac-
counts and Chapter 6 shows how we solved the problem of differentiating
between the two major variants of Portuguese. Finally, in Chapter 7 we
pour over the problem of word obfuscations with a particular emphasis on
profanity.

At the end of the thesis we present a final chapter containing some fi-
nal thoughts on the work overall and a set of future directions and related
problems we would like to solve.



Chapter 2

UGC and the world of
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With the popular so-called “Web 2.0”, User-Generated Content (com-
monly abbreviated as UGC, sometimes also called Consumer Generated
Media) has become an integral part of the daily life of many Internet users.
In fact, we claim it forms the central piece of many of today’s most popular
websites.

9
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Wikipedia, Facebook, Youtube, Flikr, eBay, Twitter, Blogger and Craigs-
List are examples of very different but popular websites. But all of them
are dependent on the efforts of their users to continue to attract users and
new contributions, and further enhancing their value.

Even if the website’s “core business” does not deal with user’s original
work directly, many times it does so indirectly through comments, ratings,
tagging, reviews, links and other forms. Amazon is one such example, as
it encourages users to share their opinions, review products and suppli-
ers, create lists of products that they think work well together, expose their
wish-list and these ways create a sense of community.

User-Generated Content, while widely popular, is still understudied in
many areas such as those here presented. That is to say that, based on
our review of the state of the art, topics related to account selection (based
on nationality or level of automation of the operation) or pre-processing
of messages saw very little attention compared with trend analysis, the
quantification of user influence or general opinion mining. While we try
to provide comparison to studies in the same area that are somewhat com-
parable, in most occasions their results are not directly transferable to our
work environment.

2.1 What is User-Generated Content

User-Generated content can be considered as any original or derivative
product created by or through a system of peers, outside of their profes-
sional activity. This is a very broad definition, and covers from game “mods”
and fan fiction to the “letters to the editor” newspaper column and movie
reedits. In fact, scientific papers in a journal or conference proceedings can
also be considered as User-Generated Content.

The disrupting factor of UGC comes from the “democratization” of the
act of media distribution. It is now easy for one’s work to reach a hand-
ful of friends, or many thousands or millions of other people that may be
interested in what they have to say, to show or to share. This is sufficient
encouragement for the massive amount of data that, for one reason or an-
other, finds its way to Internet culture.

Characteristics frequently associated with UGC media productions are
the low budget, the small work team, the very personal approach to the
subject, and on occasion, the novelty factor that helps it stand out of the
other works.

Currently, the popularity of UGC can, at times, overshadow that of pro-
fessional products. For example, Wikipedia is currently more popular than
Encyclopedia Britannica, and is also responsible for the end of life of other
well known digital encyclopedias, like Microsoft’s Encarta. Other collabo-
rative efforts are currently gaining momentum, like Open Street Maps, and
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Youtube has currently no real rival in the area of generic on-line video.
Professional media production is expensive, and for that reason, an ef-

fort is placed in quality. This implies the role of a supervisor, that is some-
one assigned to ensure that a certain minimum standard of excellence and
rigor is consistently respected across the entire production. That standard,
of course, is not set at the same level in different places. An editor has
the responsibility of reviewing the texts before they are accepted for pub-
lication, and argues with the writers to make sure that the editorial line is
followed. In other business, that work is performed by the producer, like in
the music industry. When we talk about UGC, that responsibility is unas-
signed. Some times the authorship is unknown (for example, anonymous
comments in some websites or discussion forum).

We can ask then, where can we find value in User-Generated Content?
Roland Smart, a marketing consultant, probably summarises best in his
blog [Sma09]. In his professional view, the value of UGC is that it:

• Democratizes sharing of information;

• Distributes content efficiently;

• Fosters dialog and diverse perspectives;

• Enables crowd-sourcing and problem solving and

• Provides large data-sets for analysis.

We are interested in a much more narrow subset of UGC, that has the
following properties:

1. Is textual in nature;

2. Has tight space limitations;

3. Has a low participation cost;

4. Is of immediate nature;

5. Is ubiquitous; and

6. The data is public.

That is, short texts that anyone can produce from anywhere.
We can find this type of content in many places on-line, such as dis-

cussion forums, the comments sections in blogs and news websites, but
microblogs are the best source, as they use no markup, provide a standard
API (most of them), and provide abundant, up-to-date data.

At most, rules are set at a distribution channel (a website, usually) stat-
ing what is and is not accepted — usually to avoid legal complications —,
and may dictate some sort of technical standard to be followed. But in gen-
eral, the community is left to “sort itself out”, through feedback (comments,
votes, tags) and posting new versions — if at all.
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2.2 A brief introduction to microblogs

Microblogs are a form of User-Generated Content that are used to follow
(and propagate) the thoughts and doings of other people in a reduced num-
ber of characters (traditionally 140, but this is currently an arbitrary limit
and therefore varies from platform to platform).

It is difficult to point out which system was the first microblog, as the
service evolved organically from regular blogs. Some people trace its roots
to personal diaries from the 18th and 19th century [Hum10]. But microblog-
ging as we know it today certainly has its roots in IRC1, IM2 and SMS3.

Both Twitter and Jaiku were at the genesis of microblogging in 2006
[Mad09, Bul09]. Twitter’s story is quite well known. It was initially con-
ceived as a system that provided updates through SMS, a medium that
allows for 140 bytes per message4. To curb their SMS costs, Twitter creators
decided to limit each update to only one phone message, and imposed the
limit of 140 bytes [Mak09, Boi09]5. Many other microblog systems adopted
the same “140 characters or less” limit, even though they do not communi-
cate via SMS. As of late 2017, Twitter expanded their limit to 280 characters.

While SMS microblogging is useful and appreciated by many users,
it is often not the preferred form for interaction (if for no other reason,
due to the costs involved). Many (if not all) microblog systems offer a
web interface, RSS reading and native client applications (for one or more
Operating Systems and/or mobile platforms). Some also provide a pub-
lic API, allowing the development of non-official clients and applications.
This includes native access via non-officially supported Operating Systems
and microblog use for custom-made systems. For example, geolocation of
stratospheric balloons6, road traffic information7 or pet monitoring8.

Microblogging is not limited to just Twitter, but at the moment Twitter
holds the lion’s share of microblog users, relegating all other networks to
market irrelevance, to the point that microblogging and Twitter are some
times used as synonyms. There are, however, two caveats related to this.

1Internet Relay Chat is an open protocol for real-time multi-way text communication.
2Instant Messaging is a general term used for a form of real-time bi-directional text-

based communication system, although some systems have extended it to allow for multi-
way communication, and support live audio and video calling.

3Short Message Service is a component of cell phones’ communication system used for
the transmission of text.

4A total of 1120 bits that allows the encoding of 160 characters messages using a reduced
7-bit alphabet.

5Twitter messages are mostly encoded in UTF-8, thus their maximum length in charac-
ters depends on the characters used. If a messages is too long, is stored truncated, which
may some times be unexpected, due to special characters.

6http://spacebits.eu/page/project.html
7http://twitter.com/perth_traffic
8https://www.huffingtonpost.com/2010/02/15/puppy-tweets-tweeting-dog_n_

462455.html

http://spacebits.eu/page/project.html
http://twitter.com/perth_traffic
https://www.huffingtonpost.com/2010/02/15/puppy-tweets-tweeting-dog_n_462455.html
https://www.huffingtonpost.com/2010/02/15/puppy-tweets-tweeting-dog_n_462455.html
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First, QQ and Sina Weibo compete over the large Chinese market [con18a,
con18c]. They are both giants , even if they are less well known outside that
country. Second, there is Facebook9, with its 500 million users.

While Facebook is a social network (and some people also claim that mi-
croblogs are technically social networks — a discussion that we shall not
delve into), it is true that its “status update” feature is a form of microblog-
ging, i.e. it allows its users to publish short text messages online and to
read other people’s updates. There are two key points that we consider
to negatively impact Facebook’s microblogging aspect: access to status up-
dates from Facebook’s users readable only by their friends, and access to
the network requires access to a computer or smartphone, limiting a per-
son’s ability to participate at any moment. Therefore we are left with less
meaningful and sporadic data that is more difficult to analyse.

Facebook status messages are limited to 420 characters. While people
have experimented with status.net services, creating microblogs limited at
1400 characters, one of the key points in microblogging is the short message
length.

On the other hand, Twitter officially claims 175 million users, that are
responsible for 65 million messages per day [Gar10], accessing it through a
multitude of methods [Wil10]. More recent rumours put those numbers at
200 million users and 110 million messages per day [Chi11]. This volume of
information is quite impressive. Messages are in constant flow, and users
can write from anywhere [LF09], resulting in up-to-the-minute updates and
reactions from all around the world.

These are the reasons that turned our attention towards microblogs —
and without loss of generalisation, Twitter — for our work: the large vol-
ume of data available for study, its significance, its nature and its foibles.

2.3 A few notes about Twitter

As stated above, Twitter is not the only microblogging service, but it was
the first and is still by far the most popular. As it still holds the dominant
position in microblog culture, we will talk about microblogging as seen
through a Twitter user in this segment. The basic concepts of microblog-
ging are also valid for the competing systems, sparing only some terminol-
ogy — for example, in identi.ca a message is called a “dent” instead of a
“tweet”, and they use the term “resend” instead of “retweet”.

Twitter is not limited to what is described here, but hopefully it will be
sufficient to allow almost anyone to follow the rest of this document.

A Twitter timeline is simply the collection of messages that users pub-
lish, and is updated in real-time. A user also has their own timeline, con-
taining only their posts. This timeline can be either public or private. If

9http://www.facebook.com/

http://www.facebook.com/
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private, then the user needs to grant access permission to each person that
wishes to read it. Private timelines seem to be a minority in Twitter, and we
intend to make no effort in accessing them.

Users are, of course, interested in consuming the most interesting time-
line possible, and hopefully making a positive impact on others’ timelines.

2.3.1 The network

If a user A subscribes to another user B’s tweets, meaning that they want
be able to see B’s updates, then A is said to be a follower of B (or simply that
A follows B). User A can also have their own followers. On occasion, the
word “followee” is used to denote someone that is followed, but it seems
to be an unofficial term, as the Twitter website never uses it.

We can see that the graph of followers forms the backbone of Twitter’s
social network. However, and contrary to “regular” social networks, fol-
lowing someone in Twitter is not a mutual relation. A follows B, but B
ignores A is a very frequent pattern.

According to HubSpot’s 2010 report [Hub10], Twitter users follow ap-
proximately 170 persons, and have 300 followers in average. But 82% of the
users have less than 100 followers, and 81% follow less than 100 persons.
This indicates that the social structure is very unbalanced.

Consulting Twitaholic’s10 numbers related to some of Twitter’s top per-
sonalities (see Table 2.1), we can notice that some users have a dispropor-
tionate number of followers, and follow a great number of people in re-
turn. It is also apparent how this falls into Twitter marketing strategies.
For example, Barack Obama’s team is pulling a popularity trick (as in “I’m
listening to you”), while Taylor Swift takes the opposite approach.

2.3.2 User interaction

In Twitter users can publicly interact with each other in three forms: men-
tions, replies and retweets. Twitter also provide a private “Direct Message”
mechanism, but given that such data isn’t public, we will not address it.

A Twitter mention is simply a message where a user’s handle occurs in
its body, prefixed by “@” — what is called some times a @reference. This
symbol is used to disambiguate usernames from normal text. That way,
“Twitter” means the microblog and “@Twitter” means the official Twitter
account. For example:

What I meant is @twitter could you please just let us keep old twitter?
The new one kinda sucks, to be honest.

OMG my Twitter account is 579 days old!!! <3 @twitter

10http://twitaholic.com/

http://twitaholic.com/
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Table 2.1: Some Twitter personalities and statistics from https://
friendorfollow.com/twitter/most-followers/, retrieved on 2018-06-20.

User Role Followers Follows
Katy Perry Pop singer 109,595,659 216
Justin Bieber Pop singer 106,535,597 310,606
Barack Obama Ex-president of the USA 103,225,557 621,452
Rihanna Pop singer 88,775,421 1,112
Taylor Swift Pop singer 85,540,254 0
Lady Gaga Pop singer 78,878,841 127,135
Elen DeGeneres Comedian 78,098,165 35,757
Cristiano Ronaldo Footballer 73,913,377 99
Youtube Internet media company 72,303,826 1,026
Justin Timberlake Pop singer 66,061,746 282

Replies are just like mentions, but the addressee appears at the start of
the message. This indicates that the message is directed at that user (prob-
ably as a reply to something they said). However, the message is as public
as any other. An example:

@twitter I keep getting spam bot followed...fix this! :D

Both mentions and replies are gathered by Twitter, so that users can
easily find out what is being said to or about them. A user can mention
and reply to anyone, independently of following or being followed by that
person.

Users can also propagate a message someone else wrote. This is akin
to email’s forward action, but in Twitter it is called a retweet. A retweet is
identified by the letters RT and the reference of the quoted author. A copy
of the message usually follows. Users can still edit the message, adding
their comments, more often at the start of the message to clearly separate
them. Here is an example:

An inspiring must-read. Who knows what we’ll accomplish in 2011?
RT @twitter The 10 Most Powerful Tweets of the year: http://ow.
ly/3oX0J

These interactions can all be combined. For instance, we can create a
retweet of a retweet, or reply to a mention, or retweet a reply to a retweet
to a mention.

https://friendorfollow.com/twitter/most-followers/
https://friendorfollow.com/twitter/most-followers/
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2.3.3 Defining the context of a message

Another interesting and noteworthy constructor in Twitter is the hashtag.
It is used to group messages related to a certain theme, and is created by
using an hash symbol (“#”) followed by a word. For example,

My latest blog post: Gulf Seafood Safety in Question http://wp.me/
pZnhC-7X #gulf #oilspill #bp #corexit, tweetin this again 4 the AM
crowd!

Snowbirds are coming to Myrtle Beach, #Florida, quelling fears of
#Gulf #oilspill impacts: http://bit.ly/gjYY5p

We can see that in the second example the hashtags are also used as
normal words; as opposed to the first example, where they are used more
like “metadata” for topic grouping.

2.3.4 Takeaway ideas

Microblogging is a relatively new medium of communication that com-
bines SMS with blogging (among other influences). It is meant to be short,
simple, to the point, spontaneous, unstructured and informal. Twitter is
the most influential microblog, and for this reason, the one adopted as the
example.

It was Twitter that gave rise to two (user-created) constructors that are
now common in may other domains, namely referring to other people by
writing a name preceded with the symbol “@” (called a @reference or men-
tion), and the hashtag, that consists in using the symbol “#” before the
name of the tag. The simplicity of adding metadata as part of the message
helped to popularize it.

As a tool that is “always at hand”, microblogging quickly became part
of many people’s daily habits, extending their communication medium
portfolio. It is used for big and important announcements and for daily and
inconsequential chitchat, providing an all-encompassing medium, proba-
bly only comparable to face-to-face talking.

Processing microblog messages automatically can be very different from
processing small excerpts of formal text (i. e. the typical type of text written
by a person with care and attention to how they are expressing themselves,
and we can find in books or newspapers). This can result in a number of
problems for text processing systems, and we will analyze some of these
issues in the following chapter.
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2.4 How microblog messages can be problematic

Many of the tools that are currently used for linguistic processing can have
their roots traced to the early era of computational linguistics. Kuc̆era and
Francis created the now-called Brown Corpus in the early 1960s [KF67], the
first large corpus for linguistic analysis. At the time computers were much
more limited. For example, the Brown Corpus was written in all-caps, with
an asterisk indicating word capitalization [MS99]. Digital texts, while not
rare, were not as pervasive as they are today.

Currently, we have a very large proportion of text being created digi-
tally, as much more powerful computers are easily accessible to many peo-
ple, lowering the bar for content creation. The Internet lowered the bar
that restricted content distribution, especially when Blogs appeared. Today,
we have an environment where large amounts of text, written by common
people (i.e. available to anyone who wants it), are constantly being dis-
tributed, accessed and, hopefully, read. While no one denies the existence
and relevance of what can be called the “clean text”, carefully created by
professionals, we claim that the more common problem (in text processing)
has shifted significantly towards the disposable messages quickly typed by
“average Joes”.

The first problem researchers meet when trying to apply their linguistic
tools on microblog messages is the large amount of noise [DH09, SRFN09].
Noise is the general term applied to outlier values that fall outside the
model used for the data, and can interfere with the meaning of the message
in an unwanted way. In our context, we call noise to any form of deviation
between the original (microblog) message and the same message written
in a clean and simple newspaper-like form — we are interested in dealing
only with the lexical aspects at the moment, and will therefore ignore any
syntactic or semantic factors.

Noise has a negative impact in the correct reading and understanding of
the messages, for both humans and automatic systems. However, a person
can more easily compensate using context, experience and cultural knowl-
edge, and is the reason many of it is tolerated today. We follow with a brief
discussion of many forms of noise present in microblogs.

2.4.1 Spelling choices

Alternate spellings are one of the most obvious differences between mi-
croblog text and “clean” text. This includes words that are misspelled ei-
ther by accident or on purpose. For example, by using “Micro$oft”, “Dubia
Bush” or “Deusébio”, the author is embedding a secondary message in the
name: “Microsoft is greedy”, “George W. Bush is a dumb Texan”, and “Eu-
sébio is a divine figure”.

It is also possible to see the use of numbers instead of letters to type a
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word. Numbers can be chosen due to their graphic appearance, that resem-
bles a letter, often seen in “l337 5p34k” (leet speak), or to their pronuncia-
tion, i.e., “2day” (today), “4get” (forget) or “pir8” (pirate).

Below we can see two consecutive messages from the same user, con-
taining different spelling choices. The first message shows the misspelling
a word as another similar word (the context hints that she meant “bores”
instead of “boards”). The second message has errors due to the inclusion
of an extra letter, and the removal of another one.

SAM BOARDS ME *YAWN x

OPPPS SPELLING MISSTAKE AND YOU SPOT IT OUT EMBAR-
RASING :S

2.4.2 Orality influences

In general, UGC is strongly influenced by oral forms of communication. Es-
pecially in Twitter, as it contains mostly unprepared discourse. Messages
tend to be short, and present syntactic structures that are usually simple,
incomplete or even incorrect; we also find many sentences that are incom-
plete.

The vocabulary we find in UGC tends to be less rich since, for example,
we find more broad words being employed (e. g. “thing”, “it”, “stuff”) and
referring expressions (e. g. “she”, “her”, “that”, “this”, “here”, “there”).
The oral influence can also be observed in the grammar (i. e. past perfect is
rarely used), and in the strong contextual reliance that is required to under-
stand the message correctly.

Phonetic spelling

One form of intended misspelling is the use of phonetic-like writing as a
stylistic choice or cultural bias — for instance, when the author intends
to give a “street culture” image. It can also be used when they try to call
attention to someones’ speech pattern (for example, an accent or lisp). The
following examples show what seems to be unintended errors and words
misspelled on purpose (e.g. “ya” and “u c”):

You can super annoyin but i couldnt live without ya <3

@fakeforte wassup man u c m&m didnt win album of da year last
nite or wateva instead justine bleiber won wtf shulda been weezy or
soulja boy
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Onomatopoeias, interjections and fillers

The orality influence also extends to the inclusion of as onomatopoeias, in-
terjections and fillers. These special lexical categories show great variety
across graphic variation (since there is no “official” definition of how they
are written) and culture. For instance, the onomatopoeias “jajaja” and “je-
jeje” are popular in Spanish, as “hahaha”, “hehehe” and “hihihi” are in
European Portuguese, or “rsrsrs” and “kkkk” are in Brazilian Portuguese.

Fillers are used in speech to avoid an awkward silence when the speaker
organizes their thoughts. Their presence in a written medium is a strong in-
dication that the author wishes to carry across the full experience of spoken
conversation.

Examples of their use follow.

@VargasAlan Cof cof werever cof cof? jajaja

@araeo Err ... that was ’writer’s BLOCK’, obviously. Ugh. I’m hope-
less.

@meganjakar errrrrrr not too sure. I don’t know if you’re invited..?

2.4.3 Non-standard capitalization

The purposes of capitalization vary according to language and culture.
Some languages do not even use them, like Chinese and Japanese. When
used, many times they are meant to highlight something, i.e., the start of
a sentence, a proper noun, any noun (i.e. in German), an acronym, or the
word “I” in English11.

If the writer neglects standard or commonly accepted capitalization,
they may also be negating very useful clues that help determine if a dot
marks an abbreviation or a full stop. These clues would also be useful in
hinting that “Barack” could be a correctly written proper noun absent from
the dictionary, and not “barrack” misspelled. The following examples illus-
trate different situations. The first two show a consistent letter case choice.
In the third example the user changes to all-capitals in the end of the mes-
sage. The last example displays selective casing, where the author correctly
capitalizes some words but not proper nouns.

christmas convo: me- wat u want fa christmas her- u kno how i lik it
http://bit.ly/ih8xsA

SHOUTS TO DADDY K FOR THE KICKS HE GOT ME I LOVE EM
AND SHOUT TO BOB SINCLAR I HAD A GOOD TIME @ THE TV
SHOW LAST NIGHT !!

11“i” was a word that got lost easily in texts, and capitalizing it made stand out more. “I”
became prevalent in the 13th and 14th centuries.
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Look, I don’t mind following u Bieber freaks but keep those dam pe-
titions OUT MY MENTIONS...

Listening to tyrone bynum talk shit bout barack obama..... This nigga
is in his own lil world....

2.4.4 Abbreviations, contractions and acronyms

As expected, when users need to fit their message into a small space, ab-
breviations, contractions and acronyms are frequently used to reduce the
character count. The main problem arising from their use is the creation
of non-standard forms when a more common one may already exist. In
fact, the variety of methods available to cut characters in text naturally lead
to this situation. For example, “lots of people” can be reduced to “lots of
peop.”, “lts of ppl”, “lotz’a ppl”, “lotta ppl”, “LoP” and so on.

Many factors may contribute to the choice of less popular options over
more established alternatives. For example, if authors really need to save
more characters, they can opt for a more aggressive abbreviation. They can
be typing from a device that makes the apostrophe more difficult to input.
It could also be a question of writing style — to give a more oral tone to the
message.

There is also the possibility that an author can think that the target read-
ers will have more difficulty in deciphering a certain reduced form (e.g. it
could collide with another word). For example, Wikipedia currently lists
over 90 possible disambiguation alternatives for “PC”, including “personal
computer”, “probable cause” and “program counter”. Acronym Finder12

lists 304, adding “pocket computer”, “phone call” and “prostate cancer”
among others. Hence, “not with PC” could be read as “not with probable
cause” by someone with a legal background, and “not with prostate can-
cer” by a medical worker.

Abbreviations

In regular, careful writing, some words are very frequently written in ab-
breviated form, such as “etcecetera” (“etc.”), “exempli gratia” (“e.g.”), “Doc-
tor of Philosophy” (“PhD”), “street” (“St.”), “saint” (“St.”) and “versus”
(“vs.”). In Twitter there are some standard abbreviations (e.g. “RT” for
“retweet”), but they are uncommon as most “standards” in Twitter are de
facto standards, that gained community support. For example, “#tt” may
mean “trending topics”, “travel tuesday” or “toilet tweet”13, and “#ww”
could mean “worth watching” or “writer’s wednesday”14.

12http://www.acronymfinder.com/
13https://tagdef.com/en/tag/tt
14https://tagdef.com/en/tag/ww

http://www.acronymfinder.com/
https://tagdef.com/en/tag/tt
https://tagdef.com/en/tag/ww
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The large number of words that are abbreviated, and the number of pos-
sible abbreviations they can have lead to a fragmentation of the language.
For example, “you” — already a short word — can be seen written as “ya”
or “u” (as in the examples in Section 2.4.2).

One additional problem with abbreviations on Twitter is that many are
written without the dot after them. For instance, “tattoo” is occasionally
written as “tat”, which is also a well-known misspelling of the frequent
word “that”. This problem is augmented when the abbreviated form of the
word coincides with a regular word (e.g. “category” shortened to “cat”).
Recognizing an abbreviated word is thus a challenge left to context.

Finally, a word can be subjected to alternate spelling and abbreviation,
as in the case of “please” written as “plz” instead of “pls”.

In the following examples we can see “morning” written in the form
“am” (an abbreviation for “ante meridiem”) and “because” shortened as
“b/c”. It should also be noted that in the second example “ya” is used
instead of “you” and “your”, showing how a user can fail at consistency
even in the same message.

@ryanhall3 saw u at my hotel this am. Didn’t realize it was u until u
were leaving. Prob a good thing b/c I would have asked u for a pic :)

@alexandramusic hii!! How are u?? I’ve missed ya!! Omg i love ya
song’bad boys’ sooo much!!! Can u plz follow me!?? :) xx

Contractions

Contractions can be very popular in general casual writing, and less in for-
mal writing. As in microblogs the general style is very informal, it is ex-
pected that contractions are very frequent. For example, “I’m” is much
more popular than “I am”, even if it saves just one character. However,
users many times further reduce the expression to just “Im”, leaving to the
reader the task of noticing the contraction.

Contractions are one of the many orality markers to be found in mi-
croblogging.

Yall im finna stop smokin

It annoys me when ppl say they waitin til the 1st to workout. U aint
doin nothin today so get to gettin

Acronyms

Acronyms are also very popular in microblogging, as they allow significant
character condensation. An expression or idea can be encoded in just a few
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Table 2.2: Some frequent acronyms used in microblogs.
Acronym Expansion Acronym Expansion
AAMOF As a matter of fact GF Girlfriend
AFAIK As far as I know IANAL I am not a lawyer
AKA Also known as IMHO In my humble opinion
ASAP As fast as possible LOL Laughing out loud
ASL Age, sex, location? OTT Over the top
BF Boyfriend SMH Shaking my head
BTW By the way SO Significant other
FTW For the win TA Thanks again
FWIW For what it’s worth TLDR Too long, didn’t read
FYI For your information YMMV Your mileage may vary

letters, as can be seen in the examples in Table 2.2. Some have become very
well known, like “LOL”.

However, and contrarily to abbreviations and contractions, a good un-
derstanding of the language and the context is insufficient to decipher the
acronym. It needs to be introduced or looked-up somewhere.

There are certainly thousands of acronyms in use, covering names, situ-
ations and quotes. Most are limited to specific contexts, but many are very
popular in general use.

Popular acronyms are some times altered to change their meanings, as
for instance, changing “IANAL” (I am not a lawyer) to “IANAP” (meaning
“I am not a plumber”), or “IAAL” (for “I am a layer”), but it should occur
only when very obvious from the context (or the “joke” is explained). Other
types of changes affecting acronym are their use as words, such as “LOLed”
or “LOLing” (meaning “laughed” and “laughing”, respectively).

Finally, as by far the most common acronym in microblog use, LOL
is used with many variations. A common one is the exaggeration of the
acronyms to reflect an exaggeration in the laughing. For example, “LL-
LOOOLLL”, “LOOOOL” or “LOLOLOL”.

As was explained before, proper casing rules are often not followed,
making acronyms more difficult to spot. We can see this in the first two
examples of acronym use in Twitter:

@LilTwist and @LilZa Need a GF ASAP Lool its upsetting seeing
them lonely I need to help them find a nice girll :)

@angelajames Reviewers are entitled to opinions. I don’t reply to
mine - reviews not for me, for readers imho. Otoh, do like good ones!

@aarondelp BTW, Time Machine uses (AFAIK) AFP over TCP. You
just need the NAS to provide the appropriate support.
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2.4.5 Punctuation

Many microblog users do not regard punctuation as important. It is so
frequent to find the reading of messages hindered by the misuse or absence
of punctuation, that one can already expect it. Part of the reason may be
due to cell phone typing, where some devices have only one key for all
forms of punctuation, making the task of looking for the correct character
tedious. Other users may see punctuation on such short messages as a mere
formality. Or they are trying to save characters and/or seconds of typing
(or, parsimoniously, they simply don’t care enough to bother typing them).

Consequently, readers must use grammatical and/or semantic clues to
guess where one sentence ends and the next one starts. For example:

Ouch Russell Brand put a photo up of Katy Perry up without make-
up on (and deleted it) nice to know shes human! http://plixi.com/
p/66692669

Other times microbloggers exaggerate on the punctuation, by repeating
it, or writing it incorrectly, as shown below:

OMG OMG!!!I just saw that @emilyrister followed me!!!WOW!You’re
awesome!!I read your tweets since the beginning,it’s crazy.THANKS
THANKS!!!!

@So_Niked_Up22 What time is yo game.? N you right..it really aint
nothin to do.!

2.4.6 Emoticons

In spoken conversations, a significant amount of the message is perceived
through non-verbal language, such as speaking tone and body language.
In textual conversations these communication channels do not exist. To
address this problem, and reintroduce such information to the medium,
people resort to typographic signals arranged in a way that resembles facial
expressions. The most common of these is the very popular happy face “:-
)”.

These constructions are added to informal conversations as a way of
conveying a “tone” to the messages through happy (“:-)”), sad (“:-(”), wink-
ing (“;-)”), tongue out (“:-P”), crying (“:’-(”), surprise (“:-O”) or other as-
pects from a wide and varied range. The general name given to this class
of graphic markers is emoticon, as it mainly expresses emotions through
iconic representations.

Many variations of emoticons have been created, such as having the
faces looking in the opposite direction (e.g. “(-:”) and with giving them a
vertical orientation, instead of horizontal (e.g. “^_^”). These variations can
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also be altered to display a wide range of feelings (e.g. crying “T_T”, “)-’:”
and winking “^_~”, “(-;”). Emoticons are not limited to face-like images
(i.e. a heart “<3”, and a fish “><>”). One simple example of smileys in use:

@LadyGaGaMonst Oh, okay. ;D BT is amazing. I’m so happy that
Dancing On My Own got a Grammy nomination. :D

Emoticons are frequently an important part of the message, and not
just a complement. Should they be removed, the reader could be left in
a situation where they are unable to understand the message correctly, or
at least not in its fullest. For example, in the simple message “It’s already
empty. :-)”, the emoticon adds something to the message, and changing
it to another one — or removing it altogether — can result in significantly
different meaning.

In ironic messages, what is written is not to be taken literally. Many
times the author means the exact opposite. Emoticons provide a very valu-
able clue in this situations. For example:

@Camupins Yeah, you’re right. No one loves you anymore... So
HAH! Suck that! ;D

Emoticons are valid elements of microblog’s general lexicon. This is a
broader lexicon than the one traditional NLP applications expect to process.

2.4.7 Decorations

A number of microblog users believe they should highlight some parts of
their messages. If a rich text format was available to them, they would use a
bold, italic, underline, colour, blinking, sparkling, and/or another method
to call attention. Since microblogs do not provide such features, there are
only three alternatives available: using upper-case text, decorations or ex-
ploring Unicode characters.

The use of upper-case text has already been discussed in Section 2.4.3.
It produces what is often called the “shouting” effect, as it gives the impres-
sion that the writer is raising the voice.

The decorations consist of one or more non-alphanumeric symbols that
are placed around words or characters to make them stand out. These
symbols are usually easy to distinguish from letters, as to not complicate
the reading. Therefore, “.” or “:” are fine, but “#” or “$” are not as com-
mon. Some characters have been used in the Internet for many years for
this purpose: “*bold*”, “/italics/” “_underlined_”. Here are two examples
of decorators:

Lea and ezra america. sitting in a tree. k.i.s.s.i.n.g
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@SpeakSeduction im feelin all sorts of. "emotions" haha damn . but
shoot at least im not workin yay!! *jigs*

Decorations can also be used as “ornaments” in the message, without
the intent of supporting words. These characters could be deleted from the
message without affecting its meaning in any way, as they function only as
beautifiers of spacers. For example:

∼CHECK IT OUT∼

It should be noted that the distinction between an unknown smiley and
a decoration can be very hard to make some times. Here is a more complex
example of the use of decorators:

TYVM Love u back d(ˆ_ˆ)b #Joy RT @misslindadee *¨)
God Bless!º≤≥P::E::A::C::E ::&::
H::A::P::P::I::N::E::S::S!!!•*¨*LOVE YOU!!@SPARTICUSIAN

Finally, looking for more creative forms of expressing themselves, some
users opted for exploring the Unicode character set supported by Twitter
and other microblogs, and occasionally replacing letters by other symbols
graphically similar, such as “a” by “@”, “E” by “∈”, “N” by N, or “C” by
“©”.

2.4.8 Obfuscation

On occasions, users wish to limit the number of readers that understand the
full meaning of their message. There are many reasons for that: hiding pro-
fanity, avoid naming a person or company, or not wanting to be associated
with some group or ideology by naming it.

There are many forms of obfuscation. The most common one consists of
replacing one or more letters (usually not the first one) with another non-
letter character. Vowels are usually the preferred letter to replace. Some
users replace letters by graphically similar characters (e.g. an “o” by an “0”,
or an “s” by an “$”). Another popular obfuscation technique is exchanging
two consecutive letters from the middle of the word. Some examples of
obfuscated text follows:

Never understood why people edit they tweets by using words like
fcuk,sh*t,
fuggin,bi**h.What’s the point if you going to curse then curse

´́ @Paris_Richie: ´́ you a nothing a** person , who does nothin a** sh*t
, and ion want a nothin a** nigga´́ !´́
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There are some other text constructions that look like obfuscated text
but have other meanings. One example is globbing (the use of a simple
expression to define a pattern that encompasses a number of possibilities),
such as in “*nix” to refer to Unix and Unix-like Operative Systems (Linux,
Minix, Xenix, etc.). These occurrences are rare outside of the advanced
computer area.

2.4.9 Special constructs

As email brought the idea of email addresses to the public, and the World
Wide Web disseminated the idea of URLs, so does microblog bring with it a
specific set of constructors, like the previously mentioned @references and
hashtags. Even if for many people these are as common as phone numbers,
for historical reasons (as was explained before), many linguistic tools still
don’t recognize any of them.

In the case of microblog-specific constructs, this is understandable, as
they are limited to a specific environment; but others have become main-
stream many years ago.

2.5 Conclusion

We have now seen how very informal writing can challenge automatic text
processing. None of them are completely exclusive of microblogging, and
can be found from most text UGC to SMS.

We can create an idea of the typical microblogging user based on some
of the problems we listed:

• they can have some trouble in putting their thoughts in formal writ-
ing (they write as they talk), and while in some situations this may be
intended, often it does not seem like it;

• they wish to avoid typing as much as possible, ignoring characters
when they have no need to do so and disregarding letter casings; and

• they feel the need to emphasise things non-verbally, from stress (dec-
orations) to non-verbal language (emoticons).

It would be an error to overgeneralize this idea, since some users do
write in the most perfect form, but they are an unfortunate minority.
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The automatic processing of microblogging messages may be problem-
atic, even in the case of very elementary operations such as tokenization.
The problems arise from the use of non-standard language, including media-
specific words (e.g. “2day”, “gr8”, “tl;dr”, “loool”), emoticons (e.g. “(ò_ó)”,
“(=ˆ-ˆ=)”), non-standard letter casing (e.g. “dr. Fred”) and unusual punctu-
ation (e.g. “.... ..”, “!??!!!?”, “„,”). Additionally, spelling errors are abundant
(e.g. “I;m”), and we can frequently find more than one language (with dif-
ferent tokenization requirements) in the same short message.

27
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For being effective in such an environment, manually-developed rule-
based tokenizer systems have to deal with many conditions and exceptions,
which makes them difficult to build and maintain. That means that, while
it would be possible to add support for mentions, hashtags and URL, other
situations would be more difficult to handle. For example, the asterisks in
“That is *not* OK!” (text enhancement) should be treated differently from
the asterisk in “What a pr*ck!” (obfuscation) or in “Kisses! :-***” (smiley).

Hard-coded rules also have the effect of calcifying language-specific
conventions and practices, making them less useful for use in a culturally
diverse environment. Based on the requirements we mentioned, and the
limitations our team was facing, we searched for a better solution.

In this chapter we propose a text classification approach for tokenizing
Twitter messages, which address complex cases successfully and which is
relatively simple to set up and to maintain. Our implementation separated
tokens at certain discontinuity characters, using an SVM classifier to de-
cide if they should introduce a break or not. We achieved F1 measures of
96%, exceeding by 11 percentage points the rule-based method that we had
designed specifically for dealing with typical problematic situations.

Subsequent analysis allowed us to identify typical tokenization errors,
which we show that can be partially solved by adding some additional
descriptive examples to the training corpus and re-training the classifier.

3.1 Introduction

Despite its potential value for sociological studies and marketing intelli-
gence [MK09], microblogging contents (e. g. Twitter messages and Face-
book status messages) remain a challenging environment for automatic
text processing technologies due to a number of foibles that are typical
of User-Generated Content. Such environments tend to present a signifi-
cant number of misspelled or unknown words and acronyms, and is popu-
lated with media-specific vocabulary (e.g. “lol”) that is not always lexical-
ized in dictionaries. Additionally, it usually suffers from inconsistent use
of capitalization in both names and acronyms, may have mixed languages
and employ typographically constructed symbols (such as “=>” and “:-)”).
Also, users often create new sarcastic words to better express themselves
in a short and informal way (like “Dubya” to refer to George W. Bush).
Some work has already been done in developing text pre-processing meth-
ods for homogenizing User-Generated Content (UGC), and transform it
into text that is more amenable to traditional Natural Language Processing
procedures, such as contextual spell-checking [Kuk92] and name normaliza-
tion [ACDK08, JKMdR08].

The microblogging environment has some additional characteristics that
influence the quality of the text. First, since messages are limited to 140–200
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characters, text economy becomes crucial and thus users tend to produce
highly condensed messages, skipping characters whenever possible (in-
cluding spaces), and create non-standard abbreviations (such as “altern8”)
— similar to SMS text [ANSR08]. Second, the quasi-instant nature of micro-
blogging diffusion promotes conversations between micro-bloggers. Thus,
messages tend to have a strong presence of oral markers such as emoticons
and non-standard or missing punctuation. Finally, due to the almost ubiq-
uitous access to a network, users can micro-blog from any place using mo-
bile devices, which, for usability reasons, tend to constrain how users write
messages and (not) correct them in case of spelling mistakes.

All these idiosyncrasies raise several obstacles to most natural langu-
age processing tools, which are not prepared to deal with such an irregular
type of text. Therefore, some work has been done in developing text pre-
processing methods for homogenizing user-generated content, and trans-
form it into text that is more amenable to traditional Natural Language Pro-
cessing procedures. These methods include, for example, contextual spell-
checking [Kuk92] and name normalization [ACDK08, JKMdR08].

We focus on a fundamental text pre-processing task: tokenization (or
symbol segmentation) as the initial step for processing UGC. The task con-
sists in correctly isolating the tokens that compose the microblog message,
separating “words” from punctuation marks and other symbols. Although
apparently trivial, this task can become quite complex in user-generated
content scenarios, and specially in micro-blogging environments for the
reasons explained above. Besides all the tokenization problems that can be
found in “traditional” text (e.g. acronyms, diminutive forms, URLs, etc.)
there are many other situations that are typical in micro-blogging. As a
consequence, mishandling of such highly non-standard language usage sit-
uations could compromise all further processing.

One more example, in regular text — such as in printed media — the
slash (“/”) has a restricted number of use cases, and from a tokenization
point-of-view it is unambiguous. In the microblogging context, a slash
may also be part of a URL or a smiley. In fact, this kind of problem is also
found in some specialized fields, such as the biomedical domain [TWH07],
where some common symbols (such as “/” and “-”) may perform a func-
tion within the token, (e.g. "Arp2/3" is a protein name, and “3-Amino-1,2,4-
triazole” is an organic compound). As their interpretation becomes more
context-dependent, specialized tokenizer tools become essential.

Tokenization of microblogging messages thus may be quite problem-
atic. The most common problem is users simply skipping white space, so
the tokenizer has to determine if those spaces should exist. Table 3.1 has
some illustrative examples. Message 1 shows the typical situation of the
missing white space. While these situations could be fixed using simple
rules, messages 2 and 3 exemplify other frequent situations where such a
simple approach would not work. Messages 4, 5 and 6 show examples
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Table 3.1: Examples of tokenization challenges. Key regions in bold font.

1 “the people at home scream at the phone.and complain when i scream,like
’ahhhhhhh’. af,start start start”

2 “Band in the style of Morchiba I just discovered: Flunk. Very good. Thank
you last.fm!”

3 “i didn’t seee dougie O.o should I go to the doctor ??”
4 “@FirstnameLastname Really ? ? the first time I saw I was in Frankfurt-

GERMANY, and this is the first time I saw Madri this way ,cuvered in
snow.. kiss”

5 “@Berrador Benfica is not to blame that Vitor Pereira is irresponsible..But
it’s bad for everyone. Notice the appointing of Duarte Gomes to the fcp-
scp”

6 “Be a bone marrow donor-Show up in norteshopping until friday and
unite for this cause.”

7 “What is worse, coca-cola without gas or beer without alcohol?”
8 “@aneite can i then schedule a check-up ? ( cc @firstlastname )”
9 “Today’s theories: a) if its in april, a thousand waters, then have rain until

april b) if rain wets, then whoever walks in the rain gets wet -.-’ ”
10 “Have a good week, Guys :o)”
11 “@j_maltez Mother so young!?!!?!! :X”
12 “5.8 earthquake in the Caiman. No victims reported”
13 “Earthquake of 6,1 felt today in Haiti.”
14 “The movie’s impressive numbers RT @FirstnameLastname: Ubuntu

Linux is the key to Avatar’s success http://bit.ly/7fefRf #ubuntu #linux
#avatar”

where the tokenizer should divide the emphasized text in three tokens:
“Frankfurt - GERMANY”, “fcp - scp” and “donor - Show”. By contrast,
in messages 7 and 8, the emphasized text should be considered as a single
token. Cases involving parentheses also provide good examples of how
tokenization may be complex.

Usually, parentheses make up their own token. However, when used
in enumerations and “smileys”, the parentheses are part of the larger token
(as in messages 9 and 10). Such cases may appear in other forms of text,
but not with the frequency found in UGC. Other times users make a very
creative use of punctuation, often overusing it (example 11). These occur-
rences, nevertheless, should not be confused with the very large number of
smileys that populate the messages and which the tokenizer should keep
together (as found in messages 3, 10 and 11). There is also a wide variety
of complex cases including names of products (example 7) and numeric
quantities (or dates) in non-standard format (examples 12 and 13).

Finally, there are also many microblogging-specific exceptions to tra-
ditional tokenization operations, such as usernames (@username), hash tags
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(#hash_tag) and URLs that must be kept intact (example 14 illustrates these
situations).

It would be possible to use an existing tokenizer and add new rules to
cover these additional situations. One such tokenizer is UPenn Treebank’s
tokenizer1, which fails to correctly tokenize many of the above examples
— for instance, it has no understanding of URLs or smileys, resulting in
tokens such as “http : //bit.ly/123456” and “: - )”. However, and contrary
to traditional text, microblogging content is very irregular (with each author
creating their individual writing style), and the token universe is open, due
to the creative use of letters, numbers and symbols (i.e. characters other
than letters, numbers and white space).

For the above reasons, many tokens are not in a dictionary. We can-
not rely on compiling a list of possible emoticons, for example, and new
ones continue to appear. Some can be quite elaborate, for instance: “8<:-)”,
“orz” (a kneeling man), “<(-’.’-)>”, “(ò_ó)” or “(=ˆ-ˆ=)”. The “orz” exam-
ple in particular shows that simple heuristics are insufficient to identify all
emoticons, as they can pass as an unknown word2. A more frequent exam-
ple is the “XD” smiley. Without a compiled list or an adequate pattern to
match them against, emoticons are difficult to accommodate in a rule sys-
tem developed manually. This is not a small setback, as emoticons play a
fundamental role in the interpretation of UGC-like messages, such as sen-
timent analysis [Rea05] or opinion mining tasks.

We propose a text-classification approach to the tokenization of microblog-
ging messages. We train a classifier for deciding whether a white space
character should be introduced before or after certain symbols, such as punc-
tuation, quotation marks, brackets, etc. Compound words (such as “airfield”)
will never be separated.

This tokenizer is only concerned with the separation of tokens. We as-
sume that other tasks normally associated with text pre-processing, such as
the identification of compound multiword expressions, character transpo-
sition, text normalization, and error correction are to be delegated to other
modules further down the processing pipeline (that can be performed in
multiple cycles of operation).

For training the classifier we use a set of manually tokenized Twitter
messages, which can be easily obtained, as the annotation task itself is rel-
atively simple for humans — the annotator mostly deals with particular
cases and does not have to think about the (not always foreseeable) impact
of each rule they write. The key point is that adding more (and more di-
verse) training examples is an easier way to improve the performance than
adding new rules [NY00].

1http://www.cis.upenn.edu/~treebank/tokenizer.sed
2“Orz” is also the name of an alien race in the fictional universe of computer game Star

Control 2.

http://www.cis.upenn.edu/~treebank/tokenizer.sed
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In this chapter we address the following questions:

• Can a classification-based approach to tokenization of UGC clearly
outperform a tokenizer based on rules specifically crafted for this pur-
pose? If so, how much training data is required for achieving such
performance?

• Which features — both in diversity and amount of contextual infor-
mation — does the classifier need to obtain optimal tokenization per-
formance?

Our work is mostly done on Portuguese text, and that influences some
of the decisions made when defining token borders. However, our methods
and results are valid when considering most western languages with little
or no adaptation.

The remainder of the chapter is organized as follows: in Section 3.2
we introduce some work that relates to tokenization or text pre-processing.
In Section 3.3 we will describe the method used to tokenize UGC. In Sec-
tion 3.4 we explain the rules for the processing of the corpus and why we
made such choices. In Section 3.5 the experimental setup is described, ex-
plaining how we reached the results, that are then presented in Section 3.6.
We analyze the most significant errors in Section 3.7, and then conclude
with a summary of the results and directions for further work.

3.2 Related work

Being such a fundamental problem, tokenization is considered a solved
problem on traditional contents. Maybe for this reason, there seems to be
a lack of investment in developing new tokenization solutions for UGC,
despite the fact that this type of content poses a completely new set of chal-
lenges for tokenization. Thus, in this section, we refer to works made on
tokenizing text contents other than UGC, or on conceptually similar, yet
different, problems.

A comparable work is the Tomanek et al. study of the tokenization prob-
lem on biomedical texts [TWH07]. The notation used to write biomedical
entity names, abbreviations, chemical formulas and bibliographic references con-
flicts with the general heuristics and rules employed for tokenizing com-
mon text. This problem becomes quite complex, since biomedical authors
tend to adopt different, and sometimes inconsistent, notations. The method
proposed consists of using Conditional Random Fields (CRF) as text classi-
fier to perform two tasks: (i) token boundary detection and (ii) sentence bound-
ary annotation. For obtaining the corpus, the author gathered a number of
abstracts from works in the biomedical fields, and extended it with a list of
problematic entities. The set of features used for classification includes, for
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example, the unit itself, its size, the canonical form, the orthographical fea-
tures, whether it is a known abbreviation and the presence of white space
on the left or right of the analyzed point. After training the classifier they
achieved a tokenization accuracy of 96.7% (with 45% of false positives).

Tomanek’s successful method in biomedical texts cannot be reproduced
when applied to UGC due to the different nature of the texts. Scientific
articles obey general editorial rules. They impose a certain standard writ-
ing style, assure that the author is consistent in the language used (usually
English), and that the text is easy to read. In UGC there is no review pro-
cess, leading to many non-uniform messages (incorrect capitalization, for
instance) with higher noise levels (non-standard punctuation, like “„,”),
multiple languages in the same short message (difficult to recognize due to
misspellings and the small amount of text for statistical analysis), and as
stated before, the open nature of the lexicon makes the “problematic entity
list” strategy inviable.

Takeuchi et al. propose a method for solving the problem of identify-
ing sentence boundaries in transcripts of speech data [TSR+07]. The difficulty
arises from the complete lack of punctuation in the transcripts, and also
from word error rates of about 40%. The method, named Head and Tail, is
a probabilistic framework that uses the information about typical 3-grams
placed in the beginning (Heads) or in the end of sentences (Tails) to decide
if there is a sentence boundary or not. The authors compare their method
with a maximum entropy tagger trained on manually annotated corpora
with boundary information. They also define a baseline that uses only the
information about silence in the transcripts to decide if there is a bound-
ary. Results show that the method proposed outperforms both the maxi-
mum entropy tagger and the baseline. Moreover, results improve further
when the Head and Tail method is configured to use silence information
and additional heuristics to remove potentially incorrect boundaries. Fur-
thermore, they showed that their boundary detection method lead to signif-
icant improvements in subsequent morphological analysis and extraction
of adjective-noun expressions.

We believe that the tokenization task we are addressing is, in certain
ways, similar to the word segmentation problem in Chinese [TWW09]. Al-
though tokenization of UGC is expected to be simpler than the word seg-
mentation in Chinese, they both require making use of contextual informa-
tion for deciding whether two symbols should be separated or not. Ad-
ditionally, and contrary to word segmentation in Chinese, tokenization ap-
proaches in microblogging environments cannot make a solid use of dictio-
nary information, since a very large number of “words” are not lexicalized.
Our tests estimate that nearly 15.5% of tokens containing only alphabetic
characters are not in a standard lexicon3.

3The Portuguese GNU Aspell at http://aspell.net/

http://aspell.net/
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The most successful approaches to the tokenization problem use ma-
chine learning techniques. For example, Tang et al. compare the perfor-
mance of three classification algorithms, namely (i) Support Vector Ma-
chines (SVM), (ii) CRF and (iii) Large Margin Methods, for achieving to-
kenization [TWW09]. Results show that automatic classification methods
applied to text can achieve relatively high F-measures (95%). This led us
to believe that machine learning approaches can also be applied with suc-
cess to the task of tokenizing microblogging messages. On the other hand,
the task of word chunking, i.e. grouping words together to form lexical or
syntactical compounds, can be seen as special type of tokenization where
each character is used as a “token”. Again, machine learning approaches
have proven successful. For example, Kudo and Matsumoto used several
SVMs with weighted voting [KM01]. Their results also show that accuracy
is higher, regardless of the voting weights, compared with any single repre-
sentation system. Since the current problem is conceptually simple, a single
classifier should be enough.

3.3 A method for tokenizing microblogging messages

A token is an atomic symbol used in text processing. Its definition is very
dependent on what role it will play in the following processing pipeline.
For instance, when tokenizing text for machine translation, it may be prefer-
able to identify frequent expressions as tokens and not just single words.
This “flexibility” is reflected in different results when comparing different
tokenizers [HAAD+98], that may not be simply interchanged.

Our intent is to perform information extraction on microblogging mes-
sages. For that it is fundamental that we first correct the frequent mis-
spellings made by the users, and then normalize the inconsistent text. If
we opt for a “traditional” tokenization process, we may split tokens that
are difficult to piece back together at a later time. (E.g. “alternate” typed as
“altern8”, or “I’m” typed as “I;m”.)

We define that each token is an element that can later be considered a
unit of processing, for example: a word, a punctuation block (e.g. “!?”,
“,”), a URL, or a microblogging-specific mark such as a user reference (e.g.
@PeterP).

Tokenization is achieved by adding a space character in special deci-
sion points of the microblogging message. These points surround all non-
alphanumeric characters (excluding the white space). In the following ex-
ample, we use the symbol “‖” to indicate decision points where white space
should be inserted, and mark with a “|” those that should be left intact (i.e.
white space is already present or adding a space character would break the
token).

“Oh‖,| if I was in Sampa‖.|.|.| I would certainly go‖!| |"‖Beat it‖"|
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Flash Mob‖,| 25|/|01‖,| at 14h‖,| in Anhangabaú Valley‖.| |(‖via |@|terciors‖)”

The tokenization method that we propose can thus be stated as a binary
classification problem: can we train a model to determine if a certain decision
point should have a space character inserted (or not)?

At this point, the question of an adequate training corpus arises. In
Section 3.5.3 we describe how we annotated microblogging messages to
create such a data source.

One aspect that is also worth exploring is the performance of the clas-
sifiers with different sizes of corpus. This is an indication of the amount of
effort required in the manual annotation task to be able to achieve certain
results.

3.3.1 Extracting features for classification

The first step in our method is defining the features that we use. These fea-
tures are based on the properties of each character that composes the mes-
sage. Therefore we can say that we work at character level. Every character
is described by at least one feature.

All features used are binary (they are either present or absent), and de-
scribe different aspects of the characters (e.g. nature, function and pur-
pose). No effort is made to reduce the number of features — it is up to the
classification algorithm to identify the relevant features. In total we created
31 distinct features. Some examples follow:

• Character nature: alphanumeric, alphabetic, numeric, punctuation,
symbol, space, etc.

• Type of alphabetic characters: upper case, upper case without accent,
letter with accent, vowel, etc.

• Type of symbol and punctuation: bar, dash, monetary symbol, closing
symbol (i.e.“(”, “>”, “}”, “]”), opening quotation (e.g. “"”, “«”), accent
(e.g. “ˆ”, “˜”), arithmetic operator, smiley nose, etc.

The window of characters for which we generate features extends from
the relevant decision point in both directions. This means that when using
a 10 character window, the classifier can base its prediction on the features
of the previous 10 characters, and the next 10 characters. The size of the
window is one of the parameters of the process. One should take into ac-
count that using all characters in the message would greatly increase the
feature space, and thus the computational requirements. Even worse, it
could also worsen the tokenizer’s results. This could happen as the classi-
fication algorithm may infer incorrect patterns due to insufficient number
and variety of examples covering the extended context.
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Table 3.2: Feature creation to the left and right of the first decision points
(the first periods) of part of the text “if I was in Sampa... I would certainly
go!”.

Left (pre) Right (pos)
. . . a m p a . . . . . .
. . . 4 3 2 1 1 2 3 4 . . .
. . . m p a . . . I . . .
. . . 4 3 2 1 1 2 3 4 . . .

The distance between the character under evaluation and the current
decision point is taken into consideration, as well as if it is located to its left
or right. For example, “if i was in Sampa... I would certainly go!” in the
post quoted above would be interpreted as displayed in the Table 3.2 at the
first relevant points.

The relative position of the character and the name of the feature are
encoded into the features themselves. For example, the feature that we
used called “char\_is\_alphanumeric\_pre-3” says that an alphanumeric
character is found 3 characters to the left of the decision point.

Both positional and character information are required to address cer-
tain vocabulary-specific cases that are usually problematic in tokenization,
like frequent abbreviations (for example, “Dr.” and “etc.”) and URLs
(“http://”). The relevant feature in these cases is the literal feature. It rep-
resents each individual character, and provides the information “this is a
“D” character”, or “this is a “$” character”.

For each decision point the number of features is usually large. For ex-
ample, the simple letter “a” results in 9 features, meaning that it is easy to
reach 100 features or more, even with a modest window size. Each char-
acter can be described by a number of features that is close to 180 (one for
each literal character, plus the 31 category features we defined). Even with
a small feature window size, the dimension of the feature space is very large.

3.4 Tokenization guidelines

The rules that govern our tokenization will have a big impact in later pro-
cessing tasks. Subtle decisions at this stage can lead to very different results
down the NLP pipeline [HAAD+98].

A set of annotation guidelines was produced to ensure a good level of
consistency during the manual annotation of the training corpus. These are
summarised below to describe the corpus creation effort — the problems
found and the decisions made. As a general rule, to avoid compromising
the subsequent processing phases, it is essential not to “break” some “mal-
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formed” constructions, and lose the opportunity to correct them in later
stages. Hence, we focus on what the author intended rather than what
they actually typed.

We have emphasised that, in tokenization, the same set of rules may not
work correctly in all situations. This also applies here. The set of “rules”
enforced by our model are the ones that we feed to it. In our experiments
we trained it with the purpose of supplying results adequate for text pro-
cessing (as was our intention of use). When using our method to tokenize
messages for deobfuscation — a much more specific situation that had no
weight here (see Section 8.3.2) —, we found that our method showed no
significant improvement over the results of the baseline in isolating those
particular cases [LO14a]. Odd situations should be included into the train-
ing set — a constantly updated model may be desirable.

3.4.1 Word tokens

Word tokens are defined in a loose way, due to the nature of the mes-
sages. For example, “2day” is treated as an equivalent to “today”, and
both are equal word tokens. Twitter usernames (@twisted_logic_), hash tags
(#Leitao2010) and hyphenated compound words (“e-mail”) are also consid-
ered regular words/tokens. We commonly see the dash as a replacement
for a word in certain circumstances where the length of the message is rel-
evant. For example, with “Egypt–Nigeria” the author means “Egypt versus
Nigeria”, or “from Egypt to Nigeria”, and therefore it should be tokenized
as “Egypt – Nigeria”. Also, acronyms are traditionally written with a dot,
as in “U.K.”, and need to be recognized as one unit. In case of abbrevia-
tions, the dot is also considered part of the word.

Another situation is the contraction used in informal oral speech, where
the apostrophe is used to indicate that one syllable is unpronounced. This is
seen in English, as in “li’l” or “lil’” meaning “little”, or in Portuguese where
“’tava” stands for “estava”. Once again, the token is considered as atomic,
since the apostrophe is meaningless alone in such a situation. However,
the apostrophe is also used to combine two words, as in “I’m”. In this
situations, it should be tokenized as two separate tokens (in the example:
“I ’m” — referring to “I am”, only that we intend to modify the message
only by introducing spaces).

Special care is taken with words that are typed incorrectly, as we expect
them to be a frequent occurrence. Handling them properly at this stage
will help in correcting them more easily at a later stage. The general rule is
treating the string as if it was correctly written. A common error is the user
pressing the key next to the correct one. For instance, “I;m” instead of “I’m”
should be split as two tokens; while “im[ossible” instead of “impossible”
should be kept as-is. Another problem with keyboards is when they are
misconfigured (set to an incorrect layout). A user expecting to type “força”
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in a Portuguese layout would produce “for;a” if the keyboard would be set
to US.

Other difficult situations are deliberately created by the user. For in-
stance, when they cannot find the symbol they want on their keyboard.
One example is writing the “©” symbol as “(c)”. Typing accented letters in
some foreign keyboards is a more complicated problem. The apostrophe
is a known way of signaling acute or grave accents in these situations; for
example, typing “ate’” meaning “até”. One final situation happens when
a user changes one or more letters in their text to obfuscate it, as a way to
avoid censure (e.g. “sh*t”). Some of the occurrences described here are not
very frequent, but they illustrate the diversity of problems being addressed.

3.4.2 Numeric tokens

We decided to separate the numbers from the units they represent, as some
people write “1€” and others opt for “1 €” or even “€1”. Dates and times,
that possess a more complex representation, are preserved as a single token
whenever possible.

The comma is used as the decimal separator, and the dot as the thou-
sands separator in Portuguese. But the opposite is just as common due to
foreign influence. (See examples 13 and 14 of Table 3.1). A normalization
process will solve this problem.

Another problem occurs when dealing with ordinals, where numbers
and letters or symbols are concatenated. For example, in English UGC “1st”
is typically typed as “1st”, while in Portuguese it is written as “1º” or “1ª”,
and it is often found written as “1.º”, “1.ª”, “1o” or “1a”. No space character
should be inserted in any of these situations, as it represents a single word,
and information could be lost (e.g. interpreting “st” as a short for “street”
or “saint”).

3.4.3 Punctuation and other symbols

When dealing with punctuation, end-of-sentence symbols (“.”, “. . . ”, “!”
and “?”) are kept grouped as a single token. The other punctuation charac-
ters and symbols create their own token, except in the rare instance where
they are duplicated. In this way, “--,” is transformed into “-- ,”, that is, the
dashes are kept grouped, and the coma is another atom. This rule is used
for all non-punctuation symbols as well.

There are a few exceptions to the rules described above: URLs and
emoticons/typographical symbols (e.g. “=>”) are not broken-up, as they
would otherwise loose their meaning. The same applies to enumerators
such as “a) b) c)”.

As an illustration, we present the original message:
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“I’m off to sleep a little bit„uahua.. .but I’ll be back to see the soap
opera TO LIVE LIFE =D I loove.. rs....!!! Kisssses to those who like
them =D rsrsss”

And the correspondig tokenized message:

“I’m off to sleep a little bit „ uahua .. . but I’ll be back to see the soap
opera TO LIVE LIFE =D I loove .. rs ....!!! Kisssses to those who like
them =D rsrsss”

3.5 Experimental set-up

Our experiment is based on the comparison of the performance of a classi-
fication-based approach with that produced by a regular expression based
method that will be used as a baseline. This rule-based method is inspired
by the UPenn Treebank tokenizer, but follows our rules of tokenization pre-
viously defined in Section 3.4, and consequently is better suited for UGC
than UPenn’s.

3.5.1 The tokenization methods

We opted for using SVM [Joa98] as our classification algorithm, which were
found to be extremely robust in text classification tasks, and can deal with
the feature space we have (in the order of 180N , where N is the number of
characters in the feature window). In addition, they are also binary clas-
sifiers, as the decision is always between inserting or not inserting white
space. We used an “off-the-shelf” implementation of the SVM classifier
(SVMLight4).

To determine the best kernel to use with the SVM, simple preliminary
tests were executed. The second degree polynomial function outperformed
the default linear kernel by a small but significative amount, and therefore
is used. However, an exhaustive search for optimum parameters for the
SVM falls outside the purpose of this work, and the remainder of the pa-
rameters were left at their default values.

We wish to investigate how this classification approach behaves accord-
ing to two variables: (i) the dimension of the corpus and (ii) the size of the
feature window.

Our baseline algorithm works by trying to isolate tokens that belong to
one of a series of categories, each one defined by a regular expression. They
are, in order of definition:

1. URL, identified by the “http://” or “www.”;

4http://svmlight.joachims.org/
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Table 3.3: Tests generated from an example message for both scenarios.

Tokenized @PeterP Yes ;-) ...

Sall @PeterP Yes;-)...

Sone
@PeterP Yes;-) ...
@PeterP Yes ;-)...

2. a block of alphanumeric words starting with a letter (like a regular
word);

3. a date, as “2010-07-08” or “25/12/2009”;

4. a time, such as “4:15” or “18h15m”;

5. a number, for example, “-12,345.6” or “2º”;

6. one of about 25 popular smileys and variants;

7. a block of punctuation characters;

8. a user reference (“@john”);

9. a hash tag (“#true”);

10. a block of unexpected symbols.

3.5.2 Evaluation scenarios and measures

Both methods (classification and rule-based) are evaluated under two sce-
narios, that we consider complementary. In the first scenario, Sall , we re-
move all white space adjacent to each decision point, joining some tokens
together (but not sequences of words). In the second scenario, Sone, the test
messages have been correctly tokenized except for one white space that is
removed. We generate one test for each white space symbol excluded in
this scenario.

We will use the tokenized message “@PeterP Yes ;-) . . . ” as an example.
It has 8 decision points: “@|PeterP Yes |;|-|)| |.|.|.”. Only two of the three
spaces will be removed, as one is not adjacent to a decision point. The test
messages produced from this example text are shown in Table 3.3.

When evaluating the tokenization results, for each decision point, a True
Positive (TP) is a space character that is correctly inserted, and a True Neg-
ative (TN) is a space character that is correctly not inserted. A space char-
acter inserted in the wrong place is considered a False Positive (FP), while a
missing one is a False Negative (FN).
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The performance can thus be determined using Precision (P), Recall (R),
F1 and Accuracy (A) measures calculated as

P =
True Positives

True Positives + False Positives

R =
True Positives

True Positives + False Negatives

F1 =
2PR

P + R

A =
TP + TN

TP + TN + FP + FN
These values are all obtained using a 5-fold cross validation process.
We can see that both scenarios address different aspects of the problem.

In the first scenario all spaces around decision points have been removed,
so the tokenizer has to put them back. This scenario tests the Recall of the
tokenizer. The chance of introducing incorrect white space is relatively low,
and adding back spaces is important. The scenario Sone, where only one
space next to a decision point was removed, tests the Precision. Any other
white space added is incorrect, as there is exactly one correct classification.
The situations typically found in UGC lie somewhere in between these two
scenarios.

When testing 2500 messages, Sone generates 10,838 tests, resulting in an
average of 4.3 different versions generated from each test message. How-
ever, the number of possible decision points in Sone is lower than those in
Sall (by almost 60%), as we ignore decision points next to white space.

As a way to compare the difficulty of both scenarios, we run a trivial
tokenization method to the problem: always inserting a space character at
every decision point. This will not always provide the correct tokenization,
but is a simple and predictable method. Its performance illustrates how
complex it is to solve each scenario.

Both situations are generated for each manually annotated example. We
remove all spaces from the decision points when testing the first scenario,
and produce a set of many different instances, where each one is missing a
single token boundary (totaling the number of decision points) for the sec-
ond scenario. In this way it is trivial to compare the result of the tokenizer
with the manually annotated corpus.

3.5.3 The corpus creation

The data used in the classification consists of a manually annotated cor-
pus with 2500 messages from Twitter users in Portugal, collected using
the SAPO5 broker service. These messages were randomly selected from

5http://www.sapo.pt/

http://www.sapo.pt/
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6,200,327 posts collected between 2010-01-12 and 2010-07-08, from a total
of 93,701 distinct user accounts. The vast majority of the messages are in
Portuguese, but there are traces of other languages. To split the workload,
these messages were manually tokenized by 5 annotators using the rules
stated in Section 3.4, at an average rate of 3 messages per minute. To en-
sure a good level of consistency, the entire set of examples was later re-
viewed by the first author. The testing examples used on both scenarios
are automatically generated from this corpus, that has all the spaces cor-
rectly introduced, by removing the space characters in (one or all) decision
points.

3.6 Results and analysis

Figure 3.1 illustrates the performance (F1) of the SVM classifier in both sce-
narios (Sall and Sone) as a function of the dimension of the training corpus.
We used a feature window of size 10 in this experiment. The rule-based sys-
tem simply ignores its training data. We can see that with just 100 training
examples the SVM classifier already outperforms the rule-based tokenizer
significantly, as expected. Adding more examples consistently improves
the SVM’s results. The rule-based approach would only provide better re-
sults if we added new rules — hence its almost stagnant F1.

It can also be observed from Figure 3.1 that the results for scenario Sall
are always higher than those obtained for Sone. The best F1 for the same ex-
periment performed by the trivial approach (always inserting white space)
are 0.672 for Sall and 0.273 for Sone. So we can appreciate the relative com-
plexity of each task. If we were to try a trivial tokenization approach —
always inserting a space at every opportunity — we would obtain F1 val-
ues of 0.672 and 0.273 for Sall and Sone respectively. This trivial approach
illustrates the relative complexity of each scenario. To illustrate the relative
complexity of each scenario we tried a trivial tokenization approach — al-
ways inserting a space at every opportunity. This oversimplified method
obtained F1 values of 0.672 and 0.273 for Sall and Sone respectively.

In Figure 3.2, we can observe the results of varying the feature win-
dow’s size. Scenario Sall is less influenced by the size variation of this win-
dow than scenario Sone. It can also be seen that the window of size 10 used
in the previous experiment is not optimal, as the highest performance lies
between 3 and 6 characters. Window sizes larger than 6 characters (to the
left and the right of the decision points) show a decrease in performance. This
can be justified by the sparsity of the features being generated, taking into
account the size of the training set.

Significant values for feature window sizes considering F1 and accu-
racy are shown in Table 3.4. These include the highest F1 values as well
as the performance obtained when using a 10 characters feature window
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Figure 3.1: F1 vs. training corpus size for SVM classifier for Sall and Sone,
and analogous test for the baseline rule-based system.

Figure 3.2: F1 vs. feature window size in characters for SVM classifier,
trained using 2000 messages for Sall and Sone.
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Table 3.4: Feature window sizes for Sall and Sone, by F1 and accuracy values

Window Sall Sone
size F1 A F1 A

3 0.9597 0.9622 0.8775 0.7817
5 0.9600 0.9626 0.8680 0.7668

10 0.9550 0.9583 0.8596 0.7537

used to evaluate the effect of corpus size. It is not easy to compare our
results with related work, since most tokenization projects (reviewed in
Section 3.2) have different goals, and do not deal specifically with user-
generated content. Even so, we claim that the results that we obtain in
our task are at the same level as those presented in other works, such as
96.7% accuracy in the tokenization of biomedical texts [TWH07] and 95%
F-measures in the tokenization of texts in Chinese [TWW09].

3.7 Error analysis

We will describe the most significant errors made by the classification-
based tokenizer when trained with 2000 messages (500 testing messages),
with a feature window of size 3, as it provided the best general results.

Table 3.5 shows the characters most frequently associated with tokeni-
zation errors. As expected, the most problematic characters are those that
should be tokenized in different ways, depending on their context. Those
challenges have been presented in the discussion of Table 3.1 and presented
in Section 3.4, so we were not surprised with this result. The errors that we
found are related with the dificulties that we mentioned. Every character
in the table can be tokenized “alone” in some situations, and as part of a
larger token in other contexts — for example, when part of an emoticon
(even if some characters are less frequently used in this way).

We can see that there is no direct correlation between the frequency of
the characters and their tokenization error rate. For example, the comma is
not even present in the table, while 748 out of our 2500 messages (28.7%)
have at least one comma. This can be justified by the small number of
functions associated with the comma. At the same time, the apostrophe
is only present in 17% of the messages, and is processed incorrectly more
often than correctly. This, however, is not true with the other characters in
the table.

One of the most surprising error situations arises from the use of “.” as
a mistyping of “-”, that was more frequent than we expected. These keys
lay side-by-side on the Portuguese keyboard layout.

The other unexpected result comes from the difficulty of processing the
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apostrophe correctly. Part of the reason derives from the many languages
found in the messages. The better known cases such as the “’s” in English,
the “l’” in French and the “d’” in Portuguese and Spanish require more
examples than those available to infer the correct classification pattern. In
addition, the use of the apostrophe as a replacement for an accent or part of
an emoticon is also more frequent than we anticipated. This situation also
reinforces the need for more examples that address uses of this character.

Even though the values in Table 3.5 are biased towards the False Posi-
tives, overall values in scenario Sall were balanced.

The dot character should be tokenized as a single atom when used as
a full stop. That is its most common use. When used as an abbreviation,
it should join the text on its left, with white space on its right. But when
used in numbers (as “2.2”), uncommon smileys (e.g. “o.o’” or “u.u”), or
long URLs (as opposed to shortened URLs), in situations like domains (e.g.
“www.seguindo.net”) or in file names (e.g. “.html”), it should remain in-
tact. This character is also involved in some keyboard use errors where a
person types “.” when they should be typing “-” — a problem that appears
to be more frequent than we expected. It can be said that considering the
number of occurrences of the character, it is not the most problematic.

The hyphen should be kept next to its surrounding text when used to
create compound words. Some examples from our corpus are “Mercedes-
Benz”, “co-infection”, “Port-au-Prince”, “Spider-Man”, “PL-SQL” or “C-
130”. Hyphenated compound words are more common in Portuguese,
which partially justifies the high number of False Positives. The hyphen
is also found in a number of popular smileys, symbols regarding arrows,
(e.g. “− >) and in the middle of some long URLs. It should be isolated
when used as a range or dash – for example, when used as a sentence sep-
arator in Twitter, standing between the “title” part of the message, and the
“message body”; or between the “message body” and a URL at the end.
Finally, it is also frequent to use “-” in sport related subjects, to indicate the
participants of the match or the resulting score.

The apostrophe is used as an indicator of an unpronounced syllable, as
an aggregator of words, as a plural marker for initialisms, and as a posses-
sive indicator for English. In addition, they can also be used as quotation
marks (in single or double fashion), or accent replacement as mentioned in
Section 3.4.1. Finally, like all other symbols, they find their way into some
emoticons. Not all of this situations should be handled in the same way,
particularly given the differences in its Portuguese and English semantic
meaning.

As the character “:” is very popular in short smileys, almost all of its
occurrences in the errors table are related with emoticons.

The False Positive errors associated with the character “?” are almost
all related with long URLs, while a significant part of the False Negatives
are related with the white space removal for test purposes, just like the “.”



46 CHAPTER 3. TOKENIZATION OF MICRO-BLOGGING MESSAGES

Table 3.5: The most problematic characters for both scenarios when pro-
cessing 2500 messages, the errors found, total errors and the number of
messages containing the character.

Sall Sone Total Messages w/
Char FP FN FP FN errors occurrences

. 160 96 812 53 1121 1587
- 123 77 586 43 829 477
’ 55 7 342 1 405 86
: 52 19 255 24 350 1101
/ 11 62 40 59 172 725
? 22 24 101 18 165 445
( 12 6 79 9 106 172
) 8 25 43 24 100 327

character.
As a False Negative, if the user types “. . .”, and the test removes some

or all the white space, it will not be restored.
The errors produced by the best runs of the SVM classifier for Sone were

manually analyzed. We present the most common cases.
The character ‘_’ is associated with many False Negatives, and reveals a

hard problem to solve. Some usernames end in this character (for example,
“@foo_” ), while others use it to join two words (like “@foo_bar” ). When
the space character after the first username is removed (turning “@foo_
baz” into “@foo_baz” for the sake of the test) the classifier might accept
it as common form of username present in the examples (like “@foo_bar”
before). , message “@firstnamelastname_ it would really come in handy
xD oh well ..”, it would be illogical to expect it to be restored. Another
common error is with the ‘:’ in smileys, that produces False Positives, mostly
when preceding letters or numbers, as in “:x” or “:O”. We expect to address
these problems by adding examples that contain more similar cases to the
training corpus.

The third character associated with many errors is the ‘-’. As stated
in Section 3.4.1, the ‘-’ symbol is ambiguous, as it can be used to create
compound words (should not split, e.g. “middle-aged” or “Coca-Cola”),
as well as punctuation (should split). This problem can be solved either by
expanding the training set with more relevant examples, or by introducing
additional knowledge in the feature generation process. For this purpose,
a list of hyphenated compound words can be collected from Wikipedia (by
mining the titles of articles using DBPedia6). This would not compromise
the language independence of the system since this resource is available for

6http://dbpedia.org/
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Table 3.6: Improvement capability of the classifier-based tokenizer.

Training Testing Incorrect Error
set size set size messages rate

2000 × 5 500 × 5 511 0.204
2500 500 110 0.220
2900 500 89 0.178

several languages.

3.7.1 Augmenting training data based on errors

Table 3.6 presents the values obtained.
All errors that we detected seem solvable by adding more and better

examples. To calculate the cost of improving our system’s results, we per-
formed an additional experiment. We created a new test set by selecting 500
random messages from our 6 million Twitter messages collection. Using a
model trained with all 2500 messages in our previous corpus, we noticed
110 of the test messages were incorrectly tokenized. We then augmented
our corpus with 400 new messages — 50 new messages containing each
of the eight problematic characters in Table 3.5. The new model, trained
with the now 2900 messages corpus, failed in only 89 messages out of the
previous 500. That is a reduction of almost 20% in the number of messages
tokenized incorrectly.

With little more than 2 hours of work from a non-expert (as the only
requirement is for them to understand and follow the tokenization rules
stated in Section 3.4), the classification system improved by a significant
amount. Manual tokenization of examples is a highly paralleliazable activ-
ity. By comparison, rule creation is a very repetitive process of adding or
correcting a rule and then testing it for effectiveness or interference with
the others. This possibility of interference also limits the process to one sin-
gle person that also needs to be an expert in the relevant pattern matching
mechanism used (e.g. regular expressions).

3.8 Conclusion and future work

We showed that the problem of tokenization of UGC, although fundamen-
tal for subsequent language processing work, cannot be considered a sim-
ple task. The usual UGC (and microblogging in particular) way of expres-
sion can be problematic for “traditional” methods of text processing. In
tokenization this is particularly evident. The difficulty arises from the lack
of editorial rules and few accepted standards, meaning that ambiguity is
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not always avoidable. In particular, no character (other than white space)
can be said to always mark the start or end of a token — or so we thought,
until we saw it being used as a method of obfuscation (see Table B.1 on
page 187 for a list of other exceptions).

We created a corpus of Twitter messages that were tokenized manually
following our rules for UGC tokenization. We then compared the results
obtained by a classification-based and a rule-based tokenizer across two
scenarios, that draw a typical upper and lower limit of performance for
most microblogging usage.

In our experiments, we achieve F1 values of 0.96 for scenario Sall (that
tests Recall) and 0.88 for scenario Sone (that focuses in Precision), for our
classification-based tokenizer, when trained with 2000 examples. Our re-
sults can be said in-line with comparable systems in the literature.

We have also shown that text classification methods can successfully
tackle this problem, and significantly better than rule-based classifiers. Not
only do they achieve better performance (based on F1 values) but also their
performance can be improved significantly by simply adding to the train-
ing set more examples regarding the problematic situations. The text classi-
fication approach we propose is also better in terms of development costs,
since the bulk of the work (i. e., the annotation) can be distributed among a
group of non-experts.

Having said that, there is still a long road to go before tokenization can
be considered a solved problem. We have a number of ideas noted down
that we would like to try.

For example, we intend to experiment with the SVM kernels and pa-
rameters, looking for an optimal classification configuration. We also wish
to compare the results of the SVM with other classification algorithms, such
as Conditional Random Fields (CRF). In addition, we also consider extend-
ing our feature set to include, for instance, information about keyboard
layouts (e.g. which keys are next to the one that produces this character)
as well as features not based on a singular character, such as determining
if the relevant decision point is within a URL, recognized using regular ex-
pressions.

Looking even further ahead, producing language and/or user specific
models could result in even better results, as more specific patterns (such
as preferences for certain emoticons) can be identified.

Stepping aside from what could be considered “incremental improve-
ments”, we would like to experiment with a multi-stage tokenization pro-
cess. This would be language-dependent, working on three levels through
a backtracking process in search of the better solution (from the most obvi-
ous to the most obscure possibilities). The three stages would be:

bite Propose a position for the end for the token; start removing spaces if
necessary.
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chew Look at the proposed token and look it up on knowledge bases (is
it a dictionary word, a proper name, a new trend word, or perhaps a
foreign word?). How likely is this an obfuscated word if all else fails?

swallow How well does the sentence fit together (grammatically, semanti-
cally. . . ). Score it. We will take the best score.
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In this chapter we propose a set of stylistic markers for automatically
attributing authorship to micro-blogging messages. The proposed markers
include highly personal and idiosyncratic editing options, such as ‘emo-
ticons’, interjections, punctuation, abbreviations and other low-level fea-
tures.

We evaluate the ability of these features to help discriminate the au-
thorship of Twitter messages among three authors. For that purpose, we
train SVM classifiers to learn stylometric models for each author based on
different combinations of the groups of stylistic features that we propose.

Results show a relatively good-performance in attributing authorship
of micro-blogging messages (F1 = 0.63) using this set of features, even when
training the classifiers with as few as 60 examples from each author (F1 =
0.54). Additionally, we conclude that emoticons are the most discriminat-
ing features in these groups.
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4.1 Introduction

In January 2010 the New York Daily News reported that a series of Twitter
messages exchanged between two childhood friends led to one murdering
the other. The set of Twitter messages exchanged between the victim and
the accused was considered a potential key evidence in trial, but such evi-
dence can be challenged if and when the alleged author refutes its author-
ship. Authorship analysis can, in this context, contribute to confirming or
excluding the hypothesis that a given person is the true author of a queried
message, among several candidates. However, the micro-blogging environ-
ment raises new, significant challenges as the messages are extremely short
and fragmentary. For example, Twitter messages are limited to 140 char-
acters, but very frequently have only 10 or even fewer words. Standard
stylistic markers such as lexical richness, frequency of function words, or syn-
tactic measures — which are known to perform well with longer, ‘standard’
language texts — perform worse with such short texts, whose language is
‘fragmentary’ [Gra10]. Traditional authorship analysis methods are con-
sidered unreliable for text excerpts smaller than 250-500 words, as the ac-
curacy tends to drop significantly with text length decrease [HF07].

In this chapter we use a text classification approach to help us investi-
gate whether some ‘non-traditional’ stylistic markers, such as the type of
emoticons, provide enough stylistic information to be used in authorship
attribution. Given a set of Twitter messages from a group of three authors
and sets of content-agnostic stylistic features, we train classifiers to learn the
stylometric models for each author. We test whether the classifiers can ro-
bustly and correctly attribute authorship of an unseen message written by
one of the three authors using the proposed features. We focus specifically
on Twitter for its popularity, and address Portuguese in particular, which
is one of the most widely used languages in this medium1.

4.2 Related work

In recent years, there has been considerable research on authorship attri-
bution of some user-generated contents — such as e-mail (e.g. [dVACM01])
and, more recently, web logs (e.g. [PLZC09, GSR09, KSA09]) and ‘opinion
spam’ (e.g. [JL08]). However, to the best of our knowledge, research on
authorship attribution of Twitter messages has been scarce, and raised ro-
bustness problems. And before our work, it was non-existent in Portu-
guese. Research on authorship attribution in general in Portuguese has
been very limited, and has focused mainly on online newspapers data (e.
g. [PJO07, SSSG+10]).

1http://semiocast.com/downloads/Semiocast_Half_of_messages_on_Twitter_
are_not_in_English_20100224.pdf

http://semiocast.com/downloads/Semiocast_Half_of_messages_on_Twitter_are_not_in_English_20100224.pdf
http://semiocast.com/downloads/Semiocast_Half_of_messages_on_Twitter_are_not_in_English_20100224.pdf
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The biggest challenge in attributing authorship of micro-blogging mes-
sages is their extremely short nature. In general, studies on intrinsically
short and fragmentary messages focus on other interactive dimensions of
the media, such as analysing the dialogue structure of Twitter conversa-
tions [RCD10], detecting trends and tracking memes [CL09, Che] on the
Twittosphere, or performing automatic question-answering through text
messaging (e. g. [KNF+09]).

To tackle the problem of robustness in computational stylometric anal-
ysis, research (e.g. the ‘Writeprints technique’ [AC08]) was applied to four
different text genres to discriminate authorship and detect similarity of on-
line texts among 100 authors. The performance obtained was good, but (a)
the procedure did not prove to be content-agnostic, and (b) did not analyse
Twitter messages. Also, using structural features that are possibly due to
editing and considering ‘idiosyncratic features’ usage anomalies to include
misspellings and grammar mistakes, and leaving personal choice partly
aside, it is bound to compromise the results.

One of the first tasks to authorship attribution on Twitter consisted
of detecting spammers. Benevenuto et al [BMRA10] enumerate a set of
characteristics to distinguish spamming and non-spamming accounts. The
authors address content clues (e. g. fraction of tweets with URLs, average
number of URLs per tweet, number of tweets the user replied to, and aver-
age number of hashtags per tweet) and also behaviour clues (e. g. age of the
user account, fraction of followers / followees, fraction of tweets replied by
user, number of tweets the user received in reply, number of followees and
followers). The authors used an SVM classifier to correctly identify 70%
of the spammers and 96% of non-spammers using a 5-fold cross-validation
process, applied to a corpus of 1,065 users containing 355 spammers manu-
ally identified. The authors concluded that both features produce similarly
useful clues, but that the behaviour features were harder to mask.

More recently, it has been demonstrated that the authorship of twit-
ter messages can be attributed with a certain degree of certainty [LWD10].
Surprisingly, the authors concluded that authorship could be identified at
120 tweets per user, and that more messages would not improve accuracy
significantly. However, their method compromises the authorship identifi-
cation task of most unknown messages, as they reported a loss of 27% ac-
curacy when information about the interlocutor’s user data was removed.

It has also been demonstrated that authorship could be attributed using
‘probabilistic context-free grammars’ [RKM10] by building complete mod-
els of each author’s (3 to 6) syntax. Nevertheless, the authors used both
syntactic and lexical information to determine each author’s writing style.
Even other authors [BFD+10] who focused on short classification for infor-
mation filtering, rather than authorship attribution, used domain-specific
features, lexical items and participant information. Both content and be-
haviour features produce similarly useful clues, as determined by the χ2
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rankings, but of the 62 total features used, the 10 most important were:

1. The fraction of tweets with URLs,

2. the age of the user account,

3. the average number of URLs per tweet,

4. the fraction of followers per followees,

5. the fraction of tweets the user had replied,

6. the number of tweets the user replied,

7. the number of tweets that originated a reply,

8. the number of followees,

9. the number of followers, and

10. the average number of hashtags per tweet.

Conversely, we propose a content-agnostic method, based on low-level
features to identify authorship of unknown messages. This method is in-
dependent of user information, so not knowing the communication partic-
ipants is irrelevant to the identification task. Moreover, although some of
the features used have been studied independently, this method is inno-
vative in that the specific combination of the different stylistic features has
never been used before and has not been applied to such short texts.

4.3 Method description & stylistic features

Authorship attribution can be seen as a typical text classification task: given
examples of messages written by a set of authors (classes), we aim to at-
tribute authorship of messages of unknown authorship. In a forensic sce-
nario, the task consists of discriminating the authorship of messages of a
small number of potential authors (e. g. 2 to 5), or determining whether a
message can be attributed to a certain (‘suspect’) author.

The key to framing authorship attribution as a text classification prob-
lem is the selection of the feature sets that best describe the style of the
authors. We propose four groups of stylistic features for automatic author-
ship analysis, each dealing with a particular aspect of tweets. All features
are content-agnostic; to ensure a robust authorship attribution and prevent
the analysis from relying on topic-related clues, they do not contain lexical
information.
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4.3.1 Group 1: Quantitative Markers

These features attempt to grasp simple quantitative style markers from the
message as a whole. The set includes message statistics, e. g. length (in
characters) and number of tokens, as well as token-related statistics (e. g.
average length, number of 1-character tokens, 2-consonant tokens, numeral
tokens, choice of case, etc). We also consider other markers, e. g. use of
dates, and words not found in the dictionary2 to indicate possible spelling
mistakes or potential use of specialised language.

As Twitter-specific features, we compute the number of user references
(e. g. @user_123), number and position of hashtags (e. g. #music), in-message
URLs and the URL shortening service used. We also take note of messages
starting with a username (a reply), as the author may alter their writing
style when addressing another person.

4.3.2 Group 2: Marks of Emotion

Another highly personal — and hence idiosyncratic stylistic marker — is
the device used to convey emotion. There are mainly three non-verbal3

ways of expressing emotion in user-generated contents:

• smileys;

• ‘LOLs’; and

• interjections.

Smileys (‘:-)’) are used creatively to reflect human emotions by chang-
ing the combination of eyes, nose and mouth. This work explores three
axes of idiosyncratic variation: range (e. g. number of happy smileys per
message), structure (e. g. whether the smiley has a nose) and direction of the
smiley. First, different users express different ranges of emotion (for exam-
ple, sadness ‘:-(’, happiness ‘:-D’, worry ‘:-S’, playfulness ‘:-P’, surprise ‘:-O’
or frustration ‘X-[’). Second, users structure the smiley differently; some au-
thors prefer the ‘noseless’ look (‘:)’), while others emphasise the mouth (e.
g. ‘:-))’); likewise, the eyes of the smiley are also subject to variation: besides
their most common format (i.e. ‘:’), they can also be winking (‘;’) or closed
(‘|’, ‘X’). Third, different users direct smileys differently; some users choose
to use them right-facing (e. g. ‘:-)’), while others prefer them left-facing (e. g.
‘(-:’); others use the much less common upright direction, e.g.: happy ‘ˆ_ˆ’,
very happy ‘ˆ___ˆ’, frustrated ‘>_<’ or crying ‘T_T’).

Another form of expression is the prevalent ‘LOL’, which usually stands
for Laughing Out Loud. Frequently users manipulate the basic ‘LOL’ and

2We use the GNU Aspell dictionary for European Portuguese.
3In Twitter, users can also add hashtags to the message to signal a certain emotion or

mood (e. g. "#sarcastic"), but we only focus on the three more general devices.
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‘maximise’ it in various other forms, e. g. by repeating its letters (e. g.
‘LLOOOLLL’) or creating a loop (e. g. ‘LOLOL’). The ‘LOL’ acronym is so
prevalent in Internet slang that it is frequently typed in lowercase and used
as a common word (e. g. ‘I lolled’). This subgroup describes several in-
stances of length, case and ratio between ‘L’ / ‘O’, so as to distinguish be-
tween ‘LOL’ and the exaggeration in multiplying the ‘O’, as in ‘LOOOOL’.

We identify interjections as tokens consisting of only two alternating
letters that are not a ‘LOL’, such as ‘haaahahahah’. Other popular and
characteristic examples are the typical Brazilian laughing ‘rsrsrs’ and the
Spanish laughing ‘jejeje’ — both of which are now commonly found in Eu-
ropean Portuguese Twitter. We count the number of interjections used in a
message, their average length and number of characters.

4.3.3 Group 3: Punctuation

The choice of punctuation is a case of writing style [Eag94], mostly in lan-
guages whose syntax and morphology is highly flexible (such as Portu-
guese and Spanish). Some authors occasionally make use of expressive
and non-standard punctuation, either by repeating (‘!!!’) or combining it
(‘?!?’). Others simply skip punctuation, assuming the meaning of the mes-
sage will not be affected. Ellipsis in particular can be constructed in less
usual ways (e. g. ‘..’ or ‘......’). We count the frequency of these and other
peculiar cases, such as the use of punctuation after a ‘LOL’ and at the end
of a message (while ignoring URLs and hashtags).

4.3.4 Group 4: Abbreviations

Some abbreviations are highly idiolectal, thus depending on personal choice.
We monitor the use of three types of abbreviations: 2-consonant tokens (e.
g. ‘bk’ for ‘back’), 1- or 2-letter tokens followed by ‘.’ or ‘/’ (e. g. ‘p/’) and
3-letter tokens ending in two consonants, with (possibly) a dot at the end
(e. g. ‘etc.’).

4.4 Experimental setup

This study is focused on the authorship identification of a message among
three candidate authors. We consider only three possible authors as foren-
sic linguistic scenarios usually imply a limited number of suspect authors,
and is hence more realistic (but our approach has been tested successfully
with as many as ten candidate authors). We chose to use Support Vector
Machines (SVM) [Joa98] as the classification algorithm for its proven ef-
fectiveness in text classification tasks and robustness in handling a large
number of features. The SVM-Light implementation [Joa98] has been used,
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parametrised to a linear kernel. We employ a 1-vs-all classification strategy;
for each author, we use a SVM to learn the corresponding stylistic model,
capable of discriminating each author’s messages. Given a suspect mes-
sage from each author, we use each SVM to predict the degree of likelihood
that each author is the true author. The message authorship is attributed
to the author of the highest scoring SVM. We also consider a threshold on
the minimum value of the SVM score, so as to introduce a confidence pa-
rameter (the minimum score of the SVM classifier considered valid) in the
authorship attribution process. When none of the SVM scores achieves the
minimum value, authorship is left undefined.

Our data set consists of Twitter messages from authors in Portugal, col-
lected in 2010 (January 12 to October 1). We counted over 200,000 users
and over 4 million messages during this period (excluding messages posted
automatically, such as news feeds). From these, we selected the 120 most
prolific Twitter authors in the set, responsible for at least 2,000 distinct and
original messages (i.e. excluding retweets), to extract the sets of messages
for our experiments. The messages were all tokenized using a UGC-specific
method that takes into account its typical writing style, Internet slang, URLs
and Twitter usernames and hashtags. We divide the 120 authors into 40
groups of 3 users at random, and maintain these groups throughout our
experiments. The group of 3 authors forms the basic testing unit of our ex-
periment. Each test message from the group’s data set is attributed to one
of the 3 authors using the pre-calculated stylistic models, or to none if the
minimum confidence threshold is not reached.

We perform two sets of experiments. In Experimental Set 1, the classifi-
cation procedure uses all possible groups of features to describe the mes-
sages. We use data sets of sizes 75, 250, 1,250 and 2,000 messages/author.
In Experimental Set 2, we run the training and classification procedure us-
ing only one group of features at a time. We use the largest data set from the
previous experiment (2,000 messages/author) for this analysis.

4.4.1 Performance evaluation

We measure Precision (P), Recall (R) and F1 (2PR/(P + R)) considering:

P =
# messages correctly attributed

# messages attributed

R =
# messages correctly attributed

# messages in the set

We run the training and classification procedures in each set of experi-
ments and use the confidence parameter to draw Precision vs. Recall graphs.
As these experiments consider three different authors, the baseline is F1 =
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Table 4.1: Best F1 values obtained for different data set sizes.

Data set size 75 125 250 625 1,250 2,000

F1 0.54 0.55 0.57 0.59 0.61 0.63

0.33 (P = 0.33 at R = 0.33). All experiments were conducted using a 5-
fold cross validation, and run for all 40 groups of 3 authors. For varying
levels of Recall (increments of 0.01) we calculate the maximum, minimum
and average Precision that was obtained for all 40 groups. All F1 values
are calculated using the average Precision.

4.5 Results and analysis

4.5.1 Experiment set 1

Figure 4.1 shows the Precision vs Recall graphs for Experimental Set 1. Data
set increases (from 75 to 2,000 messages/author) returns improvements in
the minimum, maximum and average Precision values. In addition, the
robustness of the classifier also benefits from the added examples, as the
most problematic situations (corresponding to the minimum precision val-
ues) are handled correctly more frequently. The best F1 values are always
obtained at the highest value of Recall, meaning that they too follow this
improvement trend.

For the smaller data set (75 messages, Figure 4.1a), the minimum Pre-
cision curve is nearly constant, not showing a benefit from the decision
threshold (at the cost of Recall). We speculate this is due to two reasons.
First, given the large feature space (we use at least 5680 dimentions), and
the relatively small number of non-negative feature component in each
training example (most messages have between 64 and 70 features), a ro-
bust classification model can only be inferred using a larger training. Sec-
ond, with such small sets it is highly probable that both the training and the
test sets are atypical and distinct in terms of feature distribution. Still, the
performance values obtained are far above the baseline, and an F1 value of
0.54 is reached. In the larger data sets (Figures 4.1c and 4.1d) we always ob-
tain a Precision greater than 0.5. This means that even in the more difficult
cases, the attribution process is correct more often than not. However, the
contribution of the extra examples for the F1 values is lower when we ex-
ceed 250 messages/author (where we get 0.59), even if they increase almost
linearly up to 0.63 (for 2,000 messages/author).

These observations are relevant since most previous work argued that
longer strings of text were necessary to attribute authorship. Better results
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can be obtained if more than one message is available, and we know them
to be of the same author. In this situation, the probability of making a mis-
take in authorship attribution drops exponentially (following a binomial
distribution for repeated trials).

4.5.2 Experiment set 2

Figure 4.2 presents the Performance vs Recall curves for authorship attri-
bution with a classification procedure using only one group of features at a
time. Quantitative Markers (Group 1) show an average performance, with
minimum Precision and maximum Recall of 0.49, and maximum F1 value
of 0.55 (Figure 4.2a). This shows that, albeit Twitter length constraints, there
is room for stylistic choices like length of tokens, length of message posted,
etc. Markers of expression of emotion, including smileys, LOLs and interjec-
tions (Group 2) achieve a relatively high performance, and clearly outper-
form all other feature groups (Figure 4.2b). It achieves an F1 value of 0.62
(where using all features together achieves 0.63). This is particularly inter-
esting since these features are specific to user-generated contents, and to
our knowledge their relevance and effectiveness in authorship attribution
is now quantified for the first time. The difference between the average and
minimum Precision values is an indicator that the low performance of this
feature group is an infrequent event. The group of features including punc-
tuation (Group 3) performs slightly worse than the previous groups, and
scores only 0.50 on the F1 measure (Figure 4.2c). The difference between the
best and worse case is significant, but the average Precision degrades as the
Recall increases. Our evaluation demonstrates that our approach, although
quite simplistic, is capable of detecting stylistic variation in the use of punc-
tuation, and of successfully using this information for authorship attribu-
tion. This result is in line with those reported previously by [SSSG+10] for
punctuation-based features applied to automatic authorship attribution of
sentences from newspapers. Group 4, containing features on the use of
abbreviation, led to the worst results (maximum F1 value of 0.40). The
shape of the curve rapidly approaches the baseline values, proving that
this group is not robust (Figure 4.2d). Manual evaluation shows that these
abbreviations are used rarely. However, as the low Recall/high Precision
part of the curve suggests, they carry stylistic value, in spite of being used
only in a relatively small number of cases. Finally, the performance when
using all groups of features simultaneously (Figure 4.1f) is better than us-
ing any group of features individually, showing that all individual groups
of features carry relevant stylistic information that can be combined, and
suggesting that the investment in devising new groups of stylistic features
may lead to additional global performance improvements — especially the
recall. It is apparent in Figure 4.2 that the last graph achieves larger val-
ues of Recall. This can be explained by the absence of some features from
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a number of messages, or that those that were found were, on their own,
incapable of providing results (e. g. the message size).

4.6 Conclusions

Our experiment demonstrates that standard text classification techniques
can be used in conjunction with a group of content-agnostic features to
successfully attribute authorship of Twitter messages to three different au-
thors. Automatic authorship attribution of such short text strings, using
only content-agnostic stylistic features, had not been addressed before. Our
classification approach requires a relatively small amount of training data
(as little as 100 example messages) to achieve good performance in discrim-
inating authorship.

These results owe to the fact that the attribution is based on a good and
robust set of features that reflect the stylistic choices of the authors, while
still being content-agnostic.

Surprisingly, the group of emoticons outperforms each of the other fea-
ture groups tested, with a relatively high performance. The relevance and
effectiveness of these features for automatic authorship attribution are now
demonstrated for the first time. Features related to use of abbreviation re-
port the poorest results, their performance dropping abruptly; yet, despite
lacking robustness, they prove to carry stylistic information. The group of
punctuation marks is the second best performer, showing its capacity to
capture stylistic variation. Quantitative and punctuation markers show av-
erage results, carrying some idiolectal information, despite the text length
constraints. On balance, it can be argued that all features carry relevant
information, since using all groups of features simultaneously allows in-
ferring more robust authorship classifiers than using any group of features
individually.
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a) Data set: 75 messages/author
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b) Data set: 250 messages/author
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c) Data set: 1,250 messages/author
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d) Data set: 2,000 messages/author

Figure 4.1: Performance of each data set size. Each graph plots maximum,
average and minimum Precision at varying levels of Recall (40 groups of 3
authors).
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c) Features: Punctuation
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d) Features: Abbreviations

Figure 4.2: Performance of each individual set of features. Each graph plots
maximum, average and minimum Precision at varying levels of Recall (40
groups of 3 authors, 2,000 messages from each author).
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In this chapter we study the problem of identifying systems that auto-
matically inject non-personal messages in micro-blogging message streams,
thus potentially biasing results of certain information extraction procedures,
such as opinion-mining and trend analysis. We also study several classes
of features, namely features based on the time of posting, the client used to
post, the presence of links, the user interaction and the writing style. This
last class of features, that we introduce here for the first time, is proved to
be a top performer, achieving accuracy near the 90%, on par with the best
features previously used for this task.
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5.1 Introduction

Microblogging systems — of which Twitter is probably the best known
example — have become a new and relevant medium for sharing spon-
taneous and personal information. Many studies and applications con-
sider microblogs as a source of data, precisely because these characteristics
can confer authenticity to results. For example, trend detection ( [MK10]),
opinion-mining ( [DH09]) or recommendation ( [CNN+10]).

Because of its popularity, Twitter is also part of the on-line commu-
nication strategy of many organizations, which use a Twitter account for
providing updates on news, initiatives, commercial information (e.g. pro-
motions, advertisements and spam) and various other types of information
people may find interesting (like weather, traffic, TV programming guides
or events).

Messages conveyed by these automatized accounts – which we will
now refer to as robot accounts or, simply, bots – can easily become part of the
stream of messages processed by information extraction applications. Since
bots provide content aimed at being consumed by the masses instead of the
personal messages that information extraction systems consider meaning-
ful (for example, for trend detection), automatic messages may bias the
results that some information extraction systems try to generate. For this
reason, from the point of view of these systems, messages sent by bots can
be considered noise.

The number of such robot accounts is extremely large and is constantly
growing. Therefore, it is practically impossible to manually create and
maintain a list of such accounts.

Even considering that the number of messages typically produced by a
bot each day is not significantly larger than the number of messages writ-
ten by an active user in the same period, we must remember that bots are
capable of sustaining their publication frequency for longer periods than
most humans (that can stop using the service temporarely or permanently
after some time). Thus, in the long run, bots are capable of producing a
larger set of messages than an active person.

In this work we propose a system that can identify these robot accounts
using a classification approach based on a number of observable features
related to activity patterns and message style. This system cannot detect ev-
ery form of bot, but it is focused on detecting a number of characteristics that
are common on many automated accounts (possibly in the majority). We
evaluate its performance, and compare it with some of the more common
approaches used for this task, such as the client used to post the messages
and the regularity of new content.



5.1. INTRODUCTION 65

5.1.1 Types of users

Based on the work of Chu et al. [CGWJ10], we start by distinguishing be-
tween three types of users. The term human is used to refer to users that au-
thor all or nearly all their messages. They usually interact with other users,
post links on some of the messages, use abbreviations, emoticons and oca-
sionally misspell words. Many employ irregular writing styles. The subject
of their messages can be different, but they tend to express personal opin-
ions. Below we have examples of two human users:

• Who’s idea was it to take shots of tequila? You are in so much
trouble.

• I forgot to mention that I dropped said TV on my finger. ouchie.

• Heard that broseph. RT @ReggaeOCD: So bored with nothing to
do. #IHateNotHavingFriends

• Just being a bum today. http://twitpic.com/4y5ftu

• aw, grantly:’destroys only happy moment in fat kids life’ when
talking about food :@

• @ryrae HAHAHAHAHHAHA :’)

• JOSH IS IN SEASON 5 OF WATERLOO ROAD! WHEN DID
THIS HAPPEN?

Bots, on the other hand, are in place to automate the propagation of
information. The content is generally written by a person, although in some
cases the entire process is automated (e.g. sensor readings).

We should note that what we are distinguishing here is more a matter
of content than a matter of process or form. It is possible that an account
where a person writes the message directly at the Twitter website be labeled
as a bot, if the messages are written in the cold objective way seen in the
examples below, from three different accounts.

• Social Security and Medicare to run short sooner than expected.
http://on.cnn.com/lauSNv

• For Louisiana town, a collective gasp as it braces for floodwaters.
http://on.cnn.com/mb481c

• Jindal: Morganza Spillway could open within the next 24 hours.
http://on.cnn.com/j2jIBs

• 96kg-Bosak takes 7th place at the University Nationals
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• 84kg-Lewnes takes 2nd to Wright of PSU and qualifies for the
world team trials in Oklahoma Ciry

• Bosak loses his consolation match 0-1, 1-3 to Zac Thomusseit of
Pitt.

• #Senate McConnell: Debt limit a ’great opportunity’ http://bit.
ly/kanlc9 #Politics

• #Senate Wisconsin Sen. Kohl to retire http://bit.ly/kQpAsS
#Politics

• #Senate Ensign may face more legal problems http://bit.ly/
mN7XsB #Politics

Many accounts are not run entirely by a person nor are they completely
controlled by a machine. We label these mixed accounts as cyborgs, the
term used by Chu et al. [CGWJ10], that describes them as a “bot-assisted
human or human-assisted bot”. For example, an enterprise can have an
automatic posting service, and periodically a person provides the user in-
teraction to maintain a warmer relation with the followers, and foster a
sense of community. Another possibility occurs when a person uses links
to websites that post a message on the account of that person (for example,
“share this” links). If these pre-written content are noticeable among the
original messages, the user is labeled as a cyborg. If barely no original con-
tent is present in the user’s timeline, they will be considered a bot. Below
we show examples of a cyborg account.

• Explore The Space Shuttle Era http://go.nasa.gov/gzxst5 and
immerse yourself in the Space Shuttle Experience http://go.
nasa.gov/iHVfGN

• Track the space shuttle during launch and landing in Google Earth
using real-time data from Mission Control http://go.nasa.gov/
mwO9Ur

• RT @Rep_Giffords: Gabrielle landed safely @NASAKennedy. For
more details go to www.fb.me/GabrielleGiffords. #NASATweetUp

• Space shuttle Endeavour’s preferred launch time moved two sec-
onds later! Now 8:56:28 a.m. EDT Monday.

• @Angel_head NASA frequently tweaks the shuttle launch time
by seconds based on the latest space station tracking data to use
the least fuel.



5.2. RELATED WORK 67

As we will explain next, we used these guidelines to construct a Ground
Truth that will be used in our experiments. The details of this task are given
in Section 5.4.1.

To address the problem of automatic posting, we study different sets of
features that allow us to classify Twitter users into the three user categories
described. These features explore characteristics exhibited by the users,
such as their posting times, the microblog client application they use, their
interaction with other users, the content of their messages, and their writ-
ing style. The main goal of the work presented in this chapter is to access
the usefulness and robustness of the different types of features proposed.
We discuss the features in Section 5.3.

We describe our experiment and its parameters in Section 5.4 and eval-
uate our results in Section 5.5. In Section 5.6 we present our conclusions
and future work.

5.2 Related work

Most literature addressing the identification of automated systems in mi-
croblogs is related with the detection of spam. While there is some over-
lapping between spam and automated posting systems (spammers often
employ automation to help them in their work), we feel that the problem
we are addressing is much more general.

Wang [Wan10] presents an effort to detect spamming bots in Twitter
using a classification based approach. The author explored two sets of fea-
tures: (i) information about the number of followers, friends and the fol-
lower per friend ratio for the social network aspect of Twitter; and (ii) infor-
mation about duplicate content and number of links present in the last 20
messages of a given user account. The author used a manually annotated
corpus to train a Naive-Bayes classifier. The classifier achieved slightly over
90% Precision, Recall and F-measure in a 10-fold cross validation experi-
ment. However, since the training corpus was biased towards non-spam
users (97% of the examples), any classifier that only reported “non-spam”
would be almost always correct, so results are not really significant.

Grier et al. [GTPZ10] analyze several features that indicate spamming
on Twitter. They looked for automated behavior by inspecting the precision
of timing events (minute-of-the-hour and second-of-the-minute), and the
repetition of text in the messages across a user’s history. They also studied
the Twitter client application used to write the messages, since some allow
to pre-schedule tweets at specific intervals.

Zhang and Paxson [ZP11] present a study where they try to identify
bots by looking only at the times, more specifically, the minute-of-the-hour
and the second-of-the-minute. If the posting times are either too uniform
or not uniform enough, there is the possibility of the account being auto-
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mated. This analysis is similar to the one present in Grier et al. [GTPZ10],
a work where Zhang and Paxson participated.

The authors present no validation of their results (since it is not possi-
ble to determine for sure if the account is automated or not). However, they
claim that “11% of accounts that appear to publish exclusively through the
browser are in fact automated accounts that spoof the source of the up-
dates”.

Chu et al. [CGWJ10] propose to distinguish between humans, bots or
cyborgs, but much of the effort was put into spam detection. They claim
that more sophisticated bots unfollow users that do not follow back, in an
effort to keep their friends to followers ratio close to 1, thus reducing the
effectiveness of features based on the social network of Twitter. The official
validation of accounts is rare, and the date of their creation are also said to
be less useful. Despite its interesting observations, the article has a number
of problems that we feel should be pointed out.

There are too many places in the article where Chu et al. seem to be
mistaking Twitter with a website (e.g. what is an “external link” in a Twitter
message?). We also have some reservations about their data, as it defies
common observation and our measurements (e.g. Twitter users being the
most active at 6 AM local time, and not posting at midnight), but it could
be explained by cultural differences.

Finally, the methods employed by Chu et al. are not explained clearly,
and can be questioned. For example, they state that “Training the com-
ponent with up-to-date spam text patterns on Twitter helps improve the
accuracy”, but fail to mention how and where they collect such informa-
tion. They also omit the size of their spam and non-spam dataset, stating
only that it “consists of spam tweets and spam external URLs, which are
detected during the creating of the ground truth set.”

The most serious methodological problem occurs during the compila-
tion of their ground truth sets, where Chu et al. state that “The samples
that are difficult and uncertain to classify fall If the ambiguous and difficult
to classify examples are excluded from the experiment, we can seriously
question the generality of their results.

Contrary to previous work, we focus on a problem that is much more
generic than spam-detection, since a very large number of bots belong to
newspapers or other organizations that are voluntarily followed by users.
Our goal is to separate potentially opinionated and highly personal content
from content injected in the Twittosphere by media organizations (mostly
informational or promotional). One other point where we distinguish our-
selves from the mentioned works is in our attempt to expand the set of fea-
tures used in the detection, now including a vast array of stylistic markers.
In our opinion, this opens a new field for exploration and study.
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Figure 5.1: Comparison of Twitter activity between bots, cyborgs and hu-
mans as a function of the hour.

5.3 Methodology

Most of our discussion is centered around distinguishing human users and
bots. We propose five sets of features, described below, that are intended to
help to discriminate between these two poles. A cyborg user, by definition,
exhibits characteristics typical of both classes of users.

5.3.1 Chronological features

One of the characteristics of automatic message posting systems is that they
can be left running indefinitely. Therefore, we can expect to see different
chronological patterns between human users and bots. To address these
points, we defined a number of features, divided into the four following
sub-classes.

Resting and active periods

Constant activity throughout the day is an indication that the posting pro-
cess is automated or that more than one person is using the same account
— something we expect to be unusual for individual users. Figure 5.1 was
drawn using information from our manually classified users (described in
Section 5.4.1). It shows how human and cyborg activity is reduced between
1 and 9 AM. Bot activity is also reduced between 11 PM and 7 AM, but it
never approaches zero. We can understand this drop by the absence of an
audience to read the content being produced; however, messages posted in
the very early morning are more likely to be read when people look at their
feed for the first time during the day, which explains the rise of bot posting
starting at 5 in the morning.

At the same time, other things can keep people from blogging. This can
lead to a certain hour of preferred activity, such as evenings, as suggested
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Figure 5.2: Comparison of Twitter activity between bots, cyborgs and hu-
mans as a function of the day of the week.

in Figure 5.1. Bots appear to have a more evenly spaced distribution across
the day, with smaller fluctuations in the level of activity. This can be a
conscious choice, to allow more time for their followers to read each post.

Since we tried to limit our crawling efforts to Portugal, most of the ob-
servations are expected to fall within the same time zone (with the excep-
tion of the Azores islands, which accounts for 2% of the population). We
believe that the problem of users in different time zones cannot be avoided
completely. For example, we do not expect users to correct their Twitter
profile when traveling.

To detect the times at which the user is more or less active, we define
24 features that measure the fraction of messages they posted at each hour.
These values should reflect the distributions represented in Figure 5.1. We
also analyze the average and standard deviation of these values. We expect
that the standard deviation of a bot is lower than that of a human.

Finally, we register the 10 hours with the highest and lowest activity,
and the average number of messages that the user posts per day (as a
floating-point number).

Long term activity

Days are not all equal. This is true for both humans and bots. For example,
as shown in Figure 5.2, most activity happens at Thursdays and Fridays.
This trend matches the result published by Hubspot [Bur10].

We can see that bots are less active during the weekends, while they
dominate on Mondays and lead on Tuesdays.

We define seven features related to the frequency of the messages posted
across each day of the week, that should reflect the proportions in Fig-
ure 5.2. We also calculate the workday and weekend posting frequency,
and rank the days of the week by the frequency of posting.
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Inactivity periods

From direct observation of Twitter messages, we can see that bots tend to
be more regular on their updates than humans. It is known that irregular
accounts can lose popularity quickly. At the same time, normal people need
to rest, get occupied with other matters, and can lose interest in blogging
for some time.

To make use of this information, we measure the periods of inactivity
in minutes, and record the length of the 10 longest intervals, in decreasing
order. We also calculate the average and standard deviation of all these val-
ues. From our observations, we expect that bots will have lower variation
in inactivity periods (lower standard deviation) and a higher average.

For example, considering a user that only blogged at 1 PM, 2 PM, 3:30
PM and 7 PM on the same day, we would have the following features:

Feature name Value (minutes)
top_inactive_period_1 210.00
top_inactive_period_2 90.00
top_inactive_period_3 60.00
average_top_inactive_period 120.00
standard_deviation_top_ inactive_period 79.37

Humans are unable to match the speed at which bots can create new
messages. For this reason, we also calculate the analogous features for the
minimum inactivity periods (i.e. the 10 shortest inactive periods).

Posting precision

Since some automatic posting systems work based on a fixed periodicity
(e.g. TV programming guides), we decided to calculate the frequency of
messages that are created at each minute (60 features) and second (another
60 features). This approach is a simpler version of other works [GTPZ10,
ZP11].

For a human, we expect their posts to be evenly spread across both
these measurements. Some bots, on the other hand, are expected to con-
centrate their activity around the 0 seconds mark. They may also do the
same around some particular minutes (e.g. 0 or 30).

As before, we also calculate the average and standard deviation of these
measurements, where humans should result in a lower average and higher
standard deviation compared to bots.

For both minutes and seconds we take note of the 10 most frequent
values — that is, when most activity occurs.
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5.3.2 The client application used

It makes sense that the Twitter client used to post the messages is a rele-
vant aspect in identifying automated processes. There are many clients and
methods of accessing the microblogging system (e.g. web interface, several
applications, etc.). From the point of view of automation, some of these
methods are easier or more convenient than others. Also, most microblog-
ging systems have an open API, meaning that it is possible to interact with
them directly. In Twitter, unregistered clients are identified as “API”, while
those that were registered are identified by their name.

We track the number of different clients used to post the messages, and
the proportion of messages posted with each client. Cyborgs are expected
to have the largest variety of clients used (as they usually post automati-
cally from several sources). Some humans can use more than one client,
for example, a mobile client and the website. Bots, on the other hand, can
adhere to a single, exclusive client that is tied with their on-line presence;
or may use a general client that imports messages from an RSS feed, for
example.

5.3.3 The presence of URLs

We can make a distinction between two types of bots: information bots,
which only intend to make their readers aware of something (e.g. weather
forecast, TV scheduling and traffic information), and link bots, whose main
purpose is to generate traffic towards their website (e.g. news, advertise-
ments and spam). Information bots usually don’t have URLs in their mes-
sages, while some link bots are capable of truncating the text of the mes-
sage to make room for the URL. Most URLs shared by a bot usually have
the same domain, i.e. they were all created by the same URL shortening
system, or point to the same website.

Humans are also capable of introducing many URLs, but our obser-
vation reveals that cyborgs are more likely to do so; and to vary the do-
mains of said URLs. We can observe both types of linking behaviour rep-
resented in the bot and human examples presented in the introduction, in
Section 5.1.1.

We defined a feature that represents the ratio of URLs shared per total
of messages written, and also keep track of the proportion of the domains
associated to the URLs.

5.3.4 User interaction

Bots usually have one main objective that is to spread information regu-
larly. While they may be programmed to do more complex actions (such as
follow other users), automating user interaction can have undesired reper-
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cussions for the reputation of the account holder. Thus, reblogs1 (to post a
copy of another user’s message) and replies (directing a message at a user)
are shuned by most bots. The main exception are some spamming bots, that
send several messages directed at users [GTPZ10]. To include the name of
other users in the message (mentions) also seems to be uncommon in auto-
mated accounts.

However, a number of users also avoid some types of interaction, such
as the ones previously mentioned. Therefore, while we expect this infor-
mation to help identify humans, they may be less helpful in identifying
bots.

With our features we keep track of the proportion of reblogs, replies and
mentions, as well as the average number of users mentioned per message
written.

5.3.5 Writing style

Our observations showed that bots usually have a fixed message template.
That is, almost all bots observed end in an URL. Some have a topic at the
start (“#employment”, “[politics]” or “sports:”). They also appear to be
written in a “less noisy” way, that is, with standard punctuation, correct
capitalization, little or no abbreviations, and other stylistic choices that ben-
efit readability. Stylistic information has been successfully used to distin-
guish the writing style of different people on Twitter [SSLS+11]. Thus, we
believe it to be helpful in distinguishing between automated and non auto-
mated messages since, as observed in the examples in Section 5.1.1, these
users adopt different postures. The austere writing style may help with
the readability, and also credibility, associated to the account, while many
humans do not seem too concerned about that.

We identify the frequency (per message) of a large number of tokens, as
listed below.

Emotion tokens

Bot operators wish to maintain a serious and credible image, and for this
reason avoid writing in a style too informal (or even informal). We col-
lect information on the use of various popular variations of smileys and
“LOLs”.

We also try to identify interjections. While this part of speech is cul-
turally dependent, we try to identify word tokens that have few different
letters compared with the word length — if the word is longer than 4 char-
acters, and the number of different letters is less than half the word length,
we consider it an interjection.

1Called “retweets” on Twitter, often shortened to “RT”.



74 CHAPTER 5. BOT DETECTION

Example Text
1 Tours: Brian Wilson should retire next year http://dstk.me/

Oi6
2 Gilberto Jordan at Sustain Worldwide Conference 2011:

Gilberto Jordan, CEO of Grupo André Jordan, is the only
spea...http://bit.ly/mOOxt1

Table 5.1: Examples of bot Twitter messages making use of punctuation for
structural purposes.

These three stylistic features were the most relevant features mentioned
by Sousa-Silva et al. [SSLS+11]. Below, we can see example messages con-
taining many emotion tokens:

• we talked before......... on twitter. HAHAHAHAHA RT @Far-
rahri: @Marcology LOL she smiled at me! Hehehe, jealuzzz not?

• riiiiiight.... im offfffffffffffffff!!!!! bye bye

• RT yesssssssss! That is my soooong!!!! @nomsed: You got the
looove that I waaaant RT @LissaSoul: U got that BUTTA
LOOOOooooVVVEEE!

Emotion can also be expressed through punctuation, but we include those
features in the punctuation feature group, below.

Punctuation tokens

Humans vary widely in regards to their use of punctuation. Many are not
consistent across their publications. This is in opposition to bots, that can
be very consistent in this regard.

Punctuation can often be used as a separator between the “topic” and
“content” of the message, as can be seen on the first example on Table 5.1
. Different sources of information may structure their messages differently.
Therefore one bot may use more than one separator.

We also notice that some bots publish only the headline of the article
they are linking to. These articles are usually blog posts or news at a news
website. Since headlines usually do not include a full stop, this feature
receives a very low frequency (as seen in example 1).

Question or exclamation marks are usually infrequent in news bots, or
bots looking for credibility [CMP11]. Some bots truncate the message to
make room for the URL, signaling the location of the cut with ellipsis (some
using only two dots). We can see an example on the second example on
Table 5.1.

We measure the frequency of occurrences of:
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• Exclamation marks (single and multiple);

• Question marks (single and multiple);

• Mixed exclamation and question marks (e.g. “!?!?!?!?!!?!?!!”);

• Ellipsis (normal [i.e. “. . . ”], or not normal [i.e. “..” or “....”]);

• Other punctuation signs (e.g. full stop, comma, colon, . . . );

• Quotation marks;

• Parenthesis and brackets (opening and closing);

• Symbols (tokens without letters and digits); and

• Punctuation at the end of the message (both including and excluding
URLs).

Word tokens

This group of tokens is kept small for the sake of language independence.
We begin by tracking the average length of the words used by the author.
We also define features that track the frequency of words made only of con-
sonants (that we assume to be abbreviations most of the time), and complex
words. We consider complex words as those having more than 5 letters and
with few repeated characters (more than half). Thus “current” (7 charac-
ters in length, 6 different characters) is a complex word, while “lololol” (7
characters in length, 2 different characters) or “Mississippi (11 characters in
length, 4 different characters) do not fit the definition.

Word casing

Bots are usually careful in the casing they use. Careful writing aids with
the image that is passed through. We measure the frequencies with which
the following is used:

• Upper and lower cased words;

• Short (≤ 3 letters), medium (4–5 letters) and long (≥ 6 letters) upper
cased words;

• Capitalized words; and

• Messages that start with an upper cased letter.
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Quantification tokens

We track the use of some numeric tokens. Dates and times are comonly
used to mention events. Percentages can be more common on news or
advertisements.

• Date (e.g. “2010-12-31” or “22/04/98”);

• Time (e.g. “04:23”);

• Numbers;

• Percentages; and

• Monetary quantities (e.g. “23,50€”, “$10” or “£5.00”).

Beginning and ending of messages

Some accounts post many messages (some times all or near all their mes-
sages) using one or a small number of similar formats. This behavior is
specific of bots, that automate their posting procedure. Below we can see
two examples.

• #football Kenny Dalglish says Liverpool will continue conduct-
ing their transfer business in the appropriate manner. http://
bit.ly/laZYsO

• #football Borja Valero has left West Brom and joined Villarreal
on a permanent basis for an undisclosed fee. http://bit.ly/
iyQcXs

• #football Uefa president Michel Platini claims the introduction of
technology would be bad for football. http://bit.ly/jOXocn

• New post: Google in talks to buy Hulu: report http://zd.net/
kzcXFt

• New post: Federal, state wiretap requests up 34% http://zd.
net/jFzKHz

• New post: Kodak wins again over Apple, RIM in ITC patent rul-
ing
http://zd.net/kNc1rn

To determine the pattern associated with the posts, we calculate the
frequency with which messages begin with the same sequence of tokens
(excluding URLs and user references, that frequently change between mes-
sages). We define tokens as words, numbers, punctuation signs, emoticons
and other groups of symbols that have a specific meaning.



5.4. EXPERIMENTAL SET-UP 77

We group all the messages by their first token. For each group with two
or more messages, we store their relative proportion in a feature related to
the token. We also register the 10 highest proportions found, in descending
order. This entire process is then repeated, looking at the first two tokens,
then the first three, and so on.

Once complete, we take note of the largest number of tokens seen, and
repeat the entire process, looking at the endings of the messages.

This procedure results in a number of features that are very specific. In
the case of humans we collect a relatively small number of features, as their
messages can be varied. Some bots will reveal a pattern that is used for all
their messages (e.g. see the last bot examples in Section 5.1.1). In the case
of cyborgs, it is very useful to detect a number of patterns such as “I liked
a @YouTube video [URL]” or “New Blog Post . . . ”.

Below we can see examples of messages where this approach is useful.
The first two messages are from a bot account, while the last two were taken
from a cyborg account.

5.4 Experimental set-up

Our aim is to compare the level of performance provided by the five sets
of features described in Section 5.3. First we create a Ground Truth by clas-
sifying a number of Twitter users manually. This data is then used to both
train and test our classification system.

5.4.1 Creation of a ground truth

In late April 2011 we started a Twitter crawl for users in Portugal. We con-
sidered only users who would specifically state that they were in Portugal,
or, not mentioning a known location, that we detect to be writing in Eu-
ropean Portuguese. This collection started with 2,000 manually verified
seeds, and grew mostly by following users that are referred in the mes-
sages. In this way our collection moved towards the more active users in
the country. However, there was no guarantee that we had been collecting
all the messages from any of the users.

At the moment we had over 72 thousand users and more than 3 million
messages. From this set, we selected 538 accounts that had posted at least
100 messages, and 7 people were asked to classify each user as either a
human, a bot or a cyborg, in accordance with our guidelines, as described
in Section 5.1.1.

The annotators were presented with a series of user accounts, display-
ing the handle, a link to the Twitter timeline, and a sample of messages.

Since the users presented to the annotators were randomly selected, not
every annotator saw the users in the same order, and the sample of mes-
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Figure 5.3: Distribution of the 538 users in the three classes.

sages for each user was also different. For each user, we considered the
classification that the annotators most often attributed them. In the case of
a tie, we asked the annotator to solve them before ending the voting pro-
cess.

The manual classification system would only consider an account as
correctly classified when the user had voted with a difference of two votes
between the two most voted categories. In other words, the voting system
treated a difference of one vote the same way as a tie. This was done for
a number of reasons: a) it reduces the possibility of a bad vote due to an
unfortunate sample of messages; b) it allows the user to be exposed to more
accounts before confirming or changing his opinion about an account; and
c) it allows us to better protects the results from random or misplaced votes.

To finalize the voting process, we asked one eighth annotator to solve
the ties between annotators. In the end we were left with 2,721 votes, 95%
of which from the 4 main annotators, that we used to calculate the agree-
ment. Using all 538 users, Fleiss’ kappa value was 0.086, that represents a
slight agreement. Looking only at the 197 users that were classified by all
4 main annotators, we get a substantial 0.670 Fleiss’ kappa value, showing
adequate reliability in the classification.

Figure 5.3 shows the distribution of the users across all three categories.
We can see that humans dominate our collection of Twitter (448), while
cyborgs were the least numerous (22). In total we identified 68 bots.

5.4.2 The classification experiment

We randomly selected our example users from our manually classified ex-
amples. To have a balanced set, we limited ourselves to only 22 users of
each type, randomly selected before the experiment. To handle the auto-
matic classification, we opted for an SVM due to its ability to handle a large
number of features. We opted for the libSVM [CL01] implementation.

For each user we selected up to 200 messages to analyze and create the
features. Due to the chronological features (Section 5.3.1), we selected only
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Figure 5.4: Box plot showing the results for the classification of users, us-
ing 50 2-fold cross validation runs. The limits of the boxes indicate the
lower and higher quartile. The line inside the box indicates the median.
The extremities of the lines represent the minimum and maximum values
obtained.

sequential messages in our collection.
We used the radial basis function kernel from libSVM, allowing it to

look for the parameters that best fit the data, and normalized the values of
the features, allowing for more accurate results. We measured the results
using the accuracy, i.e. the ratio between correct classifications and total
classifications.

We opted for a 2-fold cross validation system, where we select 11 users
of each type to be used in the training set, and the other 11 were part of the
testing set. This allows enough testing messages to provide adequate gran-
ularity in the performance measurement, and a more reasonable number of
messages to train the SVMs. We repeat each experiment 50 times (drawing
different combinations in the training and testing set).

Given that we are using a balanced set of examples, we expect that a
random classifier would be correct 1/3 of the times. We will be considering
this as the baseline in our analysis.

5.5 Results and analysis

Our results are shown in Figure 5.4, detailing the minimum, lower quartile,
median, upper quartile and maximum accuracy across the 50 runs.

We separate the results in two groups: the first group, that never reaches
100% accuracy, and the second group, that does.

In the first group, the user interaction features outperformed the chrono-
logical features, that had two poor runs. However, none of them shows
performance similar to the other feature sets.

In the second group, the stylistic features presents the best results, with
median accuracy 97%. The feature that identifies the client application
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also performs adequately, but twice failed 7 or 8 of the 33 examples. The
URL features showed more stable results than the client information fea-
ture, but generally failed in more cases. Finally, using all the features com-
bined yielded very good results, with 97% median (and 97% upper quartile,
hence overlapping in Figure 5.4), failing once in 5 of the examples.

Over 26,000 features were generated during the experiments, most of
them encode stylistic information. While in a large group they can be quite
powerful (as shown), each of these features carries little information. This
is in contrast with the URL, user interaction and client application features,
where a small number of features can contain very meaningful information.

Most features related with the client application work almost like a
database of microblog applications. That is, except for the number of differ-
ent clients used, we are only recalling the identification strings present in
the training messages. In the presence of an unknown client, the classifier
has little information to work with. Hence the cases with low accuracy.

The features related with the URLs and with user interaction obtain
information from the presence or absence of certain elements. However, in
our implementation we could not encode enough information to address
all the relevant cases, especially in the case of user interaction.

It is unfortunate that we are unable to compare our results with other
approaches, mentioned in Section 5.2. There are three reasons for this: (i)
their work has a different goal (i.e. spam detection); or (ii) the authors do
not provide a quantification that we could use for comparison; or (iii) we
consider that their experiment is biased (e.g. excluding some messages be-
cause they are more difficult to classify).

5.6 Conclusion and future work

We have shown that automatic user classification into either human, cyborg
or bot — as we have defined them — is possible using standard classifica-
tion techniques. With a full 97% accuracy we can say that we can be quite
confident on the results of this method. However, we are unsure how moti-
vated many of these users were to hide their posting strategy. Results may
be worse in situations where the account owners take special care to hide
the account automation.

Regarding the most revealing signs, as we have supposed, stylistic fea-
tures can be a reliable indicator in this type of classification. In fact, they
achieved results as good or better than other, more frequently used indica-
tors of automatic activity.

Two problems arise from using the client application as the basis for
user classification: first, some applications can have mixed using (as Chu et
al. [CGWJ10] and Grier et al. [GTPZ10] point out); and second, dealing with
the large amount of different clients is difficult. For example, we counted
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2,330 different clients in our 73,848 users database (around 1 different client
for every 32 users). Thus, while fast and simple, this approach does not
appear to hold on its own, and should be combined with another approach.

In the future, we would like to improve our chronological features by
adopting the same method Zhang and Paxson used [ZP11,GTPZ10], as our
minute-of-the-hour and second-of-the-minute approach was, perhaps, too
simplistic. We would also like to study the scalability of the stylistic ap-
proach, as they generate a large number of new features.
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When performing an experiment of social nature, it may be important
to ensure that the population satisfies a number of criteria. A frequent crite-
ria is the nationality, since it ensures a somewhat reasonable uniformity in a
number of criteria such as culture, socio-economics and language. Nation-
ality is also the defining boundary in a number of subjects, such as political
matters, market research and advertisement.

Since the internet is often viewed as a single global community, it is
difficult to determine the country of origin of a user. When consuming in-
formation from a service provider, like Twitter, there is no access to detailed
information such as IP addresses, and GPS coordinates are absent from a
significant number of messages. Profile information is not always avail-
able, accurate, trusted or usable for this purpose. In this work we propose
using the language used by the user in their posts. Unfortunately this is a

83
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more complex problem when more than one country uses the same native
language.

In this chapter we address the specific problem of detecting the two
main variants of the Portuguese language — European and Brazilian — in
Twitter micro-blogging data, by proposing and evaluating a set of high-
precision features. We follow an automatic classification approach using a
Naïve Bayes classifier, achieving 95% accuracy. We find that our system is
adequate for real-time tweet classification.

6.1 Introduction

In this work, the specific problem we are trying to solve is identifying Por-
tuguese users in Twitter. The official language in Portugal is Portuguese.
That is also the official language in other countries, such as Brazil. How-
ever, due to cultural differences, several words evolved towards different
meanings in these countries. In order to semantically understand the text,
we first need to identify the nationality of the author. For example, “Nivea”
is a German skin-care company very popular in Portugal, but in Brazil it is
a common proper name. The text “I love Nivea” could be interpreted either
as a statement of brand recognition and approval, or as a personal expres-
sion of affection for another person.

Hong et al. [HCC11] placed Portuguese as the third most used language
on Twitter in 2011, with a percentage of about 9% of all messages. Portu-
guese is spoken mainly in Portugal and Brazil, with Brazil having approx-
imately 20 times the population of Portugal. This shows how asymmetric
the problem is: choosing a random Tweet in Portuguese, there is a 95%
chance of it originating in Brazil — considering equal Twitter usage in both
countries. Actually, Brazil is the second most represented country in this
microblog system1.

Since only a small fraction of users of social networks add usable infor-
mation to their profiles, such as location [CCL10], identifying the nation-
ality of the author becomes an intricate problem. Even when present, this
information can be too broad (e.g. “Europe”), too specific (e.g. the street
name), contain spelling errors, ambiguous names (e.g. “Lagos” — in Por-
tugal or in Nigeria?), or present misleading information (e.g. “Hogwarts”).
Thus, we are left with inferring the location of the users through indirect
methods. Several solutions have been considered.

Time zones could help in locating an user on the globe. For example,
by observing the regular inactive hours of users that could match their
sleeping time. Unfortunately, the number of messages required to create
a meaningful user profile would limit this classification to the users that

1http://semiocast.com/publications/2012_01_31_Brazil_becomes_2nd_country_
on_Twitter_superseds_Japan

http://semiocast.com/publications/2012_01_31_Brazil_becomes_2nd_country_on_Twitter_superseds_Japan
http://semiocast.com/publications/2012_01_31_Brazil_becomes_2nd_country_on_Twitter_superseds_Japan
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post frequently enough. Portugal and Brazil are too close geographically to
allow for conclusive decisions regarding a vast percentage of users. Also,
automatic posting systems, such as those from online news, have posting
patterns that are less dependent on the time of day [LSO11]. Finally, when
analysing some events — for example, a World Cup soccer game — the
difference in time zones is less meaningful, as the users are reacting at the
same moment.

Fink et al. used references to geographic features or locations [FPM+09],
but since Portugal is a destination often chosen by emigrants, particularly
from other Portuguese-speaking countries [Ins12], by itself this solution is
insufficient in identifying the nationality of the author.

Social network information (friends and followers) is capable of pro-
viding us with an accurate location [GCCG11]. This was not used in our
work because, to the extent that is possible, we wanted to rely only on in-
formation that comes with the tweets, and the network of the user does
not.

We opted to tackle this problem by looking more deeply at the language
used to write the messages. In many cases there is a strong affinity between
languages and geographic locations, but to be truly efficient in guessing the
location of a person, we need to be able to differentiate between variants of
the same language [LBS+13].

Our objective is to perform this variant detection work as a classification
task, where our scientific contribution lies in the set of features we propose.
We distinguish between the analysis of the features (the present work) and
the automatic updating of the vocabulary that assists a few of them. Since
the latter task is dependent on the success of the former, we use manually
constructed lists, and defer the maintenance of those referred lists to sub-
sequent work.

We focus on features that are simple to process, work with minimal
available text, and that, within the scope of micro-blogging messages, re-
flect differences between the European and Brazilian variants of Portu-
guese. These features cover common expressions, named entities, com-
mon grammatical variations, URL and writing styles. We train classifica-
tion models on datasets containing up to 100 Twitter messages from each
of 1400 Portuguese and 1400 Brazilian users. Although not manually anno-
tated, our largest dataset is 56 times larger than the one used by Carter et
al. [CWT13] (5000 messages distributed across 5 languages). We show that
our proposed features have outperformed the traditional n-gram approach
in accuracy (80%) achieving up to 95%, when using a Naïve Bayes classi-
fier. We also show that our proposed features can be analysed faster than
n-grams while still producing more accurate results.

In the next section we present related work on language identification.
In section 6.3 we explain our approach for language variance identification.
In Section 6.4 we describe the generation of our dataset and the experiment
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performed. Our results are then introduced and analysed, and our conclu-
sions are drawned in Section 6.7. We conclude with the future steps for our
work.

6.2 Related work

Extensive work [HBB+06, GLN08] has been done in the area of automatic
language identification. The most frequent approaches use character n-
grams together with Naïve Bayes, or Markov Models. One of the most
popular approaches is a method of profile ranking [CT94] in which the n-
gram profile of a language is built, and further language classification relies
on simple matching of profiles of texts of interest and the previously built
reference profiles. All of the above methods attain high accuracy on mod-
erate and large sized texts. However, the accuracy tends to drop slightly on
shorter text passages.

A recent study by Gottron and Lipka [GL10] shows that Naïve Bayes,
trained on 5-grams of Reuters news text in 10 different languages, and ap-
plied to the headlines of the news is able to reach 99% accuracy. The same
authors achieved 81% accuracy on single-word queries. However, since
news titles and news content usually have a strong affinity, high accuracy
is not surprising.

Vatanen et al. [VVV10] compared profile ranking [CT94] with Naïve
Bayes using different smoothing methods. The models were trained on the
Universal Declaration of Human Rights in 50 languages and tested on its
short cut-outs (ranging from 5 to 21 characters). They attained precision
of 72.5% and recall of 72.3%, and compared it to Google’s AJAX language
API, with its 53.1% precision and 28.0% recall.

Distinguishing very similar languages on web pages has been identi-
fied as a difficult problem. Martins and Silva [MS05] have shown that their
system, using a modified approach of Cavnar and Trenkle [CT94], is unable
to distinguish between Brazilian and European Portuguese due to insignif-
icant language differences. da Silva and Lopes [dSL06] succeeded with
98% precision in distinguishing those two variants of Portuguese using n-
grams with dimensionality reduction and Quadratic Discrimination Score.
They used “formal writing documents” as a corpus (e.g. official Brazilian
government documents and Portuguese news), with average length of 99
lines. The work by Ljubesic et al. [LMB07] confirmed that distinguishing
variants of languages is possible. They differentiated between Croatian and
Serbian, using second-order Markov Models paired with a list of forbidden
words. They reached precision and recall above 99%. However, Martins
and Ljubesic [MS05,LMB07] used a controlled corpus of larger documents,
and we are interested in short, microblog style texts.

News and web pages exhibit different linguistic properties than mi-
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croblogs, that are a distinct kind of text, in part, due to their short format
(e.g., 140 characters in Twitter). Tang et al. [TLC11] showed that, from a
linguistic and sentiment analysis perspective, there is a difference between
microblog texts and other balanced corpus (e.g. news articles). This dif-
ference validates the use of different language processing methods for mi-
croblog messages. Hong et al. [HCC11] pointed to cross-language differ-
ences in the adoption of Twitter entities such as URL, hashtags, mentions,
replies and retweets. Furthermore they showed different semantic proper-
ties of languages.

Carter et al. [CWT13] used the approach of Cavnar and Trenkle [CT94]
to distinguish between 5 languages on Twitter. Each language was trained
over n-grams of 1000 tweets in the corpus using additional prior knowl-
edge. Prior knowledge consisted of the languages of web pages referenced
in the tweet, the language guessed of previous posts, the language used
by mentioned users, the language used in the previous post in the current
conversation, and the language used in other tweets containing the same
tag. They achieved accuracy of 92.4% without prior knowledge and 97.4%
with it.

As part of their work on latent user attributes, Rao et al. [RYSG10] stud-
ied if they could determine if Indian Twitter users, communicating in En-
glish, were from the north or south region of India based only on their
messages. With 200 users in each category, they achieved their best re-
sult (77.1% accuracy) when using their sociolinguistic-feature model. These
features relate to forms of expression, such as the use of smileys, ellipses,
upper-cased words, “LOL”, “OMG”, and so on. Classification was done
using SVM.

6.3 Methodology

We aim to answer the following research questions: i) how can we classify
microblog users according to their variant of Portuguese (specifically Eu-
ropean vs. Brazilian), based solely on the contents of their messages; and
ii) how do our classifiers perform as we increase the number of messages
per user examined?

To this end, and knowing that our ultimate goal is to identify users from
(or relevant to) the Portuguese Twittosphere, we outline our approach in
the following steps. First we create two sets of microblog users — one for
Portugal and another for Brazil — and then proceed to sample messages
from each user. We then train a classifier based on the texts written by a
number of users, expecting to be able to predict the nationality of the re-
maining ones. The classification is supported by several groups of features
that relate to six different strategies in language variant identification.
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6.3.1 User selection

We wanted to create a large set of Portuguese and Brazilian users for our
study, both to capture the variety in language and style that exists in mi-
croblogs, and to provide statistical significance to the results. Unfortu-
nately, it would take too long to manually annotate the required number
of users in a proper way. We opted to use automatic annotations, employ-
ing filters over the stated location and the social network of each user.

To improve our confidence on our annotation, we added a second source
of information. Gonzalez et al. show that users tend to have geographically
close followers [GCCG11]. We believe that these links are, to a degree, a
user’s connection to their community, and do not change, in essence, as
easily as the geographic location of the user. Thus, we have greater confi-
dence in a user that claims to reside in the same country as their friends,
and should repudiate accounts that show contradictory information.

6.3.2 Features

We defined six feature groups: n-gram basic features and a set of five fea-
ture groups that we refer to as our proposed features. Some of our proposed
features make use of pre-compiled lists of words, names or short expres-
sions. These lists are meant to give an indication of the suitability of the
identification strategy employed.

N-gram based features

In our work, n-grams set a baseline against which all other groups of fea-
tures are compared.

The n-grams feature group covers all sequences of one, two and three
characters in the message. N-grams are frequently used in text classifica-
tion due to their simplicity and distinct results [CT94], but they can also
raise the dimensionality of the feature space and extend the processing
time. To avoid this problem we consider only n-grams that occur more
than 0.01× (total number of messages) times.

Stylistic

The style in which messages are written can help distinguish one author
from another. We define a set of stylistic features based on work by Sousa-
Silva [SSLS+11], since it is possible that cultural or social factors can influ-
ence the style employed by Twitter users from two different countries.

This feature group is divided into 4 segments: i) Quantitative markers,
ii) Marks of Emotion, iii) Punctuation and iv) Accents. Of these, Marks of
Emotion is expected to be the most relevant, since they showed the highest
precision distinguishing authors [SSLS+11].
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Interjections are a way of textually expressing emotion, and given the
orality influence in microblogs, they can be frequent. Through observa-
tion, we noticed that Brazilians tend to express emotion using different
onomatopoeias than Portuguese (e.g. the laugh “kkk” is typical of Brazil).

To identify interjections we look at words with 5 or more letters, having
a low ratio of distinct characters to the word length (≤ 0.5). In this way we
can recognise simple interjections (e.g. “hehehe”) as well as more complex
ones that do not follow a pattern (e.g. “hushaushuash”).

Entities

With the help of native speakers of each language variant, we put together
two lists containing names that we consider likely to be mentioned in Social
Media. Some of these names are idiomatic (e.g. fans of the Brazilian soccer
club Fluminense are some times called “bambi”). They include regions,
cities, politicians, soccer players, singers, actors, political parties, soccer
clubs, big national companies, and similar entities that are frequently dis-
cussed online. The lists contain approximately 130 entries for each variant,
including variations, and can be seen in Annex A.

Word tokens

We want to determine the frequency of words exclusive to one of the two
language variants. To this end we used GNU Aspell2 and its two dictio-
naries for both Portuguese variants. We also took note of the words we
found in neither dictionary and used them as features, since they could be
vernacular mentions or entity names. In particular, we assume that words
composed only of consonants are abbreviations. We rely on this heuristic
instead of employing a list of abbreviations that is difficult to keep updated.

We created two lists containing expressions more popular in one of the
language variants. We identified over 200 regarding Brazil, and near 80
used in Portugal, accounting for variations such as the lack of accents, com-
mon abbreviations and misspellings. For example, this list contains words
such as “billion” (“bilião” in Portugal, “bilhão” in Brazil), “bus” (“auto-
carro” in Portugal, “ónibus” in Brazil), and expressions such as “pisar na
bola” (literally “to step on the ball”, but in Brazil it means to act against
one’s expectations).

Finally, we also count the number of times monetary references occur
for both Portugal (Euro) and Brazil (Real).

2http://aspell.net/

http://aspell.net/
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Grammar

Portuguese and Brazilians in some situations can show different prefer-
ences in grammar. This is noticeable in the verbal forms and the grammat-
ical persons used. For example, in Brazil the gerund is used more often,
and the second person of the singular “você” can be used in both formal
and informal situations. In Portugal the infinitive is more frequent, and the
second person of the singular “tu” is used in informal conversation.

Also, in Brazil the object pronoun frequently precedes the verb (e.g.
“me escreve” — “[to me] write”), while in Portugal the opposite is more
common (e.g. “escreve-me” — “write [to me]”). We use JSpell3, to detect
these patterns, and use a feature as a flag when one is detected.

Another distinction is the absence of the definite article before a pos-
sessive. In Brazil it is often omitted, as it is optional in the language; as
in “meu texto” — “my text”. In Portugal the article is frequently used: “o
meu texto”.

URL

The last group of features is extracted from URL mentioned in the tweets.
We maintain two types of features related to URL, after expansion from
shortening services. The first type relates to the Top Level Domain (TLD).
The national TLD for Portugal and Brazil are respectively “pt” and “br”.
Here, we simply count the number of URL that we find, in each message,
having each of these TLD.

However, there are many websites outside of these TLD which are sig-
nificantly more popular in one of the countries. For example, the hostname
for the Brazilian TV station Rede Globo is “redeglobo.globo.com”. To ad-
dress this, we use the second type of features that counts the number of
times that we find each hostname in all URL in the message.

6.4 Experimental setup

The tests were made in two steps. In the first step we generate the fea-
tures that describe the messages in the dataset. In the second step we use a
classifier to test the adequacy of the features using 5-fold cross validation.

Our goal is not to contrast different classification techniques for opti-
mising classification accuracy, but to assess the usefulness of the sets of
features we propose. Thus, the choice of classifier was secondary in our
work. We opted for Naïve Bayes4 due to its simplicity and because it is
commonly used as a baseline. It also enables us to process large amounts
of features quickly.

3http://natura.di.uminho.pt/~jj/pln/pln.html
4http://search.cpan.org/dist/Algorithm-NaiveBayes/

http://natura.di.uminho.pt/~jj/pln/pln.html
http://search.cpan.org/dist/Algorithm-NaiveBayes/
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6.4.1 Dataset generation

Most of our message collection had been acquired with the purpose of rep-
resenting Portuguese users. To ensure our current ground truth was un-
biased, we used the TREC Tweets2011 corpus5, which provides a random
sample of Twitter (approximately 16 million messages) from 2011-01-24 to
2011-02-08. Our dataset was created by sampling Portuguese and Brazilian
users and collecting their tweets.

In June 2011 we registered information about all the users present in
the Tweets2011 corpus. In February 2012 we re-examined the users in this
corpus, and discarded those that had changed the location in their profile.

We filtered out all Portuguese and Brazilian users by matching their
free-form location field in Twitter against “Portugal”, “Brasil” (the native
spelling for “Brazil”) or one of the top 10 cities (municipalities) for each
country6, excluding “Porto” (in Portugal), that is frequently mistaken for
“Porto Alegre” (in Brazil). From the remaining users, we further excluded
those from whom we could not retrieve more than 100 messages (excluding
retweets).

In order to enable the social network filtering, we also retrieved infor-
mation from the accounts that were following each of the relevant users.
We selected all users with more than 10 followers, where the ratio of fol-
lowers from their country exceeds those from the other country by a factor
greater than 3. These conditions resulted from experimentation, and allow
for an acceptable balance in the number of users in each set (2768 users in
Brazil and 1455 users in Portugal), and we consider them strict enough to
satisfy our labelling using an unsupervised approach. From each of these
sets we randomly selected 1400 users to use in our experiments.

Finally, we used a specialised tokenizer [LSTO10] to process the mes-
sages from each user, and expanded the short URL.

After a native speaker of each language variant observed a 5% sample
of each dataset, no irregularity was found in the sample of dataset “Brazil”.
The sample of dataset “Portugal” was more difficult to evaluate, having 6
cases that precluded a definitive conclusion. One account showed mixed
spellings in words, without one of the language variants being dominant.
The remaining accounts had insufficient content written in Portuguese to
create an informed opinion. In conclusion, these messages are ambiguous.

6.4.2 Determining the number of messages

In the first experiment we wish to determine how the number of messages
available influences our classification. We created several datasets with 1,

5https://sites.google.com/site/microblogtrack/2011-guidelines
6http://en.wikipedia.org/wiki/List_of_cities_in_Portugal,

http://en.wikipedia.org/wiki/List_of_largest_cities_in_Brazil

https://sites.google.com/site/microblogtrack/2011-guidelines
http://en.wikipedia.org/wiki/List_of_cities_in_Portugal
http://en.wikipedia.org/wiki/List_of_largest_cities_in_Brazil
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Figure 6.1: Accuracy of three feature groups as a function of the number of
MPU.

2, 3, 4, 5, 7, 10, 15, 20, 30, 50, 70 and 100 messages per user (MPU).
Messages were selected randomly, and concatenated into a single text,

simplifying the later processing of the text with minimal impact.

6.4.3 Determining the most significant features

To determine the impact of each of our proposed feature groups, we re-
ran the experiment using 100 MPU, each time excluding one feature group.
We then measured the impact this absence caused in both accuracy and
execution time. This is known as a mutilation test.

6.5 Results

As Figure 6.1 shows, our proposed features offer nearly continuously in-
creasing performance as more data is available. By contrast, n-gram fea-
tures start to plateau fairly early (10 MPU), and fail to make use of the extra
information. We can also see that our proposed features were more ac-
curate than n-grams when exceeding 4 MPU. When using a small sample
from each user (1 or 2 messages), n-grams achieve higher accuracy. Max-
imum n-gram accuracy was 0.80 (30 MPU), while our proposed features
peaked at 0.87 (100 MPU).

In Figure 6.2 we can observe the total running times for the experiment,
as a function of the sample size. This includes both training and testing
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Table 6.1: Variations in accuracy and processing time of our proposed fea-
tures, excluding a feature group in turn, using 100 messages per user.

Feature Group removed ∆ accuracy ∆ time
Entities -0.16% -26.83%
Stylistic +8.81% -21.49%
Grammar -0.08% -17.18%
URL -0.33% -16.53%
Word tokens -19.37% -66.51%

times. The time cost of both n-grams and our proposed features grow lin-
early with the number of MPU, but at different rates.
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Figure 6.2: Processing time of three feature groups as a function of the num-
ber of messages used.

The results of the mutilation tests are displayed in Table 6.1. Strong
emphasis should be put in the Word tokens feature group. When we re-
moved these features, processing time decreased by 2/3, but also incurred
an almost 20% accuracy loss. By contrast, our proposed features showed an
improvement of almost 9% in accuracy when we excluded the Stylistic fea-
ture group, reaching the maximum value we obtained: 95%. To us, this was
rather surprising since, based on previous results, we believed that these
features would be adequate for this task [SSLS+11] and a “community-
level” style of writing could exist.
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6.6 Analysis

We should first recall that we are comparing an optimised version of n-
grams with an unoptimised version of our system. In Figure 6.3 we repre-
sent the potential n-gram feature space dimension and of the feature space
we actually used, regarding 1, 10 and 100 MPU. We also show the dimen-
sion of the feature space created by our five proposed groups. The number
of considered n-grams is almost constant, due to the threshold described
in Section 6.3.2. This allows an almost fixed execution time of the n-gram
feature group. Without this threshold, the n-grams group would execute
slower than our proposed features, since they accumulate many more fea-
tures. This sort of feature selection could be harmful to our proposed fea-
tures, since they are precision-oriented rather than recall-oriented (as n-
grams). That is, they may appear infrequently, but when present they are
very discriminative.

We can conclude that combining all features brought little gain in ac-
curacy over our proposed features. The extra overhead in processing time
has a minimal impact on accuracy. Compared to our proposed features,
the maximum gain was inferior to 3%, when using one message per user,
for over 5 times the original processing time. Compared to n-grams, 7.5%
better accuracy can be obtained when using all 100 MPU, for nearly 9 times
the original processing time.

The almost flat accuracy of n-grams when facing longer text samples,
seen in Figure 6.1, seems to indicate that there is little gain in using a
larger training set. In other words, we could say that the relative fre-
quency of n-grams remains stable after a certain number of messages has
been observed. To confirm this hypothesis, we compared the most pop-
ular n-grams when using 1 and 100 MPU. We used the Kendall tau dis-
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tance [FKS03] with penalty parameter 1 to measure the ranking similarity
of the 200 most frequent n-grams. The similarity measures were normalised
using the maximum 1

2 n(n− 1), where n is the number of distinct n-grams
in the union of both lists being compared. In this way, 0 means that both
lists are equal, and 1 indicates that the lists are in total disagreement — e.g.
the n-grams are in reverse order, or no common n-gram exists.

We calculated the similarity values for the sets containing 1 message
per user, and 100 MPU in each language variant. One thing that we no-
ticed was that the Brazilian variant scored higher (greater variation) in al-
most every case. The most significant differences were found in 1-grams
— 0.258 for Portugal, 0.302 for Brazil. This is due to URL, that can intro-
duce seemingly random characters in the text. Each Kendall tau distance
reduces to 0.061 and 0.046 respectively, when excluding URLs. Longer n-
grams present greater similarity between the smaller and larger message
sets. In the same order as above, similarity for 2-grams measured as 0.042
and 0.047, and for 3-grams 0.094 and 0.109. Thus, we can conclude that 1400
messages (one from each user) is sufficient to provide an accurate model of
each language variant.

6.7 Conclusion

Our intent was to identify the variant of a language used on microblog mes-
sages, as a way to disambiguate the nationality of users. We worked on
Portuguese, the official language of Portugal and Brazil (and other coun-
tries we did not use in this work), and automatically selected 1400 users
referring to each country, based on information extracted from their pro-
file and their social network. After presenting our proposed feature groups
that we compared to an n-gram approach, using a Naïve Bayes classifier,
we tested both approaches using several sample datasets, varying from 1
to 100 messages per user.

Our main conclusion is that lexical differences provide the best discrim-
ination among our proposed features, and shows a promising path for clas-
sification improvement.

N-grams required minimal input to generate an adequate model, and
thus, when only one or two tweets are available, this feature group pro-
vided the best accuracy. This is relevant when, for example, the user writes
infrequently, or writes most messages in a foreign language, and thus we
need to make a decision based on few messages.

When more messages are available, we can expect higher accuracy from
our proposed features. The most accurate classification was obtained by
combining Entities, Word tokens, Grammar, and URL features. In this sit-
uation we were able to reached 95% accuracy in our experiments.

As for the number of messages from each user, we notice that beyond
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10 messages, each additional message contributes less to the classification.
With n-grams we see negligible improvements past that point, while our
proposed features continue to improve at a lower rate.

6.8 Future work

Some of the features presented here employ lists of vocabulary. The manual
generation and maintenance of these lists is a tiresome endeavour, subject
to mistakes or omissions that could greatly impact the results. The human
factor limits the scalability of the system. For this reason, we intend to ex-
plore the process of generating these lists automatically. This could include
external data sources, like newspapers or Wikipedia, and/or tweets.

As improvements to the classification process, we wish to test alternate
classifiers, comparing their execution times and classification accuracy. We
also aim to improve some features, namely in the stylistic group, and de-
termine if they can help in user nationality classification or should be dis-
carded.
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While most noise we have seen so far is mostly a byproduct style or a
very informal form of writing, some of it is intentionally added to confuse
the reader (or filtering platform). Obfuscation is thus the result of trying
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to raise the noise in the message so that the signal (the intended word) can
pass through “unseen”.

In this chapter we will describe our efforts to “see” such words and
decode their true meaning.

This chapter is based on work we have previously published [LO14b,
LO14a].

7.1 Introduction

On September 5th, 2017 a story appeared on the Internet reproducing a hu-
morous article that had supposedly appeared on the Times daily newspaper
that same day and that perfectly illustrates the problem of clashing “reali-
ties” that many times profanity promotes. It was titled “War of words” and
read:

Today marks the 35th anniversary of the death of Sir Dou-
glas Bader and I couldn’t let it pass without this story of the RAF
hero. He was giving a talk at an upmarket girls’ school about
his time as a pilot in the Second World War. “So there were two
of the f***ers behind me, three f***ers to my right, another f***er
on the left,” he told the audience. The headmistress went pale
and interjected: “Ladies, the Fokker was a German aircraft.” Sir
Douglas replied: “That may be madam, but these f***ers were
in Messershmitts.”

Confronted with the wish to tell this story, and keeping in mind the
sensibility of their readers that they ought to respect, the editorial team
decided to use asterisks as a form of compromise. This is a very com-
mon strategy — which we call “obfuscation” — as it avoids printing words
deemed offensive by some and allows the columnist to tell their story.

Obfuscation is thus a sort of a middle road: you can no longer find the
relevant word in the text, but it is still there. And of course, the primary use
of obfuscation in on swearing, which seems to uniquely balance reproach
and pervasiveness in language.

The work we describe here tries to improve the ability of a machine to
recognise obfuscated words, and to provide the actual word excised from
the text. It is curious that this task is very subjective and also difficult to be
strict, meaning that even for humans this task can easily swing from trivial
to a source of uncertainty and to cause disagreement in people; but that
may be expected from what can be described as a creative form of commu-
nication between humans. It is even debatable if “bad obfuscations” exist,
since there are no rules and “anything goes” between the extremes of “no
obfuscation” and total meaningless noise, since it is supposed to be harder
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to understand. If User-Generated Content is occasionally compared with
the “wild west” of language, then obfuscation mixes some anarchy into it.

Despite the difficulty, our results are encouraging as we were able to
“decode” or “recover” many of the disguised words in our corpus back into
their canonical form. We studied the obfuscation methods used by users
and used that knowledge to revert the operations most frequently used on
the words in a reliable manner. Our strategy is based on improvements
to the Levenshtein edit distance with custom-made operations of different
costs that derive from our observation of relevant data.

This chapter is divided into three parts. The first part presents back-
ground information on profanity and obfuscation. For the readers who
may wonder why profanity is even a relevant thing, we dedicate the first
sections of this work to address this matter. We also refer to relevant lit-
erature where possible. On Section 7.4 we begin addressing the subject of
obfuscation, discussing the why and how of its uses. Section 7.5 discusses
the state of the art on profanity detection (not profanity recognition or iden-
tification, as we found no previous work on this subject).

The second part of this chapter presents the data we used on our work.
It starts on Section 7.6 with the detailed description of our obfuscation cor-
pus, which allowed us to examine a Portuguese community that frequently
obfuscates words. The annotation process is presented on the subsequent
chapter and is followed by an analysis of the profanity found. The matter
of obfuscation is addressed on Section 7.7, where the methods employed
are presented in detail. We conclude this section with a revision of the
most relevant information that had been presented and will be relevant to
understand our work.

The third and final part of the chapter presents our work on deobfusca-
tion and profanity recognition. It starts with Section 8.1, where we present
a formal view of the obfuscation process. We then present the edit distance,
explain how it works and disclose our own version of it. Section 8.3 talks
about the evaluation we made of or work. This includes the methodology,
the results obtained and an analysis thereof.

As usual, we close the chapter by restating the most relevant ideas we
presented and draw our further line of research into the future.

7.2 What is profanity, and why it is relevant

Profanity, swearing, cursing or taboo words — we will be using these terms
interchangeably — in the context of this work can be regarded as a form of
foul, lewd, obscene or abusive language, and are usually used with offen-
sive or vulgar intentions.

It is curious to note that the names we use today to describe this vocab-
ulary may derive from their ecclesiastic usage to describe profane speech
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(profanity) or taking a sacred oath1 (swearing) [McE06, Lju10]. Edmonds
also point out that “In the past, many swear words were linked to reli-
gion.” [Edm17]. Usage of certain taboo words could be invoking a deity or
to give the person more power or credibility. The term “cursing” probably
stems from a belief that some words hold magical power [Lju10, PT 94].

Profanity has always been a constant in both language and culture,
evolving along with both and adapting to the needs of the times [McE06,
Lov17]. This indicates that it dovetails with a certain need that can be con-
sidered typical in human nature, to the point where travel books include
chapters on how to swear like a local [Mar14] so that people can better fit
in.

When recalling the most common vocabulary used, the first thing we
notice is that it is mainly of scatological or sexual nature (visceral). The
Dutch, for instance, use diseases as their most grave swearing [Ges14].
Other forms of profanity are related to religion (deistic). This preference of
subjects agrees with the taxonomy that Robert Hirsch proposed for modern
English [Hir85], that states that “The Content of the swearing expressions
are derived from the areas of taboo and stigma.”

7.2.1 On the Internet

Before the proliferation of the Internet, mass media was the only way to
reach a large number of people; and since there was a very small number
of such institutions it was possible (or at least attempted) to regulate them
or to ensure a somewhat uniform code of conduct. It was this uniformity
that gave rise to the famous monologue of George Carlin called “Seven
dirty words” [con18b], a reflection on profanity and our uneasy relation
with it that starts with the seven words he said could not be pronounced
on television.

The Internet changed that, and the so-called Web 2.0 a new paradigm
appeared, as users were encouraged to share their own content, their opin-
ions and ratings, as well as to interact with each other. In this way, the plat-
form owners became service providers, and, instead of creating new con-
tent (or in addition to doing so), took onto themselves the task of hosts or
community managers. The companies cannot dissociate completely from
the content published by their users, and for this reason some monitoring
and code of conduct is usually present to set some boundaries. At the same
time, and at the other end, other entities may wish to monitor and filter the
content that is being received (such as schools and parents).

Automation is required to process a vast amount of content and to val-
idate it as “acceptable”, and it is this need that is driving most recent re-

1Based on passages of the Bible that condemn such actions, such as Matthew 5:34-37 and
James 5:12.
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search towards the machine-driven detection of offensive content. The au-
tomatic recognition of swear words is the oldest subset of this challenge,
but it is still wanting.

The work presented in this chapter originates in a call for help from a re-
search partner and media company SAPO, which was part of PT Comuni-
cações (now assimilated into Altice). They were worried about the amount
of swearing that was becoming commonplace in their sports news forums,
even after a censoring filter was introduced. It turns out that swearing is
common in on-line platforms, not just on SAPO; and little progress is being
done in the subject of profanity detection, which is a challenge much more
difficult than it appears.

7.3 Related work

The origin, dissemination, interpretation and use of profanity can be stud-
ied from numerous points of view, such as in psychology, linguistics, an-
thropology and sociology. From the computational perspective, working
with profanity is commonly associated with the identification of abusive
comments in User-Generated Content, with the intent of censoring them.

But profanity is also tightly related with sentiment analysis and opin-
ion mining tasks [CDPS09], since “certain emotional states are only ade-
quately expressed through taboo language” [JJ07]. More specifically, pro-
fanity is most often “used to express the speaker’s frustration, anger or sur-
prise” [Jay09], or, according to the work of Wang et al. with microblogging
platform Twitter [WCTS14], used mostly to express sadness and anger. It is
also curious to notice that, while profanity is often associated with an idea
of lower moral standards, it can also be positively associated with hon-
esty [Edm17], as it conveys unfiltered feelings and sincerity.

How frequently is profanity written in on-line public postings? Many
studies tried to quantify the prevalence of profanity in public postings on
the Internet, and it appears to bear some relation with the age, gender and
social class of the author [The08,WCTS14, Jay09,MP03,MX03,McE06]. Per-
haps it may be possible to use this information the other way around, i.e., to
try to infer some profile information about the author based on profanity
use, in conjunction with other stylistic, lexical and grammatical informa-
tion. While this hypothesis is strongly related with our work, we did not
pursue it due to the lack of reliable data.

Some relevant studies have approached the subject of swearing, both
on-line and off-line. We will be using their findings to help answer some
common questions regarding this matter.



102 CHAPTER 7. AN ANALYSIS OF OBFUSCATION

7.3.1 How prevalent is swearing?

The answer to this question is dependent on several factors, but we will
draw upon a few works for reference.

In 1992 Timothy Jay estimated that 0.7% of words spoken in the Ameri-
can daily life were swear words [Jay92] (as cited by Wang et. al [WCTS14]).
In 1994 Tomothy Jay is quoted as saying that up to 3% of adult conversa-
tions at work and 13% of adult leisure conversations include swearing [PT
94]. In 2003 Mehl and Pennebaker published a study where they analysed
audio recordings of conversations of 52 undergraduate students across 4
days, and estimated that 0.5% of words spoken were swear words [MP03].
In that same year Grimm writes that in the US, 72% of men and 58% of
women swear in public; 74% of people in the age group 18–34 year old also
used such language, as did 48% of people over age 55 [Gri03]. In 2006,
Subrahmanyam and Smahel observed the conversations of 583 teenagers
in two chat rooms, concluding that 3% of all 12 258 utterances was obscene
language, meaning one such word was used every 2 minutes [SSG06]. This
same year, McEnery published an analysis of the Lancaster Corpus of Abuse
(a subset of the spoken British National Corpus of spoken and written En-
glish), in which 3 to 5% of all words spoken fall within the category of “Bad
Language Words” [MX04] .

As a comparison, first person pronouns (e.g. “I”, “us”, “our”) make up
about 1% of all words spoken in a conversation [MP03], and linguists do
not consider them as a rare occurrence.

With this basic idea of how people use profanity in their natural sur-
roundings, we will look at the way it is employed in three different pop-
ular on-line communities: the social networks Myspace and Facebook, the
microblogging platform Twitter and the social story sharing and ranking
service Yahoo! Buzz.

In Myspace

In 2008 Thelwall examined the pages of 8609 North-American and 767
British users of Myspace [The08]. A list of swear words was created for
each of these groups, to address cultural difference. It was observed that
most teenagers had swearing on their homepages, and about 15% of middle-
aged people displayed strong swearing. Overall, 40% of users had profan-
ity on their pages.

Figure 7.1 compares the likelihood of swearing appearing on the pages
of people of each combination of gender and nationality. It is apparent that
men swear more than their female compatriots, and that British swear more
than Americans. Consequently, the British males are the most inclined to
swear, but it is curious that British females curse as much as American
males.
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Figure 7.1: Proportion of the sample Myspace profiles containing swear
words (mild, strong or very strong), grouped by gender and nationality.
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Figure 7.2: Classification of the intensity of the swear words seen on the
Myspace sample profiles.

When considering the choice of swear words, the author split the rel-
evant vocabulary into three groups: “mild”, “strong” and “very strong”.
Most swearing was considered “strong”, as shown on Figure 7.2. Moder-
ate swearing were more common on the UK (by about 2 to 3 times), with
“very strong” swearing also being a much more common occurrence on
British territories (2 to 5 times as much).

Thelwall’s work proceeds to focus on the “strong” and “very strong”
cursing when doing word frequency analysis. The maximum percentage
of such swear words in a British profile was 5%, while the maximum for an
American profile was 11%. Table 7.1 shows the mean values.

In this study, the author made a good effort of seeking common word
variants of swear words (for example, suffixes like “–ed” and “–ing”), port-
manteau words (which were common, with a significant number of infre-
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Country Class Percentage

UK
General 0.20

Male 0.23
Female 0.15

US
General 0.30

Male 0.30
Female 0.20

Table 7.1: Mean percentage of words considered strong or very strong curs-
ing on the Myspace sample profiles.

quent ones), spelling mistakes and “deliberately unorthodox spellings,” a
concept on which the author neglected to provide any further detail.

In Twitter

More recently, in 2014, Wang et al. studied 14 million Twitter users and 51
million messages [WCTS14]. In this sample they found that 7.73% of the
messages contained at least one curse word, and that 0.80% of all words
was a swear word2.

The authors pointed out that swearing was mostly associated with neg-
ative emotions. In Table 7.2 we see how often messages with swearing
express the emotions sadness, anger and love, and how often messages
without swearing express the same emotions. Here we can see that profan-
ity seems to act as an expressive catalyst for the negative emotions, given
the preference for these words in those situations. In addition to this, and
despite the lack of value for the percentage of messages with no swearing
that manifested love, curse words seem to be more strongly associated with
sadness and anger than with this positive emotion. Apparently “clean”
messages seem to gravitate less towards these negative feelings. This idea
can be supported with the percentage of messages manifesting different
emotions through swearing, which is collected in Table 7.3. Here too, the
negative feelings “anger” and “sadness” appear to be the emotions more
commonly expressed with cursing.

We should point out that the authors did consider alternate spelling for
the words they searched for, such as “@$$”. We will provide more detail on
this later when we delve into more detail about this corpus, in Section 7.5.3.

2Due to a programming mistake, the original work reported the value of 1.15%. This
value has been corrected in an updated version of the article.
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Sadness Anger Love

With swearing 21.83 16.79 6.59
Without swearing 11.31 4.50 –

Table 7.2: Percentage of tweets with and without swearing expressing cer-
tain emotions.

Emotion Percentage

Anger 23.82
Sadness 13.93
Love 4.16
Thankfulness 3.26
Joy 2.50

Table 7.3: Percentage of tweets expressing different emotions containing
swearing.

In Yahoo! Buzz

Sood, Antin and Churchill published several works related to the study of
language and on-line communities, and raise pertinent questions regarding
profanity detection systems based on lists [SAC12a]. For their analysis of
swearing in a collection of 6500 messages taken from Yahoo! Buzz [SCA11]
— a community-based news article website — the authors chose to employ
a croudsourcing platform called Mechanical Turk to provide their annota-
tions for the messages. The human element provided by this solution al-
lowed for the recognition of cursing vocabulary that could either be absent
from a collection of swear words or that could have eluded the method of
automatic recognition that was used. As a consequence, we trust that this
operation provides a negligible number of Type II errors (false negatives),
leading to a higher measurement of recall [SAC12a]. This is important to
get a more accurate depiction of the pervasiveness of swearing online (con-
sidering that the Yahoo! Buzz community is adequately representative).

The results of this human analysis [SAC12a] showed that out of 6354
messages (146 yielded insufficient consensus) 9.4% had at least one swear
word. It is unfortunate that the authors did not present details at the word
level. This may be a result of the difficulties of using the croudsourcing
platform for such detailed tasks, as we ourselves found Croudflower (the
most popular croudsourcing tool) unsuitable to such minutiae tasks.

Figure 7.3 show the distribution of swearing across the different sec-
tions. Swearing was more common in political discussions and more infre-
quent in the sports comments. The difference between these two extremes
is significant, but it also raises the question if there is any subject that is
resistant to swearing.
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Figure 7.3: Percentage of messages in each section of Yahoo! Buzz that con-
tained swear words.

9.4% is not too different from the 7.73% of tweets containing swear
words (as seen on Section 7.3.1) — the higher recall value that we expect
could justify more swear words being identified. With different years, dif-
ferent sources, different populations and different methodologies, we can
say that the results are fairly consistent, and point towards profanity hav-
ing a consistent and noticeable presence on platforms that take no actions
moderating the language employed by the users.

In Facebook

In the 2017 study by Feldman et al. [FLKS17] 153,716 participants signed in
to a Facebook application related with personality studies, granting access
to their profile and messages. Of these, 73,789 fulfilled the desired criteria
of using the English version of Facebook, having more than 50 status up-
dates and more than 30 friends. 62% of the selected users were female and
the average age was 25 years.

The study used the Linguistic Inquiry and Word Count (LIWC)3 and
its dictionary to calculate the profanity use rate. The mean of profanity
use for the authors was 0.37%, having almost 10.8% of users not used any
profanity.

7.3.2 Why is it difficult to censor swearing?

Part of the reason why swearing is difficult to address lies in the impossi-
bility of compiling all the swear words in a given language. There are a
number of reasons for this.

3https://liwc.wpengine.com/

https://liwc.wpengine.com/


7.3. RELATED WORK 107

No definitive list

The first problem to overcome is the definition of what constitutes swear-
ing and what are the words that need to be avoided. People tend dis-
agree on this matter since each one has its own sensibilities. One case
in particular comes from the words that used to be swear words but are,
usually, no longer considered offensive anymore (for example, “damn” or
“butt”) [Edm17]. Not everyone agrees at the same time on the level of
vulgarity that these words still hold, meaning that they may be offensive
for only some people. Regardless of how comprehensive a list may be, we
must also remember that new vulgar words are created all the time [TOS16].

Word variations

In addition to collecting all the basic curse words, considering all the varia-
tions of each word can be a difficult task. For example, even for the simple
word “dog” we can create a significant number of variant words (even if
many do not make sense without an adequate context), that we list in Ta-
ble 7.4. A collection of curse words plus all their variants is something that
is impossible to accomplish in practice, especially when considering port-
manteaus, which are common in English [The08] (e. g., “gunt”). This is
not a situation exclusive of English, as other languages may have similar
problems.

Table 7.4: Some words derived from “dog”.
doggy dogging dogged dogful dogless
dogable dogist dogal dogious dogish
undogging redogged underdog disdogging dogzilla
dogness dogdom dogmageddon dogger doggesque

Different meanings

We should also keep in mind that not all swear words are self-evident
profanity. Seemingly benign words can be appropriated and twisted into
other connotations and through this they can be used as a negative con-
notation. For example, the word “gay” has changed its dominant mean-
ing of “cheerful” to “homosexual”; “bird” acquired the slang meaning for
a young woman or for an obscene gesture, “dike” can mean an embank-
ment constructed to prevent flooding or an offensive word for lesbian, and
a “fag” can be a student, a cigarette or a disparaging term for a gay man.
Conversely, some say that taboo words, when used literally, should not be
considered as swearing [Lju10]. Context and interpretation are very impor-
tant when identifying swear words and offensive expressions — two things
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that are not easy to automate.

Cultural differences

Cultural differences should also be taken into consideration. A normal
word in one language can have an offensive meaning in another language.
As an anecdote, Portuguese footballer Paulo Futre caused some discomfort
when he enlisted in a French team, since his last name was a French slang
word for sexual intercourse. French sports commentators started to consis-
tently mispronounce his surname as “Futrè” to circumvent embarrassment.

However, most cultural differences are not clashes of different languages
but the result of cultural divergences of the same language. For example,
“bloody” can be a swear word in England, but not in the United States,
“blow me” is an expression with no sexual connotation in England, mean-
ing being surprised (if you blow on him, he will tip over), and “pussy”
refers to cats. Similarly, the Portuguese word “veado” (stag) is used in
Brazil to refer to homosexual men in an offensive way, while in Portugal it
is a traditional symbol of virility. Occasionally the offensiveness of words
can change even across regions within the same small country [Alm14].

The importance of context

One other problem is that some words that are often used in a offensive
way may be acceptable under the right context. One example is “bitch”,
which is perfectly OK when talking about dogs, but reproachable when
applying it to people [SAC12a].

Orthography

Another difficulty in recognising curse words arises from they being mainly
an oral tradition. Since they are seldomly observed in written (not only in
books and newspapers, but often being absent from dictionaries), the cor-
rect spelling of some less common swear words is not always obvious, and
therefore they can appear in many variations — which only exacerbates
the problem further. Different regions may even pronounce the words dif-
ferently, making it difficult to unify them under one orthography. Some
misspellings are even done on purpose, for an effect of “style” or tease (for
example, the word “biatch”).

The situations that we will be the trying to address with our work are in
a subset of this problem. People can write the same word in multiple ways
(some correctly, some incorrectly but still understandable). In Sections 2.4
and 3.1 we already mentioned the noisy nature of User Generated Con-
tent, and it spurs variations in the writing that can be taken as “noise” in
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the message. This makes words and messages overall difficult to process,
especially automatically.

When the author purposefully uses an alternative orthography of a
curse word, they may be doing so to “hide” it. This is the case of obfus-
cation, a cunning method used to circumvent profanity filters that we will
be discussing in detail in the next section.

7.4 Swearing and obfuscation

Language depends on a series of symbols that convey meaning, with words
being a representation for one or more ideas. Thus, when reading, we
process a sequence that goes word → idea. Obfuscation adds one level of
redirection, in that it references (points to or hints at) a word that is never
written, existing only in the mind of the reader, but is still an essential step-
ping stone to understand the message. The sequence thus becomes obfus-
cation→ (word→) idea.

We can say that obfuscation is simply a method used by the sender
to encode a word in a way that the intending receiver will (hopefully) un-
derstand it, and thus avoid committing the word itself to the communica-
tion medium. But not every deviation of the word is an obfuscation, since
obfuscation is a deliberate action, and intention is something that only the
writer can declare.

If the author misspells a word by accident, we do not have a case of ob-
fuscation in its strict sense. At first glance, deobfuscation (the process of
resolving obfuscated writing) maintains some affinity and overlaps with
the task of spellchecking (the process of correcting spelling mistakes), as
they are somewhat similar text normalisation tasks. The practical differ-
ence is that deobfuscation tends to deal with a more focused vocabulary
(often taboo words) and some times the author imagines an adversary or
an obstacle his obfuscation must overcome — someone (children, someone
from outside his group) or some thing (an automatic filter)4. Some clever
methods to circumvent automatic profanity filters will be seen later in Sec-
tion 7.7.1.

We should also make a distinction between the deliberate misspelling
of a word with a stylistic intent and a deliberate effort to disguise or to hide
it. We use the term obfuscation to refer to the latter case, where we have
a conscious change of spelling of a word with the intent of making it less

4This competition is akin to that played between spammers (senders of unsolicited
email) and anti-spam software, where obfuscation (e. g. spelling “\/1@GrA”, to avoid say-
ing “Viagra” which would raise a flag) escalated to the point where the important message
is encoded into images, which are easier to process by humans than by machines Spam
filters are now employing OCR technology to scan email attachments to handle such tech-
niques [FPR06].
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obvious or more difficult to understand. Again, the problem is that the
intent of the writer is a subjective matter.

From the computational point of view, meta-subjects such as author in-
tent is irrelevant, as all deviations it finds will be treated in the exact same
way. But the question remains: why would someone want to make their
work harder to understand on purpose? From our personal experience we
have seen several possibilities:

Pronunciation/style The writing tries to convey the way people pronounce
the words, as they think that is relevant, for instance, to hint at some
typical form of speech. For example: “they don’t do aaanythang out
o’ teh ordinary.” “When I had mah operation I was incapacitated
for an ageee, liek. I was also! on lots of heavy drugs aaan’ it was
super-fun! Anyhoohar, becaaause of all of this I ateded in bed a lot,
which is to saaay friends ’n’ fams broughted me lots of om noms an’ I
nommed ’em all up in-between zzzin’. It got borin’ after a while, tho,
pluses crumbs are NO (capscapscaps) joke.” In the case of swearing
a common use is “biatch”.

Alternatively, The author may also wish to exaggerate the say some
people write, as in “AMAZING!!!!!111” or “LOLZ”.

Attention grabbing Some times the author wants to call attention to one
word in the text. Often this word expresses an emotion or state of
mind, as in “Ohhhhh shiiit.... one more day and then it’s FRIIII-
IDAAAAY.”

Differentiation The author writes differently to display a sense of iden-
tity or general group association. “Pig latin” had been used for cen-
turies as a method of communicating in the presence of other peo-
ple, and only those “in the know” would understand it. This is just
an updated and textual version of it. A common example is the so-
called “leet speak” (some times written as “l33t”), where numbers
replace letters and upper and lower case letters are alternating. “Tex-
ting”, the written communication style that emerged on cell phones
is an element in the creation of a group identity and belonging to that
group [Cad].

Criticism or pun Some times the users change words in a way to mock
an entity or to make a pun. E. g. “Microsoft” written as “Micro$oft”
is a common way to associate the company with money. “Dong-ald
Trump” and “Bill-ary Clinton” were terms that appeared during the
2016 US election.

Abbreviation In order to facilitate the typing, some users may employ
shorter versions of common expressions or words. These can be ini-
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tialisms or created by removing letters, usually vowels. Some exam-
ples involving swearing include “fu”, “bj”, “stfu” and “ngga”.

Acknowledging sensitivity Since many people consider a profanity writ-
ten outright as being more offensive than a fig leaf “asterisk” version
of it (that is, “sh*t” appears more mild than the swear word prop-
erly written), the author may wish to show their respect and abstains
from employing said vocabulary outright [Edm17]. Thus, the cen-
sored version should be considered more like a concession.

In these situations the words are typed differently because the offen-
siveness of swearing is not so much about the words but about the
signals we send to each other. In the Yahoo! Buzz study [SAC12a],
where no filter was in effect, 76% of the top profane words were not
written correctly.

Self-censure When the author wishes to make a word inaccessible to some
of the readers (for example, children). This relates in some way to the
use of grawlix, the pictograms that indicate general swearing in comic
books [Wal80].

Another reason to self-censure is to provide some form of deniability,
a way to be able to say later “I never said that.” Consider for exam-
ple a situation when a person is describing a bad situation in their
former work place, or sharing some “inside knowledge” of products
sold under a well-known brand, and wants to avoid saying its name
to avoid trouble. They may thus refer to “O----e” instead of “Ora-
cle”. Of course, this is all done “tongue-in-cheek”, in the same way
they could say instead “a certain large and well-known database soft-
ware company owned by a eccentric billionaire with a dislike for Bill
Gates” and would not save the person from serious repercussions if
any were intended.

Self-censure also includes circumventing automatic filtering systems,
such as those aimed at preventing the use of swearing in on-line com-
munities. Since humans are more resilient to these word alterations,
these are fairly common. In an analysis of a Portuguese sports forum
that started using an automatic taboo word filter [LO14b], we found
that 70% of cursing was being obfuscated by the users, meaning that
most changes were made to the spelling than to the vocabulary.

The general idea that we are trying to convey is that, while it is com-
mon to address obfuscation (or text that can be perceived as such) only in
the context of cursing, the value of deobfuscation is not restricted to recog-
nising “shit” written in a thousand different ways. Despite this, our work
on obfuscation still focuses on the issue of swearing. The reason is simple:
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• Swearing is a common event, and obfuscated swearing is also easy
enough to find, thus it is easy to collect examples to work with;

• Several on-line platforms have an interest in filtering out profanity us-
age from the User-Generated Content they distribute, thus our work
would be addressing an actual concern directly;

• The ambiguity of swear words is usually minor. Cursing if often fo-
cused on a limited lexicon and independent of the context being dis-
cussed. This is important in the annotation process.

• We have some possible element of comparison. We found no work
dealing with non-swearing deobfuscation.

In case the reader was left wondering if encryption constitutes obfusca-
tion, the answer is yes: encryption is an alternate form of encoding text in a
way that avoids including the “proper” text, and it is an intentional effort.
It is also a very complex approach to obfuscation that we will not address
in this work, as it falls outside our scope, if for nothing else, because it is
not a common occurrence on User-Generated Content.

7.4.1 Our objectives

We already mentioned how swearing may be undesirable on on-line plat-
forms back on Section 7.3. While the main focus of many projects that deal
with swear words is to simply determine if a certain message contains or
not a swear word, or to say if a given word is or not considered cursing
— they are profanity detection systems, and they can be useful to better un-
derstand and know the authors and what they are trying to express. For
example, Maynard et al. address swearing on their plans for opinion min-
ing [MBR12], and in Section 7.3.1 other examples of work related to swear-
ing were mentioned.

With profanity recognition or identification our goal is to extend such pos-
sibilities into the realm of obfuscated or disguised swearing and to be able to
say what swear word is this (if any). We could imagine the difference between
detecting a car and identifying a car.

We are of the opinion that analysing the messages unobfuscated has ad-
vantages worth taking into account as an enabler (or facilitator) of a num-
ber of services. The following ideas could be possible:

• It would enable the preservation (recovery, we may say) of grammat-
ical or semantic information that was provided by the user, like un-
derstanding that such word is a verb or an adjective;

• Words could be considered in their context (that is, is this swearing
offensive, used as an augmentative, to convey emotion, . . . );
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• While all obfuscated curse words can be labelled as generic negative
words (which is incorrect sometimes), it would be more valuable if a
distinction could be made between words that refer to the gender of
the subject, to its sexual orientation its ethnicity and so on;

• The message could be rewritten and the profanity replaced by an-
other word that had similar denotation but is less offensive, similar
to the work of Xu and Zhu [XZ10] (much of its impact or meaning
would be lost, but the entire message would not be censored);

• It could assist other systems that cared for the people’s well being
online, such as abuse detection (v. g. bullying) by providing adequate
pre-processing of the messages by exposing some of the vocabulary
used.

The additional knowledge that is extracted by deobfuscating messages
can be particularly pertinent in the current society where so many groups
are still the target of disrespectful comments and discrimination. This is
a social problem that is not solvable through science or technology, but to
really determine what people think (so that those concerns are addressed)
we need to be able to understand the way they express themselves. Deob-
fuscation can improve the accuracy of automatic systems that trawl social
networks to collect and interpret such impressions.

Several works have taken the challenge of identifying swearing, and we
will discuss the ones that were considered relevant to the present work.

7.5 Works related to the use of swear words

From the computational perspective, swearing has been approached infre-
quently and with little progress. In their analysis of the main problems of
profanity detection systems [SAC12a], Sood, Antin and Churchill stated:

While many would argue that textual analysis is more tractable
than visual content analysis, this may be in part because of a
general misunderstanding about how difficult the problem of
profanity detection is in real-world contexts. (. . . ) Because of
these misunderstandings, perhaps, comparatively little research
has focused on detecting inappropriate text in user-generated
content systems.

We will look at three types of system that typically associate with de-
tection (not identification) of swear words in messages: simple list-based
systems, insult or offensive message detection systems and some studies
involving a significant corpus.
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7.5.1 List-based filtering systems

The problem being addressed here can be summarised very shortly: there
is some vocabulary that should be avoided; the objective is to identify any
messages that may contains it so that they can be processed accordingly
— usually filtered out. The onus of the entire system usually relies on the
lexical component — a list of swear words for example —, as the inner
working of such filters is typically quite simple. Any false negative that
slips through can be remedied by adding another entry to the list.

One application of this method was to ensure more workplace correc-
titude, as some adjustments needed to be made when email started to be
a more common tool in professional communication, with a particular em-
phasis given to the language used in the messages sent. US patent number
5 796 948 [Coh98] describes Cohen’s invention as

(. . . ) a method for network intercepting electronic communica-
tions or mail containing profane or offensive words, word frag-
ments, phrases, sentences, paragraphs, or any other unit of lan-
guage as may be formulated in any natural language (. . . ) and
as may be formulated in any artificial language. Network pro-
fanity prevented and screened by said method includes but is
not limited to vulgar language; hateful, threatening and defam-
atory speech; derogatory labels and terms of race, religion, gen-
der, sexual orientation; and sexually degrading, obscene, lewd,
or pornographic language.

However, regardless all the potential capabilities enunciated, this sys-
tem appears to rely only on substring matching to determine what is or is
not acceptable language.

During the end of the previous century, Internet reached the masses,
being accessible to young people and also children. The youth needed to
be protected from the unsuitable content that was present online, which
lead to the creation of tools that would check if the website being accessed
was suitable to its user (a form of Parental Control Software). Essentially,
this was a lookup for the labels that had been attributed to the website by
a human operator when they last visited it — a solution that had an obvi-
ous scalability problem. Thus, in 1999, Jacob and his team created a tool
that could perform a similar task [JKR+99]: it would look at the text of the
website, search for any word in a list of inappropriate vocabulary and label
the website suitable or unsuitable based on what they found. This solu-
tion, of course, had some caveats that the authors were upfront about: it
only worked on text, ignoring other media like images; it applied its rules
in a “blind” way, and the text may not be validated correctly (offensive text
may exist without offensive words, for instance). Despite these shortcom-
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ings, this solution would scale much better than a group of humans, and
could complement the existing solution.

List-based systems are used mostly because they are quite trivial to
implement. The results they provide are quite poor. Sood, Antin and
Churchill also wrote about their limitations [SAC12a]:

As we have already discussed, list-based approaches perform
poorly because of three primary factors: misspellings (both in-
tentional and not), the context-specific nature of profanity, and
quickly shifting systems of discourse that make it hard to main-
tain thorough and accurate lists.

7.5.2 Detection of offensive messages

There is some affinity between detecting swear words and detecting insults
or offensive messages. But offensive messages and profanity are not nec-
essarily linked. For example, the sentence “go kill yourself” is an offensive
message but contains no profanity, while the sentence “what a shitty world
we live in” contains swearing but is not offensive. Still, all the offensive
message detection systems we will be discussing include a lexicon of pro-
fanity to help them in their task.

List based systems apply their rules blindly and directly, meaning that
noise (such as that of obfuscation) can easily circumvent them. Let us look
at some relevant work and how such problems were handled.

Back in 1997, Spertus described Smokey [Spe97], a system that detected
“hostile messages”, also commonly known as “flames”. The author points
out that this kind of messages are not the same as “obscene expressions”,
as only 12% of hostile messages contained vulgarities, and more than one
third of vulgar messages were not considered abusive.

Smokey employs a series of fixed pre-defined rules, some of which
make use of the profanity list. For example, the rules dealing with vul-
garities are activated when one of the relevant swear words is found, but
operate differently should a “villain” be mentioned on the same sentence.
A villain is an entity usually disdained in a particular community (e.g. in a
political discussion setting). Thus the aim of this tool is to deal with inter-
user interaction, and not to deal with all offensive content.

Spertus seems to have not considered the problem of noisy text in this
work, as he mentions that he removed “meaningless messages (someone
randomly pressing keys)” from the collection and later, when talking about
the limitation of the system, he mentions “One flame could not be recog-
nised because the typography was unusual: ‘G E T O V E R I T’.”

Later, in 2008, Mahmud et al. presented their approach to hostile mes-
sages and insults using semantic information [MAK08]. Each sentence is
parsed into a semantic dependency tree and the system tries to determine
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if they are seeing a fact being stated or an opinion. In the latter case, if an
offensive word or phrase is involved, it could be an insult. The authors are
upfront with the limitations of their work, stating “We didn’t yet handle
any erroneous input such as misplacing of comma, unmatched punctua-
tion marks etc. at our implemented system.”

In the year 2010 Razavi et al. developed a multi-level classification sys-
tem for detecting abusive texts [RIUM10], employing statistical models and
rule-based patterns. However the authors discarded many non-alphabetic
symbols from their data, preserving only “expressive characters” such as
quotation marks, punctuation signs and the hyphen.

In the same year, Xu and Zhu proposed an approach to filter offensive
messages that operated at the sentence level [XZ10]. Their objective was
not only to identify said messages, but also to remove the offensive content
while maintaining the global integrity of the sentence. Ideally the reader
would not notice the editing.

Two years later, Xiang et al. tried to detect offensive tweets by employ-
ing a bootstrapping approach [XFW+12]. In their work they considered
only words composed by letters and the two symbols - and ’. This, of
course, leaves out much of Twitter’s “rich language” like mentions and
hashtags.

In the end, none of the work mentioned above addressed misspelled
words, swearing or not. There is still a lot to pursue at the semantic level
and the authors decided to turn their attention to the high-level matters.
Deobfuscation of messages during pre-processing could help increase the
coverage of such tools without changing them.

7.5.3 Works related to the study of swear words

On Section 7.3.1 we presented a few studies addressing online profanity.
We will be revisiting them for a more detailed analysis, with particular in-
terest on the creation of their lexicon and the methods used to recognise the
swear words in the corpus.

Myspace

In the analysis of his Myspace homepage collection [The08], Thelwall com-
piled two lists of swear words to use in his studies. He used two lexicons,
one for British profiles and another for American users.

The British swear word list started with the BBC’s official guide, to
which Thelwall added common variations (such as different suffixes) and
then expanded it by generating portmanteau words. For known swear
words the author seeked and added variant spellings, and finally inserted
a few swear words that were still missing. Since the portmanteau words
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were too numerous, Thelwall discarded those present in less than 0.1% of
profiles.

For the users on the USA, the author started with the “seven dirty
words” (a list of words said to be forbidden to use on broadcast televi-
sion by the Federal Communication Commission), and followed a process
similar to the one above.

There is no information regarding the overlap of both lists, but for his
main analysis the author considered the same short list of 6 very strong
words, 7 strong words and 13 moderate words.

The author presented no description of a matching algorithm, and for
this reason we assume that the swear words were detected by simple word
comparison.

Yahoo! Buzz

Sood, Antin and Churchill reused the data they had annotated for a project
on the detection of personal insults [SCA11] (annotated through croud-
sourcing) on several subsequent works on swearing. They mention some
problems often associated with list-based recognition systems, namely that
they are easy to work around (through obfuscation), they are difficult to
adapt (they cannot deal with abbreviations or mistakes), and it is difficult
to tailor them to different communities [SAC12a].

Using their 6354 messages, and two lists of swear words available on-
line (compiled for the purpose of filtering profanity), the authors showed
that direct swear word matching (traditional string search) resulted in poor
results. When searching for messages containing profanity, their best result
(based on F1 as the relevant metric) was 0.53 Precision, 0.40 Recall and 0.43
F1 measure. This result was obtained using just one of the profanity lists
and employing word stemming.

Sood, Antin and Churchill’s work was annotated at the message level
(that is, the annotators simply stated if the message contained a profanity),
meaning that it was not trivial to isolate the swear words. The authors tried
to identify the words most likely to be those responsible for the messages
having been labelled as containing profanity, and noticed that only 8 of
those 33 words were spelled correctly, stating:

The remaining nineteen terms are disguised or author censored
profanity (e.g., ‘bullsh!t,’ ‘azz,’ ‘f*****’). Thus, a list-based pro-
fanity detection system, such as the ones evaluated in the pre-
vious section, would fail to catch twenty-five of the top thirty-
three profane terms (76%) used in our data set. While these
words could, of course, be added to a profanity list for future
detection via a list-based system, there are countless further
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Table 7.5: Performance metrics for detecting messages on the Yahoo! Buzz
corpus containing profanity.

Test Precision Recall F1

SVM 0.84 0.42 0.55
Levenshtein 0.55 0.42 0.48
SVM + Levenshtein 0.62 0.64 0.63

ways to disguise or censor words. This makes representing
them in a list a significant challenge.

Regarding obfuscation, half of the swear word candidates contained
non-alphabetical characters for obfuscation. As an illustration, the authors
state that 40% of the uses of “@” in this collection were used in obfusca-
tion, while the rest were part of email addresses, user mentions and other
“proper” uses.

Another work by this team proposes two methods for recognising pro-
fanity [SAC12b]. The first one uses Levenshtein’s edit distance [Lev66] to
compare the words in the text with the words in the profanity list. This
comparison is done only on words not in the profanity list and on words
not in an English dictionary. The word is considered a swear word when
the distance — the number of edits (additions, substitutions or deletions)
— between the words is equal to the number of punctuation marks in the
word, or when the number of edits is below some threshold that depends
on the length of the word.

The second solution uses Support Vector Machines (SVM) with a “bag
of words” approach, using bigrams with binary values representing the
presence or absence of these bigrams in the message. A linear kernel is
used for this task.

The most relevant performance metrics for detecting messages with
cursing, based on F1 score, are presented on Table 7.5.

Twitter

Wang et al. created a much more elaborate lexicon in their work analysing
swearing in the world’s largest microblogging platform [WCTS14]. They
began by combining several swear word lists available online. From these
words the authors kept only the ones that were in English and were used
offensively. This was a manual chore, and resulted in 788 words, including
graphic variations employed for obfuscation purposes.

The authors also went further in the recognition of obfuscated swear-
ing. They devised the following algorithm: every word in the message
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that was not recognised by the swearing lexicon goes through a normalisa-
tion process. This process consists of removing repeating letters and then
replacing numeric digits and symbols with letters that share some resem-
blance with them. Finally they calculate the Levenshtein edit distance be-
tween the normalised candidate word and each swear word in the lexicon,
considering only the lowest. They will accept a pair as a match if the num-
ber of edits is equal to (or lower than, we assume) the number of masking
symbols (i. e. noise introduced to disguise the word). Only the following
seven symbols were considered as masking symbols: _ % - . # \ ’. Two
questions were unanswered: would “####” be considered a swear word,
and why the asterisk, possibly the most common masking symbol, was not
included in the list.

The evaluation was performed on a set of 1000 tweets randomly se-
lected, and achieved a 0.99 precision score, a 0.72 recall score and a, 0.83 F1
score.

SAPO Desporto

We consider some of our work relevant enough to include in this section,
as we also created a corpus to study the use of profanity. Despite offering
a more thorough description of this corpus in Section 7.6.1, for the sake of
comparison with the works previously mentioned, a short summary fol-
lows.

The SAPO Desporto corpus is composed of a sample of messages taken
from the leading Portuguese sports news website, that hosts an active pub-
lic discussion platform for its users. 2500 randomly selected messages were
manually annotated, showing that one in five messages contained one or
more curse words [LO14b]. Swearing was not uniform, but it averaged one
bad word every 3.2 messages, or 1% of all words written.

2500 messages does not comprise a large corpus, and is furthermore
dwarfed next to some of the other bodies of work that we mentioned. So
what makes it special?

The main distinction lies on the hand annotation of much finer gran-
ularity than any of the other entries. For comparison, the work of Sood,
Antin and Churchill [SAC12a] on the Yahoo! Buzz corpus, which was also
verified by humans, had an annotation created at the message level, i. e.
“does this message contain any profanity?”. Consequently, identifying the
profane words was a difficult problem [SAC12b]. Wang et al. provided met-
rics for a sub-sample of only 1000 tweets that were hand labelled [WCTS14]
and Thelwall did no evaluation of his profanity detection method on Mys-
pace pages [The08]. As such, for practical works of evaluation, our work
does not compare badly in terms of combined size and detail.

Having all profane words annotated provides us with many benefits,
the most obvious of which is the possibility of more accurate measure-
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ment of the performance of our profanity recognition method, allowing
the pinpointing of its shortcomings. But it can also allow us to dissociate
the lexicon from the recognition process; we know that we can produce a
dictionary containing all relevant profanities, and consequently any failure
in recognising a word is never due to a failure in the lexicon but a prob-
lem in the recognition process. Finally, context is not unknown during the
evaluation, and we can know, for example, if “bitch” is referring to a female
dog and that “go duck yourself!” is actually cursing despite containing only
upstanding dictionary words.

The final contrasting factor of this corpus is that, unlike the other cor-
pora mentioned (or any other we could find that is focused on profanity5)
these messages are available for use in other studies under a liberal and
free license. We believe that this may contribute to further improvements
in the field of profanity detection.

When each research group needs to compile and annotate their own
corpus it is difficult to reproduce or compare results as variations can be
introduced in the messages being used, in the lexicon or in the recognition
method. By providing this annotated corpus we can work under a fixed
and controlled corpus and lexicon, isolating (and thus being able to com-
pare under the same conditions) the recognition methods.

As a closing remark, we are not oblivious to the fact that using the Por-
tuguese language is detrimental to the “universal” adoption of this corpus.
We feel that Portuguese is underrepresented in linguistic works — espe-
cially the European Portuguese — given its positioning in the most used
languages in the world. Since swearing is a problem that does not exist
only in English, and we were able to ensure that the results could be redis-
tributed, we decided to contribute in this small way to our native tongue.

In the next section we will take a more technical look at this corpus, the
annotation and the profanity it contains.

7.6 The SAPO Desporto corpus

The present work on obfuscation derives from a practical necessity from
SAPO, a research partner that integrates a large media and communica-
tion company in Portugal. SAPO runs a sport news website called SAPO
Desporto6, but the swearing in the users comment sections was out of con-
trol, meaning that the filters installed were ineffective. The present work
originated from the need for a better solution.

Unable to find a dataset that could be used to assist us, we created our

5A possible exception could be the Lancaster Corpus of Abuse [McE06], which is a sub-
set of the spoken British National Corpus. However, we were not able to find this work
available for use.

6http://desporto.sapo.pt/

http://desporto.sapo.pt/


7.6. THE SAPO DESPORTO CORPUS 121

own. This was a laborious process, but allowed us to set our own goals.
They were as follows:

i. the messages should relate to a swearing-prone subject;

ii. the dataset needs to be of adequate size;

iii. the annotation needs to be made at the word level; and

iv. the dataset should be distributable, to be useful to others.

SAPO made available to us a sizeable sample of their user comments
database and also granted the rights of redistributing an annotated corpus
derived from it. To our knowledge, this represents the first dataset ded-
icated to the study of profanity to be freely available on-line7, complete
with detailed support files.

In the following sections we will elaborate on the details regarding the
nature of the original data, how it was annotated, and what we could di-
rectly observe from it. We dedicate the largest subsection to the study of
obfuscation methods, and how people use them.

7.6.1 Description of the dataset

Our work dataset was based on text messages published on SAPO De-
sporto, a sport news website, with a strong emphasis in Portuguese soc-
cer. Soccer is known to be important for the social identity of many people
in several European countries [CHFT07], including Portugal, where it can
drive strong emotions in a significant portion of its population.

We were told by SAPO that sports was clearly the subject that sees the
most swearing. This is in stark contrast with the Yahoo! Buzz study, that
was based on data mainly from the USA [SCA11], where Sports was the
category with the least swearing [SAC12a] (as we have shown in Figure 7.3
back on page 105).

We obtained a total of 771 241 messages posted by 218 870 accounts,
related to the period 2011-04-27 to 2013-02-20. From here, we randomly
selected 2500 messages, written in Portuguese, to be manually classified.

At this point we should point out, in a straightforward way, that the
users of the SAPO Desporto website were not entirely free to post every-
thing they wanted. SAPO used a simple filtering system, based on a small
list of “words” that were forbidden in the comments, and rejected any mes-
sages that contained them. The users were then left with a decision: they
could either not use those taboo words, or they could attempt to circumvent
the filtering system in some way. From what we could see in the messages,
many took this filter as a challenge, with some users even going into some

7http://labs.sapo.pt/2014/05/obfuscation-dataset/

http://labs.sapo.pt/2014/05/obfuscation-dataset/
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lengths to show how cleverly they could bypass it. In the end, filtering did
not end cursing — it just pushed it into disguise. As a consequence, this
data became more suitable for the study of obfuscation.

The list created by SAPO contained 252 distinct entries (253 in total),
including the most common profanities in the Portuguese language. We
aggregated its contents into the following eight groups:

• 44 curse words,

• 85 curse word variants (plural, diminutive, etc.),

• 30 curse words written in a graphical variant (e.g. no diacritical sign,
“k” replacing “c”, . . . ),

• 41 curse word variants written with graphical variants (e.g. “put@s”),

• 10 foreign curse words and variants,

• 12 non-curse words (e.g. “moranga”),

• 16 words with no obvious meaning, and

• 12 URL-like “words” (e.g. “mooo.com”, “moranga.net”, “olharestv”
[sic]).

Looking at the decomposition of this data file we came to a few con-
clusions. First, it appears that word variants were seen as an important
aspect of profanity prevention — both lexically-sanctioned variants as well
as other sorts of variants, like abbreviations and soundalikes. The other
conclusion is that the profanity filter expanded into a general-purpose fil-
ter, dealing with what appears to be “spam”, given that almost 16% (the
last three groups, totalling 40 entries) were not related to profanity or un-
wanted topics.

In the next section we will describe the annotation process, and then, in
Section 7.6.3 the resulting lexicon will be discussed. Here we will evaluate
the adequacy of SAPO’s filtering choices.

7.6.2 The annotation

Three people worked on the annotation process. Two split among them-
selves the entire corpus and worked on it individually, while the third an-
notator coordinated the result and ensured the uniformity of the process.
This arrangement precluded any inter-annotator agreement value being
calculated.

In the absence of a clear definition of what constitutes profanity, each
annotator used their personal judgement. We used the union of all curse
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words identified as the final profanity list; thus, if one annotator consid-
ered a word as being profanity, we treated it as such in the entire corpus.
This task was performed by the third annotator, who also ensured that the
annotation was consistent on the spelling of swear words.

We will take this opportunity to clarify the meaning of some of the
terms we will be using. We use word in its usual term, but also as token,
since we are working on the texts at the word level. All instances of pro-
fanity are single words that are considered taboo. In instances where offen-
sive expressions are used, such as in “son of a bitch”, we will identify the
offensive word (“bitch” in this case) and ignore the rest of the expression.

Most of the time we deal with the variety of profanity used. When we
say that we found N curse words it means that we observed a total of N
different curse words, regardless of how many times one was repeated. This
gives us a notion of the diversity of swearing. We use the term profanity
instances to report the absolute frequency of profanity, that is, the number
of times we see each swear word, to provide an idea of the popularity of
that particular curse word or cursing in general.

We also use variants to refer to alternative spelling of words. Variants
usually refer to the many different ways we see a given swear word being
obfuscated (e. g. sh!t, 5hit, sh*t), but canonical words (that is, the correct
spelling of words) also carry their own sort of variants (e. g. shitty, shitless)
— this was discussed on Section 7.3.2.

The annotation is provided next to the messages in tab-separated val-
ues, where the first column contains the annotation inside brackets8. An
example of the annotation follows.

[fudessssses=fodesses,du@ta=puta,ca@brone=cabrão,badalhoca]

In the above example, the last profanity is written correctly, while the
first three are annotated in the form “sic=correct”. The correspondence in
this example is represented in Table 7.6. The original message follows the
annotation unchanged.

In the 2500 messages that were manually annotated we identified 560
messages with profanities (22.4% of the messages). At the word level we
counted 783 individual instances of profanity use (we disregarded repeated
occurrences in the same message, when written in the same way). Of these,
544 (69.5%) were obfuscated9.

In short, 1 in every 5 messages contained profanity (which is not claim-
ing that none of the rest lacked offensive remarks), and if a profanity is

8The brackets are meant to add redundancy and help prevent editing mistakes in mes-
sages without profanity. In those situations the line would begin with white space that
could be easily removed by accident.

9The dataset was revised since the publication of our prior work, which explains the
minor deviation in values.
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Table 7.6: Example classification between words seen in a message and
their correct spelling.

Word as seen in the message Word with canonical spelling

fudessssses fodesses
du@ta puta
ca@brone cabrão
badalhoca badalhoca

Table 7.7: Absolute frequency of profanities found on the 2500 messages.
messages containing no profanity 1940
messages containing profanity 560
messages with 1 swear word 404
messages with 2 swear words 108
messages with 3 swear words 31
messages with 4 swear words 15
messages with 5 swear words 2
messages with 6 or more swear words 0

found, there is a 30% chance that at least another one is present. Table 7.7
shows the profanity distribution, where we can see that it decreases in a
near-log manner.

7.6.3 The lexicon

Like regular words, each swear word conveys a meaning, and swapping a
profanity for another may change the meaning of the overall message. In
order to provide a better “higher level” view of the vocabulary, we present
on Table B.2 all the swear words that were identified in this corpus ar-
ranged into 40 groups, based on their base word. For clarification, this is a
fine grouping where several of the groups share the same (or very similar)
meaning, and not a coarse grouping based on semantics (in which case we
would see significantly less groups). The numbers before the words refer
to the number of different obfuscations seen for that word, which will be
the subject of the next section. The Instances column shows the number of
times that words in that group have been used in the corpus.

The same table shows how the Portuguese language facilitates the cre-
ation of word variations. Many of these variations are due to grammar or
minor semantic nuances, some are attributable to culture (as in regional
words or versions of the words), and others may be used only for obfus-
cation purposes (for example, the more common version of the word was
being filtered). In general, these variations confound simple matching al-
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Figure 7.4: Relation between the usage of each of the 40 curse groups (in-
stances of all variations, plotted on a log scale) and the number of variants
that such group has. Some jitter applied.

gorithms that rely heavily on a dictionary to recognise words. Unsurpris-
ingly, the most popular words also show the greater amount of variety, as
Figure 7.4 makes evident.

Another observation that can be made by the readers who understand
Portuguese is that most of the profanity present in the SAPO Desporto mes-
sages (as shown in Table B.2) is of scatological nature or deals with sexual
matters. We also looked at the absolute frequency of each curse word in our
corpus, and plotted the 10 most common as Figure 7.5, where once again
we can see user preferences. These profanities are responsible for nearly
59% of all swearing observed when put together. On this list we can find
references to faeces, anatomical parts, prostitution and allusion to horns —
a cultural reference to a cuckold. Words related to copulation are also very
common, but are spread across a large number of taboo words and vari-
ations and therefore are not included in this short list. The less common
terms adhere to similar themes which, in general, align with the overall
trends of swearing that were presented back on Section 7.2.

Before we delve into the obfuscation matters, we should also take a look
at the filter that SAPO was employing. The profanity detection method em-
ployed by SAPO consisted of trivial case-insensitive string matching. Since
we could find a few of the filtered words on the messages we annotated,
written with the same spelling, we believe that we sampled some messages
that predated that addition to the list. Fortunately the number of such oc-
currences was negligible (22 instances across 6 swear words).

It is difficult to accurately determine if the SAPO filter managed to re-
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Figure 7.5: The ten most common swear words (in their canonical form)
seen on the 2500 messages and how many times each was used (consider-
ing all spellings).

duce the usage of some profanity, but we are able to see what curse words
remain popular despite being targeted by the filter.

Of the 109 profanities identified in our sample, 31 were present in the fil-
ter list provided by SAPO, which represents a coverage of about 28%. These
words are represented in bold in Table B.2. Looking at the 10 most common
swear words (shown in Figure 7.5) the filter includes 6 (surprisingly, “cu”
[ass] was absent but several variations of it were included, which illustrates
some problems with an “add as you go” approach of list creation). These 6
taboo words would account for 382 swearing instances or almost half of all
swearing in the corpus — provided the filter could recognise them.

In the next section we will look closer at the methods that users em-
ployed to disguise their swearing and circumvent the filter put in place by
SAPO.

7.7 Obfuscation

We have already seen how the canonical variations provide for a very large
vocabulary. In this section we will take a look at the obfuscation variations,
that is, the different non-standard ways in which users wrote each of the
swear words they used.

While the number of uses of each profanity shows great concentration,
the number of different ways in which we see words written scatters those
words in many different forms. In Figures 7.6 and 7.7 we can see that many
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taboo words are seen only once written in a particular form. Only a handful
of profane words are seen regularly with consistent orthography.
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Figure 7.6: How many words are seen spelled in a certain way. Many swear
words (258 to be precise) are never repeated in our sample. Some are seen
twice or thrice. However, a few words are seen with the same orthography
over and over. We counted eleven words that are seen more than 10 times.

In Table B.2 we precede each taboo word with the number of different
spellings employed by the authors, which can include or not its correct
canonical spelling (as some words are never seen written in their canonical
form, even words ignored by the SAPO filter10). It is apparent that the
words that are targeted by the filter are also the words that display the
greatest spelling diversity. The few exceptions are words that one could
expect to be filtered as being very similar to other censored words (such as
“foda-se” and “cornos”), words that are of more regional usage (“morcão”
and “morcões”) and finally, as we have already mentioned, the word “cu”
(ass) that is ignored by the filter while “cus” (its plural), as well as a number
of other variants are in the list — which is something we are unable to
justify.

It is also possible to see the filter driving the creation of alternative
spellings in Figure 7.8. Here the vertical axis indicates how common dif-
ferent swear words are, and we can perceive a large cluster of infrequently
used words at the bottom with more common words increasingly spread
out at the top of the graph. This arrangement is unsurprising since Zipf’s
law [Zip35] is widely known to apply to language, and to profanity in par-
ticular [Pia14]. The horizontal axis of the graph shows the number of dif-

10As an example, “kornudos” is seen 8 times, but its correct spelling, “cornudos” is not
in our sample nor is it included in the filter list provided by SAPO.
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Figure 7.7: A more detailed version of Figure 7.6, containing only the words
seen more than once.

ferent spellings we found for each profanity, where we notice that the more
modified words are in the filter list (represented by filled circles).

In the same figure we can observe a strong correlation between the pop-
ularity of a swear word and the number of different spellings it has. Each
variation tends to be seen twice in our sample, with the noticeable excep-
tion of about 5 words that deviate strongly from this trend by having a
significant lower number of variations. Four of these words are absent
from SAPO’s filter, supporting the idea that the users felt less incentive
to create alternate spellings for them11. The remaining word (“cornudo”) is
an outlier due to a strong bias towards one particular obfuscation method
(“kornudo”) that appears to be exceedingly popular.

But what makes an obfuscation popular? Are there any preferences in
the methods used to create them? We will take a close look at the methods
used by the users in our sample.

7.7.1 Obfuscation methods

Through manual accounting we were able to identify a total of 18 different
ways in which the words we found deviated from their canonical spelling.
These are described in Table B.1, with the symbols we assigned to repre-
sent them and a short description. We considered all deviations (such as
misspellings) as if they were intentional.

11One may wonder why are there even any variations in spelling for these words if they
are not being targeted by the filter. One possibility is that some users may not know if the
words are being filtered and obfuscate them anyway. For our discussion about the reasons
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Figure 7.8: Number of uses and number of variants of each swear word,
plotted with jittering. Also, the presence or absence of said swear word in
the SAPO filter is also represented in the shape used in the plot.

These operations were selected to provide a descriptive view, rather
than to create the smallest set of operations that could transform a word
from its canonical representation. It is also possible to obtain the same re-
sult in different ways using the methods we described. For example, Letter
Substitution can be said to be the equivalent of doing Character removal and
Letter addition. But doing so would not convey the purpose of the author in
the same way. Furthermore, Letter Substitution carries the information that
we are operating on the same position in the word. We reserve the com-
bination of the two operations to describe situations where the operations
are independent.

Since terms such as “punctuation” and “symbol” may be slightly am-
biguous, Table 7.8 defines the Unicode classes used to define them in a
precise way. We did create an exception, though, and placed the symbol
@ under “symbol” and not under “punctuation” as Unicode classification
dictates. This alteration was introduced because we consider that it trans-
lates better the way this character is being used.

why text may appear to be obfuscated, please refer back to Section 7.4.
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Table 7.8: General Categories from the Unicode Character Proper-
ties [Uni15] that are used to define the characters observed.

Our set Major class Subclass

punctuation Punctuation connector, dash, open, close, initial quote,
final quote, other

symbol Symbol math, currency, modifier, other
space Separator space, line, paragraph
space Other control
number Number decimal digit, letter, other
letter Letter uppercase, lowercase, titlecase, modifier,

other
diacritic Mark nonspacing, spacing combining, enclosing

Despite the oral tradition of swearing, it is apparent that people make
an effort to use the written medium to its potential. That is to say that
most obfuscation methods concern with the way words look and often cre-
ate words with a pronunciation undefined in the process.

With the methods defined, we will proceed to see how they were used
in our dataset in a detailed analysis.

7.7.2 Obfuscation method analysis

We should start by saying that our main goal in this study concerns obfus-
cation method choice. The number of times each method is used on each
word strongly depends on word length, and provides little insight on how
to reverse it; furthermore, some methods are more prone to overuse, which
comes to no surprise — for example, there is no limit to the number of sym-
bols a user can add to a word (e. g. Repetition and Punctuation added), while
the number of diacritics to modify are severely limited. Thus, we do not
tally reused methods nor differentiate between a modest and an exagger-
ated usage of methods; it all counts as just one.

We divided our obfuscation method analysis into two types: uses that
maintain word length and uses that alter word length. We did this because
obfuscations that maintain the length of a word (and thus its general shape)
intact can be made much easier to decode and may employ only a subset of
the obfuscation methods we described on Table B.1 (found in the Annex).
Thus, the strategies used can be different.

Our analysis will focus on both types of obfuscation separately (those
that maintain the length of the word and those that do not). Their distri-
bution shown on Table 7.9 makes evident that the extra methods that the
second type has available results in obfuscations that are reused less.

For each method we evaluate how many methods were combined to
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Table 7.9: Distribution of obfuscations regarding modification of word
length.

Type Distinct Words Instances

Non-obfuscated 52 239
Obfuscation with same size 89 264
Obfuscation with different size 200 280
Total 341 783

obfuscate the word. While we cannot claim that this is a direct indicator of
how complex the obfuscation is — since some of the methods can safely be
considered outside the scope of machine resolution for the time being —
the number of methods used can provide an overall estimation of accessi-
bility.

Overall, and as supported by Figures 7.8 and 7.6, with few exceptions,
obfuscation reuse is not frequent, and many are even unique. While this
may, in part, be due to the size of our sample, the number of obfuscation
possibilities is large enough to allow this to happen on a much larger sam-
ple.

We would like to reiterate that the dataset we distribute is supplemented
with the detailed information that we compile and present here.

7.7.3 Preserving word length

As we have just said, it is usually simpler to establish the connection be-
tween two similar words of the same size than two words of differing sizes.
It also helps that the author is restricted to milder types of transformations,
keeping the overall “shape” of the original word. For example, “sh*t” or
“f..k”.

In our annotated corpus we found 264 words obfuscated while still
matching their original length, which represents nearly half of the 544 in-
stances of obfuscation. It is curious to note that these words derive from
only 89 obfuscations, which points to a noticeable reuse of obfuscations.
This reuse is particularly relevant since 80% of the obfuscations we saw in
our corpus were used only once. We do not know if it is a consequence of
fewer obfuscation methods available of if new standards are emerging. On
Table 7.10, which contains the 10 most used obfuscations, only two entries
alter the length of the word.

The simpler cases we observed were obtained through the use of a sin-
gle obfuscation method. Their distribution is as described in Table 7.11. At
first glance it is apparent that letter substitution is, by far, the most common
choice, which is easy to justify by taking a look at the list of curse words
we found, in Table B.2. There we can see that many of the swear words we
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Table 7.10: The ten most popular obfuscations seen in our corpus.
Canonical profanity Obfuscated as Using Number of times

cornudo kornudo =L 29
cu cù +Ac 22
cabrão kabrao =L −Ac 21
corno korno =L 20
puta putta R 16
cornos kornos =L 14
merda m3rda =N 13
morcões murcões =L 9
cu cú +Ac 9
bosta slbosta Ag 8

found begin with the letter “c” — about 1/3 of the curse words observed
—, and these include the most popular taboo words (as Table 7.10 can con-
firm). Replacing “c” with “k” does not alter the pronunciation of the word,
and since “k” is unused in the Portuguese language12, there almost no am-
biguity possible. For this reason, replacing “c” for “k” is the most common
letter substitution observed in our corpus (present in 15 obfuscations), fol-
lowed by the replacement of “o” by “u”, always in places where these two
letters are pronounced the same (seen in 10 obfuscations in our corpus).

While authors seem to make an effort to preserve the pronunciation of
the word when replacing one letter for another, when they use digits or
other symbols to replace letters they try to maintain the graphical represen-
tation of the word. For example, the situations where “0” replaces “o” (=N)
and “@” replaces “a” (=S) were responsible for half of all the instances
counted in their respective categories.

Finally, changes to accents in words represent easy and simple ways
to obfuscate several words. Since in very informal situations people can
neglect to use the diacritical marks correctly, and there are few situations
where the interpretation can become ambiguous, reading text obfuscated
in this way represents little challenge for a human, as they can usually re-
solve any possible ambiguity. =N and =S also appear together in several
obfuscations.

When combining two obfuscation methods we once again see that letter
substitution is the preferred method, as displayed in Table 7.12. We already
saw an example of use of the combination =L −Ac on Table 7.10, the only
combination of methods that is used in more than one obfuscation. But
aside from this particular word, we must say that combining methods is
unusual.

12The letter k was removed from the Portuguese alphabet in 1911 and re-introduced in
1990, meaning that only new and original Portuguese words could use of it.
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Table 7.11: Count of obfuscations and obfuscation instances resulting from
the use of a single obfuscation method that preserved the word length.

Method Obfuscations Instances
+Ac 8 38
−Ac 3 3
=L 19 111
=N 19 39
=P 2 3
Ph 1 2

Pun 6 9
=S 20 24

=Sp 1 1

Table 7.12: Count of obfuscation instances using two methods resulting in
an obfuscation of the same length.

+Ac −Ac =Ac =L =N Ph
=L 22 1
=N 1
Ph 1

Pun 1
R 1

=S 1 1 5
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7.7.4 Altering word length

In addition to the operations that we have just seen, authors may also use
obfuscation methods that introduce new characters or remove them (or, in
more drastic situations, go beyond simple edits). We counted 280 instances
of obfuscation that resulted in a word of different length, distributed by
200 obfuscations (Table 7.9) — which points towards greater diversity than
what we just saw in the previous section. Of these, 224 instances did so
using only one obfuscation method (corresponding to 147 obfuscations),
that we discriminate in Table 7.13. Only about 5% of these obfuscations
result in shorter words.

If no other method is used, repetition seems to be the preferred choice,
possibly because it makes the word stand out through exaggeration (we
saw a 53 letters repetition, for example), while making the modification
more noticeable — the more obvious the change, the easier it is to account
while also ensuring that the change is obvious and done on purpose. Rep-
etition leads to words only 1 character longer on the median, but due to the
exaggerations that we found in the corpus, we calculated that on average
5.3 extra characters were added.

One other form of obfuscation method worthy of note, that is also used
to both hide and exaggerate the word, is the addition of characters that are
easy to ignore at regular intervals. Good candidates are spaces (+Sp) and
punctuation signals (+P); for example, “w o r d”, “w.o.r.d” and “w-o-r-d”
are all easy to read correctly. Many obfuscations through spaces and punc-
tuation fall into this pattern, but we also saw these obfuscation methods
used in less regular fashion, as in “m erda” and “me-r.da”. Such obfus-
cations were quite popular, but saw very little reuse unlike the repetition
method.

Puns and Aggregation of words are very cultural and language depen-
dent, as well as computationally complex. For this reasons they will not be
approached more thoroughly in our work, despite being somewhat com-
mon.

When we consider the situations in which the author uses more than
one obfuscation method, the result is quite different. We can see the distri-
bution of the 52 instances (out of 49 obfuscations) in Table 7.14. Despite the
lack of strong predominance of an obfuscation method, the use of symbol
as a letter (=S) and repeating letter (R) are seen more frequently than the
other methods, even if they are not combined often.

We also accounted for the rare concurrent use of three obfuscation meth-
ods. We saw the combination =N Ph R three times (e.g., “f000daseeeeeee”
meaning “fodase”), while −Ac =L +Sp were seen together once (“ka brao”
written instead of “cabrão”).
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Table 7.13: Absolute frequency of occurrences of obfuscation using only
one method that altered word length.

Operation Obfuscations Instances

Ag 15 29
−C 4 8
Cp 4 4
+L 6 6
+P 40 40
Ph 3 4

Pun 15 26
R 38 83

+S 3 3
+Sp 19 21

Table 7.14: Occurrences of obfuscation combining two obfuscation methods
and altering word length.

−Ac Ag −C Cp +L =L +N =N +P =P Pun R =S

Cp 1
+L 2 1
Ph 1 2
R 3 1 3 4 3

+S 1 1 1 2 1 1
= S 1 1 1 1 6 1 2
+Sp 1 1 1 1 1 6
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7.8 What we have learned so far

We have talked about the nature of swearing and the benefits of providing
methods to recognise and process such language. We have also explained
that many scientific works addressing profanity or abusive language ig-
nored most or all cases of obfuscation because they considered them too
challenging or insignificant. The numbers we obtained say that obfuscated
cursing is not negligible.

Our analysis of the most relevant studies revealed two unfulfilled needs
which we addressed as scientific contributions. The first of which is a cor-
pus dedicated to the study of profanity and obfuscation. This work is avail-
able for use by other researchers, hoping that it will benefit from our co-
operation. We provide detailed annotation on the obfuscated words, their
canonical form, the methods that were used for obfuscation and also the re-
lations between the curse words. Adding to the data, using the annotated
corpus allows for the accounting of false negative classification errors and
the performance of different classifiers can be compared when processing
the same data.

With this work we were able to identify the most common swear words
used in a sample of a popular Portuguese forum, where the native langu-
age was used. Many of those words were in the “forbidden list”, disguised,
showing that the introduction of filters showed little to no significant im-
pact on the vocabulary of the users, as many circumvented the censoring
through obfuscation.

From our effort we could outline a set of relevant obfuscation tech-
niques that a profanity identification system should address, in order to
find dissimulated profanity. The four more common of these are:

• replacing letters with other letters that sound the same;

• replacing letters with numbers or symbols that look like those letters;

• modifying diacritics;

• repeating letters; and

• using separation characters (usually punctuation symbols or spaces)
as letter separators.

The first three of the above methods do not alter the length of the orig-
inal word, while the last two increase it. Obfuscations that reduce word
length are uncommon, and most often result from the removal of vowels.
Also, not using accents when writing is a frequent occurrence — even unin-
tentional some times — in languages that use them (in our case, a Romance
language). But, even on languages that do not use diacritics, adding one
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can allow a user to bypass a simple profanity detection filter and still be
easily understood (e.g. “shït”).

The ideal profanity identifier would address both the pronunciation of
the words and their visual appearance. Since those are different problems
that require different approaches, it would be very relevant if we were to
understand what drives the choices of the user. Is it a matter of opportu-
nity? That is, some characters have more lookalikes, while some sounds
are covered by more graphemes? How much of it is a matter of personal
preference, idiosyncratic in nature, as is the case of other types of “devia-
tions” in informal on-line content [SSLS+11]? This line of research was not
pursued in this work, as it is very culture-dependable, but seems interest-
ing to follow — that is, an analysis that adapts to the preferences of each
author.

Another scientific contribution concerns with the recognition of profan-
ities. Armed with the knowledge extracted from our corpus (and personal
exposure to the subject) we try to understand what is truly being said. In
the following sections we will present the results of our research on profan-
ity recognition and identification, starting with some formalisation and the
methods we employed.
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In the previous chapter we have approached the subject of obfuscation
discussing the whys and the hows. But that is of little consequence to our
problem (allowing better automatic processing of User-Generated Content)
if we cannot reverse the noise purposefully added by the authors. This is
the objective of the present chapter: to explore methods of resolving the
obfuscation.

8.1 A formal view of the problem and our solution

Back in section 7.4 we defined obfuscation as a deviation of spelling in-
tended to make the reading more difficult — a common consequence when
modifying the way we write something. In this section we make an attempt
to describe obfuscation and deobfuscation from a more formal perspective.

139
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As we mentioned before, we are deliberately ignoring the intent con-
dition of the obfuscation for being a speculative matter even for humans,
and consequently, all deviations found are considered intentional. In addi-
tion, and without loss of generality, we will be focusing exclusively on the
subject of swearing, both because it is easier to illustrate and comprehend
these situations (being the dominant usage of obfuscation), and because we
were drawn to the subject to address this particular usage.

We use Σ as a symbol representing the entire alphabet, with Σ∗ being
the set of all possible arrangements of letters (the Kleene star on Σ), which
we will be referring to as words or strings. All taboo words are collected in
Φ ⊂ Σ∗, and we use φ to indicate a member of this set. We will include the
empty string (which we designate as λ) in Φ as a special symbol to represent
“no swear word”. In this way we can map every word in our message to a
member of our swear word collection (Σ∗ → Φ).

When obfuscating a curse word the author is replacing said word φ ∈ Φ
with another word µ ∈ Σ∗ \Φ, and hoping that the reader will resolve the
correspondence. In other words, through the application of some intel-
lectual process (that we here formalise as a function) I, the reader would
understand that I(µ) = φ1. And here is our goal: to produce the best auto-
matic approximation of I that we can — which is an ambitious goal given
the gap between the abilities of a computer and the human brain.

Since I is a function declared as I : Σ∗ → Φ, we intend to create our
own version (I′ : Σ∗ → Φ) that tries to find the swear word that is most
adequate. As we have seen in the previous section, most obfuscations are
simple and preserve a significant similarity to the original word [LO14b],
thus the best candidate for the deobfuscated word would be the profanity
that most resembles the word we see. To find the most similar word in
the set (Φ) we will make use of a new function E : Σ∗ × Φ → [0, 1], that
returns a normalised value where 0 means that both words are equal and
1 indicates they share no resemble to one another. With this, as a starting
point, we can define I′(µ) = arg minφ E(µ, φ).

It appears we did nothing more than deferring our solution, as we are
now left to define function E. To do so we will be looking at forms of
calculating the edit distance, which will be the subject of our next section;
but for now it suffices to say that this is accomplished through a function
that returns the cheapest set of operations required to transform one string
into the other. Thus we have our distance function D : Σ∗ × Σ∗ → N0. We
are only left with the task of normalising the results of D, which is trivial
given that the maximum edit distance between two strings is the length of
the longest one (assuming unitary costs). We can now define E.

1In reality it is slightly more complex than this, since the reader takes context into ac-
count, but we decided not to generalise beyond our specific needs.



8.1. A FORMAL VIEW OF THE PROBLEM AND OUR SOLUTION 141

E(µ, φ) =
D(µ, φ)

max(|µ|, |φ|)

There is one significant problem still persisting: just because we can
find a swear word such that E(µ, φ) < E(µ, λ) does not mean that µ is a
profanity. In fact, E(µ, λ) = 1, meaning that it was difficult to consider a
word “clean” (sharing one letter with a swear word was sufficient to tilt
the scale towards that direction). To resolve this situation we employ a
constant threshold value, which we represent as ε ∈ Q+. This value indi-
cates the minimum measurement of similarity that we consider relevant,
and anything beyond that is ignored. It is derived from the length of the
word we see written. Therefore we rewrite our function in the following
way:

I′(µ) =

{
φ if arg minφ

D(µ,φ)
max(|µ|,|φ|) ≤ ε, φ ∈ Φ

λ otherwise

However, this threshold is still insufficient to solve the problem we
mentioned. Sood said [SAC12b]:

A pilot use of this tool found many false positives — English
words with a small edit distance from profane terms (e.g. “shirt”,
“fitch”) and first names (e.g. “mike”, “ash”). To avoid these, we
first verify that the target word does not appear in an English
dictionary or a known list of male and female first names. If
it does not appear in these three corpora, we then calculate the
edit distances and judge accordingly.

In the same manner we create a set of all the non-taboo words (a dictionary)
that we denote as Ω such that Ω ⊂ Σ∗ \Φ. We shall then ignore such words
when we see them on the text, resulting on the new version of I′:

I′(µ) =

{
φ if µ /∈ Ω ∧ arg minφ

D(µ,φ)
min(|µ|,|φ|) < ε, φ ∈ Φ

λ otherwise

This solution however, comes with a caveat: should the author disguise
a swear word as a non-taboo word, it will be ignored by the system (for
example, writing “You think you understand, but in reality you know shirt
about this!”). Solving such situations adequately requires very complex
semantic processing, which is why this problem has been ignored in the lit-
erature. At the end of Section 8.3.6 we evaluate the impact of this condition
and how common this occurrence was in our corpus.
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8.2 The edit distance

The edit distance between two strings is a metric that indicates the min-
imum cost (usually equivalent to the number of elementary operations)
required to transform one of the strings into the other (the edit distance
is a symmetric measurement). For the sake of consistency and simple ex-
amples (and also, because we will introduce modifications that may inval-
idate this symmetry), we will henceforth be transforming the first argu-
ment into the second one (that is, we replace the obfuscated word we see
in the text by its canonical form). The readers interested in a more signif-
icant overview of approximate string matching are referred to the survey
by Navarro [Nav01].

The most common edit distance was introduced by Levenshtein [Lev66],
and is commonly known as the Levenshtein distance. Levenshtein proposed
three edit operations on individual symbols: insertion, deletion and substi-
tution. Damerau had previously worked on symbol transposition [Dam64],
which is an operation that is occasionally added as a forth elementary
operation, resulting in what is known as the Damerau-Levenshtein dis-
tance [BM00]. We ignored this variant because character transposition was
not seen as common in our analysis [LO14b] to justify the extra overhead,
but it could be easily accommodated.

Unfortunately this algorithm proposed by Levenshtein is computation-
ally expensive, and despite several authors independently using dynamic
programming to lower its execution time [Nav01], many believe it is im-
possible to bring it below its current sub-quadratic time [BI14]. As we have
said in the previous section, we will be comparing each word in the text
to each word in the swearing dictionary, which results in a fast-growing
number of distances being compared.

We will discuss the Levenshtein distance in more detail, but before we
do so we will look at other alternative edit distances that may complete in
less time.

The Hamming Distance derives from the geometric model for error de-
tection and correction by Hamming [Ham50]. It applies over two strings
of the same length and consists of the number of characters that differ. The
length limitation reduces its usefulness to us and for this reason it was not
used.

It was Twenty years later that Needleman and Wunsch published their
distance-calculating algorithm, that was based on the concept of the Longest
Common Substring [NW70]. This algorithm is usually employed in search
operations and it is very sensitive to the order of the characters. We can
describe it as the minimum number of symbols that need to be insert into
the shortest chain (or part of it) to turn it into the longest one.

These two edit distances can be implemented by the Levenshtein dis-
tance: the Hamming distance is no more than the Levenshtein distance us-
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ing only the substitution operation while the Longest Common Substring
distance can be calculated by using only the insertion operation on the
shortest string (or the removal operation on the longest one). Thus, the
Levenshtein distance is the most generic one of the three.

Other string distance metrics are not based on the idea of a edit distance.
For instance, the so-called q-grams [Ukk92] consists of the comparison of
several sub-strings taken from the original chains, and bases its results on
the number of matches it can find.

In our experiments we compared three edit distance algorithms: a bino-
mial equals that returns only zero or one, the Largest Common Substring for
a faster editing distance, and the Levenshtein edit distance for a more thor-
ough analysis [LO14a]. Of these the Levenshtein edit distance provided
the superior results.

8.2.1 The Levenshtein edit distance

As we just stated, the Levenshtein edit distance is supported by three oper-
ations: deletion (d), insertion (i) and substitution (s). These operations are
defined in Equation 8.1 where σ represents an element of our alphabet Σ.

d((σ1, . . . , σn−1, σn)) = (σ1, . . . , σn−1)
i((σ1, . . . , σn), σm) = (σ1, . . . , σn, σm)

s((σ1, . . . , σn−1, σn), σm) = (σ1, . . . , σn−1, σm) =
= i(d((σ1, . . . , σn−1, σn)), σm)

σi ∈ Σ, ∀i ∈N

(8.1)

The most common algorithm that computes the edit distance will oper-
ate over the increasingly longer prefixes of both chains in order to find the
shortest possible sequence of edits that can transform the first chain into the
second one. Please note that many algorithm implementations, for the sake
of efficiency, discard the sequence of edits and compute only the minimal
edit cost. For our purposes the edit operations are paramount.

The Levenshtein distance is usually computed through a matrix or ta-
ble. The algorithm computes all the edit distances of all pairs of prefixes
recursively using Equation 8.2, where i and j start as the lengths for strings
a and b respectively. I is the equality function defined between two sym-
bols, as defined by Equation 8.3.

For illustrative purposes, our examples consist in transforming the word
“seeds” into the word “looser”. Recursively calculating the edit distance
for these words using Equation 8.2, and disposing the results into a matrix
where each cell holds the transformation cost between each pair of pre-
fixes, we arrive at Figure 8.1. This matrix is the basis of the Wagner–Fischer
algorithm [Nav01].
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Figure 8.1: Matrix of the Levenshtein edit costs between the prefixes of the
words “seeds” and “looser”.

leva,b(i, j) =



i if j = 0
j if i = 0

min


leva,b(i− 1, j) + 1
leva,b(i, j− 1) + 1
leva,b(i− 1, j− 1) + I(ai, bj)

otherwise
(8.2)

I(a, b) =

{
0 if a = b
1 otherwise

(8.3)

The lower right cell tells us that the final edit distance is 6. This is also
the length of our longest word, hence the maximum edit distance possible.
This means that the words are very distinct.

As we are more interested in how one word is transformed into the
other, having the maximum edit cost means only that all transformation
arrangements are all equally bad. Table 8.1 shows four different transfor-
mation possibilities, all resulting in the same final cost.

8.2.2 A different way to see the Levenshtein edit distance

People do not obfuscate based on standard edit costs, and refer instead to
other preferences, some of which we have already seen (in Section 7.7.1).
We thus begin our search for an improvement to the basic Levenshtein
method by following the series of operations mentioned in Table 8.1 across
the matrix that we see in Figure 8.1. This provides a way to see how the
edit cost progresses with each operation.
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Table 8.1: Multiple options in transforming “seeds” into “looser” with edit
cost 6 (the minimum possible for these words). The letter style indicates
the operation: inserted, deleted, replaced, kept (i. e. replaced by the same
character with no cost).

text comment text comment

seeds seeds
looseeds insert “loo” seeds eliminate the starting “s”
looseeds maintain “se” sloos replace “eed” with “loo”
looserds replace “e” with “r” sloos keep the “s”
looserds remove the extra “ds” slooser add “er”

text comment text comment

seeds seeds
lseeds insert an “l” loose replace all letters
looser turn “seeds” into

“ooser”
looser add the final “r”

substitution
deletion

insertion

Figure 8.2: How each of the three directions translates into an edit opera-
tion.

The top left cell, that compares both empty strings, always starts with
zero. From there we can move to another adjacent cell (select another cell
as the relevant one) across three directions, according to the prefixes we
decide to compare and the operations we employ. Figure 8.2 shows how
directions and operations relate.

As described previously by Equation 8.1, when we do an insertion, we
take the next letter of the target string; when we do a deletion, we ignore or
discard a letter from the source string; and when we do a substitution we
do both operations. Or another way of perceiving these operations is imag-
ining that we start with the source string and we try to transform it into the
target string, operating on a cursor whose position is defined by the target
prefix being compared. The cursor separates the target string (to its left)
from the source string (to its right). Figure 8.3 provides an illustration of
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Figure 8.3: The cursor makes evident the prefixes being compared and
acted upon.

this movement, where each cell shows the word being worked on and the
dot represents the editing cursor. As with the Wagner–Fischer algorithm,
we start from the top left cell and move down and right towards the final
position where we conclude our transformation.

In Figure 8.4 we represent the paths of the transformation examples
provided in Table 8.1. The zero-cost operations occur when the source and
target letters are the same in a substitution, and we signalled those four
possible occurrences with a small zero.

Other paths (or sequences of operations) could be taken, including some
that would accumulate a larger edit cost — for example, starting with the
deletion of all 5 letters of “seeds”. It may just happen that some non-
optimal processes are more natural to humans or attuned to their prefer-
ences. We would like to explore this possibility, and to do so we will first
restructure the matrix that we use.

The graph map

We propose that we look at the Levenshtein matrix more like a graph. In-
stead of using the cells to store the costs — meaning “when comparing
these two prefixes the lowest possible edit cost is this” or “upon reach-
ing this situation the lowest possible cost accumulated is such”, which can
account only for one value —, we could interpret the cells as nodes that rep-
resent state, i. e., “which prefixes have we computed so far” or “what is the
active state that is being worked on?” Edit operations that lead to another
active cell will be interpreted as edges that lead to another node. Thus, each
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Figure 8.4: Adaptation of the Levenshtein matrix table from Figure 8.1 to
show the four paths presented on Table 8.1. Zeros indicate operations that
could be performed without increasing the total cost of the path. Darker
cells represent positions that, if crossed, would make a 6-cost path impos-
sible — this does not mean that every path that avoids them will have the
lowest cost.

node will have up to three edges leading to it, and up to three edges leading
out of it.

We still wish to maintain similarity with the original matrix, thus we
decided to represent the nodes/cells as hexagons as shown in Figure 8.5.
This has the advantage of all operations being displayed in the same way,
meaning that the operation substitution is no longer displayed as a diag-
onal movement but has its own geometric edge, like the other operations
had.

A desired consequence of using three edges for movement/operation
is the possibility of using them to represent the operation cost. For exam-
ple, Figure 8.6 shows similar information to Figure 8.1 (excluding the costs,
which are path-dependent), but now zero-cost operations (substitutions of
the same letters) are made evident by omitting the relevant edge.

If our objective was to find the path (the sequence of operations) with
the lowest cost, we would be able to employ a number of algorithms to do
so, such as the Dijkstra [Dij59] algorithm. The results would be the same.

New operation costs

At this point we should point out that the costs associated to operations
need not be limited to one or zero. Any non-negative cost can be attributed
to each operation. We said that users like to add extra characters in their
obfuscations (back in Section 7.7.1), so we can adjust the costs to reflect that
preference. That would mean that insertion operations are cheaper than
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deletion substitution

insertion

Figure 8.5: The three directions of movement over a node. The three edit
operations are associated with edges.
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Figure 8.6: Map of the Levenshtein edit distance for transforming “seeds”
to “looser”. Notice the zero-cost transitions (the four missing edges).
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Figure 8.7: The map now shows different costs for the operations. From the
most expensive (darker) to the less expensive (lighter) we have: deletion,
insertion and substitution (which could cost zero in some cases).

deletions, but still more expensive than substitutions (because we also saw
that authors like to maintain word length). The result of this example is
illustrated in Figure 8.7.

Let us remember that obfuscation methods can be influenced by per-
sonal preferences and the environment itself (users may choose to employ
some method that is popular in the discussion forum, when typing on mo-
bile, . . . ). This means that no set of costs can be considered as ideal, since
what works well for venue A may do much worse in venue B or in venue
A after a year has gone by. We need some way to adapt to different environ-
ments instead of accepting a set of universal costs for the edit operations.
Further opportunities for adaptation exist, with finer granularity, and will
be presented on the next section and as future work at the end of this chap-
ter.

Determining operation costs It makes sense to base the cost of each edit
operation on the number of times it needs to be employed to deobfuscate
words. Thus, if the author is inserting extra letters to disguise their words,
the deletion operation should be cheaper than the insertion. But there is a
problem determining the frequency of each operation: there are likely mul-
tiple ways of editing one string into the other one — remember that each
substitution can be replaced by an insertion and a deletion. We can see an
example in Table 8.2, where approach (I) gives equal weight to operations
s and i, while approach (I I) results in a dominating insertion.

Given a number of edit strategies we want to calculate the usefulness
of each edit operation. Let us suppose that we have n pairs of swear and
regular words (φ, ω) ∈ Φ×Ω that we call our sample A. Each pair may
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Table 8.2: Comparison of two string transformation sequences, and how
they result in different operation frequencies.

Situation: (I) (I I)
Transformation “A”→ “B”: s d, i
Transformation “C”→ “CD”: i i
Relative frequencies: s = 1/2 d = 1/3

i = 1/2 i = 2/3

have one or more edit paths that can transform φi into ωi. We can represent
all of these as Pφi ,ωi

i , which we shall simplify as simply Pi. Each path is
simply a sequence of edit operations. If we had only a single path per
pair of words, calculating the relative frequency for each operation would
be trivial and we would get only a single result. With a number of paths
per pair of words we need to consider every permutation (∏n

i=1 |Pi|), which
leads to a number of possible results that grows too quickly with the sample
size.

Fortunately we don’t need to compute all possibilities and can reduce
this value to one that is maximised by 3n since we care only for the extreme
frequencies of each edit operation. We are interested in finding out how
much work would be done by each of the operations should it be preferred
over all the others. The end result is just three scenarios or less for each pair
of words — in none of which we have the guarantee that the privileged
operation has the dominant frequency (we can see this happening in point
(I) in Table 8.2, where we maximise the usage of s, and in point (I I) where
we maximise the usage of d).

Once obtained the frequencies, they are translated into new operation
costs. This is a trivial Q3 → N3 function where the only requirement is
that the proportions between the elements are preserved up to a reasonable
degree. We are now left to determine which one is better suited.

It should now be determined which cost set has the greater discrimina-
tory power when classifying disguised curses and innocuous words. For
this we employ a second sample of annotated obfuscations Bo and of non-
obfuscated “clean” words Bc that we submit to a fitness function. Such func-
tion is based on the median of all normalised distances of each set, with
B̃o = median(E(x)), x ∈ Bo and conversely B̃c = median(E(x)), x ∈ Bc.
The best candidate is that which maximises B̃c − B̃o.

Calculating the threshold Finally we miss only the parameter ε, which
is the threshold, the cost that, if exceeded, we do not consider the word an
obfuscated swear word since we consider such association as being “too
far-fetched”. We define it as ε = (B̃o + B̃c)/2.

As we are deviating from the “one size fits all” of single cost operation,
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it is appropriate that we consider that no single set of costs would be ade-
quate in every situation. For example, obfuscations that change the length
of a word can result in an word that is longer or shorter than the original.
Those two situations require different preferences in edit operations. Thus
multiple sets of operation costs may be considered and an heuristic can be
used to select the more appropriate one.

More edit operations

Just as the Damerau-Levenshtein algorithm can improve word recognition
under certain circumstances [BM00] — not the ones we have at present,
unfortunately — we decided to look at the possibility of extending the edit
operations available to us based on our acquired knowledge.

Specifically, we noticed that character repetition was a common occur-
rence in the online forum we observed [LO14b]. Based on this, two new
operations were created: repetition (r) doubles the previous character and
its opposite, unification (u), removes a character if it follows another iden-
tical character. Since we are extending the Levenshtein operations, we will
take this opportunity to further alter the substitution. The edit operation
substitution had two possible costs, depending on the characters involved
being equal, but from now on this behaviour will be separated into two
different operations: substitution (s) and keep (k), the latter being the no-
cost operation that is still a more specific version of the former. Table 8.3
compares both the specialised and general versions of all operations so far.

The extended operations roster is now as described in Equation 8.4. It
should be said that the specialised operations have a more limited oppor-
tunity of being used and should take precedence over the generalised ones
whenever possible. Ideally the more specific version should have a lower
cost — even if they are more seldomly used — and an artificial way of low-
ering this may be useful, such as making this operation have extra weight
during the frequency calculations. In Figure 8.8 we represent the map with
all six edit operations present. The more specific operations are represented
with lower cost than their more general siblings.

k((σ1, . . . , σn), σn) = (σ1, . . . , σn)
u((σ1, . . . , σn−1, σn)) = (σ1, . . . , σn−1) iff σn−1 = σn

r((σ1, . . . , σn)) = (σ1, . . . , σn, σn)
d((σ1, . . . , σn−1, σn)) = (σ1, . . . , σn−1)

i((σ1, . . . , σn), σm) = (σ1, . . . , σn, σm)
s((σ1, . . . , σn−1, σn), σm) = (σ1, . . . , σn−1, σm) =

= i(r((σ1, . . . , σn−1, σn)), σm)
σi ∈ Σ, ∀i ∈N

(8.4)

But we can go even further, we could add more specific and specialised
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Table 8.3: Comparison of corresponding specialised and general edit oper-
ations.

Operations Task

keep (k) Replace a character with itself
substitution (s) Replace a character with another (specified) character

unify (u) Remove character if preceded by a similar one
delete (d) Remove character

repeat (r) Insert a character equal to the last one
insert (i) Insert a character (specified)

s
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e

l o reso

Figure 8.8: An update of Figure 8.7 that demonstrates the extended set of
operations. The edges between the ‘ee’ and the ‘oo’ are shown lighter to
represent lower-cost operations.
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instructions. Many relevant candidates can be found in Table B.1, back on
page 187. Of course, adding additional operations implies that we adjust
the method we use to calculate the costs for the operations.

For clarification, our matching algorithm will continue to make use of
the thee basic “classes” of operation: insertion, deletion and substitution. The
difference now is that in each situation our algorithm will give preference to
the more specialised operation available (as defined by the number of input
values that can make it valid). For example, when removing a character it
would first check if it was white space, then see if it was a punctuation
signal, if it was a non-alphanumeric symbol, then verify if it constitutes a
repetition and finally fall back into a general character deletion. That means
that the graph in Figure8.8 will simply present a greater variety of costs.

8.3 Our evaluation

In this section we will describe the experiments we performed to evaluate
the adequacy of our profanity recognition system. We will begin by recall-
ing some information about the dataset we use and how we preprocessed
the messages.

Our experimentation approach is quite straightforward. We compare
the performance of our baseline method (described on Section 8.3.3) with
three variants of our proposed deobfuscation methods (which we describe
on the subsequent section). The details of the experiment are shared on
Section 8.3.5 and on Section 8.3.6 we present our results as well as our anal-
ysis.

8.3.1 The dataset

The dataset that we used for our experiments was SAPO Desporto, which
we described in detail back in Section 7.6. Here we will repeat some of the
most relevant information.

SAPO Desporto is comprised of 2500 messages randomly selected from
user comments posted at a Portuguese sports website [LO14b]. These mes-
sages, written in the native language, were annotated by hand, identify-
ing all taboo words, including obfuscated cursing. 560 messages contained
profanity, with 783 instances being recognised (words repeated in the same
message are not counted if written in the same way), representing 109 dif-
ferent curse words.

Almost 70% of the profanity instances are obfuscated. This may be, in
part, because of the automatic profanity filtering that the platform man-
agers were enforcing. The obfuscation was not uniform, as 258 taboo word
instances were spelled in an unique way, with an average of 3 spellings for
each swear word.
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8.3.2 Text preparation

We have previously (on Chapter 3) discussed how User-Generated Content
presents its own set of pre-processing challenges, particularly on tokeniza-
tion. Previous work [LO14a] confirmed the impact of pre-processing in
recognising profanity, namely the tokenization and normalisation tasks.

As was said in that chapter, our tokenizer worked well for regular text
tokenization, but proved to be a poor match when dealing with deobfusca-
tion [LO14a]. This happens because the author of the message often “over-
rides” several characters that usually have very precise meanings, with
particular problems arising from symbols considered word dividers, such
as commas and full stops. But worse than that is the abuse of white space
characters that are the most elemental word separators.

Training a model to handle this inconsistent usage is very difficult as
semantics plays a very important role in resolving many situations. For
example, in “s . . . ” how do we know if we are looking at an ellipsis or an
obfuscation? Context, and particularly semantic context, is essential.

The most common tokenization processes make use of regular expres-
sions (as is the case with the Penn Treebank Tokenizer2, for example). Such
a solution is simple and can provide adequate results [LO14a], but these
still present room for improvement; in particular, noisy texts can make
them act unpredictably. Tweaking the regular expression can improve the
recall for obfuscations, but at a disservice to regular words, which suggests
that one single tokenization method is incapable of supporting such dis-
parate interpretation of the symbols, and as a result, words/tokens. In fact,
even for this single specialised task of deobfuscation, multiple approaches
at tokenization are required to provide an accurate apprehension of the
message as intended by the author (for example, ignoring word separa-
tors and attempting to recognise new words based in this way of interpret-
ing the text). Thus, an accurate and complete preparation of the original
message may depend on multiple iterations of different processes over the
same source that are later combined into an unified view.

This line of work was consigned to the future since we did not con-
sider it to be the dominant problem and was too specific, despite falling
inline with some of our previous work. Our annotation already contained
the relevant words correctly identified, meaning that we could avoid the
shortcomings of imperfect tokenization in our experiments. Or, more pre-
cisely, we could avoid them when dealing with the cursing words. Our
methods require a sample of non-swear words to fine-tune the parameters
of the classifier, and these are not annotated. These words were taken from
the messages that contained no profanity, to safeguard against the selection
of part of a mistokenized taboo word. Tokenization was done by employ-
ing a simple regular expression (\b\w+\b), which was considered sufficient

2http://www.cis.upenn.edu/~treebank/tokenizer.sed, seen on 2014-12-20.

http://www.cis.upenn.edu/~treebank/tokenizer.sed


8.3. OUR EVALUATION 155

for our needs.
The normalisation process, which tries to reduce the different number

of ways in which a word is written, was also shown to have a significant im-
pact when deobfuscating words [LO14a]. We could say that deobfuscation
is normalisation, and to avoid conflict or interference we only converted
the messages to an all-lowercase version before working on it.

8.3.3 The baseline algorithm

The Levenshtein edit distance calculates the total cost for transforming the
source string into a target string as a form of defining similarity. We can
consider that a word in the text corresponds to a swear word if the (edit)
distance we need to cover in order to transform it into said swear word is
within a certain threshold. But defining a fixed threshold that works well
for small and large words is difficult, since we already saw that obfuscation
often changes the word length. A solution would be to define this threshold
based on the length of the word we see [SAC12b], which provides better
results.

Through experimentation we came to the value of ε = 0.5 as providing
the best results for this algorithm, that is, we allow up to half the characters
on the word we see to be edited. All operation costs were maintained at 1
(with the natural exception of the keep operation).

8.3.4 The Levenshtein algorithm

We will take this opportunity to describe some implementation details that
fall outside the general theory we have presented, and have a practical rea-
son or existence.

The number of paths The greatest obstacle to running our algorithm is
the sheer number of possible paths that can be created when converting a
word into another (that is, |Pi|). Just to give a quick idea, if we have two
words of size 2 (meaning that |φi| = |ωi| = 2), then we have 6 different
paths. Should both words be of length 4 — which are still small words
— we are already dealing with 321 paths for one word pair. To get more
representative values, in our data sample the average word length (from
our full set of Σ∗) is 7 and the average swear word (in Φ) is 6; such a pair
would result in about 20,000 possible paths. The exact number of different
paths can be calculated through Equation 8.5 where i and j refer to the
length of the words.
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T(i, j) =


1 if i = 0
T(j, i) if j < i
T(i− 1, j) + T(i, j− 1) + T(i− 1, j− 1) otherwise

(8.5)

Each word in the text needs to be compared to each curse word from our
swearing list (which is comprised of dozens of entries). We exclude source
words that are part of a Portuguese dictionary and need only process each
word once (and remember the result for later), but still it is apparent that
it would be a struggle to deal with so many situations. We clearly need a
search approach that is able to cull the search space.

We used the Dijkstra search algorithm [Dij59] to compute each path
between the start and end node. This avoids looking through unhelpful
paths (e. g. removing all letters and inserting the new ones with no regards
to common substrings), and prevents the revisiting of nodes already pro-
cessed. But how do we know what is a good or bad path? All edit op-
erations look the same, we essentially have just an insert, a delete and a
substitute, and different costs are not defined yet.

As we mentioned back on page 150, we will be selecting only the paths
that emphasise each of the available operations. This means that we can
cull our search space by pruning the paths that are falling below others in
this regard. For example, if we take a look back at Figure 8.4 we can see
that the two inner paths both contain the same operations: 1i + 5s. That
means that one of them is extraneous and will not be completed.

Cost attribution When converting edit operation frequencies to costs, the
more specific operations should posses a lower cost than their more generic
version (as stated on Section 8.2.2). To ensure this, we define the cost for
each operation as follows: basic operations are accounted normally with a
factor of 1. Specialised operation (other than keep, which always costs zero)
are accounted as if they were seen more frequently than they actually were.
The exact value is defined by 2S + 1G, where S represents the number of
times the specialised operation was used and G corresponds to the num-
ber of uses of the relevant general operation. These values were supported
through experimentation and, since specialised operations are selected for
use whenever possible, ensure that the algorithm looks at them favourably.
Our operation costs are always rounded as integers.

Default costs It is possible that, during classification, our version of the
Levenshtein algorithm tries to use an operation for which no cost has been
attributed because it was never seen during the creation of the model being
used. In that situation we use the largest cost that we did calculate.
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Two sets of costs As was said in Section 8.2.2, some circumstances have
requirements that can conflict with others. The most obvious situations,
that we had presented as example, is that of obfuscation by shortening
the word vs. obfuscation by lengthening the word — one can benefit from
cheaper insertions while the other works better with cheaper deletions.

We split the “training” and “fitting” situations to deal with the short-
ing of words separately from the remaining cases. This means that, when
pairing a word with a curse word, a different context will be used depend-
ing on how the former compares with the latter in length. With context
we mean the contribution to a set of operation costs or the application of
a set of costs. If more than one set of costs is applied, we compare all the
candidates and elect the one associated with the lowest editing costs.

The operations implemented We implemented three versions of our pro-
posed method, each one improving upon the previous one. This comes
from Section 8.2.2.

The first version is similar to the baseline algorithm but allows for dif-
fering costs. The second one adds the operations r and u, which derive
from i and d, respectively. The third one adds many operations, namely:

• Insert space,

• Insert punctuation,

• Delete space,

• Delete punctuation,

• Substitute a character with a diacritic by the same character without
any,

• Substitute a character without a diacritic by the same character with
a diacritic,

• Substitute a character with a diacritic by the same character with a
different diacritic,

• Substitute a number with a letter,

• Substitute a letter with a number,

• Substitute a non-space character with a space character,

• Substitute a space character with a non-space character,

• Substitute a non-punctuation character with a punctuation character,
and



158 CHAPTER 8. METHODS OF DEOBFUSCATION

• Substitute a punctuation character with a non-punctuation character.

Some of the operations were added only to provide symmetry to the
operations and we do not expect them to be used on this work. The follow-
ing operations were not specialised: add letter, add number and change letter,
since we considered that the generic operations handle them adequately:
i and s will only be introducing letters and the obfuscation operation +N
is inexpressive in our corpus. The operations word aggregation, complex al-
teration, phonetic-driven substitution and pun were left out due to their com-
plexity.

8.3.5 The experiment

The experiment was performed in a 10-fold cross-validation evaluation sys-
tem, which was repeated 11 times (11 trials).

We employ the full set of 781 curse word instances, to which we add
a random set of 781 non-curse words. As we mentioned before, the non-
curse words were randomly sampled from messages containing no anno-
tated swearing. The selection of these words, together with the shuffling
determine the differences in results from one trial to the next. The words
are all shuffled together before being partitioned; the baseline classifier ig-
nored all but the test set, while our proposed classifiers used the data with
the following approximate distribution for each cross-validation:

• Of the 781 annotated curse word instances

– 90% is used for model creation, of which

* 45% is used for the calculation of the costs candidates and

* 45% is used for the costs selection and threshold calculation;

– 10% is reserved for testing.

• Of the 781 non-curse words

– 90% is used for the costs selection and threshold calculation and

– 10% is reserved for testing.

The imbalanced situation that occurs on the cost selection is not as pro-
nounced as we find “in the real world” (as we have seen in Section 7.3.1)
and a variety of non-swear words helps the system avoid false positives.
Repeating words were also accepted in the samples to reflect real word fre-
quencies. Misclassification of a common word is undesirable since it would
happen over and over, but with this arrangement common words would
more likely be present during the model creation process, and this would
reduce the likelihood of such error happening.
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Our classifiers make use of a dictionary before attempting to classify a
word. For such we employed the master dictionary for European Portu-
guese from GNU Aspell3. However, through a fault of ours, we used only
a subset of the dictionary and not its full contents. Since this affected all
classifiers equally (and not severely), and it illustrates a possible problem
with dictionaries (they are never perfect) we decided it would not warrant
a re-run of the entire experiment.

The label set that we used is comprised of all swear words that were
present in our annotated corpus. This is different than using a list of swear
words obtained from other means, as was the case of the similar works we
previously mentioned.

8.3.6 Results and analysis

In our experiment we quantified the adequacy of the baseline and the four
methods that we implemented using the standard Precision, Recall and F1
measurements. We consider a True Positive when the classifier accurately
classifies a word from the source text as the swear word declared in the
annotation. If the classifier proposes a non-swearing word as a disguised
cursing, we consider it a False Positive. A True Negative happens when
the classifier sees no significant relation between a non-taboo word and
any taboo word in our swearing lexicon. Finally, a False Negative happens
when our classifier ignores a swearing word.

We calculated the micro and macro averages for each 10-fold cross-
validation experiment, as well as a weighted average that relates to the
frequency of each label; these are standard measurements in classification
evaluation. Micro averages for precision and for recall are always equal
since a false positive for one class is a false negative for another. This is a
consequence of us treating the absence of swearing as a regular class (we
had, thus, 110 classes — which are too many to represent as a readable
confusion matrix).

To summarise the performance across the multiple experiments we used
the median, as we feel it provides a more accurate notion of what can be ex-
pected from the classifiers.

Since we are doing a multi-label classification experiment (and not ap-
plying a simpler binary classifier determining the mere presence of profan-
ity), and the data that is being used is quite different from that employed
in other studies, comparison with the work performed by others is very
difficult.

3http://aspell.net/

http://aspell.net/
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Table 8.4: Median values of the performance measurement of the baseline
classifier after all experiments were run. Each experiment calculated Preci-
sion, Recall and F1 for the 10-fold cross validation and presented the three
averaging values.

Average Precision Recall F1

micro 0.90 0.90 0.90
macro 0.82 0.90 0.83
weighted 0.93 0.90 0.91

The baseline

We begin by presenting the results for the baseline classifier which is based
on the standard Levenshtein algorithm. This method performed quite well
when using proportional threshold, as this improves the results signifi-
cantly when compared to a fixed edit distance (we can refer to a previous
work of ours [LO14a] that evaluated the Levenshtein edit distance algo-
rithm with a fixed threshold on the same dataset). The quite positive gen-
eral results obtained are shown in Table 8.4, where we see the medians of
all repetitions.

Sood, Antin and Churchill presented much lower results for a similar
method [SAC12b] which, we can only assume, is the result of the swearing
dictionary used, which was generic and obtained from unrelated sources.

Micro averages (calculated by the collection of all individual results)
show that this classifier is fairly correct. Macro averages — the averages
of the measurements taken per class — show a lower precision, meaning
that false positives were more frequent than false negatives. The last line,
weighted averages, is similar to macro averages but proportionally weights
each class. Here we can see that precision increases significantly, which
strongly suggests that the dominant class (i. e. not a swear word) is not the
source of the false negatives. In fact, looking more detailed at the errors, we
can see that the most common error was incorrectly assuming clean words
were swearing (83 words on median), representing most of the errors com-
mitted. The converse situation — ignoring swear words that are present
— is only seen a median of 42 times, while confusion about which swear
word was actually seen occurred around 31 times.

We present some of the errors committed by the baseline classifier on
Table 8.5. Some errors can be attributed to the dictionary that prevented a
word from being properly evaluated (e. g. “carvalho”), but the dictionary
we used also failed by not carrying some common words (e. g.‘ “como”,
“pontos” and “toda”). The dictionary was used as much for “word protec-
tion” as for reducing processing time, and this shortfall affects all classifiers
equally, preserving their relative performance.
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Table 8.5: Example of classification errors committed by the baseline classi-
fier. One word was shortened to fit into this table.

Word seen Class expected Class attributed

caaralhosssssss(. . . )ssssssss caralhos —
carvalho caralho —
enculados enrabados encornados
f.d.p. puta —
m e r d a merda —
m*da merda foda
murcas murcões maricas
p*** puta —
putax putas puta
como — cago
piue — pila
pontos — bostas
toda — foda

The table includes long and elaborate obfuscation that inserts too many
characters for the baseline to handle (due to the threshold limit) and con-
siders it as a non-curse word. In this table we can also see some “unfair”
expectations: it is unlikely for “f.d.p.” to be recognised employing our cur-
rent methods just as “carvalho”, being a dictionary word, needs a semantic
analysis to resolve.

More importantly, we show some cases of “mistaken identity” where
the classifier simply goes with another “similar” curse word (similar to
its algorithm, not to humans) but ends being the wrong answer. This is
the case with “m*da”, where the classifier opted for the candidate solution
substitution-substitution-keep-keep with total cost of 2 instead of the correct
keep-substitution-insert-keep with the same total cost. The preference (and
the error) was simply due to lexical order, but it does raise the question
of how many correct classifications were made through luck in the “toss
of the coin”. This kind of situations fueled of our motivation to develop a
model that better approaches the way people handle obfuscation. At the
same time, ties in deobfuscation costs are not exclusive to the baseline and,
despite being less common with our approaches, a better form of solving
them could make a measurable difference.

We should also clarify that “piue” is not a Portuguese word (taboo or
not), but is a corruption of a term that was used to mock based on the
onomatopoeia of the singing of a bird (“piu” which the English write as
“tweet”).
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Our methods

We represent the results for the tests performed on the deobfuscation meth-
ods we have proposed as the difference in performance compared to the
baseline. We label our proposed methods as 0, 1 and 2 to refer to the three
collections of edit operations we already described back in 8.2.2.

We plotted our results as Figure 8.9 where, at first view, we notice that
across all forms of measurement the number of operations available cor-
relate with the quality of the results obtained. That is to say that method
0 shows a little degradation in performance compared with the baseline
while method 2 compares favourably with our reference method, with method
1 exhibiting rather mixed results. We also notice that median recall shows
very little in variation across all forms of measurement.

To help us better understand these results and to provide a more de-
tailed picture of the classifiers, we plot the number of classification errors
in Figure 8.10. These include the number of errors in recognising the swear
words — which we further detail as the words that were disregarded and
the words that were mistaken for other curses —, as well as the number
of non-swear words that were classified in error as being profanities. Once
more we use the results for the baseline as the basis of representation for
the improvements and declinations of each of our classifiers. The rest of
this section is devoted to a closer analysis of the results obtained from each
classification method.

Method 0 Analysing each of our proposals in more detail we can see that
the simpler method — method 0, which is the most similar to the baseline —
corrected many of the errors in the baseline classification. We highlighted
these changes in classification on Table 8.6, that contains a sample of errors
from this classifier. That was the result we expected with our modifications:
solve the “exaggeration” obfuscations (such as in the first example).

However, with the improvements also came new errors in the classifi-
cation (Table 8.6 has one example), and consequently the method 0 classifier
shows slightly worse results overall when compared with our reference
algorithm, particularly on the precision measurement (as Figure 8.9 makes
evident). Looking at Figure 8.10 we see that 20 more swear words were dis-
regarded by the classifier, while 43 others were correctly taken as taboo but
mistaken for other swear words (the baseline failed in 31 and this method
exceeded that number by 12).

An examination of the classification revealed that many of the false pos-
itives were occurring with the popular swear word “cu”. Many of its ob-
fuscations were also 2 letters in length and the substitution was an edit op-
eration too expensive to be considered, and for this reason a number of
variations of his taboo word were overlooked.
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Figure 8.9: Results of our evaluation based on three standard measure-
ments of classification performance. Three averaging methods were con-
sidered. The results presented are the median of the 11 trials and are repre-
sented as the difference from the baseline results presented on Table 8.4.
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Figure 8.10: Detailed analysis of the classification errors for the three meth-
ods we developed. The results are presented as the differences from the
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Table 8.6: How our method 0 classifies the previous examples of classifica-
tion errors committed by our baseline classifier (Table 8.5). One word was
edited to fit in the table.

Word seen Class expected Baseline Method 0

caaralhossss(. . . )ssssssss caralhos — caralhos
carvalho caralho — —
enculados enrabados encornados encornados
f.d.p. puta — —
m e r d a merda — merda
m*da merda foda —
murcas murcões maricas maricas
p*** puta — —
putax putas puta puta
como — cago cago
piue — pila —
pontos — bostas bostas
toda — foda foda

Method 1 The second method seems to be the most unremarkable of the
three proposals. It scores very closely to the baseline in many tests (accord-
ing to Figure 8.9), but it does present a very significant reduction in “imag-
ined swear words” when compared with the previous method (based on
Figure 8.10), that is, this method mistakenly identifies fewer non-cursing
words as being cursing. This results in less false positives across many
classes. In fact, we can say that this was the main gain over our method
0. However, this slight “bias” towards the “not a curse word” class also
makes it ignore some actual cursing, resulting in significantly more false
positives when evaluating this large class (and thus a lower weighted pre-
cision score compared to its unweighted score). We also noticed that the
short taboo words were almost as problematic as they were for method 0.

The above interpretation can be substantiated with the examples of er-
rors in Table 8.7. We see that most corrections to previous classification
errors come from clearing words mistaken for cursing and dealing with
repetitions (which was clearly the goal of this method). We also see how
this new operation “backfiring” in one of the final cases shown. Still, the
measurements show a positive progression and the final method will bring
further improvements.

For the operation costs, the operations present in the previous method
saw their costs increased, by a factor close to 2 (based on the same data).
The threshold also raised, but slightly less, which means that situations that
were previously close to this limit are no longer satisfied — that is, unless
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Table 8.7: Comparison of errors committed by several classifiers in the same
trial. Two of the words were edited to fit in the table.

Word seen Class expected Baseline Method 0 Method 1

campeão — cabrão caralho —
cobiçado — cagado bico —
cuuuu(. . . )uuuuu cu — — cu
có — cu cu —
enganas — enraba enrabar —
f0dasssseeeee foda-se — — foda-se
milhoes — colhões colhões —
raça — piça piça —
roupão — morcão morcão —
cabraao cabrão cabrão cabrão caralho
du@ta puta puta puta —
peeee(. . . )eeeerding — — — merda
pu t @ puta puta puta —
put@2 puta puta puta putas

we are in a situation where a new, specialised operation can be used. As
the unify operation is introduced, it may4 cause the delete operation to rise
in cost even further if it is seen being used. This happens because the more
general operation is seen as being employed less often.

Method 2 To conclude our analysis, method 2 introduces new operations.
We already saw in Figure 8.9 that it outperforms all other methods and the
baseline across all forms of measurement we computed. From Figure 8.10
we can also understand that, while its recognition of non-swearing shows
slightly less success than method 1 did, it is the first of our methods to ex-
ceed the baseline in the complementary task of recognising swear words
correctly.

Just as we saw an increase in the costs of the edit operations when go-
ing from method 0 to method 1, so did they increased in the same fashion
in method 2. In the same way, the value of the threshold increased but in
a slightly smaller proportion. This allows for the introduction for new,
cheaper and more specialised operations that are preferred in use.

As for the errors, Table 8.8 shows some errors (and a few successes) of
this and other classifiers. We can see that, again, this is not a story made
only of victories, and some words that have been correctly classified up
until now by “simpler” classifiers are now being mislabelled. In particular,
we can see that the small word “ku” still does not seem to be recognised.

4Remember that we create more than one set of costs.
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Table 8.8: Comparison of errors committed by several classifiers in the same
trial.

Word seen Class expected Baseline Method 0 Method 1 Method 2

c o n @ cona — — — cona
enculados enrabados encornados encornados encornados enrabados
f.o.d.@ foda — — — foda
p_u_t_@ puta — — — puta
putax putas puta puta puta putas
ca@brone cabrão cabrão cabrão cabrão —
como — cago cago — cocó
crlho caralho caralho caralho caralho —
fodasse foda-se foda-se foda-se foda-se fodesses
fodebol fode fode fode fode fodendo
ku cu cu — — —
murcóes morcões morcões morcões morcões —
piue — pila — — piça

Table 8.9: Median number of words misclassified by method 2 that were cor-
rectly handled by previous classifiers, and correct classifications performed
by this classifier that were mishandled by the other classifiers.

Baseline, 0 and 1 methods 0 and 1 method 1

Regressions 4 9 11
Progressions 11 25 32

Short obfuscations are quite hard to decode since they allow few characters
to work with. Should we increase their threshold then common words like
“eu”, “tu” or “ou” (“I”, “you” or “or”) could easily turn into false positives
for taboo word “cu”.

Despite these shortcomings, and based on the figures we have shown,
we have already seen that method 2 achieves more than any of the previous,
thus such “slips” are more than made up with what it achieves above the
rest. Table 8.9 paints exactly that picture, using numbers: for every word
that our classifier stops getting right, it recognises 3 new word (median
values).

For reference, the hard numbers for this classifier are disclosed on Ta-
ble 8.10.

We also tried to determine the impact of the dictionary (Ω), overall.
Running without this resource hurt the baseline method slightly more (by
2–5 percentage points) than it did our method 2 (2 percentage points) across
all averages. This was too much of a penalty for the two occurrences in
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Table 8.10: Results for three measurements of our final classifier, method 2.
The results were summarised using three different averages. The numbers
shown are the median values obtained after the 11 repeats of the experi-
ment.

Average Precision Recall F1

micro 0.92 0.92 0.92
macro 0.86 0.94 0.88
weighted 0.94 0.92 0.93

our corpus. However, we would expect that, should profanity censoring
became tighter, this solution would become much more common.

Comparison with other works As we mentioned several times already,
comparing our results is difficult for a number of reasons, namely different
environments, different annotation types, different profanity dictionaries
and different treatment of obfuscations. In addition to all that, we worked
with different language and tried a more difficult challenge, since profanity
erroneously classified as another profanity was considered a miss.

With all that, and with a hefty dose of caveat emptor, we can attempt
to trace a quite subjective parallel of the numbers we presented in Sec-
tion 7.5.3.

The work of Sood, Antin and Churchill [SAC12b] worked on Yahoo!
Buzz and achieved the results summarised on Table 7.5 (on page 118). Their
Levenshtein adaptation is quite similar to the one we used as the baseline,
which makes us believe that the classification algorithm is not responsible
for the discrepancy in numbers. In particular recall is severely low, which
we believe could be due to 25/33 of the top swear words being obfuscated
and tokenization not helping in these situations. In addition to all this,
this corpus is more than twice the size of ours but the swearing was not
annotated by hand.

Want et. al [WCTS14] worked on Twitter messages and, also trough a
classifier based on the edit distance of Vladimir Levenshtein, achieved a
near perfect precision, with 0.72 recall, combined in 0.83 F1 measure. This
is a much better result, closer to ours. However, this corpus is smaller than
ours (1000 tweets vs. 2500 forum messages), which may have reduced the
variety of cussing and obfuscation.

Perhaps a better comparison could be made with an earlier work of
ours [LO14a] where we used a tokenization and normalisation closer to the
ones we believed to have been used in the studies we just mentioned. There
we used again a method based on the Levenshtein edit distance, and ob-
tained values of precision, recall and F1 of 0.96, 0.68 and 0.80, quite similar
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to the values of Want et. al. This is again quite similar to the baseline we
used in the current experiments, and should extrapolate an idea of compar-
ison, with due reservations.

But the important idea we would like to point out here is not one of
numbers, but to present the importance of the pre-processing of messages
when working with User-Generated Content, and how the introduction of
noise can really affect higher-level processing of the text.

8.4 Summary and concluding thoughts

Taboo words may possibly be as old as civilisation. For example, over 4000
years ago old European tribes did not use the proper word for “bear”, and
referred to them by using the word for “brown”. The “real name” of the an-
imal was taboo, since they believed that mentioning its name would sum-
mon their presence. The English word “bear” actually derives from an
ancient Germanic word for the colour of the fur of the animal, and their
real name became disused [Vot]. This is the oldest example of obfuscation
we are aware of.

Most taboo words are related to swearing, which, as we have discussed,
is entrenched within our society in a special way. Despite being shunned
by many, they have never really gone away — clearly they serve a purpose.
These words lose their literal meaning and instead are used to communicate
something at a higher level.

Offensiveness and acceptability dictate that, under certain situations,
people may not express themselves as they would prefer. The obfuscation
of taboo words is, thus, a way for people to preserve most of the mani-
festations they intended but avoiding some of the possible backlash and
consequences that arise from the use of taboo words.

Profanity recognition systems have seen little attention in the scientific
community, particularly in ours. Perhaps derived from the conflicting ideas
or awkwardness of addressing such a lowbrow subject in a highbrow envi-
ronment; or perhaps due to the deceptive apparent simplicity of the prob-
lem [SAC12a]. In addition — perhaps as a consequence of this lack of aca-
demic interest — profanity recognition systems seem to be built with the
sole purpose of hiding or repressing, and not to expose or to understand.
That part had been played for hundreds of years as humans apply social
pressure and censure to put an end to foul language [McE06], with the
success we all know and see. Could we realistically expect more from a
machine?

Natural Language Processing systems have been created to overcome
a number of hindrances, but purposeful introduction of noise, as far as we
are aware of, was never one of it. With this work we are taking steps in that
road.
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Our goal was to study and improve automatic methods to recognise ob-
fuscated words. The context of our application was that of swearing, due to
the call for assistance of SAPO, and because profanity is the most common
type of taboo words and the most frequent usage for obfuscation.

To this end we created a corpus dedicated to profanity identification
that we annotated by hand and analysed in detail. We saw a correlation be-
tween swear words suppressed by filters and the variety of ways in which
those words were written. We also determined the methods of obfusca-
tion that were most frequently used and, based loosely on some of them,
devised a series of classification methods to recognise the swear words dis-
guised in messages.

Three classifiers were created, each one employing a different edit dis-
tance method based on the Levenshtein algorithm. Each of the methods has
available a different set of specialised edit operations that can have different
costs, with the more general operations — those present in the Levenshtein
algorithm — being more expensive than their more specific variations. The
costs are determined through the analysis of annotated examples, and here
resides the core of our contribution.

Deobfuscation of a word we do not recognise is performed by searching
for the most similar curse word using the edit distance. A threshold (com-
puted at the same time as the costs of edit operations) limits the maximum
dissimilarity we will consider.

Experimentation results indicate that the greater variety of edit opera-
tions available provide an improvement on the number of words that are
correctly classified. Our most complex classifier showed about 5% macro
average F1 improvement over our baseline classifier (derived very closely
from the standard Levenshtein edit distance), while the micro and weighted
averages indicate about 2% increase on this metric.

We concluded that our baseline is simpler, faster and provides quite
adequate results; but it is also static and easier to fool (for example, by in-
serting many characters). Our methods do require an annotation, but this
provides a path for adaptability to either different practices or to evolving
environments, which is something that lists cannot provide in a flexible
way. Online communication is very dynamic and subject to unpredictable
changes, which are easier to account for through annotation than through
modification of algorithms of hardcoded values. And since one of our clas-
sifiers does present a measurable improvement over the baseline, we do
think that we achieved our goal of improving the state of the art in deob-
fuscation. That is not to say that everything went as expected, or that we
have reached the end of this road.

We were surprised by the underperformance of our simpler method,
given how similar it is to the baseline. We could have tweaked our methods
to provide a more similar result — which could also reflect on our more
complex derivatives —, but we preferred to maintain our approach simple
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and generic, and avoided focusing too much on our particular data. In
the next section we will present a number of potential improvements and
research directions that we would like to consider following of this work.

8.5 Future work

As usual, time was our main constrain, not lack of ideas. For this reason we
feel there is still a significant ground to cover. In this section we describe
the remaining steps in our plan that are still to be followed.

The first idea that we would like to evaluate is a method 3 classifier. This
would add a single new operation: substitute character X with character Y.
which would be able to address a number of situations which are common
enough to have an impact. For example:

• Letters that sound alike — c, k and q, for example. This could solve
our particular problem with “cu” / “ku”, as in general small words
need more careful choices during obfuscation, and soundalike char-
acters are of greater importance in these situations.

• Common substitutions of non-letters, such as “0” and “o” or “@” and
“a” that could be more precisely handled.

Similarly, we could also derive more specific operations from the insert.
As we have seen, the vowels are usually the first letters to be deleted since
they are fewer and due to their nature easier to add back. An operation
insert vowel X could be added to handle those cases.

Still on the subject of more edit operations, and taking another step for-
ward, it may be possible to automatically generate completely generic edit
operations that would really learn the operations from the examples. By
seeing many examples like the ones we just mentioned, it could learn such
a mapping. This could replace all substitution operations — and similar
adaptations could be made for insertion and deletion. Under-represented
situations could be gathered in an “generic” version of the operation.

The main challenge arises from the dimension of our corpus; it may
not be large enough to allow this precise operation to attain enough signif-
icance. The sparseness of the examples for each case may be insufficient
to “learn” many of the useful substitutions. Consequently, adding more
messages to the corpus would also be present on our road map.

We also noticed that our algorithm chooses between a number of possi-
ble costs for operations. Perhaps we could combine several suggested sets
of costs into a single solution. We think there is only advantages in see-
ing more costs represented and in its current state some edit operations are
omitted entirely from the final roster without necessity.
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The threshold is currently calculated in a very simple way (the halfway
point between two medians), which likely is non optimal. We would like
to try other possibilities to generate better values for this parameter; one
possibility is to use an iterative method that calculates the best value for ε
by evaluating the number of mistakes that would be performed at each hy-
pothetical point. We noticed it was usual to have some overlap between B̃o
and B̃c (the costs for the obfuscations and the costs for the non-obfuscated
words). Perhaps by better considering mistakes in a few rare situations we
can improve the classification of more common situations.

Going a little further, improving and tailoring the specific pre-process-
ing for the current task can go a long way in making or breaking an effort.
In the tokenization side, methods of discovering “boken” words are re-
quired; perhaps doing a regular segregation into words, detecting areas of
the message that “does not make sense” to be processed differently, and
then merging the results into a final result. As for the normalisation, it is
possible that our approach here was not the best one. We would like to
evaluate the results of using the same method as Wang et. al [WCTS14], in
which repetitions are blindly condensed. For example, “WWW” would be
condensed into just “W” and “butt” would be turned into “but”, but the
principle may have merit. Not only would it make deobfuscations word-
length independent as it could allow the edit distances to less dominated
by the unification operation. However, more attention would be required
since the profanity classifier could be reporting on a word that is not in the
text. An entire new pre-processing procedure may just be the best solution.

As we stated before, per-user customisation could also help with resolv-
ing some situations, as the system could be tailored to resolve the prefer-
ences of a single person; but the difficulty of amassing the required volume
of examples from a single user to make it worthwhile should be admitted.

Finally, people do not usually deobfuscate swearwords in isolation; they
look at the chaining of the words and when needed they use their experi-
ence to help them complete the pattern. It is for this reason that obfusca-
tions such a “son of a *****” work: it is such a normative expression that
people already expect it, and that buys a greater degree of freedom to the
obfuscating author. To acquire such information we generated n-grams
from Twitter messages and, while we learned that it cannot tell us what
swear word to expect due to the variety of it (save for very few expressions
as the one above), we can use it to learn what swear words we have seen
(even if infrequently) in such context. This information could solve ties
between curse words and to help correct the number and gender of curse
words presented by our classification.
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Chapter 9

Concluding remarks

The structure of the present work prescribes a conclusion and future work
in the work chapters. This section is thus used to provide a general overview
of the work and the future direction we would like to take.

Microblogs brought us a new form of sporadic communication, based
on short and immediate messages that can reach millions of people across
the globe in an instant. The barrier to participation is fairly low since the
(artificial) limitation placed on the message length helps to blur the distinc-
tion between good writers and bad writers, people with a message to say
and people who simply chat, and is, in this way, quite inclusive. The value
of microblogs is, in a large amount, centered in the personal world views
that are shared by their users. Unfortunately it is not easy to get to them
(automatically).

The language used in microblogs is not the “conventional” language
used in the traditional written word. It is constrained in some ways and
exceeding liberal in others, it is strongly influenced by oral communica-
tion, it tries to express emotion through new means, users try to set them-
selves apart from each other through several creative methods. . . Adding
to this we have the mobile devices with their limited keyboards as well as
the usual diminished context present in each message — occasionally even
humans feel challenged when reading microblog posts.

The pre-processing and normalization phases of messages are of par-
amount importance. They “translate” the microblog messages to a more
common form, and facilitate the use of higher-level text processing tools
(such as part of speech tagging, sentiment analysis and opinion mining).

In the present work we focused in a number of specific problems that
are related to the pre-processing of User-Generated Content, with a strong
emphasis in microblogs. These problems were practically motivated by our
participation in research projects that were faced with these very problems
when processing data from such sources.

Our research has shown how the process of tokenization can be quite
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complex on microblogs, not so much due to the special content that exist
(e. g., URLs and hashtags), but because users usurp the long-established
meaning of certain symbols, using them to create little faces (smileys) or
new codes (like “xoxo” to mean “hugs and kisses”) or abbreviations (e. g.
“/.” for the website “Slashdot”).

Faced with the very difficult task of generating and maintaining a rules-
based system to tokenize such high-entropy messages, we opted to employ
a machine learning method to infer correct rules of tokenization and rede-
fined the entire process as a classification problem (in Chapter 3). This had
two major benefits: this system provides better performance (exceeding the
0.95 F1 value) than the regular-expression tokenizer we created explicitly
for microblogs, but it also reduced the cost of maintenance by improving
much faster than a rules-based system: our tests showed how providing
more relevant examples is quite fast, simple, effective and safe (adding new
rules may have unforeseen consequences).

The task at hand defines what can be defined as a token. In the common
case of regular and generic “text processing” — semantic analysis for ex-
ample, where tokens represent workds, smileys, URLs. . . — our tokenizer
works very well. In other, lower-level situations (as is the case of deobfus-
cation that we first approach in Chapter 7), the problem is turned upside-
down: noise is not something to be tolerable, ignored or discarded, noise is
the data and was purposefully made difficult to process. Everything else is,
at most, a secondary consideration.

In this context obfuscation is the act of hiding text in a way that it is
harder to understand. Its most common use is disguising swearing which
is the setting in which we developed our work. As the name says, “deob-
fuscation” is the act of exposing the original text.

We worked with messages taken from a popular sports website that we
annotated into (we believe) the first free-access corpus for the study of ob-
fuscation. Based on our observations we are lead to believe that, when a
filter is introduces to curb cursing, a significant number of users prefer to
disguise their swearing rather than changing their language. We also doc-
umented preferences in the methods used to disguise their taboo words,
some of which we cannot realistically expect to be handled by our current
state of the art computing.

With this knowledge we proceeded to design a method, based on exten-
sions to the Levenshtein Edit Distance that would be able to better recog-
nize the true, hidden word. This proved to be a very difficult (adversarial)
problem and we managed to obtain only a small improvement on the base-
line — but still exceeding the 90% F1 measurement in classification. This
work is described in Chapter 8 where we also describe some very special-
ized tools that are required to better address it.

A very different type of problem we approached was related to user
classification, where we try to determine something about users based only
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on their writings. This prompted us to delve into the (language agnos-
tic) writing style employed by the users. We tested the relevancy of our
stylistic features by trying to assign authorship of several messages based
on past samples, using an automatic classifier. This challenge is described
in Chapter 4, where we reveal to achieve accuracy results exceeding the 0.6
maximum F1 values with 3 candidates. Such result is comfortably above
the choice by pure chance (1/3). The most revealing characteristics were
the marks of emotion, that include the way users express laughter and write
smileys, for example.

When it came to recognize automatic posting systems (also known as
bots), we employed another classification system where the stylistic fea-
tures proved very useful (reaching about 0.9 accuracy by themselves in our
experiments). This work is presented in Chapter 5, where we also explore
other revealing features that helped us boost the classification accuracy to
0.97.

We also worked on trying to determine the nationality of a user based
on the variant of the language they use. We explored this problem with
the American and European variants of Portuguese (in Chapter 6). It was
surprising to us that the stylistic features were not as helpful this time. That
probably meant that there was no “nation-wide” style of writing and that
the dissemination of features such as the use of smileys and the indication
of laughter are culturally disseminated. To solve this problem we saw a
great contribution from our lists of words and expressions that are used
in both sides of the Atlantic. We were able to reach 0.95 accuracy when
scanning 100 messages from each user, which was higher than the n-gram
approach that is commonly used for identifying languages.

Many ideas and directions are described at the end of each work chap-
ter. But if we had to choose the one where the greater impact would be
felt, it would be in the apparently basic tokenization process. We are con-
vinced that there is a significant ground to cover towards a greater noise
resilience, and a multi-stage approach would provide not only better accu-
racy but also more information for subsequent tools in the pipeline.
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Appendix A

Nationality hint words

Table A.1: Words related to the Portuguese (European) vari-
ant of the Portuguese Language

Distrits Provinces

Aveiro Alentejo
Beja Algarve
Braga Alto Alentejo
Braganca Alto Douro
Bragança Baixo Alentejo
Castelo Branco Beira
Coimbra Beira Alta
Evora Beira Baixa
Évora Beira Litoral
Faro Douro
Guarda Douro Litoral
Leiria Estremadura
Lisboa Minho
Lisbon Ribatejo
Portalegre Tras-os-Montes
Porto Trás-os-Montes
Santarem Trás-os-Montes e Alto Douro
Santarém
Setubal
Setúbal
Viana do Castelo
Vila Real
Viseu
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Football Companies

Benfica CP
FCP Clix
Futebol Clube do Porto EDP
Porto Optimus
Porto PT
SCP Phone-ix
SLB Portugal Telecom
Sporting Rede4
lagarto SAPO
lagartos TAP
lampiao TMN
lampioes Uzo
lampião Vodafone
lampiões Yorn
tripeiro
tripeiros

Personalities Vocabulary

Alberto Martins Euro
Ana Jorge Nestum
Antonio Costa a gente
António Costa abarrotar
BE acto
Bloco de Esquerda agreste
CDS algures
CDS-PP amo-a
CDU amo-o
Cavaco Silva amo-te
Comunista apetece
Comunistas apetecer
Democrata autocarro
Democrats biliao
Durao Barroso bilião
Durão Barroso briosa
Fernando Pinto Monteiro brioso
Francisco Assis bue
Francisco Louca bué
Isabel Alcada camiao
Isabel Alçada camião
Jorge Lacao casa-de-banho
Jorge Lacão catraio
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Jose Seguro chavala
Jose Viegas chavalo
José Seguro comboio
José Viegas cá
João Proenca electrónica
João Proença facto
Loucã fixe
Louça gaiato
Louçã gajo
Luis Filipe Vieira ginasio
Luís Filipe Vieira ginásio
Mario Nogueira gira
Miguel Macedo giras
Miguel Relvas giro
Mourinho giros
Mário Nogueira golo
PP invicta
PS lavar os dentes
PSD lx
Partido Comunista mais pequeno
Partido Socialista mb
Passos Coelho melga
Paulo Macedo miuda
Paulo Portas miudas
Pinto da Costa miúda
Portas miúdas
Santos Silva multibanco
Sociais Democratas pa
Social Democrata parvo
Socialista parvoice
Socialistas parvoíce
Socrates petiscar
Sócrates portugal
Teixeira dos Santos portugues
Vitor Gaspar portuguesa
Vítor Gaspar portuguesas

portugueses
português
presidente da câmara
pá
sacas
se calhar
sesta
tabaco



180 APPENDIX A. NATIONALITY HINT WORDS

tasca
telemovel
telemóvel
toda a gente
treta
triliao
trilião
tu
vós
ya

Table A.2: Words related to the Brazilian (American) variant
of the Portuguese Language

States Cities

Acre Belo Horizonte
Alagoas Brasilia
Amapá Brasília
Amazonas Curutiba
Bahia Forteleza
Ceará Manaus
Distrito Federal Porto Alegre
Espirito Santo Recife
Espírito Santo Rio
Goiás Rio de Janeiro
Maranhão Salvador
Mato Grosso Sao Paulo
Mato Grosso do Sul São Paulo
Minas Gerais
Paraiba
Parana
Paraná
Paraíba
Pará
Pernambuco
Piaui
Piauí
Rio Grande do Norte
Rio Grande do Sul
Rio de Janeiro
Rondonia
Rondônia
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Roraima
Santa Catarina
Sergipe
São Paulo
Tocantins

Football Companies

Atletico Band
Atletico Paranaense Bandeirantes
Atlético Mineiro Claro
Atlético Paranaense Globo
Bambi InfrAero
Bota Fogo Oi
Corinthians Petrobras
Cruzeiro Petrobrás
Curintia Record
Flamengo Rede Globo
Fluminense Rede TV
Gremio SBT
Grêmio TV Cultura
Internacional Tam
Mengao Tim
Mengão Vale do Rio Doce
Palmeiras Vivo
Paranaense Voe Gol
Santos
São Paulo
Urubu
Urubus
Vasco
Vasco da Gama

Personalities Vocabulary

Adriana Galisteu BBB
Adriana Lima academia
Alcione Nazaré acesse
Ayrton Senna alo
Caetano veloso alô
Cláudia Leite amo voce
DEM amo você
Didi apavorado
Dilma avacalhar
Eliana aí ela
Fafa aí ele
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Fafá aí nós
Faustao aí você
Faustão babado
Fenomeno bacana
Fenómeno bala
Galvao Bueno banheiro
Galvão Bueno barramento
Ganso bicha
Gisele bilhao
Gugu bilhoes
Ivete Sangalo bilhão
Jo Soares bilhões
Jô Soares bobao
Lima Duarte bobo
Lucas bobão
Luis Fabiano bombom
Lula bombril
Luís Fabiano botar
Neymar botaram
PC do B botou
PDT brasil
PMDB brasileira
PPS brasileiras
PSDB brasileiro
Panicat brasileiros
Rodrigo Santoro brega
Rogerio Ceni brotar
Ronaldinho cachaca
Tiririca cachaça
Xuxa cachorra

cachorro
cade
cadê
caixa electronica
caixa electrônica
cala a boca
caminhao
caminhão
cara
celular
chiclete
copa
credo
câncer
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demais
desencana
desetressa
direito
doida
doidao
doido
doidão
durmir
econômico
eita
electronica
electrônica
eletrônica
eletrônico
em meu
em minha
enturmar
equipe
escovar os dentes
esporte
é negócio
fala sério
festão
fofoca
galera
ganhador
garota
garoto
gaucho
gaúcho
gente
gol
gorducha
gringo
jeito
legal
libertadores
linda
lindo
machuca
machucada
machucado
machucou
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machuquei
mais tem
malucona
mamae
mamãe
mané
mascada
mascado
mascando
mascar
metrô
milha
milhas
moca
moco
molenga
moleque
moleza
mouse
moça
moço
mulherada
na raça
ne
negao
negrao
negrão
negão
nessa
nesse
num
num fosse
num pode
né
onibus
ónibus
orkut
ô louco
papai
pegar
pelada
peladinha
picanha
pisar na bola
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pisou na bola
planejar
planeje
planejei
planejo
planejou
poxa
pra
presente
pro
puxa
puxa saco
puxa vida
qi
que saco
quero ver
rola
rolar
rolou
samba
sambar
sambei
saque
sei não
sertao
sertão
show
so tem
soneca
sossega o facho
só tem
te amo
time
to
todo mundo
tolo
tomar cafe
tomar café
tou nem aí
trem
trilhao
trilhoes
trilhão
trilhões
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tô
ué
vagabunda
vagabundo
vai na
vai no
vai pro
vc
vcs
vei
vem nao
vem não
vestibular
viado
viu
voce
voces
você
vocês
vovó
véi
xoxar
zoar



Appendix B

Swear words

Table B.1: Methods used by the authors to obfuscate swear
words in our sample of the SAPO Desporto dataset.

Symbol Name Description
−Ac Accent re-

moved
A diacritical mark is removed from the
word. Examples: “cabrão” → “cabrao”,
“piço”→ “pico”.

−C Character
removed

One or more letters and/or symbols
are removed from the word. Such as
“merda”→ “mrda”

+Ac Accent added A diacritical mark is added where it is not
supposed to exist. This alteration seldomly
has any phonetic impact on the words. For
example: “cocó”→ “cócó”.

+L Letter added An extra letter is added to the word, but is
not a repetition of the preceding letter. Ex-
ample: “paneleiro”→ “pandeleiro”.

+N Number
added

A seemingly random number is added
to the word. Single occurrence:
“puta”→ “put@2”.

+P Punctuation
added

A punctuation sign, or similar character, is
inserted into the word. We noticed that these
characters are often used as separators since
they are easily distinguished from letters.
An author may choose to use more than one
such character in a word. Example: “fo-
dam”→ “f-o-d-a-m”.

+S Symbol added A symbol not from our punctuation
set is inserted in a word. Example:
“foder”→ “fu£der”.
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Symbol Name Description
+Sp Space added A space is used to break the word into two or

more segments. As in “cornos”→ “co rnos”,
“puta”→ “p u t a”.

=Ac Change accent One letter with an accent is replaced by the
same letter bearing a different accent. No
pure example appears in our sample but it
can be observed in “morcões”→ “murcóes”.

=L Letter
substituted

One letter is replaced by one other letter.
Usually this change does not alter the pro-
nunciation of the word.

=N Number
as a letter

A number takes the place of a letter. For ex-
ample, “3” replaces an “e”, “4” stands for an
“a”, and “0” is used as an “o”. Often the
digit that is introduced shares a graphical re-
semblance with the letter it replaces. Exam-
ple: “foda”→ “f0da”.

=P Punctuation
as a letter

One of the characters of our punctuation set
are used as a placeholder for one or more let-
ters. Example: “puta”→ “p...”.

=S Symbol
as a letter

A symbol from outside our punctua-
tion set is used as a letter. Example:
“merda”→ “m€rda”.

Ag Word
aggregation

Two words are combined into just one, but
not always by simple concatenation, like a
portmanteau. For example, “americuzinho”
combining “Américo” and “cuzinho” (“cu”
and “co” sounding similar in this case).

Cp Complex
alteration

We use this classification to encompass all
forms of obfuscation that are too complex
to be described with the other methods. A
common occurrence is “fdp”, that are the
initials for “son of a bitch” (“sob”) in Portu-
guese.

Ph Phonetic-
driven substi-
tution

The author changes the word in ways that
make it sound the same when reading, but
went beyond a simple letter substitution.
Example: “foda-se”→ “fodassse”.

Pun Pun The author relies on the context to ex-
plain the obfuscation. One example is “car-
alho” → “carvalho” (which is Portuguese
for “oak tree”).
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Symbol Name Description

R Repetition One letter is repeated. As an example we
have “merda”→ “merddddddddda”.

Table B.2: All 109 profanities put into 40 groups, showing
the number of different ways each one was written. Words
filtered by SAPO are in bold. The instances column accounts
the popularity of said group.

Instances Number of variants and swear words

5 1 badalhoca, 1 badalhoco, 1 abadalhocado
4 1 bastardos
9 1 bico, 1 bicos

39 3 bosta, 2 bostas
7 3 broche, 1 broches, 2 brochista

47 14 cabrão, 5 cabrões
20 1 cagado, 1 cagadeira, 4 cagalhão, 2 cagalhões, 1 ca-

ganeira, 1 cagarolas, 3 cago, 1 caguem
36 18 caralho, 1 caralhinhos, 2 caralhos
1 1 chulecos
2 2 cocó
3 3 colhões
6 5 cona, 1 conas

191 9 corno, 8 cornos, 1 cornudas, 3 cornudo, 1 cornudos, 1 en-
cornada, 1 encornadinhos, 2 encornado, 1 encornador, 2 en-
cornados, 1 encornar, 1 encornei

71 11 cu, 3 cuzinho
9 1 enraba, 1 enrabada, 1 enrabado, 2 enrabados, 2 enrabar,

1 enrabá-lo
6 3 esporra, 1 esporrada

47 8 foda, 3 fodam, 9 foda-se, 4 fode, 1 fodei-vos, 1 fodem,
1 fodendo, 5 foder, 1 fodesses, 1 fodeu, 2 fodida, 2 fodido,
2 fodidos, 1 fodo

2 1 mamões, 1 mamadas
5 2 maricas, 1 mariconço
1 1 masturbar-se

87 40 merda, 1 merditas, 2 merdoso, 1 bardamerda
1 1 mijo

29 6 morcão, 1 morcãozada, 5 morcões, 1 morcona
2 1 pachacha, 1 pachachinha
8 7 panasca, 1 panascos

13 9 paneleiro, 1 paneleirice, 2 paneleiros, 1 paneleirote
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Instances Number of variants and swear words

2 1 panisgas
5 5 peida
4 2 piça, 1 piças
2 2 picha
4 2 pila, 1 pilas
5 3 piroca, 2 pirocas
2 1 pisso

12 1 pizelo, 1 pizelos
9 1 porcalhota
1 1 punhetas

73 35 puta, 5 putas, 1 putéfia, 1 putinha
9 2 rabeta, 1 rabetas
1 1 rameira
3 3 tomates
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