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Resumo

A histologia é uma técnica muito importante em investigação médica e no diagnóstico, uma vez
que permite ter uma melhor perceção da arquitetura global dos tecidos. Permite obter informação
acerca dos componentes presentes nos tecidos, ao contrário de qualquer outra técnica de imagi-
ologia, como a tomografia computorizada ou a ressonância magnética. Devido à recente possibil-
idade de digitalizar lâminas histológicas, através de um digitalizador ou da aquisição de imagens
recorrendo a câmaras acopladas a um microscópio, é possível obter imagens histológicas de toda
a lâmina ou de apenas uma região de interesse. Isto faz com que surjam oportunidades de de-
senvolver algoritmos que vão auxiliar a análise de imagens histológicas, removendo um dos seu
principais problemas, a subjetividade associada à experiência de cada patologista. As imagens his-
tológicas também proporcionam uma forma de reconstruir o volume tridimensional de um dado
tecido, permitindo a visualização do seu arranjo espacial.

O principal objetivo deste trabalho é automatizar procedimentos laboratoriais subjetivos e
repetitivos em análise de imagens histológicas, através de uma série de algoritmos autónomos
capazes de realizar essas mesmas metodologias e reconstruir, em 3D, um segmento de tecido us-
ando essas imagens.

Sendo assim, foi desenvolvido um algoritmo para alinhamento de imagens, que vai permitir o
alinhamento de um conjunto de imagens para a reconstrução 3D, e um algoritmo para separação
de colorações e segmentação, para separar as diferentes cores presentes nas imagens e segmentar,
posteriormente, a elastina e o colagénio. Os resultados para a segmentação automática, para 3
imagens diferentes, foram comparados com os resultados de uma segmentação manual feita por
10 pessoas de diferentes áreas, usando testes t pareados para a análise estatística. As segmentações
manuais foram realizadas utilizando o ImageJ.

O algoritmo que foi desenvolvido para o alinhamento de imagens mostrou resultados satis-
fatórios. O desempenho dos algoritmos de segmentação foi avaliado através dos resultados dos
testes t pareados para a segmentação de elastina (p=0.106, p=0.454 and p=0.584) e do colagénio
(p=0.339, p=0.001 and p=0.600). A partir destes valores, é possível verificar que apenas um dos
resultados, para a segmentação do colagénio, mostrou que a diferença entre a segmentação au-
tomática e manual foi estatisticamente diferente (p<0.050). A reconstrução 3D, por outro lado,
originou reconstruções muito pouco exatas.

Em conclusão, os algoritmos foram desenvolvidos com sucesso e os resultados obtidos para a
segmentação automática foram comparáveis ao resultados obtidos para a segmentação manual us-
ando o ImageJ. Quanto à reconstrução 3D, existem algumas melhorias que podes ser introduzidas
de forma a obter melhores resultados, como a diminuição da distância entre slices.
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Abstract

Histology is a very useful technique in medical research and diagnosis since it gives a better under-
standing of the overall tissues architecture. It allows to obtain information about tissues compo-
nents, unlike any other imaging technique, such as computed tomography or magnetic resonance.
Due to the current ability to digitize histology slides, through scanner, or to acquire images through
a camera connected to a microscope, it is possible to have histology images of the hole slide or
just a zone of interest. This leads to an opportunity to develop algorithms that will help the histol-
ogy analysis, removing one of the current problems, the subjectivity associated with pathologist
expertise. Histology images also provide a way to reconstruct the three dimensional volume of a
given tissue. The importance of the approach lays on the fact that it becomes possible to have a
high resolution reconstruction of the tissue, allowing to see its spatial arrangement, as well as to
have some other information, such as its volume.

The main objective of this work is to automate laboratory procedures that are subjective and
repetitive in histology image analysis, by having a series of autonomous algorithms capable of
performing those methodologies, and to reconstruct, in 3D, a tissue segment from the histology
images.

Thus, it was developed an algorithm for image alignment, that allows the alignment of a set of
images for the 3D reconstruction, and a stain separation and segmentation algorithms, to separate
the different color that are present in the images and segment elastin and collagen, respectively.
The results for the automatic segmentation, for 3 different images, were compared with manual
segmentations performed by 10 people, from different backgrounds, using paired t-test for the
statistical analysis. The manual segmentations were accomplished using ImageJ.

The developed algorithm for the alignment of the images showed satisfactory results. The per-
formance of the segmentation algorithms was assessed through the results of the t-tests for elastin
segmentation (p=0.106, p=0.454 and p=0.584) and collagen segmentation (p=0.339, p=0.001 and
p=0.600). From this values, it is possible to see that only one of the results, for collagen segmen-
tation, showed that the difference between manual and automatic segmentation was statistically
different (p<0.050). The 3D reconstruction, on the other hand, originated inaccurate reconstruc-
tions of the tissues.

In conclusion, the algorithms were developed with success and the results obtained for the
automatic segmentation are comparable to the results obtained from a manual segmentation using
ImageJ. As for the 3D reconstruction, there are some improvements that can be made to assure
better results, such as the decreasing of the spacing between slices.
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Chapter 1

Introduction

1.1 Motivation and Challenges

Histology is the study of the microscopic structure of tissues and is a very important tool in medical

research and diagnosis. The use of histological slides on medical diagnosis remains the "gold

standard" for the diagnose of a large number of diseases, including almost all forms of cancer [10,

11, 12, 13]. Histological slides allow to get a better understanding of the disease, as well as to see

all of its effects on tissues, since their assembly and preparation do not affect the overall tissues

architecture.

Unlike other areas, such as radiology, where it is possible to conclude about the presence/absence

of a disease and its spatial extent, histology introduces new information, as the grading [14, 15].

Considering cancer as an example, radiology will give information about the presence of lesions

and its size/location. Radiographs have the advantage of being nondestructive, but their spatial

resolution is low and interfere with a detailed analysis of tissue structure [16]. On the other hand,

by analyzing an histological slide, it is possible to distinguish between different histological sub-

types of cancer. Depending of the type of staining that is used, different tissue features can be

highlighted.

Currently, histological analysis performed by a pathologist is the only method for the con-

firmation of presence/absence of a disease, or for the measurement of the disease progression.

Regarding this issue, there have been some reported inconsistencies with the grading systems of

some diseases, such as prostate and breast cancer [17]. Gleason scale is the most widely used

method for grading prostate cancer, and it is based on architectural patterns. Studies have noticed

some undergrading of Gleason scores five, six and seven (47%) and, to a lesser extent, eight, nine

and ten (25%) [18]. There are also often mistakes on switching pattern two with three and pat-

tern four with five. Thus, there is a hudge subjectivity on the diagnosis made by pathologists,

since it can differ between pathologists and depend on their level of expertise [14, 13]. This fact

emphasizes the need for automated methods to aid the analysis and classification of slides.

Recently, there has been an increasing of computed-aided diagnosis (CAD) techniques to his-

tology image analysis, due to the ability of digitizing slides [19, 20]. This will enable pathologists
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2 Introduction

to focus on the more severe cases instead of focusing in all cases, including the ones that are obvi-

ously benign. About 80% of the prostate biopsies performed in the U.S. every year are benign [19],

and 4 out 5 breast biopsies are negative for cancer [21]. Meaning that pathologists are spending

about 80% of their time studying benign tissue, while they could be studying and documenting the

mechanisms and consequences of diseases. There are several studies that shows a good diagnosis

concordance (94%) between light microscopy and slide images based diagnosis [22, 23]. Discrep-

ancies, most of the times, were due to the lack of pathologists expertise with virtual slides, and

none of them caused clinical or prognostic implications.

Taking this into account, a need for a quantitative and qualitative analysis of histological im-

ages arises. This analysis will benefit either the diagnosis or the research: on the diagnosis, it

would reduce/eliminate the inter and intra-observer variations and would also help understand

the underlying reasons for a certain disease; on the research field, it would help understand the

biological mechanisms of that disease.

Among all the possible analysis that can be performed in histology, it can be highlighted the

quantification of collagen fibers. Collagen is the main component of the connective tissue, and

its quantification is very useful to the characterization of several diseases [24]. The excessive

production of collagen is present in some illnesses, such as lung fibrosis, liver cirrhosis and hyper-

trophic and keloid scars. On the other side, the loss of collagen is characteristic of diseases like

rheumatoid arthritis and wound/ulcer damaged tissues [25, 26, 27].

During tissue repair and wound healing, the production of collagen is required to heal the

damaged tissue [28]. The presence of collagen will determine the tissue function and ensure its

structural integrity [29]. So, due to its central role in tissue healing, techniques for automatic

collagen quantification are required.

Having histological slides digitized, it is possible to reconstruct the three dimensional (3D)

histological volume. 3D histological analysis has the potential to be used for a better understand-

ing of a disease growth pattern and spatial arrangement, and for the study of the biomechanical

behavior of tissues [30]. It can have applications both in microscopic and macroscopic level [31].

For the microscopic level, it is used a magnification larger than 100 and it allows to obtain new

and more precise histological and cytological parameters, in order to quantify physiological and

pathological phenomena. At the macroscopic level, it is possible to analysis tissue structures that

are too large to be analyzed on 2D but, at the same time, too small to be dissected.

A three dimensional histological analysis also allows to visualize, in a easy way, the 3D shape

and volume changes of the tissue. It can be used to investigate and validate new techniques and

algorithms in volumetric medical imaging. Volumetric medical images (magnetic resonance (MR)

and computed tomography (CT), for example) are 3D data sets of a sequence of 2D data slices [32].

However, usually due to the large amount of collected data, those images have to be compressed in

order to efficient transmitted, causing the reduction of quality. With histology volume analysis it

is possible to create high resolution atlases of different organs and study their structure and spatial

relation of the different cell features [33].
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Considering this information, this work will focus the development of an autonomous al-

gorithm for the alignment of images and the segmentation of some tissue components, such as

collagen and elastin. Further, those images, after segmented and aligned, are going to be used in

the three dimensional reconstruction of the tissue.

1.2 Document Outline

On the next two chapters are described the state of the art and literature review of algorithms

for histological image analysis (Chapter 2) and methodology for the three dimensional analysis

(Chapter 3). In Chapter 2, there are described some algorithms for image alignment, image seg-

mentation and stain separation. Chapter 3 includes an overview of some of the techniques and

software used for the three dimensional reconstruction, segmentation and tissue quantitative anal-

ysis. In Chapter 4, it is described the methodologies and algorithms that were developed for this

purpose. Chapter 5 presents the results and discussion for each of the developed algorithms and

used methodologies. Finally, in Chapter 6 are described the main conclusion and future work.



4 Introduction



Chapter 2

Histological Image Analysis

In this chapter, a literature review on algorithms for image alignment, stain separation and image

segmentation will be done. It will be described the main ideas of each class of algorithms, as well

as some of the already developed algorithms for this purpose.

2.1 Image Alignment

The ultimate goal of image alignment, also referred as image registration, is to align images with

respect to each other. One of the images, the one that is already aligned, is called reference image,

and the image to be aligned with respect to the reference image is called sensed image [1]. On

the medical field, image alignment methods allow to combine different images (acquired from

different modalities), in order to merge important information and, this way, facilitate patient’s

diagnosis [34]. Besides improving the diagnosis, these methods are also used for planning treat-

ment, guiding treatment, creating models of anatomy and monitoring disease progression [35, 36].

In the research area, image registration is used to understand diseases processes and evolution.

There are several classifications for image alignment algorithms, as shown in Fig. 2.1. These

algorithms are grouped based on their criteria. On the next sections, a description of each of the

groups is presented.

2.1.1 Dimensionality

Concerning the dimensionality, methods for image registration can be classified as spatial or time-

series [37]. As for the spatial dimensions, algorithms are categorized based on the geometric

dimensions of the images that are involved on the alignment:

• 2D-to-2D - In this case, both images are 2D images, and they can be aligned by performing

just one rotation and two translations. 2D-to-2D registration is the simplest and more used

method of this group, despite of being inaccurate [38].

• 3D-to-3D - Images used in 3D-to-3D registration are 3D images only. This kind of methods

assume that there are no distortions on the internal anatomy of the patient and the spatial

5
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Classification Criteria for
Image Alignment Methods

Dimensionality

Registration Basis

Nature of the Transformation

Transformation Domain

Interaction

Modalities

Subject

Figure 2.1: Classification Criteria for Image Alignment Methods [1].

relationships between organs do not change [37]. Either this method, or the 2D-to-2D reg-

istration can be accomplished by the extraction of landmarks that are used for the matching

between both images [39].

• 2D-to-3D - This type of image alignment algorithms perform the alignment of 2D images

with 3D images. 2D-to-3D image registration can be used in image guided radio-surgery,

where it is crucial to detect any changes in patient position between the planning of the

surgery and the surgery itself. It is used X-ray images taken during the procedure and the

preoperative computed tomography (CT) scan. To align those images, it is often generated

digitally reconstructed radiographs (DRR) from the CT scan to be used as reference images

[40, 41, 42]. X-ray images, captured in real time, are, then, compared with those reference

images to detect any changes. The alignment between the DRRs and X-ray images is ac-

complished by the extraction of image features or based on image intensity. There is also

some literature that suggest the creation of DRR of X-ray images instead [43].

If the variable time is added to the images that are going to be aligned, the registration is

classified as time-series registration. This is applied when several images, from the same patient,

for example, are acquired in order to conclude about the progression of a disease.

2.1.2 Registration Basis

The registration algorithms under this criteria can be classified as intrinsic or extrinsic, depend-

ing on the methodology used to find the interest areas for the matching [1]. The extrinsic methods

comprises the introduction of external objects into the image space, so that they are easily detected

by the algorithm. These methods have the disadvantage of requiring additional spatial informa-

tion, from a different source, in case the image has low resolution. In opposition, in the intrinsic

methods only the information that are present on the image is used for the alignment. Depending

on the used information they can be classified as [37]:
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• Feature-based Methods - Those features can be the image gradient, image skeleton, con-

tour, segmented objects, or geometric objects such as edges, corners or surfaces [44, 45, 46].

The alignment is done by matching the landmarks of the sensed image and the landmarks

of the reference image. It is a versatile method once it can be applied to any type of images.

However, the success of the registration depends on the success of the feature extraction

phase, and a robust and automatic feature extractor is difficult to archive. The main advan-

tage of these algorithms is the possibility of a fast computation, nevertheless since, most of

the time, it is only extracted a few objects, the accuracy may be compromised [40].

• Segmentation-based Methods - Segmentation-based methods can be rigid or deformable

[1]. The rigid methods extract the same objects from both images and use it for the align-

ment. As for the deformable methods, an object is extracted from an image and is elastically

deformed to fit the reference image. The segmentation is usually accomplished with de-

formable models such as snakes or active contours (2D), or nets (3D) [47]. The deformable

models grow iteratively and stop when the optimization criteria is met. Rigid methods are

less complex than deformable methods. As segmentation has low computational complex-

ity, segmentation-based methods are very used methods for image alignment. Registration

based on rigid methods are usually applied to intrasubject registration and the deformable

methods to intersubject registration.

• Intensity-based Methods - Uses directly the gray-level values of the images for the match-

ing. There are two different approaches: reduce the gray value content to a representative

set of scalars and orientations, or use the full image content [1]. However, intensity-based

methods can lead to some mistakes, once intensity similarity does not mean anatomical sim-

ilarity [44]. The reduction of the gray value content can be done with the computation of

the first order moments, in order to obtain the center of gravity and main orientations of

the image. The registration is accomplished by aligning the gravity centers and principal

orientations of both images. This method shows some lack of accuracy due to the fact that

it is not capable of dealing with volume changes. Still, as it is easy to implement, it is

often used when accuracy is not the most important parameter. Full image content meth-

ods, on the other hand, use all the available information of the image, without reducing it.

Some of these methods include: cross-correlation, fourier-domain-based cross-correlation,

phase-only correlation, mutual information, minimization of the absolute or squared inten-

sity differences, or minimization of variance of gray values within segments [48, 49, 50].

2.1.3 Nature of the Transformation

A transformation can be rigid, affine or elastic. These transformations are useful to move the

sensed image in a way that it overlaps the reference image. An affine transformation combines

translations, rotations and scaling. Rigid transformations are a special case of affine transforma-

tions, where only translations and rotations can occur. Both rigid and affine transformations can
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Figure 2.2: Matrix definition for each type of transformation, where δ x and δ y describe transla-
tions in the x and y axis, θ is the rotation angle and αx and αy are scaling factors. Adapted from
[2].

be represented by a matrix equation, such as Eq. 2.1 [1]. Variables y and x are the new and old

coordinate vectors, respectively.

yi = ai jx j (2.1)

Matrix aij, presented in Eq. 2.1, is used to define the transformation. In Fig. 2.2, are shown

the used matrices for each transformation.

Affine transformations preserve the parallelization and intersection between lines. If angles

between the lines are also preserved a similarity transformation (another special case of affine

transformation) has occurred. Finally, there is a perspective projection transformation if line prop-

erties are not preserved.

Elastic methods are methods that allow to register images in a more flexible way, by spatially

variant local warping [2].

2.1.4 Transformation Domain

A transformation can also be classified as global if it is applied to the entire image, or local if only

applied to a section of the image.

2.1.5 Interaction

Concerning the user interaction, algorithms for image alignment can be automatic, interactive or

semi-automatic [37]. Automatic algorithms only have to be fed with the images, in order to obtain

the results. In opposition, in interactive algorithms, the user has to align the images manually, with

the help of the software. Finally, in semi-automatic algorithms, the user usually has to initialize

the algorithm by, for example, performing the segmentation of objects, or to accept or reject the

alignment results.

There is a trade-off between the minimization of the user interaction and the speed, accuracy

and robustness of the algorithms[1]. With user interaction, it is possible to narrow the search
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area of target objects to help the alignment, or refuse the result in case there is a mismatch of the

images. However, with interaction it is more difficult to validate an algorithm, once the level of

interaction is hard to quantify.

2.1.6 Modalities

The registration algorithms can be grouped as mono-modal, multi-modal, model-to-modality or

modality-to-model, depending on the types of images that are used for the alignment [37]. On

mono-modal applications, both images belong to the same modality, while on multi-modal appli-

cations, images come from two different modalities. In the remaining two cases, only one image is

used on the registration process. The other "modality" is composed by anatomical or physiological

models.

Multi-model registration methods can provide useful complementary information that is very

helpful in patients diagnosis. This technique can be useful as it can combine X-ray images with

overlays of previously acquired magnetic resonance images (MRI), so that real time tracking of

the X-ray images can be added to the anatomical context given by the MRI [51]. Although,

their alignment can be hard to archive, due to the fact that images from different modalities may

have different intensity mappings, and structures that are captured in one technique may not be

captured by the other [52, 53]. Mono-modal methods can be applied, for example, for monitoring

the growth of certain structures, verifying interventions and subtraction imaging.

2.1.7 Subject

Image alignment methods can be classified as intrasubject, intersubject or atlas. Intrasubject meth-

ods concern the methods in which images belong to the same patient. It brings information about

the evolution of a disease, once it is possible to align images taken in different times [35]. Image

registration algorithms are considered intersubject if the images belong to different patients. It

is usually used to compare patients with healthy people [35] or to compare sizes and shapes of

anatomical structures. Finally, it is atlas if one image belong to one patient and the other is from a

database. That database include representative images for the class of the image that is used on the

alignment. It is a very useful technique for three dimensional visualization, treatment planning and

evaluation, surgery planning, and image-assisted surgery. The main idea is to recognize objects in

the patient image by aligning it with the reference image [54].

2.1.8 Image alignment Algorithms

The remaining of this section will discuss some algorithms present on the literature concerning

the alignment of 2D images, which are the type of imges used in this work.

Conlin et al developed an algorithm that uses the Hough Transform of edge maps to align MR

images [3]. The alignment is done based on one of the kidneys. First, it is generated an edge

map for one of the MR images, using the Canny edge detector. After obtaining the edge map, the

user selects the kidney contour, which is going to be used as a template for the alignment. Second,
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Figure 2.3: Kidney contour obtained from the edge map. Each pixel is associated with an orienta-
tion and a vector. Adapted from [3].

using the Hough Transform, it is computed, for each pixel of the contour, its angle (θ ), that defines

the orientation of the contour on that zone, and its vector (υ), that points to the pixel of the center

of the contour, as shown in Fig. 2.3. It is generated a table with the angle and vector for every

pixel of the image. Next, to align a new image with respect to this template, it is generated its edge

map using again the Canny edge detector. However, this edge map will contain the kidney edge as

well as all the other edges of the image. Lastly, for each edge pixel it is calculated its orientation

and, if the orientation matches any of the orientations present on the table, the correspondent υ is

used to point to the center of the contour. The location to where more vectors are pointing will be

the true location of the kidney. Images are aligned based on the center displacements, using the

affine transformation.

Wei-Yen Hsu came up with another feature extraction based algorithm for image alignment

[55]. Feature extraction is an important task in image registration techniques, once it influences

the accuracy of the algorithm. For the feature extraction, in this case, it is used wavelet-based

edge correlation, in which are extracted feature points with strong and consistent responses under

different scales. There were used 2D wavelet transforms as two 1D wavelets in x an y directions,

represented in Eq. 2.2 respectively [55], where S(x,y) are smoothing functions.

ϕ
H =

∂S(x,y)
∂x

,

ϕ
V =

∂S(x,y)
∂y

(2.2)

Wavelet transforms are computed for several different scales using Eg. 2.3.

ϕ j =
1

22 j ϕ(
x
2 j ,

y
2 j ) (2.3)

These wavelets are used to calculate the gradient of the image for multiple scales and, conse-

quently, its modulus. The local maximums of the modulus of each scale corresponds to the edge
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points. To increase the accuracy of this extraction, it is used a edge correlation method to filter all

the noise through a multiscale edge confirmation, represented in Eq. 2.4, where M is the modulus

of the gradient for a given scale and f(x, y) is the image. Only points that are detected in all scales

are kept at the end of this algorithm, eliminating the noise.

Cn( j,x,y) =
n−1

∏
i=0

M j+1 f (x,y) (2.4)

The registration process is done by an analytic differential approach, whose main goal is to

minimize the energy function, present in Eq. 2.5.

E(M,T )=
H

∑
i=1

K

∑
j=1

mi, j
∥∥ui −υ jT

∥∥2−α

H

∑
i=1

K

∑
j=1

mi, j+β

H

∑
i=1

K

∑
j=1

mi, j logmi, j+λ trace×
[
(T − I)t(T − I)

]
(2.5)

The data sets that represent the extracted points from each image is written as ui and υ j, the

mapping between them is represented by matrix M, consisting of mi,j, and T is the geometric

transformation. The first term of Eq. 2.5 is the error term. The second is used to avoid excessive

null correspondence (the larger the α the less point are considered to be outliers). The third term

is an entropy function that assures that matrix M do not contain negative numbers. Finally, the last

term is a constraint to the transformation function.

2.2 Analysis Algorithms

Histological staining contains, most of the times, different types of colors due to the fact that

different components of the tissues needs different dyes. These mix of colors provides truly im-

portant information about tissues composition, unlike any other tissue imaging technique such as

radiology, for example. However, this can also be disadvantageous, namely on the quantification

of a particular tissue component [4] or on a qualitative analysis [56]. As such, the analysis on the

microscope results on the visualization of a mix of all the colors that were used, which can lead

to the loss of information [57]. Thereby, appear some algorithms such as Stain Separation algo-

rithms, that allows to separate these colors in a way that is possible to obtain information about

each one of them in a separate way.

2.2.1 Stain Separation Algorithms

2.2.1.1 Color Deconvolution based algorithms

The color deconvolution algorithm was first proposed by Ruifrok and Johnston [57]. This algo-

rithm allows to separate the different colors used on a given histology, even if they overlap in the

spectrum.

The relative intensity of each RBG channel of a given image depends on the concentration of

stain in a non-linear way [58]. Therefore, it cannot be directly used on the separation of each stain
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present on the image. However, the optical density for each RGB channel can be calculated by the

following equation [57]:

OD = − log
I
I0

= A× cc (2.6)

where I is the light that goes through the sample, I0 is the incident light and A is amount of

stain with absorption factor c.

It is assumed that the optical density of each RGB channel is linear with the concentration of

the absorbed material, allowing it to be used for the separation of the different colors present on

the sample.

It is defined, for each staining used on the histology, a 1 by 3 vector (stain vector), where every

column corresponds to the optical density for each RGB channel. These values can be determined

through the measurement of the relative absorption of red, green and blue on blades with only

one staining present [59]. Combining those different vectors originates a matrix, where each line

corresponds to a different staining, as shown on the following matrix:od11 od12 od13

od21 od22 od23

od31 od32 od33

 (2.7)

Finally, it is determined an orthonormal transformation of the RGB information to get an

independent information about the contribution of each one of the stainings. Matrix present on

Eq. 2.7 is normalized and inverted, and then multiplied by the image optical density, in order to

obtain the orthogonal representation of the stains.

Similar to this color deconvolution algorithm is the method described in [60], where the au-

thors describe a way of finding the stain vectors. Those vectors are found based on a specific

geodesic direction, that is, the shortest path between two unit-norm color vectors on a sphere.

This direction is determined by projecting the OD pixels on a plan formed by the two largest

vectors of the singular value decomposition of the OD pixels.

2.2.1.2 Automated Algorithms

More complex methods have been developed along the years. Tadrous suggested an automated

algorithm for the separation of an image on it’s components [4], as shown in Fig. 2.4. This

algorithm determines a mask of the representative portion of the stained tissue, by thresholding

on the saturation image. Then, it takes a single channel of the RGB image (the one that gives

the majority of the contrast of the component of interest) and inverts it. This inverted channel is

weighted and added to each original channel, separately, in an iterative process with the goal of

finding α (value for weight the chosen channel). The constant α is found when the minimum

variance within the mask is reached. The combination of the modified channels gives the de-

stained image.
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Figure 2.4: De-staining algorithm. Adapted from [4].

Wand et al [61] developed a method for an automated segmentation and classification of tumor

tissues from microscopic images, based on the color of the image pixels. This method comprises

three distinct phases: color normalization to avoid the situation where the same set of images have

different illumination distribution; automatic feature extraction in order to select automatically the

training samples; and principal component analysis (PCA) as a learning algorithm.

2.3 Image Segmentation Algorithms

Image segmentation has the objective of dividing the images into regions, which usually corre-

spond to an object or part of an object. Pixels within a region have similar attributes.

In the medical field, image segmentation allows to perform shape analysis, detect volume

changes and make a precise radiation therapy treatment plans. It facilitates the extraction of mean-

ingful information to help on the patients diagnosis [62]. However, in some cases, it is still difficult

to obtain accurate results, due to cluttered objects, occlusion, image noise, nonuniform object tex-

ture or lack of edges (caused by deficiencies in image contrast), for example [63].

Image segmentation techniques can be classified in three main categories (Region-Based Meth-

ods, Edge-Based Methods or Neural Networks), as shown in Fig. 2.5 [5]. The next few sections

will focus the explanation of each group of methods present in Fig. 2.5
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Image Segmenta-
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Gaussian (LoG)
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ral Networks

Figure 2.5: Classification of Image Segmentation Methods [5].

2.3.1 Region-Based Methods

Region-based methods for image segmentation divide the images into regions, grouping pixels

with the same intensity values.

• Clustering - Clustering is the process of partitioning data into distinct clusters. Objects that

belong to the same clusters are similar, while objects from different clusters are different,

considering their attributes.

K-means algorithm starts by defining K centroids at random positions [64, 65]. Each new

point, of a given sample, is associated with the closest cluster, depending on the euclidean

distance between the point and the centroids of all that cluster. This way, for each iteration,

it is computed this distances, and the point is considered a member of the closest cluster. At

the end of each iteration, the centroids are recalculated. This algorithm stops if the clusters

composition do not change between iterations. K-means algorithm is very efficient, unless

the input is a large amount of data, which increases considerably the computational cost. In

addiction, the obtained clusters, at the end of the algorithm, depend on the initial centroids.

Fuzzy C-means algorithm, unlike K-means algorithm, allows the same point to belong to

several clusters at the same time [66, 67]. Each point contains a membership value related

to its similarity to the clusters. Those membership values are numbers between 0 and 1,

and the sum of all membership values for one point must be equal to 1. The higher the

similarity of a point to a cluster, the closest to 1 the membership value is for that cluster.

This algorithm is also iterative and, in each iteration, the centroids position are updated as

well as the membership values. At the end of the algorithm, defuzzification is applied to

decide the final clustering.
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• Split and Merge - Split and merge segmentation algorithms subdivide images in succes-

sively smaller subregions (called superpixels), so that a predicate, defined by the user, is

verified in that subregions [6, 68]. A predicate can be, for example, pixel intensity. The

image is divided in smaller regions while the predicate, for that region, do not verify. At the

end of the splitting algorithm, there are, normally, adjacent subpixels with similar proper-

ties. Thus, the merging algorithm is used to merge adjacent regions that, if merged, continue

to verify the predicate [69].

• Region Growing - Region growing is a technique that groups pixels or subregions into

larger regions, based on some criteria [70]. The process starts with a set of "seed" points

that grows into larger regions by appending the neighborhood pixels if they meet the grow-

ing criteria, in other words, if their properties and the neighborhood pixels properties are

similar (color, for example). The "seed" points can be defined by the user or can the defined

automatically by an algorithm [6].

• Threshold - Thresholding consists on classifying a given pixel according to its intensity

being higher/lower than a value (threshold value). Alternatively, it can be chosen an interval,

being the region of interest with the intensities part of that interval. The threshold value

is chosen based on the intensities of the target region. Thresholds can be global, local

or dynamic, depending if it is the same to the entire image, just to a part of it (being its

values dependent of the neighborhood pixels) or if it depends to the spatial coordinates,

respectively [6].

2.3.2 Edge-Based Methods

Edge-based methods for image segmentation are used to find discontinuities in intensity values.

This edges are usually computed through the gradient of the image (first order derivatives), Eq.

2.8, or through the Laplacian (second order derivatives), Eq. 2.9 [6].

∇ f =

[
gx

gy

]
=

[
∂ f
∂x
∂ f
∂y

]
(2.8)

∇
2 f (x,y) =

∂ 2 f (x,y)
∂x2 +

∂ 2 f (x,y)
∂y2 (2.9)

2.3.2.1 Edge Detectors

• Sobel - The Sobel edge detector (Fig. 2.6) approximates the first order derivatives to differ-

ences between rows and columns of a 3-by-3 neighborhood. After applying Sobel, a pixel

is considered an edge pixel if its value is larger than a threshold value [71].

• Prewitt - Prewitt edge detector is similar to Sobel, as can be seen in Fig. 2.6. However, the

results shown by this filter are noisier [72].
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• Roberts - Robert edge detector approximates the first order derivatives to differences be-

tween adjacent pixels (Fig. 2.6). It is the simplest detector [73].

• Canny - The Canny edge detector is the most used edge detector and it is typically imple-

mented as follows: smoothing of the image using a Gaussian filter, with a specific σ , to

reduce noise and some image detail; computation of the gradient magnitude and orientation

for each pixel; label a pixel as edge if its gradient magnitude is larger than the magnitude

of its neighborhood pixels (in its gradient orientation); weak edges are removed by hys-

teresis thresholding [74]. In hysteresis thresholding, pixels above the threshold are kept,

pixels below the threshold are eliminated, and pixels between the values of the high and low

thresholds are kept just if they are connected to already classified edges.

• Laplacian of Gaussian (LoG) - The Laplacian of Gaussian (LoG) filter is defined as [6]:

∇
2G(x,y) =

∂ 2G(x,y)
∂x2 +

∂ 2G(x,y)
∂y2 (2.10)

where, G(x,y) is the Gaussian function. The Gaussian function is represented in Eq. 2.11.

G(x,y) = e
x2+y2

2σ2 (2.11)

The Gaussian function performs the smoothing of the image by a factor σ . The LoG filter

computes the second derivative of this function, which leads to the determination of the

image edges.

2.3.3 Artificial Neural Networks

Artificial neural networks are computational models inspired by the nervous system. These net-

works can acquire and store knowledge and are defined as a group of processing units (neurons)

connected by synapses (usually matrices and vectors) with different synaptic weights [7].

Applications based on neural networks have some key characteristics: capability to adapt from

experience (with the increase of information that is processed, the network parameters - synaptic

weights - are adjusted), learning capability (through the chosen learning method, the network

can extract the relationship between the variables), generalization capability (after learning the

behavior of a process, it is possible to apply it to unknown information) and distributed storage

(the knowledge is stored on the synapses, which increases the robustness in case one of the neurons

is lost).

Figure 2.7 summarizes the model for the artificial neuron. The input signals (x 1, x 2, ..., x

n) are signals or samples that come from the environment and represent the values of the variable

used on the neural network. Each sample is multiplied by its weight (w 1, w 2, ..., w n), based on its

relevance for the neuron. All input signals, after weighted, are aggregated, in the linear aggregator
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Figure 2.6: Edge detector filters. Adapted from [6].

(∑), and added to the bias (θ ) to produce the activation potential (u). If u≥ θ , the neuron produces

an excitatory potential. Equation 2.12 shows how to calculate the activation potential.

u =
n

∑
i=1

wixi −θ (2.12)

The output signal (y) produced by the neuron is given by the u and is restricted within a range

of values (consequence of the activation function g). This output is used as input for other neuron

of the network.

y = g(u) (2.13)

Figure 2.7: Representation of an artificial neuron. Adapted from [7].
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Neural Networks can be applied in several areas such as pattern recognition/classification, data

clustering, prediction system and system optimization.



Chapter 3

Three dimensional histological analysis

In this chapter, an overview of the three dimensional histological reconstruction techniques, from

the tissue preparation to the used algorithms for the images registration, is addressed. Methods for

tissue segmentation using Mimics are referred later and finally, the quantitative analysis will be

described.

However, since this pipeline is going to be accomplished using the software Mimics [75],

details about each existing algorithm will not be described.

3.1 Three dimensional histological reconstruction

Three dimensional histological volume reconstruction has the potential of providing important

information for a quantitative and comparative analysis and assessment of pathological finding

in volumetric medical imaging [76]. Three dimensional confocal two-photon microscopy, which

allows cellular imaging with several hundred microns deep in various organs [77], can provide

high resolution cell morphology but only at a local extent (limited field of view). Histological

reconstruction provides information over a larger spatial extend [31].

This reconstruction can be obtained by concatenating a set of 2D histological images. Those

bidimensional images are obtained from anatomical structures that are fixed using paraffin embed-

ding or cryogenization [31]. Then the anatomical structure is trimmed into thin sections, with a

constant thickness and inter-gap interval. Each section is assembled into slides and digitized with

a digital camera or scanner. It may be introduced some guides on the tissue before the fixation

phase in order to have reference points to be used by the software for the 3D reconstruction.

However, there are some errors that can be introduced into the phase of tissue preparation

that can affect the success of the three dimensional tissue reconstruction, namely the registration

phase: during the preparation of histological sections some distortion can appear due to shrinkage,

expansion, tears and folds on the tissue [76], and when laying the cover-glass it can appear some

spots, leading to artifacts; and during the sectioning the edges of the tissue can become deformed,

and consequently deform the whole section [78]. During the image acquisition phase there can be

problems with the non-uniform illumination that come from the camera used for the acquisition.

19
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The tissue reconstruction starts with a rough pre-alignment phase, followed by a finer histology

registration (intra-histology refinement), to smooth the irregular slide-to-slide transitions produced

by the pre-alignment algorithms. Pre-alignment can be done by registering slides to an external

reference (histology-reference pre-alignment) or registering slides to each other (intra-histology

pre-alignment). The registration method used after this techniques can include: rigid, affine,

1D piecewise linear, elastic spring triangular mesh, discrete smooth interpolation, displacement

field, curvature flow, symmetric normalization (SyN) diffeomorphism, diffeomorphic inverse con-

sistent algorithm, large deformation difeomorphic metric mapping (LDDMM), or tensor-product

B-spline [79].

There are also some algorithms that do the tissue reconstruction without external references,

and are used in software like Voloom (microDimensions GmbH), BioVis3D, or 3DView (3DHIS-

TECH Ltd.) [79]. These approached are more likely to have geometric artifacts, such as the

straightening of curvatures, false z-axis orientation, the conversion of asymmetric shapes into

symmetric, wobbly boundaries, and drift or z-shift effect caused by the accumulation of corre-

lated registration errors ones [80]. Nevertheless, this type of registration is useful in case external

references are not available, if the exact shape of the reconstruction is not very important, or if

maximum alignment (shape that comes from a alignment that cannot be improved) coincides with

the true shape.

There are already some applications of this technique to breast cancer, namely on the recon-

struction of ductal carcinoma in situ (DCIS) from virtual slides [81]. They created a methodology

for the 3D reconstruction of the DCIS. The main goal of this study is to increase the understand-

ing of the biology of the ductal carcinoma in situ in 3D and its relationships to invasive disease.

Besides, they also wanted to help people recognize dangerous DCIS (DCIS with a high chance

of progression) from a relatively safe DCIS. Another approach is used in prostate cancer, where

after a radical prostatectomy, an hispathologic analysis is performed in order to acquire knowledge

about this type of cancer [82]. Prostate is sectioned into 3-4mm thick slides that are aligned and

registered by the affine and elastic registration methods. After, the information obtained from the

3D histological reconstruction was compared with the 3D reconstruction of the transrectal ultra-

sounds. There is also another study focusing a 3D reconstruction of brain volume of rats from

immunohistochemically stained histology images, that is after registered with the correspondent

3D magnetic resonance image to study the rodent stroke model [83]. The combined histological

and MRI reconstructions allows to understand how changes in MR signal intensity in the stroke

lesion correspond to microscopic histological changes. This can also be useful to study the neuro-

biological foundations of signal changes in MRI.

This reconstruction can be accomplished using the software Mimics, by Materialise [75].

Mimics is a software used for 3D design and modeling that can create 3D models from stacks

of 2D images. In alternative, there is Voloom by microDimensions [8]. Voloom is a software spe-

cialized in automated 3D histology reconstruction, visualization, and analysis in digital pathology.

In Fig. 3.1 there is an example of a 3D reconstruction of mouse tissue using Voloom.

Due to the lack of available information on this topic, in Fig. 3.2 there is an example of a
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Figure 3.1: Example of a 3D reconstruction using Voloom [8].

tissue segmentation of an heart and 3D reconstruction using Mimics. The 2D images are a result

of a CT scan.

Figure 3.2: Example of a 3D reconstruction using Mimics [9].

3.2 Tissue Segmentation

Tissue segmentation consists on dividing the obtained 3D tissue structure into its constituent re-

gions, depending on the problem. Tissue segmentation stops, ideally, when the region of interest

is totally isolated. Segmentation of non-trivial images is one of the more difficult tasks of image

analysis.

As referred on the previous section, Mimics is the used software for the 3D reconstruction and

is also going to be used for the tissue segmentation. There are several available options for this

task, including: thresholding or region grow [84], explained in section 4.3.2.
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3.3 Quantitative analysis

Quantitative analysis has the main objective of estimate the relative percentage of tissue compo-

nents that are present on the 3D reconstruction. On more time, this approach can be accomplished

by using Mimics. With Mimics, it is possible to estimate the volume of each segmented tissue

component, and this way, calculate that percentages.

Three dimensional estimation of tissue components can then be compared to the results ob-

tained by the stain separation algorithms referred in 2.2, in order to conclude if there is any corre-

lation between the results obtained in both methodologies.

There are some studies that try to find relationships between the analysis in both dimensions

in several areas. One of them compares the performance of 2D and 3D quantitative coronary

angiography (QCA) on the prediction of functional severity in coronary bifurcation lesions [85].

QCA allows to assess the bifurcation lesions dimensions, and it is used to optimize the drug-

eluting stents implementation on bifurcation lesions cases, leading to an improvement of clinical

outcomes. It was shown that the anatomical parameters obtained for 3D QCA acceptable and

comparable to 2D QCA. Related to breast cancer, there is also a study that compares the two

dimensional region of interest method for the measurement of the apparent diffusion coefficient

(ADC) with a semiautomatic three-dimensional sphere for the characterization of breast lesion on

x-rays mammograms [86]. ADC is measured from diffusion-weighted magnetic resonance imag-

ing (DW-MRI), used to show the random motion of water molecules (related to the cellular density

of that tissue). Since tumors are characterized by densely packed cells with diffusion restrictions,

this technique can be used for find and characterize lesions. They concluded that the ADC values

obtained for the 3D sphere were also comparable to 2D regions of interest. Tecelão et al com-

pared between the 2D and 3D circumferential strain measured with MR tagging [87]. Cardiac

resynchronization therapy (CRT) is used for the treatment of heart failure (HR), and due to their

high cost and complexity it is necessary to assess with accuracy which patient will benefit from it.

Measurement of the mechanical dyssynchrony directly appears to be the best way to predict if the

patient will show improvements after CRT. The mechanical dyssynchrony can the measured based

on the circumferential strain (strain on the predominant orientation of the muscle fibers) obtained

from a 2D or 3D analysis. This study showed that there are no significant differences between the

values obtained from the two methods.

Another studies, go further, and try to estimate the tissue volume from 2D images. Shen

et al investigated the relationship between cross-sectional volume adipose tissue (VAT) areas, in

different anatomic zones, and VAT volumes [88]. This study had the ultimate goal of finding

which slice has the strongest relation with the VAT volume, once VAT is usually characterized by

measuring the VAT area at the L4-L5 vertebral interspace. MR images were segmented and the

VAT volume was calculated through Eq. 3.1, where t is the slice thickness, h is the slice gap, N is

the number of slices and A is the cross-sectional area of each slice.

V = (t +h)
N

∑
i=1

Ai (3.1)
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They concluded that slices 10cm and 5cm (men and women, respectively) above L4-L5 have

a higher correlation with the VAT volume.

Firbank and Coulthard developed a technique to estimate the extraocular volume from 2D

MR images of the coronal plane [89]. Measurements of the extraocular muscle can be useful to

evaluate the treatment options on thyroid-associated ophthalmopathy. After the segmentation of

the extraocular muscle of each image slice, it was estimated its cross-sectional area. The volume

of the muscle was computed using Eq. 3.2, where ST is the slice thickness, SG is the spacing

between slices, N is the number of slices and An the area of slice n.

V = ST

N

∑
n=1

An +SG

N−1

∑
n=1

An +An+1

2
(3.2)

This method was tested in computed-generated virtual images with known extraocular muscle

volumes and showed 7,6% of accuracy.
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Chapter 4

Materials and Methods

In this chapter, it will be discussed the adopted methodologies and algorithms associated with the

2D histological image analysis and the tissue reconstruction, from the scanning of the slides to the

reconstruction of the 3D structure of the tissue.

4.1 Tissue Samples

Images from slices of formalin-fixed paraffin embedded tissue sections were used throughout all

the 2D analysis and, consequently, the 3D reconstruction. Those tissue sections were from proxi-

mal and distal vaginal tissue of sheep and were stained with Miller’s Elastic Staining. Six samples

of vaginal tissue (3 distal and 3 proximal) were used in this work. Each tissue was subjected to a

microtome into order to cut in slices with a 6µm thickness, spaced 12µm. Each slice was placed

into a slide, and contains one sample of distal tissue and one sample of proximal tissue.

4.2 Scanning of the Slides

The scanning of the slides was performed using OPTISCAN10 from OPTIKA [90]. This scanner

has a resolution of 10000dpi. The parameters for the scanning were adjusted using the SciView

software (interface for OPTISCAN). It was scanned a total of 2 sets of 23 slides and 1 set of 18

slides of vaginal tissues stained with Miller’s Elastica Staining.

4.3 Two Dimensional Analysis

The methods comprised on the 2D analysis includes algorithms for image alignment, image seg-

mentation and conversion to DICOM format, in order to allow the importation of the images on

Mimics software, referred further ahead. The algorithms described in the section were developed

using MATLAB.

25
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Figure 4.1: Example of an image that results from the scanning of one slide.

4.3.1 Image Alignment Algorithm

As it was mentioned on section 4.1, each slide contains 2 different types of vaginal tissues (distal

tissue and proximal tissue). Therefore, the histological images that result from the scanning phase

have those 2 types of tissues. Figure 4.1 shows an example of this situation. In order to align them,

in the most perfect way, the original image must be cut to separate the distal from the proximal

tissues.

For this purpose, it was created a small algorithm to automatically separate those tissues. For

each image, a mask of the tissues was obtained using a threshold, based on the Otsu’s method.

After this mask is computed, the largest area (proximal tissue) and the second largest area (distal

tissue) are selected, and their extreme coordinates (top, bottom, left and right) are determined.

Those coordinates are, then, used to cut, automatically, the original image in order to get the

smallest possible images with the isolated tissues. At the end of this part, each previous set of

images was split in 2 sets of smaller images with the distal and the proximal tissues.

Once this problem was solved, an algorithm for the alignment of each set of images was

developed. The pseudocode for this algorithm is shown in Algorithm 1.

The image alignment algorithm starts by reading 2 consecutive images of one set. The first

image that is read is the reference image and the second is the sensed image. The reference image

is considered as already aligned. Both images are binarized using an automated threshold, based

on the Otsu’s method. Then, centroids of 2 regions of interest (ROI) per image are computed.

Those centroids will be used as points by which the alignment will be done. The ROIs are selected

manually by the user around the area highlighted in Fig. 4.2. These areas result from a needle

that was used prior to the fixation of the tissue on paraffin, in order to have a guide to perform the
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Algorithm 1 Image Alignment

1: for j = 1 to number of images do
2: for i = 1 to 2 do
3:

4: Read image
5: Binarize image
6: Select 2 ROI
7: Apply Canny to the ROI
8: Morphological operations to the ROI
9: Determine the centroid of each ROI

10:

11: end for
12: Translation of the sensed image to overlap the right centroid of the reference image
13: Update the centroid coordinates of the sensed image
14: Set the coordinates of the overlapped centroids as the rotation point
15:

16: if ordinate(centroid2 of image1) < ordinate(rotationPoint) AND
17: ordinate(centroid2 of image2) < ordinate(rotationPoint) then
18: if ordinate(centroid2 of image1) < ordinate(centroid2 of image2) then
19: α =−(θ −β )
20: else if ordinate(centroid 2 of image2) < ordinate(centroid 2 of image1) then
21: α = β −θ

22: end if
23: end if
24:

25: if ordinate(centroid2 of image1) > ordinate(rotationPoint) AND
26: ordinate(centroid2 of image2) > ordinate(rotationPoint) then
27: if ordinate(centroid2 of image1) < ordinate(centroid2 of image2) then
28: α =−(β −θ)
29: else if ordinate(centroid 2 of image2) < ordinate(centroid 2 of image1) then
30: α = θ −β

31: end if
32: end if
33:

34: if ordinate(centroid2 of image1) > ordinate(rotationPoint) AND
35: ordinate(centroid2 of image2) < ordinate(rotationPoint) then
36: α = β +θ

37: end if
38:

39: if ordinate(centroid2 of image1) < ordinate(rotationPoint) AND
40: ordinate(centroid2 of image2) > ordinate(rotationPoint) then
41: α =−(β +θ)
42: end if
43:

44: Rotate image2 by α

45: Save image
46: end for
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Figure 4.2: Example of an histological image of distal tissue. The highlighted areas show the
desired location of the ROIs that are selected by the user.

three dimensional reconstruction. The selected ROIs were subjected to a post-processing phase

that allowed to obtain its edges. The Canny edge detector was used for the edge detection of the

ROIs, and morphological operations, such as the image closing, was used to close the obtained

edges. As soon as the edges were determined, its centers (centroids) were computed. Thus, each

sensed image will be associated to 2 centroids that, ideally, should overlap the other 2 centroids of

the reference image.

Having the centroids calculated, two translations followed by a rotation were performed to the

sensed image to align it with the reference image. Thereby, the sensed image is, then, translated

in a way that allows the overlapping of the right centroids of both images. Next, the right cen-

troid (already overlapped with the reference image and, therefore, with the same coordinates) is

considered the rotation point for the rotation that will enable the image alignment. This rotation

may not cause the overlapping of the left centroids due to distortions upon the slicing of the tissue

with the microtome. So, this rotation will only ensure that the left centroids of both images are in

the same direction. The angle (α), by which the second image has to rotate, was computed using

trigonometry. The different conditions present on Algorithm 1 are related to the different positions

of the left centroids of both images when compared to the rotation point, as shown in Fig. 4.3.

Once all images of one set are aligned, another small algorithm was developed to automatically

adjust the size of each aligned image, so that every image of a set have the same size. This way, it

was computed the size of the largest image of the set, and then, added, to each image, black pixels

to the right and bottom borders. Adding pixels to these borders do not affect the alignment.

4.3.2 Image Segmentation

The image segmentation phase has the objective of segment the elastin and collagen present on

each slice. To accomplish this segmentation, it was fisrt used the Color Deconvolution algorithm
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Figure 4.3: Auxiliary images used to calculate the angle of rotation (α) that allows the alignment of
two images. Points 1 and 2 are the left centroids of the reference and sensed images, respectively.

based on [57], as mentioned on section 2.2.1.1. Algorithm 2 contains the pseudocode for the used

Color Deconvolution algorithm.

Algorithm 2 Color Deconvolution
1: Definition of the OD matrix
2: Normalization of the OD matrix
3: Computation the inverse of the normalized OD matrix
4: Computation the optical density of the image
5: Reshape each channel to one column
6: Multiplication the reshaped image for the inverse of the OD matrix
7: Reshape the result for the original size of the image
8: Normalization of the image

The developed Color Deconvolution algorithm starts by defining the optical density matrix,

similar to the matrix referred in Eq. 2.7. The values of this matrix depend on the colors that

are going to be separated. This matrix is normalized by dividing each value by the length of

the corresponding stain vector (line of the matrix) and, then, the result is inverted. The optical

density for the image was calculated based on Eq. 2.6. The product of the optical density of the

input image and the optical density matrix gives a RGB image, where each channel contains the

information for the correspondent color of the stain vectors used to define the OD matrix. This

RGB image was normalized by applying Eq. 4.1 to each one of the 3 channels. Any channel of

the output image contains a gray-level image, thus the maximum and minimum possible values

for its pixels are 255 and 0, respectively, as present in Eq. 4.1.
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imageChannel =
(imageChannel −min(imageChannel))× (255−0)
(max(imageChannel)−min(imageChannel))+0

(4.1)

The first channel of the output image is associated with collagen and the last with elastin. As

they contain gray-level images, the whiter pixels are the pixels that should be segmented in order

to obtain those tissue components.

Having this in mind, the next goal is to segment those pixels for the first and last channels, to

obtain the total content of collagen and elastin for each slice. The next two sections will focus on

the processes for the segmentation of this two tissue components.

4.3.2.1 Collagen Segmentation

As mentioned before, the goal is to segment the whiter pixels, in this case, of the first channel of

the obtained RGB image. The main idea of the algorithm is to find a threshold that better segments

these pixels of the image.

Figure 4.4 shows the RGB image that is going to be used to illustrate how this algorithm works.

After applying the color deconvolution algorithm, to the image present in Fig. 4.4, and selecting

the first channel, it was obtained the image from Fig. 4.5. In Fig. 4.6, there is the histogram for

the image present in Fig. 4.5. Collagen pixels are located in the second half of the last peak of the

histogram. This area was determined based on the observation of several histograms of images

after the color deconvolution algorithm.

Applying the Otsu’s method directly to the image caused the segmentation of some light red

pixels that did not correspond to collagen areas. Instead, it was used the Otsu’s method to first

segment the last peak of the histogram. The value for the obtained threshold was used to perform

a contrast adjustment operation, turning into 0 every pixel bellow that value. This operation led

to a better separation of the gray tones of the image and the result is shown in Fig. 4.7. A second

Otsu’s method was applied to this image to segment collagen.

At the end, the binary image with the segmented collagen was multiplied by a mask of the

tissue, to assure that the segmented collagen just derives from a part of the image that contains

tissue. This final step is important due to the presence of some artifacts in the original images. In

case the image do not have non-tissue zones, this step is not occur.

4.3.2.2 Elastin Segmentation

The elastin segmentation is accomplished using the third channel of the RGB image that results

from the color deconvolution algorithm. In a similar way to the collagen segmentation, the goal is

to determine the threshold that segments the whiter pixels of the image.

In order to determine the best value for the threshold, it was computed the histogram of the

image, as shown in Fig. 4.8. The elastin is located at the end of the histogram, starting in the

position where the histogram begins to decrease slower. To find this position, it was calculated
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Figure 4.4: Original RGB image.

Figure 4.5: Gray-level image obtained from the first channel of the RGB image that results from
the color deconvolution algorithm applied to Fig. 4.4. The whiter pixels of this image corresponds
to the pixels for collagen.

Figure 4.6: Histogram for Fig. 4.5.
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Figure 4.7: Gray-level image after the contrast adjustment.

the gradient of the histogram (first derivative) and the absolute value of this gradient, as present in

Figs. 4.9 and 4.10. When the histogram begins to decrease slower, the gradient, and consequently,

its absolute value, reaches values close to 0. So, considering the last peak of the histogram, the

threshold value was set to be the value where the gradient decreases to 5% of its maximum.

Once the threshold is determined, the image is binarized and multiplied by a mask of the tissue.

One more time, if the image do not contain any background zones, this part of the algorithm is not

used.

4.3.3 Percentages of Elastin and Collagen

For the computation of the percentages of elastin and collagen, it was created a binary mask of the

whole tissue that is present in each image. The area of this mask was calculated and considered as

the total area of the tissue. The obtained binary images for the collagen and elastin were also read

and its areas were determined. Based on these information, the percentages for each type of tissue

component were obtained.

4.3.4 Conversion to DICOM

The binary images of elastin and collagen had to be converted to DICOM, in order to allow their

importation to Mimics. The conversion to DICOM was done directly with MATLAB, but the

metadata associated with each DICOM image was created manually. The information that was

modified/created on the DICOM metadata file was:

• Slice Thickness - Thickness of each slice in mm.

• Pixel Spacing - Physical distance between the center points of each pixel (x and y) in mm.

• Instance Number - Number that identifies the image.
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Figure 4.8: Example of an histogram of the last channel of the RGB image that results from the
color deconvolution algorithm.

Figure 4.9: Gradient for the histogram present in Fig. 4.8.

Figure 4.10: Absolute value of the gradient for the histogram present in Fig. 4.8.
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• Slice Location - Location of each slice, in the z axis.

• Spacing Between Slices - Distance between consecutive slices.

• Study Description - Name that identifies the study.

• Series Description - Name that identifies the series.

In order to determine the pixel spacing attribute, it was scanned a sheet of millimeter paper

and, based on the image size, it was determine the distance between pixels centers.

The metadata file contains other attributes that are automatically created upon the conversion

to DICOM, however the attributes that were referred previously are the important parameters for

the configuration of the 3D reconstruction.

4.4 Three Dimensional Reconstruction

The three dimensional reconstruction was accomplished using the software Mimics. The DICOM

images obtain through the methodology previously described were imported to Mimics to recon-

struct the tissue. It was defined a mask to segment only the binary part of the images and, finally,

the tissue was reconstructed from that mask, using a custom reconstruction (based on the contour).

For this part of the work, the percentages of collagen and elastin were determined based on

the volume of the reconstructed tissues.
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Results and Discussion

5.1 Scanning of the Slides

The scanning of the slides were done without any zoom of the slide and with a custom configura-

tion. This configuration was set in order to obtain a good contrast between all tissue components,

mainly elastin and collagen, and to keep the yellowish tone present in the histologies. It was cho-

sen the value of -15 for saturation and 15 for brightness. In Fig. 5.1, there is an example of an

image that results from the scanning of one slide. Each image had the size of 14368x9572 pixels.

5.2 Two Dimensional Analysis

5.2.1 Image Alignment

The separation of the proximal and the distal tissues, before the alignment algorithm, was an

essential step for the success in the image alignment phase. Having both tissues on the same

image compromised the correct alignment of both proximal and distal tissues. When the distal

tissue, of two consecutive images, was aligned, the proximal tissue was misaligned and vice versa.

Cutting the original images was also a very important step to reduce their size and, consequently,

the computational cost of the algorithms applied after the alignment. The result of this small

algorithm, applied to the image present in Fig. 5.1, is shown in Fig. 5.2. As it can be seen, the

algorithm successfully separated the tissues. However, if one of the tissues, from a given image, is

cut, the algorithm will only select the two largest areas. In this case, this separation has to be done

manually or a portion of tissue is going to be eliminated. Figure 5.3 shows an example of this

situation. The smaller portion, of the distal tissue, will not be present on the image that is going to

be formed.

Concerning the alignment algorithm, the centroids computation is the key factor for a favor-

able outcome. If the centroids are determined successfully, all images are going to be aligned by

the same points, and the results will be more accurate. In Fig. 5.4, there is an example of the deter-

mination of the two centroids for one of the images. Centroids are represented by red circles. As

it can be seen from this image, centroids were calculated perfectly with the developed algorithm.

35



36 Results and Discussion

Figure 5.1: Image that results from the scanning of one slide (original scan).

Figure 5.2: Images with the isolated tissues.

Figure 5.3: Image that illustrates the situation where the algorithm, to automatically cut the im-
ages, do not give satisfactory results.
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Figure 5.4: Results for the determination of the centroids for one image.

Images where there is a lot of inaccuracy upon the selecting of the ROIs by the user, can lead

to some errors in the alignment, since centroids decide the translations and rotations that will occur

to the sensed image. Figure 5.5 shows an example of one image of distal tissue, where it is almost

impossible to select, accurately, the ROIs for the centroids determination. The right centroid do

not have a well defined area for the selection of its ROI.

A rigid transformation, to align the sensed image with respect to the reference image, was

applied after the centroids determination, and the result, for two of the images, is shown in Fig.

5.6. In purple is the reference image and in green the image that was aligned. As shown in

Fig. 5.6, the ROI of the right side is perfectly overlapped with the first image, while the ROI

of the left side do not verify the same situation, as expected. An overlapping of the centroids

lead to an overlapping of the ROIs. As explained in the previous chapter, the overlapping of the

left centroids may not happen, because it is only assured that the direction of both centroids is

the same. Left centroids do not perfectly overlap, mainly, due to some tissue distortions caused

during the slicing. Besides, there is also the spacing between slices factor, which is twice the slice

thickness. There may be some differences in the next slice with respect to the previous slice, due

to their the distance on the tissue. If the overlapping of both left and right centroids were required,

instead of just applying translations and rotations to the sensed image, scaling transformations also

had to occur. Scaling of the images is an unwanted transformation once it changes the original

scale of the images.

Despite all this, in almost every cases, the alignment was accomplished with success and these

factors did not had a large influence in the images, as can be seen in Fig. 5.7. However, even

if the alignment is successful, there are parts of the tissues that, sometimes, are distorted or cut,

affecting the overall alignment.

To avoid the the cases where the misalignment would be certain, not all the images of each set
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Figure 5.5: Image the distal tissue, where it is difficult to select the best ROI for the determination
of the centroids position.

were used on the alignment and, consequently, on the 3D reconstruction because the first slices

did not contain much tissue (Fig. 5.8C), other slices had some tissues cut (Fig. 5.8B), or the ROI

for the centroids were impossible to determine accurately (Fig. 5.8A).

After selecting and aligning all sets of scanned images, it was obtained a set with 21 images,

2 sets with 15 images, 1 set with 11 images and 2 sets with 10 images.

5.2.2 Image Segmentation

Although the segmentation of collagen and elastin was performed using MATLAB, there was also

the possibility of importing all images of a set to Mimics, and perform, there, this segmentation.

This hypothesis was dismissed because of the images size and, most importantly, the fact that

Mimics do not allow the importation of RGB images. The initial RGB images would have to be

converted to gray-level images, which would remove the color information that is important for

the segmentation. Figure 5.9 shows the gray level image for Fig. 5.2. Analyzing this image, it is

possible to see that the initial bluish (elastin) and reddish (collagen) tones are converted to approx-

imately the same gray-level values, making it more difficult separate the different components.

Even if Mimics allowed the use of RGB images, it would be hard to manipulate them. Images,

used in this work, have higher resolution than medical images, which requires a lot of resources,

making this a very time consuming task. In addiction, the threshold values for the segmentation

would have to be defined by the user, leading to subjective results. Having this in mind, it was

decided to perform the segmentation of elastin and collagen prior to the importation to Mimics.

The color deconvolution algorithm was the chosen algorithm for the separation of the different

colors present on each slice. Since collagen acquires a reddish color and elastin a bluish color, the
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Figure 5.6: Result for the alignment of two images of distal tissue. The left ROI is not overlapped
with the reference image.

Figure 5.7: Result for the alignment of two images of distal tissue.

Figure 5.8: Examples of malformations of some slices.
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Figure 5.9: Gray-level image for the image present in Fig. 5.2

used optical density matrix, shown in Eq. 5.1, was based on the RGB vectors.

0 1 1

1 0 1

1 1 0

 (5.1)

As referred in the previous chapter, the result of the color deconvolution algorithm is a RGB

image, where, in this case, the first channel corresponds to the gray-level image that contains the

information about collagen, and the last channel the image that contains the information about

elastin. In Fig. 5.10 is the gray-level image for collagen and in Fig. 5.11 is the gray-level image

for elastin, both as a result of the developed color deconvolution algorithm. Figure 5.12, on the

other hand, is the original image used as input for the algorithm.

The whiter pixels of Figs. 5.10 and 5.11 correspond to the areas where collagen and elastin

are located and, therefore, the areas that are going to be segmented. Comparing those images with

Fig. 5.12, it is possible to see a match between the reddish and bluish zones with the whiter areas

of Figs. 5.10 and 5.11, respectively.

Since this is a stain separation algorithm, changes in the illumination of the images will cause

problems on the separation of the desired colors. In this case, it was used a scanner, so the illumi-

nation was uniform. When it is used a microscope, the illumination of the captured images will be

influenced by the illumination of the microscope itself and by the illumination of the surrounding

area, which can lead to some errors when using this kind of algorithms. It would be better if, in this

situations, it is used an algorithm to remove the uneven illumination before the stain separation

algorithms.

The gray-level images, that result from the color deconvolution algorithm, are used as input

to a segmentation algorithms, in order to segment collagen and elastin. Figures 5.13 and 5.14

contain the results of the segmentation algorithms described on section 4.3.2 for collagen and

elastin, respectively. Comparing Figs. 5.10 and 5.13 and Figs. 5.11 and 5.14 it is possible to

conclude that, visually, the whiter pixels of both images were segmented.
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Figure 5.10: Result for the first channel (collagen) of the RGB image obtained from the color
deconvolution algorithm.

Figure 5.11: Result for the last channel (elastin) of the RGB image obtained from the color decon-
volution algorithm.

Figure 5.12: Original image.
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Figure 5.13: Result for the collagen segmentation performed in the image present in Fig 5.10.

Figure 5.14: Result for the elastin segmentation performed in the image present in Fig. 5.11.
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Table 5.1: Results of the robustness tests for the segmentation algorithm.

Percentage of Elastin Percentage of Collagen
1 st Test 0.32 60.33
2 nd Test 0.32 60.36
3 rd Test 0.32 60.36
Average 0.32 60.35
Standard Deviation ±0.00 ±0.01

Before assessing the results of the segmentation algorithms, it was important to conclude about

its robustness. If an algorithm is robust, it will give the same results if the input image is the same.

This way, it was chosen a set of 15 images and its segmentation was done three different times,

using the algorithms describes in the previous chapter. With the obtained binary images, it was

computed the percentages of elastin and collagen of each slice of the set, and the results of the

segmentation algorithm were compared using these percentages. The results for these tests are

shown in Table 5.1 and represent the average percentage of each component on the set of images.

As it can be seen in Table 5.1, the algorithm originated the same percentages of elastin and collagen

for the 3 tests. So, it is safe to consider that the developed algorithm is robust.

Once the robustness of the algorithm have been proven, it was also interesting to compare the

results of the automatic segmentation to the results of a manual segmentation. The manual seg-

mentation of the images was accomplished using ImageJ [91], an open source image processing

program. ImageJ was the chosen software for the manual segmentation, because there is liter-

ature that already showed that the results obtained with ImageJ, for collagen segmentation, are

comparable with the results obtained with the gold standard hydroxyproline assay [24]. As also

described in [24], images are subject to a color deconvolution plug-in, in ImageJ, to separate the

different stains, similar to what was done automatically. After, it is adjusted, manually, a threshold

to segment the components, and the percentages were computed.

For this task, it was used 3 different images captured by a microscope, instead of the digitized

images that were used for the development of the algorithms. These images were carefully chosen,

in order to avoid situations where there was non-uniform illumination. Then, a group of 10 people,

from different backgrounds, followed this methodology to obtain the percentages of collagen and

elastin for the manual segmentation. Those chosen images are simpler to understand and segment

by people who do not have a biology background. Figure 5.15 shows an example of an image that

was used for this purpose. Using different images will also prove that the developed algorithm is

robust enough to deal with images from different sources.

Table 5.2 shows the results for the manual and automatic segmentation for each of the 3 im-

ages. For the manual segmentation, the results correspond to the average percentage calculated

from the 10 different segmentation. As the developed algorithm is robust, it was only performed

one automatic segmentation. As it can be seen from Table 5.2, both the results for manual segmen-

tation and automatic segmentation are similar, but the standard deviation is close to 1% in some

cases.
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Figure 5.15: One of the images used to perform the manual segmentation.

In order to see how the results for the segmentations are distributed for each image, it was

created the box plots shown in Figs. 5.16, 5.17 and 5.18. The whiskers of the box plots indicate

the obtained maximum and minimum percentages for each case. In general, all of the obtained

box plots were long, which means that the percentages for the manual segmentation of elastin

and collagen were dispersed. This also explains why the standard deviation was close to 1%.

The median of the manual segmentation was similar to the median of the automatic segmentation,

most of the cases. This can be explained by the fact that the 10 people performing the manual

segmentation are from different backgrounds and, this way, not very familiar with histological

image analysis. This manual segmentation is also subjective and depends on what each user

considers elastin and collagen.

It was, as well, performed pared t-tests to compare the results for the manual and automatic

segmentation for each image. The results for the elastin segmentations were p=0.106, p=0.454

and p=0.584, and the results for the collagen segmentation were p=0.339, p=0.001 and p=0.600,

for the first, second and third images, respectively. The segmentation of collagen, for the second

image, was the only case were the results were statistically different (p=0.001). All the other

results were higher than 0.05 and, therefore, not statistically different.

Table 5.2: Comparison between manual segmentation and automatic segmentation. The results
for the manual segmentation are expressed as the average percentage of elastin and collagen per-
formed by 10 people.

Elastin Elastin Collagen Collagen
(Automatic) (Manual) (Automatic) (Manual)

Image 1 4.22 4.06±0.29 24.55 24.85±0.92
Image 2 10.22 10.43±0.80 46.99 45.83±0.70
Image 3 15.22 15.33±0.63 28.20 28.31±0.66
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(a) Distribution of the percentages of elastin in the
manual and automatic segmentation for the first im-
age.

(b) Distribution of the percentages of collagen in the
manual and automatic segmentation for the first im-
age.

Figure 5.16: Box plots for the manual and automatic segmentation of the first image.

(a) Distribution of the percentages of elastin in the
manual and automatic segmentation for the second
image.

(b) Distribution of the percentages of collagen in the
manual and automatic segmentation for the second
image.

Figure 5.17: Box plots for the manual and automatic segmentation of the second image.
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(a) Distribution of the percentages of elastin in the
manual and automatic segmentation for the third im-
age.

(b) Distribution of the percentages of collagen in the
manual and automatic segmentation for the third im-
age.

Figure 5.18: Box plots for the manual and automatic segmentation of the third image.

Considering all of this information, it is possible to see that the developed algorithm produce

results that are comparable to the results obtained from a manual segmentation using ImageJ.

5.3 Three Dimensional Reconstruction

Binary images, that result from the segmentation algorithm, were converted to DICOM and im-

ported to Mimics to obtain the 3D reconstruction of elastin and collagen. In Fig. 5.19, there is an

example of the reconstruction obtained for elastin for one of the sets of images. As it can be seen

by this figure, the reconstruction was very coarse, which can be explained by the fact that the dis-

tance between slices is twice the slice thickness. With the spacing between slices that large, there

is a need for a lot of extrapolation of the possible missing tissue. Although the distance between

slices and slice thickness are very small (0,012mm and 0,006mm, respectively), at the scale of the

tissue structures, this small distances are significant.

Through an observation of several elastin reconstructions, it was also possible to see that Mim-

ics can not reconstruct consecutive slices if the same information is distant in x and y. If two

consecutive slices contained information at, approximately, the same x and y positions the recon-

struction occurred, but if the same structure occupied distant x and y positions the reconstruction

is not successful. There is also the problem associated with the fact that, during the slicing, the

tissue suffers some distortions that affect the perfect alignment of the images. Consequently, this

slightly misalignment interfere with the distance, in x and y, of the information that is present in

each slice, leading to errors during the reconstruction. The used distance between slices can also

interfere with these distances em x and y.

Figure 5.20 shows a section of the 3D reconstruction of collagen for one set of images. As

slices with collagen contained more information, the problem related to the distance in x and y



5.3 Three Dimensional Reconstruction 47

Figure 5.19: Section of the three dimensional reconstruction of elastin for one set of images.

directions had less importance. However, areas were the amount of collagen is low, showed also

some problems, similar to what was described for elastin reconstruction.

Another goal of this work was to see if it is possible to compare the volumes obtained through

the 3D reconstruction and the volumes estimated from the 2D images. So, after computing the

three dimensional reconstruction of the tissues and its components, is was determined the corre-

sponding volumes, in order to calculate the percentages of elastin and collagen. These volumes

were given directly by Mimics. Then, using Eqs. 3.1 and 3.2, the results for the areas of each slice

of elastin and collagen were used to estimate its 3D volume. These results, represented in Tables

5.3 and 5.4, were compared to the results obtained using Mimics.

Since Eq. 3.1 and Eq. 3.2 describe different things, as explained in section 3.3, it was expected

that the percentages for elastin and collagen were different. Equation 3.2 seemed more accurate

than Eq. 3.1, because it considers the average amount of tissue of two consecutive slices for the

estimation of the spacing between slices tissue, instead of the total amount of tissue of only one of

the slices. However, the results were practically the same in both cases.

Concerning the elastin reconstruction, all of the reconstructions of all of the sets showed a

smaller volume, when compared to the volume estimated from the 2D images. This can be ex-

plained by the fact that Mimics was not able to successfully reconstruct the tissue. Due to the

relatively high spacing between slices, the reconstruction was compromised when portions of the

tissue, in two consecutive slices, were far from each other (x and y directions). Thus, there is a

lack o tissue on that zone and, consequently, the obtained volume is lower than the expected. The

reconstruction of collagen originated also some differences between the volumes determined by

Mimics and the volumes that result from the estimation from the 2D images. Nevertheless, as the

reconstructions were not accurate it is not possible to conclude about the relation between the 3D

volumes and the estimations from the 2D images.
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Figure 5.20: Section of the three dimensional reconstruction of collagen for one set of images.

Table 5.3: Results for the volume of elastin, in mm3, obtained by Mimics and by Eq. 3.1 and Eq.
3.2.

Volume - Mimics Volume - Eq. 3.1 Volume - Eq. 3.2
Set 1 0.06 0.25 0.25
Set 2 0.12 0.31 0.31
Set 3 0.37 0.85 0.86
Set 4 0.01 0.07 0.07
Set 5 0.06 0.30 0.31
Set 6 0.17 0.45 0.46

Table 5.4: Results for the volume of collagen, in mm3, obtained by Mimics and by Eq. 3.1 and
Eq. 3.2.

Volume - Mimics Volume - Eq. 3.1 Volume - Eq. 3.2
Set 1 45.14 40.54 40,58
Set 2 52.11 47.52 47.83
Set 3 29.23 27.13 27.32
Set 4 36.89 36.27 36.74
Set 5 38.55 36.46 36.44
Set 6 55.50 48.54 48.63



Chapter 6

Conclusion

Histological images can provide detailed information about tissue structure and, therefore, be

very useful on the characterization of tissues and the spatial relation between cell structures. The

automation of the histological image analysis helps removing the current issues related to the

inherent subjectivity associated with the observers, and time spent on repetitive and monotonous

tasks. The three dimensional reconstruction of these histological images, on the other hand, allows

to have a high resolution volume of the tissue to be analyzed.

The histological image analysis main focus is the automation of laboratory procedures that are

subjective and repetitive and also improve user’s analysis and visualization of histological slides.

For that, it was developed a series of algorithms that are capable of aligning a set of images and

performing their analysis. Part of those algorithms is the image alignment algorithm, used to align

the sets of images; the stain separation algorithm, to separate the different colors that are present

in an histological image, as a result of its staining; and segmentation algorithms, in order to obtain

total content of elastin and collagen of each image.

The image alignment algorithm was developed with success, however there are some key

factors that influence its performance. The quality of the tissue slices is crucial to the outcome of

this algorithm. If the tissue is cut or distorted the results of the alignment will be affected. Another

important issue is the presence of guide zones that will enable the alignment of the set of images.

This zones have to be intact in order to allow a good computation of its centroids, otherwise the

centroids position will be inaccurate and the alignment will have some errors.

The stain separation and segmentation algorithms also showed good results, when compared

to the results obtained through a manual segmentation. The success of these algorithms depend on

an uniform illumination of the input images.

The main purpose of the three dimensional analysis was to reconstruct, in 3D, a tissue segment

from histological images. After this 3D reconstruction followed the estimation of the percentages

of collagen and elastin. Later the amount of tissue component determined by the two dimension

analysis was compared to the 3D volume to conclude if there is any kind of correlation between

the 2D and 3D analysis.

49
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The results for the three dimensional reconstruction were not the expected, since the recon-

structions were very coarse. Part of this outcome can be explained by the used spacing between

slices, which can cause significant differences in the next slice with respect to the previous slice.

Possible small misalignment of the images can also lead to larger distances in the x and y direc-

tions, causing the unsuccessful reconstructions. As the results were not successful, the comparison

between the volumes obtained through the 3D reconstruction and the volumes for the estimation

from the 2D images was not possible to archive.

As future work, it would be interesting to compare the results of the automatic segmentation

with the results of the manual segmentation performed by specialists. This would increase the

reliability of the obtained results. The current stain separation algorithm performs the separation

of Miller’s Elastic Staining. It would also be interesting to add and test new stainings, such as

Hematoxylin and eosin staining, for example. As for the 3D reconstruction, it was used slices

with the spacing between slices twice the slice thickness and, it is possible to obtain slices with

the slice thickness equal to the spacing between slice. Testing this possibility will allow a better

understanding of the reasons behind the obtained results, and hopefully, to archive successfully

3D reconstructing.
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