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Resumo 

As alterações no uso e ocupação do solo (LULCC) causadas por actividades humanas 

directas e indirectas têm consequências a nível local e global. No Laos, com destaque para 

as áreas urbanas, as práticas de uso do solo relacionadas com expansão da agricultura, 

urbanização e desflorestação afectam o o solo enquanto recurso finito, e contribuem para a  

degradação dos recursos naturais. No distrito de Kaysone Phomvihan, uma das principais 

cidades do Laos, verifica-se uma forte degradação e um ritmo intenso de conversão do solo 

associado aocrescimento económico e urbano ao longo das últimas décadas. 

Este estudo parte do pressuposto que o entendimento dos padrões de LULCC e das suas 

forças motrizes são imprescindíveis para projectar os processos de LUCC e suas tendências 

espaciais para futuro no sentido de fornecer pistas e conhecimentos relevantes para a tomada 

de decisão. Portanto,  o estudo tem como objectivo analisar alterações no uso e ocupação do 

solo e as suas forças motrizes para um período de vinte anos, entre 1997 e 2017. Tem ainda 

como objectivo complementar  simular os padrões de uso e ocupação do solo para o anode 

2022, num cenário BAU. A área de estudo é o distrito de Kaysone Phomvihan, onde se irão 

aplicar  dados resultantes de  detecção remota e fontes estatíticas, e combinar métodos 

provenientes de detecção remota, sistemas de informação geográfica e estatística, afim de 

aplicar um modelo de análise de forças motizes e de simulação do uso e ocupação do solo. 

Os resultados revelam que as forças próximas do uso e ocupação do solo longo do 

período de vinte anos foram a conversão da floresta em vegetação herbácea e/ou arbustiva e 

a vegetação herbácea e/ou arbustiva convertida área da urbana e em área para agricultura.  A 

área florestal teve a maior diminuição e a área construída teve o maior aumento. Além disso, 

variáveis biofísicas e socioeconómicas também contribuíram significativamente para as estas 

conversões, nomeadamenteo  declive, a temperatura, a densidade populacional, a distância 

ao urbano, as estradas e à rede hidrográfica. 

A tendência espacial da expansão urbana foi principalmente o oeste do distrito. As 

tendências espaciais da expansão agrícola e as conversões florestais foram a sul e a leste do 

distrito. Finalmente, o modelo simulado para 2022 evidencia  que os padrões de uso e 
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ocupação do solo de 2017 para 2022 são ligeiramente diferentes. A área florestal terá ainda 

maior perda devido à conversão para área agrícola e para área urbana. 

Palavras-chave: alterações de uso/ocupação do solo, forças motrizes, detecção remoto, 

sistemas de informação geográfica, análise estatística, modelação e simulação espacial, 

Kaysone Phomvihan. 
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Abstract 

Land use and land cover changes (LULCC) caused by direct and indirect human 

activities have a wide range of consequences at local and global level. In Laos and its main 

cities, land use practices related to agriculture expansion, urbanization and deforestation have 

an effect on land use and natural resource degradation. Kaysone Phomvihan district is one of 

the main city in Laos that is facing with land use degradation from those practices due to an 

economic and urban growth over decades in the district that resulted in land use conversion 

and land concession widely.  

Since, understanding in LULCC patterns and the driving forces are needed to project 

LULCC processes and their spatial trends, which will provide relevant knowledge that is a 

useful guideline for policymakers and civil society. Therefore, this research aims to analyze 

LULCC and the driving forces in the period 1997-2017 in order to simulate LULCC patterns 

for the year 2022 in Kaysone Phomvihan district by using remote sensing data, geographic 

information systems combined with statistical analysis and LULCC model.   

The results revealed that the proximate drivers of LULCC over the 20 years were forest 

conversion to shrubland, and shrub area converted to agriculture and urban areas, which 

forest area was the highest decrease and built-up area was the highest increase. Moreover, 

both biophysical and socio-economic variables had significantly contributed to LULC 

conversions such as slope, temperature, population density, proximate to town, roads and to 

water sources. 

 Since, the spatial trend of urban expansion was mostly in the western of the district. 

For the spatial trends of agriculture expansion and forest conversions were in the southern to 

the eastern part of the district.The simulated LULCC model in 2022 found that LULC 

patterns of 2017 and 2022 were slightly different. Forest area still was the highest loss due to 

the conversion to agriculture and built-up areas that had driven by economic and urban 

growth in the district. 

Keywords:  LULCC, driving forces, remote sensing, geographical information systems, 

statistical analysis, LULCC model, Kaysone Phomvihan district. 
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Chapter 1 - Introduction 

1.1. Background of the study 

Land use and land cover (LULC) system are a fundamental part of the Earth's surface, 

and LULC changes (LULCC) has significant impacts on human society, climate, 

biodiversity, hydrological cycles, biogeochemical processes (Baldyga et al., 2008; Lambin 

et al., 2001; Were et al., 2014). LULCC are the intended employment and management 

strategy that placed on the land by human agents or land managers to exploit the land use and 

reflects human activities such as industrial and residential zones, agricultural fields, grazing, 

deforestation, and mining among many others that have affected on land and natural 

resources at local and global level (Chrysoulakis et al., 2004; Zubair, 2006). 

Since 1950, the world population increased exponentially and this growth is producing 

major changes in LULC. In some countries, intensive agriculture is producing massive 

deforestation while in cities, unplanned or inadequately managed urban expansion is leading to 

rapid sprawl, pollution, and environmental degradation, together with unsustainable production 

and consumption patterns (Montgomery et al., 2004). 

Over the last fifty years, LULC has undergone dramatic changes (FAO, 2005). LULCC 

are being mostly influenced by government policies for economic development that promotes 

the expansion and promotion of agricultural production as well as the infrastructure and urban 

growth (Fujita et al., 2007; Meyfroidt and Lambin, 2008). In Laos, the development projects 

although benefit the country’s economy. In the practical, sometimes they resulted in natural 

resources an environmental impacts (Baird and Shoemaker, 2005; Cornford, 1999).   

Baird and Shoemaker (2005) reported that although economic and development 

policies have good intentions in upgrading local livelihood and descending the poverty. In 

the practical, sometimes they contribute to a long-term poverty, land and environment 

degradation and increasing social conflict.  

Thus, LULC in Laos has changed dynamically over decades, especially forest areas. In 

1982 forest cover was 11,636,900 ha (49%), in 1992 it was 11,168,000 ha (47%) and in 2002 

it was 9,824,700 ha (41. %). This reflects a rapid decrease from 1992 to 2002 by 1,343,300 

file:///C:/Users/DAUME/Desktop/FLUP/ORIENTACOES/Bandit/Final_2/Total_Bandit_PA.docx%23_ENREF_8
file:///C:/Users/DAUME/Desktop/FLUP/ORIENTACOES/Bandit/Final_2/Total_Bandit_PA.docx%23_ENREF_10
file:///C:/Users/DAUME/Desktop/FLUP/ORIENTACOES/Bandit/Final_2/Total_Bandit_PA.docx%23_ENREF_15
file:///C:/Users/DAUME/Desktop/FLUP/ORIENTACOES/Bandit/Final_2/Total_Bandit_PA.docx%23_ENREF_2
file:///C:/Users/DAUME/Desktop/FLUP/ORIENTACOES/Bandit/Final_2/Total_Bandit_PA.docx%23_ENREF_6
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ha (5.5%), while from 1982 to 1992 it was only 468,900 ha (2%) (see Table 1.1). Most of 

these changes are due to unsustainable harvesting, commercial logging, wood extraction, and 

urban and infrastructure development (Boutthavong et al., 2016). 

 

Table 1.1: Land use group and type with the percentage of distribution (Source: Boutthavong et al., 
2016). 

Land use group and land use 

type 

Distribution % Change in % 

1982 1992 2002 1982-02 1992-02 1982-02 

1.  current forest 49.142 47.162 41.49055 -1.980 -5.672 -7.652 

Dry dipterocarp 5.216 5.095 0.563 -0.121 0.468 0.347 

Lower dry evergreen 0.374 0.361 0.237 -0.013 -0.124 -0.137 

Upper dry evergreen 4.670 4.481 5.861 -0.189 1.380 1.191 

Lower mixed deciduous 3.771 3.651 3.720 -0.120 0.069 -0.051 

Upper mixed deciduous 32.907 31.463 23.224 -1.444 -8.239 -9.683 

Gallery forest 0.383 0.370 0.119 -0.013 -0.251 -0.264 

Coniferous 0.584 0.557 0.376 -0.027 -0.181 -0.208 

Mixed coniferous 1.237 1.184 2.221 -0.053 1.037 0.984 

Tree plantation - - 0.169 - - 0.169 

2. Potential forest  36.141 37.971 47.095 1.667 9.496 10.971 

Bamboo 6.153 6.469 2.276 0.316 -4.193 -3.877 

Unstacked 27.448 28.680 42.636 1.232 13.956 15.188 

Shifting cultivation area 2.523 2.642 2.183 0.119 -0.459 -0.340 

3. other wooded area 6.526 6.098 1.210 -0.428 -4.888 -5.316 

Savannah/open woodlands 4.113 3.853 0.399 -0.260 -3.454 -3.714 

Heath, shrub forest 27.448 2.245 0.811 -0.186 -1.434 -1.602 

Sum of all forest area 91.8 91.1 89.8 -0.741 -1.246 -2 

4. Permanent agriculture 2.993 3.588 5.068 0.595 1.480 2.075 

Rice paddy 2.780 3.334 4.070 0.554 0.736 1.290 

Agriculture plantation 0.063 0.075 0.916 0.012 0.841 0,853 

Other agriculture land 0.150 0.179 0.082 0.029 -0.097 -0.068 

5. Other non-forest area 5.215 5.361 5.137 0.146 -0.224 -0.078 

Barren land, rock 0.464 0.490 0.976 0.026 0.486 0.512 

Grassland 3.397 3.475 2.446 0.078 -1.029 -0.951 

Urban land 0.464 0.356 0.517 0.009 0.215 0.224 

Swamps  0.347 0.149 0.215 0.009 0.066 0.071 

Water 0.114 0.891 0.929 0.005 0.038 0.066 

Sum of all non-forest area 8.208 9.949 10.205 0.028 1.246 2 

Total 100 100 100 0 0 0 
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According to FAO (2000), the LULCC related to agriculture expansion, urbanization 

and deforestation in Laos have caused land use and natural resource degradation, with 84% 

of the soils moderately degraded. In addition, agriculture and urban expansion are among 

important causes of the deforestation and LULC conversion in the potential or nearby cities 

in Laos. Thus, the deforestation and LULC conversion in this region have become a major 

issue in environmental change. 

The knowledge and understanding of LULCC in Laos are still sparse. There are lacks 

in spatial perception about LULCC and in data acquisition to support LULC dynamic and 

the future changes analysis. These are main obstacles to provide the essential solutions for 

the spatial planning and decision-making.  

In fact, most of LULC research in Laos focus on the change patterns and the driving 

forces context but without spatial context in predicting and modelling the future changes. 

Since LULCC model in the future is a new approach for the study area, which is important 

for giving the spatial planning information and land use planning. Only a few LULC research 

were referred (ADB, 2015; ELSA, 2015; PDPI, 2009; Nolintha and Masami, 2011), but they 

did not apply spatial prediction because the prediction of the future LULCC is a more difficult 

task as it requires comprehensive knowledge of the interaction between the driving 

forces(Riebsame et al., 1994).  

Thus, an understanding of the spatial-driven relationships related to LULCC will help 

to address pertinent questions that are related to location and quantity changes such as:  where 

are LULC changes taken place? What is the rate of change likely progress? And what is the 

future process? (Pontius Jr and Schneider, 2001). 

This dissertation will focus on Kaysone Phomvihan district in order to analyze LULCC 

and the driving forces. Kaysone Phomvihan district is the main city in Savannakhet province 

that is the second largest province and most intensive population in Laos after Vientiane 

Capital.  

This study area was chosen because few studies spatially related with LULCC were 

implemented for this area, and also because Kaysone Phomvihan district is one of the major 

cities in Laos that is currently having a strong economic development and urban growth that 

have an impact on LULCC (UNDP, 2011). 
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In fact, the economic and urban development over last decades in the district has 

influenced land resource demands and land concession widely, which is also causing a 

problem in land use management and planning in the district (Luanglatbandith, 2007). 

According to ADB (2012), the core problem in urbanization of Kaysone Phomvihan district 

is taking place with minimal coordination, inadequate infrastructure and insufficient concern 

for environmental impacts. This results in disorganized growth, inefficient land use, damage 

and loss of natural resources and inadequate access to urban services. These problems can be 

attributed to poor urban management, and spatial planning, poor connectivity between urban 

planning and environmental management, and insufficient investment in infrastructure and 

community services. Understanding land use patterns and changes as a major importance in 

this context.  Since, accurate and timely information of land use change is highly necessary 

to many related spatial planning sectors and actors for estimating levels and rates of 

deforestation,  urbanization, wetland and soil degradation and many other landscape-level 

phenomena (Vogelmann et al., 2001).  

Remote sensing data coupled with geographic information systems (GIS) and statistical 

analysis are effective tools to identify, analyze and understand LULCC patterns (DeFries et 

al., 2010; Long et al., 2007; Serneels and Lambin, 2001; Verburg et al., 2004).  Many studies 

have proved to achieved a good spatial modeling and prediction of the future LULCC through 

the several models such as logistic regression, Cellular Automata and  Agent-based (Swart, 

2016; Araya and Cabral, 2009; Serneels and Lambin, 2001; Jaimes et al., 2010; Lambin and 

Geist, 2006; Serra and Pons, 2008; Seto and Kaufmann, 2003; Were et al., 2014). 

Therefore, this study focuses on applying remote sensing data and GIS technique 

integrated with the statistical approach and LULCC model to analyze the LULCC patterns 

and the driving forces in Kaysone Phomvihan, Savannakhet province over 20 years from 

1997-2017 in order to predict LULCC in 2022. 

This will provide relevant knowledge and data, which are useful guidelines for the local 

government and civil society in formulating the strategies and master plans to ensure that it 

will contribute to address the land use issues and to achieve sustainable development. 
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1.2. Research objectives and questions 

The main objective of this research is to analyze the LULCC and the driving forces 

over 20 years from 1997-2017 in Kaysone Phomvihan district. From this complementary 

objective is to simulate LULCC for the future. The specific objectives are the following: 

1. To analyze the LULCC patterns of forest area, permanent agriculture area, built-

up area,  shrub area and water bodies in the years 1997, 2003, 2007, 2013 and 

2017. 

2. To identify the proximate drivers and spatio-temporal trends of the changes, and 

quantify underlying drivers that have influenced LULCC. 

3. To apply multi binary logistic regression method in analyzing the spatial 

relationship between the dependent and independent variables of LULCC. 

4. To simulate LULCC for the year 2022. 

5. To give spatial information to support land use planning and decision-making.  

In order to achieve these objectives, the research questions were formulated as the 

following: 

 1.  What are the LULCC patterns of forest, permanent agriculture, built-up, shrub 

and water? And what are the proximate and underlying drivers, and their spatial 

trends? 

2.  What are the relationships between the dependent and the independent variables? 

3.  Does the simulated LULCC model achieve the accurate result to predict LULCC 

in the future? And what are the future LULCC? 

4.  What the spatial planning will be considered on the LULCC in the study area? 

1.3. Method 

Figure 1.1 describes the methodology in this study in order to achieve the research 

objectives and questions. The methodology is divided into four phases as the following: 

Phase 1: The objectives are to classify the satellite images by a supervised algorithm in 

order to analyze LULCC in the periods of 1997-2003, 2003-2007, 2007-2013 and 2013-2017.  

Then, the main LULC conversions and their spatial trends were identified as the proximate 
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drivers (dependent variables) of LULCC. Since, the proximate drivers will be utilized for 

multi binary logistic regression analysis.  

Phase 2: The aims are quantifying the underlying drivers and preparing the independent 

variables for multi binary logistic regression. The underlying drivers in this study include 

biophysical and socio-economic variables (Geist and Lambin, 2002; Kissinger et al., 2012). 

Phase 3: The objective is to analyze the spatial relationship between the dependent 

variables (proximate drivers) and the independent variables (underlying drivers) in order to 

explain the probability of LULC conversions.  

Phase 4: The objectives are applying LULCC model to estimate the predictive ability 

and the accuracy of the model, and then validating the result. If the result achieved acceptable 

accuracy, then the LULC simulation for 2022 will be conducted.  

 
 

Figure 1.1: Methodology of this research to achieve research objectives and questions. 

 

1.4. Thesis organization  

This thesis has been divided into seven chapters. The first chapter is an introduction 

that presents an overview of the thesis: the research background, objectives, questions and 
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the thesis outline. The second chapter is the literature review on the related theoretical 

framework and documents that can be formed the research methodology and investigation.  

The third chapter is an introduction to the study area and related information such as 

geographical location, background, socio-economic and relevant research in the study area.  

The fourth chapter corresponds to the data and methodological part. This chapter 

introduces the study approach in each stage, the specific methods, data and material used, 

especially introducing the analysis process to achieve the research objectives and questions. 

The fifth chapter describes the main results of satellite image classifications, the proximate 

and underlying drivers, as well as the results of multi binary logistic regression and simulated 

LULCC model. These results were reviewed and discussed in the sixth chapter that explains 

the main findings related to the relevant studies and research. Finally, the seventh chapter 

presents the main conclusions and recommendations. In this section, key findings and critical 

points that need further treatment have been forwarded as a recommendation for related 

sectors and future work. 
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Chapter 2 - Literature review  

2.1. LULC concept 

The expression of “land use” and “land cover” are very frequent and can be easily 

confused. However, both definitions are important.  According to Lambin et al. (2001), land 

cover points to the biophysical attributes of the Earth’s surface whereas land use is the human 

purpose or intent applied to these attributes on the way the land cover is used.  

According to NOAA (2017), land cover indicates a region that is covered by forests, 

wetlands, impervious surfaces, agriculture, and other land and water types. Land cover can 

be identified by analyzing satellite and aerial imagery. Land use is how people use the 

landscape whether for development, conservation, or mixed uses, the different types of land 

cover are managed or used differently by human agent, policy and interest.   

Land use is the intended employment and management strategy placed on the land use 

by human agents, or land managers to exploit the land use and reflects human activities such 

as industrial and residential zones, agricultural fields, grazing, logging, and mining among 

many others (Chrysoulakis et al., 2004; Zubair, 2006). 

According to FAO (1998), land use “is characterized by the arrangements, activities 

and people that undertake in a certain land cover type to produce, change or maintain it”. 

Thus, this expression “establishes a direct link between land cover and the actions of people 

in their environment”. Similarly, Lambin and Geist (2006) defined land use as “the purpose 

for which humans exploit land cover” that includes “both the manner in which biophysical 

attributes of the land are manipulated and the intent underlying that manipulation, i.e., the 

purpose for which the land is used”.  

In this research, the data used were the classified satellite images to analyze land cover 

classes and integrate with the spatial data included biophysical and socio-economic variables 

in order to analyze the change patterns and how land is used in the study area. Therefore, the 

terms “land use and land cover” (LULC) was used in this research. 
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2.2. Drivers of LULCC 

LULCC can be caused by several factors related to the complex interaction between 

social, political, economic, technological and biophysical variables (Geist and Lambin, 

2002). Thus, considerable research has been conducted to identify the drivers of LULCC: 

from urban processes of land use change (Lambin et al., 2001; Seto and Kaufmann, 2003) to 

deforestation in tropical regions (DeFries et al., 2010; Geist and Lambin, 2002; Houghton, 

2012) and to agricultural expansion and land use changes in mountainous ecosystems 

(Alexander et al., 2015; Mottet et al., 2006; Serra and Pons, 2008).  

According to several authors, the causes of LULCC can be categorized as direct 

(proximate) or indirect (underlying) drivers (see Figure 2.1). The direct causes comprise 

human activities that could arise from the continuous use of land and directly alters driven 

forces for instance urbanization, deforestation, agriculture expansion, wood extraction.  On 

the other hand, indirect causes are fundamental forces that strengthen more direct causes of 

LULCC include economic, biophysical, political/institutional, socio-cultural and technology 

(Geist and Lambin, 2002; Lambin et al., 1999; Turner II et al., 1995).  
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Figure 2.1: Proximate/direct drivers and underlying/indirect drivers of LULCC (Geist and Lambin, 2002; 

Lambin et al., 1999; Turner II et al., 1995). 
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2.2.1. Proximate drivers 

The proximate or direct drivers are the human activities and actions that have a direct 

effect on LULCC (Geist and Lambin, 2002; Jaimes et al., 2010; Kissinger et al., 2012).  The 

urbanization, agriculture expansion, deforestation and infrastructure development are among 

the drivers of LULCC.   

In terms of urbanization, it has an impact to agricultural and forest lands that are 

generally accompanied by an increase in energy use, high demand of natural resources and 

food that lead to urban growth and land concessions (Braimoh and Onishi, 2007). The urban 

areas account for only 2% of the Earth's surface but over half of the world's population 

nowadays resides in cities (UN, 2014). These exert tremendous pressures on land and its 

resources, especially in developing countries. According to Weier (2002), over the next 

century, urbanization is predicted to move at a rapid pace. It is estimated that worldwide 

migration towards the cities increases at three times the rate of population growth. In addition, 

FAO (2011) estimated that in 2050, 100 million hectares of land would be transformed for 

residential, industrial and infrastructure purposes, and more than 90% of lands in less 

developed countries.  

The development of infrastructure is correlated with urban growth and also leads LULC 

conversion, especially in Latin America, Asia and Africa (Geist and Lambin, 2002; 

Hosonuma et al., 2012; Kissinger et al., 2012). Since, better access to markets is correlated 

with land use conversion by infrastructure can trigger market development, cash crop 

adoption and economic growth. Infrastructure extension can be a component of rural 

development and settlement policies that drive market integration (Kissinger et al., 2012). 

In the context of agricultural expansion has tremendous impacts on habitats, 

biodiversity and land use changes. Foley (2011) estimates that worldwide agriculture land 

has already cleared or radically transformed 70% of the world’s prehistoric grasslands, 50% 

of savannas, 45% of temperate deciduous forests and 25% of tropical forests. Agriculture is 

mainly expanding in the tropical region where it is estimated that about 80% of new croplands 

are replacing forests (Geist and Lambin, 2002).  

Multiple studies argue that agriculture expansion causes forest conversion and it results 

in deforestation: the development of subsistence or commercial agriculture can cause forest 
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loss (Alexander et al., 2015; Kissinger et al., 2012; Hosonuma et al., 2012). Global food 

demands increase agriculture production and agricultural cropland expansion, which lead 

land use change associated with the deforestation: the forest conversion to permanent 

cropland, cattle ranching and shifting cultivation. These have an influence on the 

deforestation, especially in mainland Asia, Latin America and Africa (Kissinger et al., 2012). 

In case of shifting cultivation, the deforestation was driven by slash-and-burn agriculture is 

more widespread in upland zones of Asia than elsewhere (Kissinger et al., 2012; Geist and 

Lambin, 2002).  

Another factor that explains deforestation can be the extraction of wood (for either 

commercial use or fuelwood for domestic use) (Hosonuma et al., 2012). The commercial 

wood extraction is frequent in both mainland and insular Asia. In Africa, the harvesting of 

fuelwood by individuals for domestic uses are associated with wood extraction and 

deforestation (Geist and Lambin, 2002). 

2.2.2. Underlying drivers 

The underlying drivers are fundamental (social) processes that underpin the proximate 

causes and either has an indirect impact on local and national or global level (Geist and 

Lambin, 2002).  Kissinger et al. (2012) stated that there are complex interactions of social, 

economic, political, cultural and technological processes that affect the proximate drivers. 

Several studies mention an extra group of environmental or biophysical drivers as explaining 

forces for LULC (Aguiar et al., 2007; Jaimes et al., 2010; Were et al., 2014).  Thus, these 

underlying drivers can be divided into environmental or biophysical, economic, 

demographic, policy, technological, cultural, and institutional drivers (see Figure 2.1).  They 

can be considered as interconnected concepts, all linked to each other and operating in 

multiple scales (Geist and Lambin, 2002).   

Economic growth:  Economic drivers are essential to consider when explaining land use 

changes (DeFries et al., 2010; Geist and Lambin, 2002; Kissinger et al., 2012).  Market 

growth, rising income of population, commercialization or change in poverty rates can all 

have an influence on the conversion of land use (Aguiar et al., 2007; Geist and Lambin, 

2002).  Other research mentioned that economic growth based on the export of primary 
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commodities and increasing demand for timber and agricultural products in the global 

economy is identified as the main indirect drivers of deforestation and degradation across the 

tropical countries (Kissinger et al., 2012).  

Population growth: Population growth and density are extensively discussed as an 

important driver for land use change (Kissinger et al., 2012; Alexander et al., 2015). The 

growth of urban population places pressure on rural landscapes for commercial agriculture 

(DeFries et al., 2010). Mutoko et al. (2014) argued that population growth increase the 

demand for food, and leads to agricultural intensification in developing countries. 

Policy: The policy framework has an influence on how land is used to change 

regulations that can have enormous effects on land use.  There is a number of developing 

countries that suffer from a causation link between rural poverty, land degradation and 

deforestation such as poor rural households abandoning degraded land to frontier forested 

lands, cropping in poor soils lead to further degradation, and finally, it leads to land 

abandonment and land conversion (Barbier, 2000). 

Biophysical: Usually refers to catastrophic factors that lead to sudden shifts in the 

human-environment condition (Geist and Lambin, 2001).  It comprises the natural processes 

of the environment such as climatic variations, topography, drainage, soil type and 

geomorphic processes.  Verburg (2004) noted that biophysical factors mostly do not drive 

land use change directly, they can cause LULCC (through climate change) and they influence 

land use allocation decisions (soil quality). 

Socio-cultural: Cultural factors often affect economic and policy drivers, public 

attitudes, values and beliefs toward the environment are important that how land is used in 

terms of socio-culture aspect (Geist and Lambin, 2002). Understanding values and beliefs of 

communities are essential in particular towards people and the future generations that can 

contribute to land use management and planning (Geist and Lambin, 2002).  

Technological: Technological progress also fosters growth in individual city size 

because of knowledge accumulation leads to enhance urban scale economy or improving the 

ability to manage cities through transport technologies that have increased access to land and 

greater access to markets that have an impact to land use and finally, the conversion (Gruber 

and Peckham, 2009). 
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2.2.3. Identifying LULCC Drivers in Laos 

Few studies identified LULCC drivers in Laos, Thongmanivong et al. (2006) examined 

land use change patterns and the driving forces of socio-economic development by farmer’s 

decisions regarding changing land use in areas along the new North-South Economic 

Corridor that passes through Luang Namtha and Bokeo provinces in northwestern Laos over 

the period 1995 -2005. This research found that one of the reasons for the rapid expansion is 

increasing trade and investment with neighboring countries. This driver is quite complex and 

includes large land concessions, medium to small-scale investments, as well as household 

based activities. 

Okamoto et al. (2014)  studied LULCC in a village of the Vientiane municipality, the 

results found that there were two different processes and causality linkages from urban 

process to forest degradation and fragmentation due to commercial logging and wood 

extraction are significant processes with more than one third of the study area converted to 

shrubland and degraded forest.  

For the forest loss caused by urbanization and development in Laos were explained by 

Mabbitt (2006) that the most basic factors are high demand for wood and non-wood forest 

products in wood-deficient markets in some countries, shifting cultivation practices and 

forest fires are still the main causes as well as the conversion of forest land to permanent 

agricultural land and infrastructure development. However, a reason for this agriculture 

expansion is the fact that increased population and economic growth that led farmers to 

change their future view from subsistence agriculture to economy perspective (Fujita et al., 

2007).  

Another study has pointed out that other factors of forest loss in Laos are due to: 1) 

unsustainable wood extraction from forest; 2) pioneering shifting cultivation; 3) agricultural 

expansion; 4) industrial tree plantation; 5) mining; 6) hydropower development; 7) 

infrastructure development; 8) fire and 9) urban expansion (Kulik, 2014). 

Therefore, the driver of LULCC in Laos can be referred as the direct drivers (proximate) 

that alter from human activities include urbanization, land concession, deforestation. The 

indirect drivers increased LULCC that have an influenced by socio-economic process: 
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urbanization due to the economic and population growth, change subsistence agriculture to 

commercial agriculture production that leads forest and shrub lands conversion, and wood 

extraction and shifting cultivation lead to the deforestation.  

2.3. Remote sensing for LULCC classification 

Maktav et al. (2005) stated that traditional data collection methods such as demographic 

data, census and sample maps were not satisfactory for the purpose of urban land use 

management. The accurate information of LULCC is therefore highly essential to many 

sectors. To achieve this,  remote sensing data can be used and it provides LULC useful 

information.  

Remote sensing (RS) refers to the science or art of acquiring information of an object 

or phenomena in the Earth's surface without any physical contact with it. Moreover, this can 

be done though sensing and recording of both reflected or emitted energy and then the 

information is processed, analyzed and applied to a given problem (Campbell, 2002) (see 

Figure 2.2). 

 

Figure 2.2: Passive sensor (reflected energy) and active sensor (emitted energy) (source: 

GrindGIS ). 
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RS provides an efficient approach to monitor and detect land cover changes. The RS 

data are one of the primary sources extensively used for change detection in recent decades 

(Lu et al., 2004). The RS is important for estimating levels and rates of deforestation, habitat 

fragmentation, urbanization, wetland degradation and many other landscape phenomena 

(Campbell, 2002).  

The number of RS applications for urban studies has showed the potential to map and 

monitor urban land use and infrastructure. Herold and Menz (2001) mentioned that urban 

land use information with high thematic, temporal and spatial accuracy that derived from 

remote sensing data is an important condition for decision support to city planners, 

economists, ecologists and resource managers. Generally, LULCC have a wide range of 

impacts on environmental and landscape attributes that include the quality of water, land and 

air resources, ecosystem processes and functions (Rimal, 2011). Therefore, the use of RS 

data and image processing techniques provide accurate, timely and information for detecting 

and monitoring changes in LULC. 

In order to analyze LULCC, image classification results with high accuracy are 

mandatory. Image classification refers to the extraction of different classes or themes that 

usually were categorized from the satellite image classification (Weng, 2012). The 

classification using RS techniques have attracted the attention of research community as the 

results of the classification are the backbone of environmental, social and economic 

applications (Rimal, 2011). Lu and Weng (2007) categorized the image classification 

methods into supervised, unsupervised, parametric, nonparametric, subpixel, and many 

others. Some image classification methods are discussed as follows: 

Supervised classification method: land cover classes are defined. The reference data 

are available and used as training samples. The signatures generated from the training 

samples are then used to train and classify the spectral data into a thematic map (Lu and 

Weng, 2007). 

Unsupervised classification method: clustering-based algorithms are used to partition 

the spectral image into a number of spectral classes that is based on the statistical information 

inherent in the image. This method has no prior definitions of the classes are used. The analyst 
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is responsible for labelling and merging the spectral classes into meaningful classes (Lu and 

Weng, 2007). 

Parametric method: Gaussian distribution is assumed, the parameters (e.g. mean 

vector and covariance matrix) are often generated from training samples. When the landscape 

is complex, parametric classifiers often produce ‘noisy’ results. Another of the major 

drawback is that it is difficult to integrate ancillary data, spatial and contextual attributes, and 

non-statistical information are needed for the classification procedure (Lu and Weng, 2007). 

Non-parametric method: without an assumption about the data is required. Non-

parametric classifiers do not employ statistical parameters to calculate class separation. This 

method is especially suitable for incorporation of non-remote-sensing data into a 

classification procedure (Lu and Weng, 2007). 

2.4. LULCC model 

A way to understand LULCC dynamics and their drivers is to model LULCC. Several 

studies showed that the models of  LULCC can be divided into two broad categories: non-

spatial and spatial (Jaimes et al., 2010; Lambin and Geist, 2006; Serneels and Lambin, 2001; 

Serra et al., 2008; Seto and Kaufmann, 2003; Were et al., 2014). The first category models 

analyze the magnitude and rate of LULCC, without considering a spatial variation.  The 

second, on the other hand, focuses on LULCC at a specific spatial level (for instance 

administrative units) and detects spatial variation of LULCC in the biophysical, 

socioeconomic and policy context (Seto and Kaufmann, 2003; Huang et al., 2007).  

The spatial LULCC models are important for understanding LULCC processes.  The 

knowledge of drivers in time and space is needed, in order to do this, the identification of 

proximate drivers is necessary for the spatial change prediction whenever insight the 

underlying drivers is essential for predicting the future drivers of LULCC (Serneels and 

Lambin, 2001).  Specifically, detecting historical trends of the drivers help to construct future 

scenarios because it broadens knowledge about past and recent drivers (Kissinger et al., 2012; 

Veldkamp and Lambin, 2001). For instance, information about the development of an 

underlying driver such as population growth is useful for predicting the future of LULCC 

(continuous population growth keeps on affecting land use) (Kissinger et al., 2012).  
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 Lambin et al. (2001) distinguished several categories of LULCC models: empirical-

statistical, stochastic, optimization, dynamic (process-based) and integrated models (see 

Table 2.1).   

Empirical-statistical models identify explicitly the causes of LULCC by using 

multivariate analysis of possible exogenous contributions to empirically derived rates of the 

changes (Lambin et al., 2000). 

Stochastic models for LULCC consist mainly of transition probability models that 

describe stochastically processes that move in a sequence of steps through a set of states. The 

transition probabilities can be statistically estimated from a sample of transitions that occurs 

during the time interval (Hägerstrand, 1968). 

Optimization models techniques originate from the land rent theory that are mostly used 

in economic context (Kaimowitz and Angelsen, 1998). The models are based either linear 

programming at the microeconomic level, and general equilibrium models at the 

macroeconomic scale (Kaimowitz and Angelsen, 1998; Lambin et al., 2000).  

Dynamic (process-based) simulation models have been developed to analyze LULCC 

processes and their evolution. The simulation models emphasize the interactions among all 

components that are based on a prior understanding of the driving forces in LULCC systems 

and processes (Lambin et al., 2000). 

Integrated models are based on combining elements of the different modelling 

techniques.  Therefore, these types of the models are referred to as integrated models, 

although in many cases they are better described as hybrid models (Wassenaar et al., 1999; 

Lambin et al., 2000). 

No matter which model type is used, modelling of LULCC tries to address at least one 

of the following questions: 1) Which one of the socio-economic and biophysical variables 

contribute most to an explanation of LULCC and why? 2) Which locations are affected by 

LULCC?  3) What rate do LULCC progress and when? (Lambin et al., 2001). The LULCC 

models that were used in this study are discussed as the following sections.  
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Table 2.1: Categories and subtype of LULCC model (Lambin et al., 2001). 

Category of models Representative models  

Statistical models 

 Linear Regression Models 

 Econometric Models 

 Multinomial Logit Models 

 Canonical Correlation Analysis Models 

Stochastic models 

 Natural-Sciences Oriented Model Approaches 

 Markow Modeling of land use 

 GIS-Based Modeling of Land use change  

 Cellular Automata 

 Agent-based 

Optimization models 

 Linear Programming Models. Single and Multi-Objectives  

 Dynamic Programming 

 Goal Programming, Hierarchical Programming, Linear and Quadratic Assignment 

problem, Bonlinear Programming Models 

 Utility-Maximization Models 

 Multi-Objective/Multi-Criteria Decision-Making Models  

Spatial interaction models 

(Dynamic models) 

 Potential models 

 Intervening opportunities models 

 Gravity/spatial models 

Integrated models 

 Gravity-spatial interaction based and Lowery type integrated models 

 Simulation integrated models 

 Urban/Metropolitan level simulation models 

 Regional Level simulation Models 

 Global Level Simulation Models 

 Input-Output-Based Integrated Models.  

 

2.4.1 Logistic regression model 

Logistic regression (LR) quantifies the relationship between the drivers and probability 

of LULCC. LR model has been used to project the future LULCC, which are based on the 

past trends and drivers that determine the conversions between the different categories of 

LULC (Millington et al., 2007; Were et al., 2014). LR  measures the probability of particular 

LULCC process from the given drivers (Rossiter and Loza, 2012). Moreover, it can estimate 

the direction and intensity of the independent variables (explanatory variables) by predicting 

the probability outcome associated with each category of the dependent variable that can be 

used to map where the probability occurred on LULC conversion.  

The LR has been used in deforestation analysis (Geoghegan et al., 2001; Pontius Jr and 

Schneider, 2001), agriculture (Serneels and Lambin, 2001), and urban growth model (Allen, 

2003; Landis and Koch, 1997; Wu, 1997). In many cases, the LR model fits with the spatial 
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process analysis, and the outcomes are reasonably well (Irwin and Geoghegan, 2001).  Allen 

(2003) also highlighted the use of LR to identify which variables are most appropriate to 

represent the urban change process and LR had a good explanation of the spatial relationship.  

Since, as LR is widely used and the satisfactory model for LULCC study. Therefore, LR was 

considered the proper model for this study in order to quantify the spatial relationship 

between drivers and explain how the drivers influence LULCC. 

 

2.4.2. Cellular Automata model 

  

   

  

    

  

  

    

   

   

   

 

              

               

  

            

   

              

 

               

      

  

      

     

         

            

            

             

    

  

  Cellular Automata (CA) provides the powerful tool for the dynamic modelling of 

LULCC that is a method to take spatial interactions into account. The roots of CA in

geography can be traced in ”A Monte Carlo approach to diffusion” by  (Hagerstand,1965). 

The CA estimates the taken time in transition that can generate complex spatial

patterns from the simple set of rules and predicts LULCC in the future (Singh, 2003).

The CA essentially comprises the following elements: 1) a cell space or lattice, 2) a

finite set of cell states, 3) a definition of a cell’s neighborhood, 4) a set of transition rules to

compute a cell’s state change and 5) time steps in which all cell states are simultaneously 

updated (White and Engelen, 2000) (see Figure 2.3 ). The CA model also requires GIS-based 

input as image format such as land use maps, road maps, protected areas, etc.

The CA are many has the ability to perform the spatial dynamics and time explicitly.

CA can be incorporated with the spatial component and it addresses dynamism with simple 

rules that increases computational efficiency. Since the computational efficiency of CA leads 

it becomes favorite LULCC modeller (Singh, 2003). Besides, the ability of CA that

represents the complex systems with spatial and temporal behaviours from a set of simple

rules and states that made this technique very interesting for geographers and urban 

researchers (Alkheder and Shan, 2005). Wagner (1997) mentioned that CA can be considered

as the analytical engine of GIS. 
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Figure 2.3: Five components of CA: lattice, cell state, neighbor, transition rule and time (White and 
Engelen, 2000). 
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Chapter 3 - Study area 

3.1. Geography 

Kaysone Phomvihane district is the capital city of Savannakhet province. The district 

is located between latitude 16° 26' 33'' N and 16° 44' 53'' N, and between longitude 105° 01' 

26'' E and 106° 44' 10'' E. It has a total area of 701.18 km2.   

In terms of climate, the district has a tropical savanna climate with little subtropical 

climate characteristics as the city located 16.4° north of equator. The hottest month is April 

with a temperature varying from 29.5 °C to 35.2 °C while the coolest month is December 

with the temperature from 15.2 °C to 28.7 °C. The city experiences dry season during winter 

months and wet season during summer months due to activation of monsoon. The driest 

month is December with a precipitation total 2.0 millimeters (0.079 in), while the wettest 

month is August with precipitation total 323.1 millimeters (12.72 in) (Reid, 2015). In what 

concerns landscape, the district has 90% of large flat areas and 10% are hills. The large flat 

areas are mainly covered by agricultural activities and important forest areas as well as the 

settlement area in the western district and along the Mekong River (see Figure 3.1). 

Kaysone Phomvihan district is the second-largest city in Laos after Vientiane Capital 

and the district is along the Mekong River-front in the western that shares the border with 

Moukdhan province, Thailand (LNBSS, 2015) (see Figure 3.1). The district has a favorable 

position. Since, it is considered as the crossroad between the northern and southern Laos. 

This marks a geographical advantage in the opportunity to attract foreign investment into the 

district (Nolintha and Masami, 2011). Especially, the second Lao-Thai friendship bridge is 

currently booming economy that has brought the new commercial development in the 

northern part of Kaysone Pomvyhan town (LNBSS, 2015). 
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Figure 3.1: Geographical location of Kaysone Pmomvihan district (source: NGD Laos). 

 

  

3.2. Socio-economic and demographic context 
 

Fidloczky (2002) studied urban land use development in Laos and the result found that 

the urban expansion results mainly from strong socio-economic development and increased 

population in urban centers, which is partially due to immigration trends from rural towards 

urban areas. In relation, urban areas in Laos have increased in size since 1992 from 84,000 

ha to 135,000 ha in 2002.  This equals an average increase around 5000 ha per year and this 

trend is likely to continue.  
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Based on the 2015 Population and Housing Census (National Statistics Center, NSC), 

the population of Kaysone Phomvihan district was approximately 90,900 and a total number 

of households was 12,252, which gives an average household size of 5.8. In terms of sex 

distribution, the female population was 38,914 and accounting for 51% of the total population 

that was slightly higher than the male population of 37,991(49%) (ADB, 2015). The 

population density of the district is 17 people /ha but the city center of Kaysone Phomvihan 

district has a relatively high population density of 75 people/ha. The Japanese International 

Cooperation Agency (JICA) projected populations to 2030 by that time the population of the 

district is expected to increase of 128,200 by 2030 (ADB, 2015) (see Table 3.1). 

 

Table 3.1: The population census in Kaysone Phomvihane district ( source: Japanese 

International Cooperation Agency JICA 2015). 

Year               Total Population 

2010 78,900 

2015 90,900 

2020 101,700 

2025 114,500 

2030 128,200 

 

In 2010, about 60% of households in the district are engaged in the commercial and 

service sectors that reflect an increasing number of medium and large trading and commercial 

enterprises in the district. Over 38% of the households are engaged in agriculture including 

small-holder farming, rice production, livestock and poultry raising and fish farming. Only a 

small proportion of the households is involved in handicraft making and home-based 

activities (ADB, 2015) (see Table 3.2). 

 

Table 3.2: The proportion of the population engaged in each sector in 2010 by (Source: 

JICA 2015). 

Sector  % of HHs 

Agriculture and forestry  38.3 

Handicraft 1.3 

Commerce and service  59.9 
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Based on the gross domestic product (GDP), over the last three year periods 2007 to 

2010, the economy of Kaysone Phomvihane district grew from 9.4% to 9.8%. The GDP per 

capita increased from US$712 in 2006 to US$1,027 in 2010 and reached to US$1,464 in 

2014. Three main sectors contributed to this growth, namely agriculture sector (with a share 

of 20.9% of GDP in 2006 to 20.3% in 2010), service sector (GDP share reducing from 48.2% 

in 2006 to 46.6% in 2010) and industrial-commercial sectors (its share of GDP with 30.8%) 

(ADB, 2015).  

These GDP growths can be due to the strategic positioning of the district at the 

crossroads between the EWEC (East-West Economic Corridor) connecting to Thai and 

Vietnamese road networks, and the Mekong River by second Lao-Thai friendship bridge (see 

Figure 3.2-3.4). In fact, after the second Lao-Thai friendship bridge was completed, the 

number of foreign and joint-venture companies in the district is doubled in the province 

between 2005 and 2008 from 30 projects in 2005 to 70 projects in 2008.   

It is noteworthy that 12 projects have a major impact to land use in the northern city 

area that is near to the bridge and only three projects are in the historical city center (see 

Figure 3.5). Especially, Savan-Seno Special Economic Zone (SSSEZ), the SSSEZ has 

showed dynamism that influences urban land use, the initial plan is identified two sites, and 

then this plan has been modified to 600 hectares with four sites: Savan City (A), Logistic 

Park (B), Savan Park (C) and a resettlement site (D). All these sites are located in the northern 

urban area that is near the bridge (site A), along route number 9 (sites C and D), except site 

B located in Seno district (ELSA, 2015; ADB, 2012, 2015) (see Figure 3.5). 
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Figure 3.2: The East-West Economic Corridor route between Myanmar, Thailand, Laos and 

Vietnam (source: ADB 2012). 

 

 

 

Figure 3.3: The East-West Economic Corridor route through three districts: Kayson Phomvihan, 

Phine and Dansavan (source: ADB 2012). 
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Figure 3.4: Road network in Kaysone Phomvihan district connects with East-West Economic 

Corridor and Lao-Thai Friendship Bridge (Source: ADB 2012). 

 

3.3. Land use planning and urban development in Laos 

Over the last two decades, considerable investments have been made in urban areas in 

Lao PDR by the government itself and through the assistance of development partners. These 

have resulted in significant improvements to urban environments and living conditions in 

many small, medium, and large urban centers (ADB, 2012). 

According to ADB (2015), the National Urban Development agenda is contained in the 

draft of National Urban Sector Strategy (NUSS) that was prepared by the Department of 

Housing and Urban Planning (DHUP) of the Ministry of Public Works and Transport 

(MPWT). The NUSS sets out a range of objectives, policies and programs to develop all 
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urban areas from the provincial capital to village clusters. It intends to strengthen the capacity 

of urban management authorities and create favorable conditions for civil society and private 

sector to actively participate in urban planning, management and sustainable development.  

The Provincial Government of Savannahket gives special emphasis on the provision of 

essential infrastructure in the urban center where the majority of the local population resides 

(PDPI, 2009).  The provision of infrastructure gives priority for improving and upgrading of 

the urban roads and drainage systems, installation of wastewater treatment facilities and 

expansion of sewerage/sanitation systems, and riverside embankment works for both 

protection and provision of tourism facilities. 

Kaysone Phomvihave Urban Master Plan was approved in 2001. The Master Plan 

included the land use plan, road network planning, facility system and building regulation. 

Most of the current urban development activities such as road network improvements, land 

use management and city organization being undertaken in Kaysone Phomvihane district that 

is based on the Master Plan (ADB, 2015; Nolintha and Masami, 2011). The updated Kaysone 

Phomvihane socio-economic development plan (SEDP) identified key land management and 

infrastructure projects for the priority investments. These include the essential urban 

development projects such as residential areas, road network improvements, industry zone 

and natural protected areas. The plan also included the priority to support the development 

and environmental protection (ADB, 2015). 

The Official Development Assistance (ODA) and foreign private investments were the 

main actors of the urban transformations through three important projects in Kaysone 

Phomvihan district. Before these transformations, the district was organized on the north-

south axis, along the Mekong River and parallel streets that gathered administrative 

buildings, equipment, residential areas, main market and temples (Nolintha and Masami, 

2011). Three main construction projects had later an impact on city organization and 

functional zone (see Figure 3.5). The first project is the displacement of the fresh products 

market from the city center to the north of the urban perimeter in 1998. The second project 

that changed the city organization under the Secondary Towns Project in 1998. Since, most 

of the administrative buildings that spread along the Mekong River have been relocated to a 

new-built neighbourhood on the east side of the city. The last project also has a specific 
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function; it is the construction of the stadium in 2005 in the northern city to host the 

7th National Games. These three projects aim to establish new functional centers in the district 

that is outside the perimeter of the historical city center (Nolintha and Masami, 2011; ADB, 

2015). These new city centers have been designated along the East-West Economic Corridor, 

which is envisioned to be the future centers of economic activities for the district (see Figure 

3.5). These locations are considered for the expanding commercial and business 

establishments such as supermarkets and shopping malls, restaurants and hotels. These will 

serve as the tourist destination in the district and province. 

 

Figure 3.5: Kaysone Phomvyhan urban zone, three main construction projects and Special Specific Economic 
Zone sites (A, B, C) are in Kaysone Phomvyhan district except site C is in Seno district (S) 

(source:ADB: 2015). 
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The urban area is a major related to the spatial planning and development policy in Laos 

but in terms of forest and agriculture management, the Land and Forest Allocation program 

(LFA) developed in 1999 aims to allocate forestlands to communities, and agricultural land 

to families and individuals (GoL, 2005). This program set out that degraded land is for 

rehabilitation through plantations and tree crops. Forest is allocated that is based on the need 

to protect natural resources and provide for non‐timber forest products and other traditional 

uses. Villagers of the district are required to set 5‐10% of their land to accommodate future 

population growth (ADB, 2012, 2015; GoL, 2005). The LFA program has been implemented 

within three relevant laws: 

1) Law of Forest (2007) that defines various forest categories in utilizing for business 

operations and traditional uses that includes the use of forest for tourism, recreational sites, 

logging and harvesting forest or forest products for commercial purposes. An investor wishes 

to engage in business operations in the forest must seek approval from the Forest sector and 

relevant sectors. All persons or organizations utilizing forests for business purposes shall 

avoid any negative impacts on forest and forest production areas, nature, the environment 

and society (GoL, 2005, 2007). 

2) Agriculture Law (1998) defines the use for agricultural production land must seek 

approval from relevant sectors for allowing investment in agricultural activities such as 

investment in cultivation, animal husbandry and fishery to undertake agricultural production 

or agricultural business. This law determines the scale of production and business of 

agricultural lands regarding environmental protection, and  also set out the obligation for 

individuals and organizations in undertaking agricultural production to protect the 

environmental and natural resources (GOL, 1998). 

3) Environmental Protection Law (1999) that sets out the development projects and 

operations that have or will have the potential to affect the environment shall submit an 

Environmental Impact Assessment (EIA) report to accordance sectors who are responsible 

for environmental management and monitoring, and issue an Environmental Compliance. 

In chapter 6 will discuss the relevance of these laws taking into account the results 

that were obtained through this study.  
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Chapter 4 – Data and Methodology 

This chapter will describe the data and methodology used in this study. First, the study 

framework will be briefly introduced. The remote sensing data and classification algorithm, 

as well as identifying the proximate drivers of LULCC will be explained. Then, the pre-

processing of the underlying drivers and independent variables will be discussed. In the last 

section, an explanation of the multi binary logistic regression analysis and the LULCC model 

will be performed.  

4.1. Study framework  

Based on the study framework presented in figure 4.1, the satellite image classification 

and LULCC were firstly analyzed in Erdas Imagine 2015 and ArcMap v.10.3.01 (HG, 2015; 

ArcGIS, 2014). Then, the preparation of independent variables included biophysical and 

socioeconomic factors were carried out in ArcMap. For the statistical analysis through 

logistic regression was computed in SPSS v.19 and the LULCC model was conducted in 

QGIS v.2.18 (IBM, 2010; QGIS, 2016). Figure 4.2 presents the preparing and analysis 

processes of the proximate driver (dependent variables) and underlying drivers (independent 

variables) for further analysis of MBLR and LULC simulation for 2022. 

 
Figure 4.1 Study framework applied in this study. 
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Figure 4.2: Data analysis processes in this research. 

 

4.2. Satellite images classification for LULCC analysis 

 

4.2.1. Remote sensing data 
 

The different Landsat sensors obtained via United States of Geological Survey source 

(USGS, year): Thematic Mapper (TM) for the years 1997 and 2007, Enhance Thematic 

Mapper Plus (ETM+) for the year 2003 and Operational Land Imager (OLI) for the years 
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2013 and 2017 were considered (see Table 4.1). All the images are from tropical areas, it is 

cloudy in monsoon season and selecting images are restricted to the period of December to 

March.  It is also important to use a cloud-free scene and using images acquired almost or in 

the same season is a fundamental factor of LULC change study. This eliminates the effects 

of seasonal change when investigating year-to-year change. The same period of images is 

often used because it minimizes the discrepancies in reflectance caused by seasonal 

vegetation fluxes, climatic differences and sun angle differences (Singh, 1989). 

Table 4.1: Landsat images used in this study from USGS site. 

Landsat Sensor Scene (Path-Row) Date Spatial Resolution 

OLI 8 127/48 29 Dec 2017 30 x 30 m 

OLI 8 127/48 18 Dec 2013 30 x 30 m 

TM 4-5 
127/48 

127/49 

16 Jan 2007 

16 Jan 2007 

30 x 30 m 

30 x 30 m 

ETM+ 7 
127/48 

127/49 

29 Jan 2003 

29 Jan 2003 

30 x 30 m 

30 x 30 m 

TM 4-5 127/48 06 Dec 1997 30 x 30 m 

 

4.2.2. Image-preprocessing 

Multi pre-processing tasks were taken in Erdas Imagine 2015. All image layers of each 

Landsat sensor were combined such as Landsat OLI 2017 and 2013 from bands 1-7, Landsat  

ETM+ 2003 from bands 1-7 and Landsat TM 2007 and 1997 from bands 1-7, but excluded 

bands 8-11(OLI), bands 6 and 8 (ETM+) and band 6 (TM) (see Table 1.B in Appendix for 

all Landsat bands).  The thermal infrared bands of each Landsat sensor were used to analyze 

land surface temperature (see section 4.4.2). Remote sensing data in a raw format generally 

contains flaws such as noise, haze effect etc. Therefore, following correction operations were 

performed on the data during the pre-processing stage: atmospheric and radiometric 

correction. For geometric correction, all data from Landsat OLI, Landsat ETM+ and Landsat 

TM are in Level 1 that has been already geometrically corrected (USGS). 
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Atmospheric correction 

The atmospheric correction had employed ATCOR algorithm that is available in Erdas 

Imagine 2015. ACTOR enables correcting the multispectral remote sensing data over flat 

terrain (Raaba et al., 2015). This algorithm firstly removal haze from images before 

performing atmospheric correction knew as haze correction. Then, converting pixel values 

to physical reflectance, as measured above the atmosphere. It normalizes images based on 

radiance values and image acquisition times and then calculates the reflectance values at the 

surface to remove atmospheric effects in the satellite images, as well as preparing the images 

for further analysis under different atmospheric conditions (Geomatica, 2013). This method 

needs to construct the calibration file that the radiance of each band has to enter to values for 

C0 and C1, the respective values of bias (addictive value C0) and gain (multiplicative value 

C1) (Geosystems, 2014) (see Equation 4.1). The bias and gain values (C0 and C1) were 

computed based on the metadata files (MTL.txt) from Landsat 8 OLI, Landsat 7 ETM+ and 

Landsat TM (see Table 4.2 for calibration file of Landsat 8 OLI in 2017 and see Table B.2-

7 in Appendix for Landsat ETM+ and Landsat TM). 

    C0 = 0.1 * RADIANCE _ADD (Offset) and C1 = 0.1* RADIANCE_MUILT (Gain) (4.2) 

The factor 0.1 is required to convert the units used by Landsat [Watts/(m2 * sr * 

micron)] into the radiance unit employed by ATCOR in Erdas Imagine [Mw/cm2 * sr1 * 

micron1] (Geosystems, 2014). 

Table 4.2 Calibration file of Landsat OLI in 2007. 

Landsat 8 OLI in 2017 path/row 127/48 

Band RADIANCE_ADD_BAND (C0 ) RADIANCE_MULT_BAND (C1 ) Cal-file (C0) Cal-file (C0) 

1 -64.92003 1.2984E-02 -0.6492003 0.0012984 

2 -66.47890 1.3296E-02 -0.6647890 0.0013296 

3 -61.25974 1.2252E-02 -0.6125974 0.0012252 

4 -51.65766 1.0332E-02 -0.5165766 0.0010332 

5 -31.61191 6.3224E-03 -0.3161191 0.0006322 

6 -7.86160 1.5723E-03 -0.7861600 0.0001572 

7 2.64978 5.2996E-04 0.2649780 0.0000529 

In order to proceed with the atmospheric correction, the process needs the information 

of acquisition period of satellite sensors that are related the date, month and year, as well as 
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the solar zenith and sun elevation (see Table 4.3). These data can be found in metadata file 

of Landsat data. 

Table 4.3: Landsat sensors information for calibration files. 

Landsat 

Sensor 
Path/Row D/M/Y Solar Zenith Solar Azimuth 

Sun 

Elevation 

OLI 127/48 29 Dec 2017 57.25110854 148.33568 42.74889146 

OLI 127/48 18 Dec 2013 56.56740677 150.26451 43.43259323 

TM 127/48 

      127/49 

16 Jan 2007 

16 Jan 2007 

57.26410278 

56.23982326 

143.20348 

142.14522 

42.73589722 

43.76017674 

ETM+ 127/48 

      127/49 

29 Jan 2003 

29 Jan 2003 

56.39264748 

55.47052817 

138.24314 

137.08222 

43.60735252 

44.52947183 

TM 127/48 06 Dec 1997 58.56260429 144.10757 41.43739571 

 

Radiometric correction 

The haze was removed in the previous process (atmospheric correction). The noise 

reduction was applied to all satellite images for the radiometric correction. The noise 

reduction algorithm is available in Erdas Imagine 2015 enables to reduce the amount of noise 

in the input raster images. This technique preserves the subtle details in an image such as thin 

lines while removing noise along edges and in flat areas (Erdas Imagine, 1997). 

4.2.2. Satellite image classification 

Image classification is a complex and time-consuming process. In order to improve the 

classification accuracy, the selection of appropriate classification method is required. This 

would also enable the analyst to detect changes successfully (Elnazir et al., 2004). There are 

different types of image classification techniques. However, in most cases, the researchers 

categorized them into 3 major types: supervised, unsupervised and hybrid (Campbell, 2002). 

In this study, the supervised classification was applied. It is a type of the classification that is 

based on the prior knowledge of the researcher of the study area. It requires the manual 

identification of point of interest areas as the reference (Ground Truth) within the images to 

determine the spectral signature of identified features.   
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Due to the different Landsat sensors used, the RGB band combinations for the image 

classification process considered as Landsat TM (1997 and 2007) and Landsat ETM+ (2003) 

were RGB 742 and in Landsat OLI (2013 and 2017) were RGB 753, which band 7 

corresponds to SWIR, bands 4 and 5 correspond to NIR, and bands 2 and 3 correspond to 

visible green band. These combinations give the visualization of vegetation in green that 

helps to identify between forest class and other classes (see Figure 4.3).  The LULC classes 

were classified as forest area, permanent agriculture area, built-up area, shrub area and water 

area. These LULC classes are based on Laotian Ministry of Agriculture and Forestry 

guideline (Thongphanh et al.2006) (see Table 4.4). 

The image classification was performed considering Maximum Likelihood Algorithm. 

This is a parametric decision and its rule is based on the probability that a pixel belongs to a 

particular class (Eguavoen, 2007). The maximum likelihood classifier forms the power 

classification as it is implemented quantitatively to consider several classes and several 

spectral channels simultaneously. This classifier has been reported to provide the higher 

classification accuracy in LULCC study (Campbell, 2002). Therefore, this classifier was 

considered as the most suitable for LULCC analysis in this study.  

Table 4.4: Criteria of land use classes based on the Laotian Ministry of Agriculture and Forestry. 

National class Definition 

Forest 
Land spanning more than 0.5 hectares with trees higher than 5 meters and a canopy cover of more 

than 10 percent. It does not include land that is predominantly under agricultural or urban land use. 

Permanent 

agriculture lands 

These are areas permanently being used for rice cultivation, areas of agricultural land being used 

for production of other crops and various kinds of vegetables, for fruit tree cultivation, for 

plantation with cash crops, such as coffee, tea, cocoa and etc, as well other agriculture lands, unless 

the tree cover exceeds 20%. 

Built-up area 

Includes all areas being used for permanent settlements such as villages, towns, public gardens, 

factory etc. It also includes roads having a width of more than 5 m and areas under electric high 

power lines. Any type of land under high power lines. 

Shrub 

This area is where the vegetation cover is mainly bushes and grass. Normally, a large tree is not 

presented. There are some small trees with diameter breast height (DBH) is less 10 centimeters and 

height is below 10 meters. This category could be found throughout the area especially around the 

active swidden field.  

Water area This area includes rivers, water reservoirs (i.e. ponds and dams for irrigation and hydropower) and 

lakes. Water reservoirs and lakes should have an area of 0.5 ha and rivers should be at least 10 m 

wide to be classified as Water.  
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Figure 4.3: The RGB bands combination considered for the supervised classification of the years 
1997 (A), 2003 (B), 2007 (C), 2013 (D) and 2017 (E). 

 

4.2.3. Accuracy assessment 

Accuracy assessment is a post-classification operation because the classified results 

were not thoroughly validated and the accuracy assessment is important. According to Foody 
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(2002), the accuracy assessment generated randomly training samples and analyzed the 

confusion matrix. The confusion matrix computed an overall accuracy (a measure of 

accuracy that considers the diagonal in the matrix), and producer’s and user’s accuracies. The 

producer’s accuracy is related to omission error: the probability that a reference pixel is 

correctly classified. The user’s accuracy represents the commission error: the probability that 

a pixel classified on the image actually is that land use on the ground (Foody, 2002). Kappa 

coefficient calculates error generated by the classification process and compared with an 

error of a completely random classification (Congalton, 1991) (see Equation 4.2): 

 

K = 
(overall classification accuracy−expected classification)

(1−expected classification accuracy)
    (4.2) 

 

The accuracy assessment process was carried out in Erdas Imagine 2015 by using 

classified images of the years 1997, 2003, 2007, 2013, 2017 and the Landsat images that 

correspond to each year of the classified images. Thus, the agreement and disagreement of the 

analysis were evaluated by using the error confusion matrix and simple descriptive statistics. 

 

4.3. Identification of proximate drivers 

4.3.1. Characterization of LULCC 

All classified images were converted to shapefiles and reclassified in ArcMap software.  

Five LULC maps of the years 1997, 2003, 2007, 2013 and 2017 were computed (magnitude 

and rate of each class coverage in square kilometer and percentage).  Then, these LULC maps 

were analyzed by change matrix to produce LULC conversion maps of five periods: 1997-

2003, 2003-2007, 2007-2013, 2013-2017 and 1997-2017. These maps presented the 

conversions from class to class that can help to identify the main conversions and the 

proximate drivers of LULCC in each period. The proximate drivers are human activities that 

directly affect LULCC for instance, urbanization, agriculture expansion, deforestation, 

etc.(see  section 2.2.1 in Literature Chapter). The proximate drivers will be selected as the 

dependent variables for the MBLR analysis.  
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4.3.2. Proximate drivers (Dependent variables)  

Based on five LULC conversion maps from the previous analysis (see section 4.3.1), 

the produced maps were used to identify the foremost LULC conversions that will be 

considered as the proximate drivers. The large significant conversions were: forest to shrub 

conversion (deforestation), shrub to agriculture conversion (agriculture expansion) and shrub 

to built-up conversion (urban expansion). These three main LULC conversions were selected 

for the MBRL models because these three conversions dynamically changed over the study 

period, which can be used to explain the main LULCC processes in the study area.  In order 

to apply these conversions to the models, three conversion maps were transformed to binary 

variables considering as 0 and 1, for instance, if the class is maintained the value 0 is 

considered, and if it changed the value 1 is then considered (see Table 4.5 and Figure 4.4 for 

example binary map). 

Table 4.5: Binary code of LULC conversions. 

LULC conversions 
Binary code 

 Not change changed  

Forest to shrub conversion  0 1 

Shrub to agriculture conversion  0 1 

Shrub to built-up conversion 0 1 

 

 

Figure 4.4: Binary map of forest to shrub conversion: 0 not changed and 1 changed. 
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4.4. Quantification of underlying drivers (Independent variables) 

4.4.1. Independent variable dataset 

The underlying drivers are the complex interaction of social, political, economic, 

technological and biophysical (Geist and Lambin, 2002). It is not possible to capture all these 

interactions due to this study scale and data available. 

Therefore, this study only considered the biophysical and socio-economic variables, 

which were identified as the independent variables for MBLR (see Table 4.6). The 

biophysical variables considered rainfall, temperature, elevation, slope and soil types. For the 

socio-economic variables include the population density and proximate to roads, village, 

urban and to water sources, even though these variables are not directly as socio-economic 

but they can be identified as related factors that provide facilities to access market and 

economic development (Swart, 2016). The acquisition and preparation of the independent 

variables are discussed in the following sections. 

Table 4.6:  Biophysical and socio-economic variables for MBLR analysis. 

Independent Variables 

Biophysical Type Unit Source Coordinate system 

Rainfall Continuous mm Worldclim.org WGS 84  Zone 48N 

Temperature Continuous ºC * 10 Landsat Images WGS 84  Zone 48N 

DEM Continuous m ASTER GDEM WGS 84  Zone 48N 

Slope Continuous º Dem extraction WGS 84  Zone 48N 

Soil type Category I-III 
World Soil 
Information 

WGS 84  Zone 48N 

      Socio-economic  

Population density 2015 Continuous pers/km² SEDAC WGS 84  Zone 48N 

Population density 2010 Continuous pers/km² SEDAC WGS 84  Zone 48N 

Population density 2005 Continuous pers/km² SEDAC WGS 84  Zone 48N 

Population density 2000 Continuous pers/km² SEDAC WGS 84  Zone 48N 

Proximate to villages Continuous Km National Map WGS 84  Zone 48N 

Proximate to town Continuous Km National Map WGS 84  Zone 48N 

Proximate to Roads Continuous Km National Map WGS 84  Zone 48N 

Proximate to Water areas Continuous Km National Map WGS 84  Zone 48N 
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4.4.2. Biophysical 

Rainfall 

The rainfall dataset in Kayson Phomvihan district was obtained from WorldClim with 

the spatial resolution of 925x925m.  This data presented the monthly precipitation (12 

months) per millimeter in the period 1950-2000. The data was clipped to the study area and 

the average rainfall was calculated by cell statistic, and then resize the pixel resolution. The 

obtained average rainfall values were between 124-140 mm and a cell size of 30x30m 

resolution (see figure 4.5). The rainfall factor is expected to affect soil erosion including 

precipitation amounts and intensities. Increasing soil erosion reduce a vegetation cover loss 

and low fertilization areas for land use (Plangoen et al., 2003). 

Temperature 

The temperature was derived from the Land Surface Temperature (LST) extracted from 

the thermal infrared bands of Landsat TM (1997 and 2007) band 6, Landsat ETM+(2007) 

band 6 and Landsat OLI (2013 and 2017) bands 10 and 11. The processes of LST were 

computed in raster calculation and cell statistic in ArcMap by the  following stages:  

1) Conversion of the Digital Number (DN) to spectral radiance (L𝜆): every object emits 

thermal electromagnetic energy as its temperature is above absolute zero Kelvin. Following 

this principle, the signals received by the thermal sensors can be converted to at-sensor 

radiance. The thermal band data from TM, ETM+ and OLI were converted to Top 

Atmosphere (TOA) of spectral radiance (Lλ) by using the radiance rescaling factors provided 

in the metadata file (Landsat Project Science Office, 2002) (see Equation 4.3): 

Lλ = MLQcal + AL   (4.3) 

Where Lλ is the TOA spectral radiance (Watts / (m2 * srad * μm)), ML is the band 

specific multiplicative rescaling factor from the metadata (RADIANCE_MULTI_BAND_X 

where x is the band number), AL is the specific additive rescaling factor from the metadata 

(RADIANCE_ADD_BAND_x where is the band number), and Qcal  is the  quantized and 

calibrated standard  product pixel values (DN). 
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2) Conversion of spectral radiance (Lλ) to At-satellite brightness temperatures (TB): the 

emissivity corrected surface temperature has been computed following (see Equation 4.4). 

T = 
k2

ln(
k1
Lλ

 +1) 
    (4.4) 

Where T is the TOA brightness temperature (Kelvin), Lλ is the TOA spectral radiance 

(Watts / (m2 * srad * μm)), K1 is the specific thermal conversion constant from the metadata 

(K1_CONSTANT_BAND_x where x is the thermal band number), and K2 is the band 

specific thermal conversion constant from the metadata (K2_CONSTANT_BAND_x where 

is the band number). 

3) Conversion of LST from Kelvin to degree Celsius: the derived LST unit of each 

Landsat sensor was converted to degree Celsius by using the relation of 0 ℃ equals 273.15 

K. Then, the average temperature from the years 1997-2017 was computed by cell statistic. 

The average LST in Kayson Phomvihan District was between 19 and 27 ℃ with a cell size 

of 30x30m resolution (see Figure 4.5). 

Altitude 

The altitude was computed by considering the DEM that was downloaded from ASTER 

GDEM site and a cell size is 30x30m resolution. Then, it was clipped and value range from 

104-242 m elevation in the study area (see Figure 4.5). This DEM was after used to create 

the slope map. According to Qasim et al. (2013), LULCC appear significantly related to 

geophysical factors such as slope and altitude. In the low elevation zone, an accessibility is a 

factor that is associated with agriculture and urban expansion. 

Slope 

The slope percentage was extracted from DEM. The value range between 5 and 15% 

where 5% presents the horizontality and 15% is steeper in the study area (see figure 4.5). The 

slope gives an indication of the different land use purpose for example forestlands are on the 

higher and steeper areas while construction land often moved to the flat areas with good 

traffic condition and water supplying (Buckley, 2010; Olaya, 2009). 
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Soil type 

The soil data was downloaded from International Soil Reference and Information 

Center (ISRIC) that is the global dataset for soil type with a cell size of 1x1 km resolution. 

Then this data was clipped to the study area and resized the pixel resolution to 30x30m. The 

data present the main three soil types included Gleysols, Acrisols and Arenosols (see Figure 

4.5).   

Gleysols is generally considered fertile soil because of its fin soil texture and it has 

more organic matter, greater Cation Exchange Capacity (CEC), higher base saturation, and 

usually high level of phosphorus and potassium (ISRIC, 2015). 

Acrisols often supports forested area and low fertility and toxic amounts of aluminium 

pose limitations to its agricultural use. Crops can be successfully cultivated, if the climate 

allows, which included tea, rubber tree, oil palm, coffee and sugar cane (FAO, 1970). 

Arenosols soil is not appropriate for agriculture, most Arenosols in humid tropical 

regions are strongly leached soils with a low nutrient content and a very tight nutrient cycling 

between vegetation and surface soils (FAO, 1970). 

Therefore, Acrisols and Gleysols were considered as suitable for agriculture and forest 

areas, but for Arensols with deposited sand was considered for urban area purpose.  
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Figure 4.5: Biophysical variables that include rainfall(A), temperature (B), altitude (C), Slope(D) 
and soil type (E). 
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4.4.3. Socio-Economic 

Population density  

The population density is an important variable for LULCC analysis. Verburg et al. 

(2002) emphasized the importance of calculating the population density over larger areas. 

The population can affect land use, not only locally but also in particular over certain 

distances. It is difficult to find the population density data accurately because there is a 

limited source of the data in the study area. Therefore, the population density data was 

downloaded from Socioeconomic Data and Application Center (SEDAC site) for Global UN-

Adjust Population Density in the years 2000, 2005, 2010 and 2015 with a cell size 1x1 km 

resolution (SEDAC, 2018). Then the data was clipped and resized to 30x30 resolution. This 

data is an estimation of the number population per square kilometer (see Figure 4.6). The 

population density is five years interval that corresponds to the periods of LULC conversion 

maps (see Table 4.7).  

Table 4.7:  The population density in Kayson Phomvyhan District. 

Population density year LULC conversion period 

2000 1997-2003 

2005 2003-2007 

2010 2007-2013 

2015 2013-2017 
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Figure 4.6: The population density of the years 2000 (A), 2005 (B), 2010(C) and 2015(D). 
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Proximate to town  

The proximate to the town of Kayson Phomvihan district that is the capital city of the 

province that has very intensive population density was considered. The town is important to 

market, services, and economic development zone. The proximate to the town is an important 

explanatory variable in the model that has an influence LULCC over the last decades in the 

study area. Therefore, the proximate to the town was calculated by Euclidean distance from 

the nearest area to the town (see Figure 4.7).  

Proximate to villages 

The proximate to the nearest villages around the study area indicates the settlement and 

availability of markets in areas that can influence LULCC. This data was derived from 

National Map (National Geography Department) and then the data was calculated by 

Euclidean distance from the nearest area to villages with a cell size of 30x30 m resolution 

(see Figure 4.7).   

Proximate to roads 

The road data was derived from National Map and then it was clipped to the study area. 

This data included high way and small road network that indicates an accessibility by roads 

to the study area. The road network was calculated by Euclidean distance from the nearest 

area to road network with a cell size of 30x30 m resolution (see Figure 4.7).  

Proximate to water sources 

The proximate to water sources are an accessibility to permanent water areas that are 

highly important to the community, agriculture and life stock are needed regular access to 

water. Besides permanent rivers and other permanent water sources were also mapped. 

Temporary rivers and seasonal water points were not taken into account, as their seasonal 

importance are difficult to account for. This data was obtained from National Map and then 

it was calculated by Euclidean distance from the nearest area to water sources with the cell 

size of 30x30 m resolution (see Figure 4.7). 
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Figure 4.7: Proximate the nearest area to town (A), villages (B), roads (C) and to water Area (D). 
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4.5. Statistical analysis 

4.5.1. Statistical dataset 

Fifteen datasets were organized in order to analyze the MBLR between the dependent 

variables (LULC conversions) and various independent variables (biophysical and socio-

economic) (see Table 4.8). Firstly, each LULC conversion map was overlaid with the 

independent variable maps in ArcMap. The mean values of the independent variables per 

LULC conversion pixels were calculated by using zonal statistic, which the mean values of 

the independent variables were assigned to each pixel of LULC conversion map. Then, these 

raster maps were converted to shapefiles in the geodatabase that included 15 datasets from 

the five periods (1997-2003, 2003-2007, 2007-2013, 2013-2017 and 1997-2017).  

Figure 4.8 indicates the example dataset of shrub to built-up conversion in period 1997-

2003. The pixel values of the independent variables (soil type, rainfall, temperature, altitude, 

slope, proximate to roads, villages, water and town, and population density in 2000, 2005, 

2010 and 2015) were assigned to each pixel value  of  the dependent variable (binary: 0 not 

change and 1 changed). 

Then, the fifteen datasets were exported to excel files for the MBLR analysis in SPSS 

software. 

Table 4.8: The dependent and the independent variables included in 15 datasets. 

Variables 

Dependent Variables Type Independent variables Type 

Forest to shrub conversion 1997-2003 

Forest to shrub conversion 2003-2007 

Forest to shrub conversion 2007-2013 

Forest to shrub conversion 2013-2017 
Forest to shrub conversion 1997-2017 

Shrub to agriculture conversion  2007-2003 

Shrub to agriculture conversion  1997-2003 

Shrub to agriculture conversion  2007-2013 

Shrub to agriculture conversion  2013-2017 

Shrub to agriculture conversion   

Shrub to built-up conversion 1997-2003 

Shrub to built-up conversion 2007-2003 

Shrub to built-up conversion 2007-2013 

Shrub to built-up conversion 2013-2017 

Binary (0-1) 

Binary (0-1) 

Binary (0-1) 

Binary (0-1) 
Binary (0-1) 

Binary (0-1) 

Binary (0-1) 

Binary (0-1) 

Binary (0-1) 

Binary (0-1) 

Binary (0-1) 

Binary (0-1) 

Binary (0-1) 

Binary (0-1) 

Rainfall 

Temperature 

DEM 

Slop 

Soil 

Population density 2015 
Population density 2010 

Population density 2005 

Population density 2000 

Proximate to villages 

Proximate to town 

Proximate to roads 

Proximate to water areas 

Continuous 

Continuous 

Continuous 

Continuous 

Category 

Continuous 
Continuous 

Continuous 

Continuous 

Continuous 

Continuous 

Continuous 

Continuous 
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Figure 4.8: Example dataset of shrub to built-up conversion in period 1997-2003 that includes the 
Dependent variable (red color) and the independent variables (blue color). 

4.5.2. Exploratory independent variables 

The exported excel files from the previous stage were imported in SPSS software. 

Firstly, the data were tested for correlation and collinearity among the independent variables. 

Then the LR and the model validation were applied.  

The collinearity between the independent variables can influence the result of RL 

analysis. When the independent variables are highly correlated, they influence predictive 

values of the variables (Ott and Longnecker, 2010). Several techniques have been proposed 

for detecting the multicollinearity such as examination of the correlation matrix and variance 

inflation factor (Paul and Bhar, 2012). In SPSS software, the correlation and collinearity were 

tested by bivariate correction and linear regression.  

Bivariate correlation: Pearson’s correlation was considered for testing the independent 

variables because it is appropriate for continuous variables (IBM, 2014). In this study, all 

independent variables are continuous except soil variable that is ordinal. Since, the soil 

variable was not included together with other variables in Pearson’s correlation test. The 

correlation coefficient value range from -1 to +1,  for –1 (a perfect negative relationship) and 
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for + 1 (a perfect positive relationship. If the coefficient value is less than 0.29, it is a weak 

correlation; the value is between 0.30-0.49, it is a moderate correlation; and the value is 

between 0.50-1.00, it is a very strong correlation (IBM, 2014; Paul and Bhar, 2012). 

Therefore, in the LULC conversion models, for the variables that coefficient value exceeds 

0.50 needs to be reconsidered.  

Linear regression: computes the Variance Inflation Factor (VIF) and it is used as an 

indicator of the multicollinearity (Paul and Bhar, 2012; Daoud, 2017). In this study, Stepwise 

linear regression was used to compute the VIF. The Stepwise linear regression is regressing 

multi variables while simultaneously removing those that are not important and the weakest 

correlated variables. The VIF value range from 0-10, if the variable value is more than 5 is 

highly correlated and if it exceeds 10, it has to remove from the models (see Table 4.9). 

Table 4.9:  Variance inflation factor (VIF) scale. 

VIF Value Conclusion 

VIF = 1 Not correlated 

1 < VIF ≤ 5 Moderately correlated 

VIF > 5 Highly correlated 

 

4.5.3. Multi binary logistic regression 

After the correlation and multi-collinearity tests were performed, the data were 

analyzed considering the LR. This study analyzes the relationship between binary dependent 

variables and multi independent variables that it is called “multi binary logistic regressions 

(MBLR)”. The MBLR estimate the parameters of the multivariate explanatory model in the 

situation where the dependent variable is dichotomous and the independent variables are 

continuous or categorical (Ott and Longnecker, 2010). 

The MBLR identifies the role and intensity of independent variables Xn in predicting 

the probability of the dependent variable, which is defined as the categorical variables Y (Ott 

and Longnecker, 2010) (see Equation 4.5). Suppose X is the independent variable and p is 

the response probability of the model, and Y is the dichotomous dependent variable, for 

example, in case the forest to shrub conversion model, with Y = 0 meaning of the presence 

of forest  and Y = 1 meaning of the forest conversion to shrub areas.  
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𝐼𝑛 (
𝜌 𝑥

1−𝜌(𝑥)
) = + β1X1 + β2X2 + · · · + βnXn   (4.5) 

Odds ratio is an important interpretation of the MBLR. The odds ratio is a measure of 

association, which approximates how much more likely (or unlikely) of the independent 

variables in the model (Hosmer and Lemeshow, 1989). The odds ratio can be interpreted as 

the change in the odds can increase of one unit in variables. The estimated odds values are 

computed as the exponential of the parameter estimate values (Agresti, 1990; Hosmer and 

Lemeshow, 1989) (see Equation 4.6). 

Odd (p) = exp(𝛼 +  𝛽1𝑋1 +  𝛽2𝑋2 + · · ·  + 𝛽𝑛𝑋𝑛)   (4.6) 

4.5.4. Model Validation 

Pseudo R-square 

R-square measures the predictive power and it gives an indication about the model 

performance or how well the model can predict the dependent variable that is based on the 

independent variables and fitted model (Allison, 2013).  However, in LR analysis it is not 

possible to compute an exact R-square, and therefore the pseudo R-square was used (it is 

called ‘pseudo’ because the measure looks similar as value range from 0 to 1) (Swart, 2016). 

Therefore, in this study pseudo R-square was tested with Cox and Snell’s R and Nagelkerke’s 

R.  The Cox and Snell's R is based on the log likelihood for the model compared to the log 

likelihood for a baseline model. It has a theoretical maximum value of less than 1 for the 

perfect model.The Nagelkerke's R  is an adjusted version of the Cox & Snell R that adjusts 

the scale of the statistic to cover the full range from 0 to 1. 

Receiving operating curve and Area under curve 

The Receiver Operating Curve (ROC) was tested. In case of true positive rate, the 

model correctly predicted change polygons, for the false positive rate is correctly predicted 

no changed polygons (Swart, 2016; Rossiter and Loza, 2012). The ROC graph shows on the 

y-axis for the true positive rate and on the x-axis for the false positive rate. The model is 

accurate if the curve is close to the left top border: it predicts most true positives with a few 
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false positives. If the curve comes close to the diagonal line, the model is less accurate. For 

the curve at the diagonal line is the random case: the model predicts at random, the chances 

would be equally like to be true or false positive (Rossiter and Loza, 2012). 

The Area Under Curve (AUC) was used to distinguish between alternative model 

specifications. The AUC value varies from 0.5 for the model that assigns the probability of 

LULCC at random, and for value 1 for the model that perfectly assigns LULCC to the 

empirically observed locations (Williams et al., 1999). 

4.6. LULC simulation 

The LULCC model was used to simulate LULC for 2022. It is important to estimate 

the predictive ability and reliable of the model.  Therefore, simulated LULC in 2017 was 

conducted from the transitional potential of LULC map for time t1 (2007) and for time t2 

(2013) to predict LULC for time t3 (2017). Then the result will be validated between the 

simulated LULC in 2017 and the reference map in 2017 (classified LULC map of 2017). 

Therefore, if the validated result achieved an acceptable accuracy, then the simulated LULC 

in 2022 will be conducted. However, if the result is less accurate, the simulation will not be 

implemented. The simulated LULCC in 2017 was carried out in QGIS MOLUSCE plugin 

(Model for Land Use Change Evaluation)(QGIS, 2016). The simulation processes are 

described in the following sections: 

4.6.1 Model setting 

The LULC maps of 2007 and 2013, and spatial variables (biophysical and 

socioeconomic variables) were input in the model. The LULC map of 2007 was assigned for 

the first period (time t1) and LULC map of 2013 was the second period (time t2). The spatial 

variables included rainfall, temperature, DEM, slope, soil type and the population density for 

the years 2000, 2005, 2010 2015, as well as proximate to villages, town, roads and to water 

sources.  All these input variables have the coordinate system, spatial resolution and extent.  
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4.6.2. Transitional Potential model 

The transitional potential method of the simulated LULC in 2017 was the LR method. 

This method analyzed the changed pixels between two LULC maps and spatial variables by 

sampling and training data. The sampling mode was defined as random. The model also needs 

to define maximum iteration and neighbor pixel. The maximum number of iteration 

considered was 1000 and the neighbor pixel size was 1, which means 9 cells (3x3 cells).  The 

transitional potential result presented in form of coefficient values, standard deviations and 

p-values that are based on equation 4.7. 

 

M((C − 1)(2N + 1)2 + B(2N + 1)2 + 1)  (4.7) 

Where value C is the count of LULC categories, N is a neighbor pixel size as 1, B is 

summary band count of spatial variable rasters, M usually is counting of unique categories 

in the change map (C2). M is the sampling mode of the model (NEXTGIS, 2012). 

4.6.3. Cellular Automata simulation 

The Cellular Automata simulation is based on the LR method from the transitional 

potential model that was implemented in the previous stage. The LR has the coefficients for 

every neighbor pixel and the coefficients affect the transitional potential of LULC classes 

(GISLAB, 2014). By using this rule, the simulation computed the transition potential map of 

each LULC category between 2007 and 2013 for predicting the LULC categories in 2017. 

The simulation also generated the probability map of 2017 that presented the percentage of 

transitional potential between LULC maps of 2007 and 2013.   

4.6.4. Validation 

The validation model allows evaluating the simulation accuracy. The process compares 

between the reference map of 2017 and the simulated LULC map of 2017. The validation 

result is based on Kappa statistic and error multi resolution. 
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Kappa statistic 

The kappa statistic includes three types: kappa overall, kappa location and kappa 

histogram.  Kappa overall is the total accuracy of the number pixel that correctly classified 

between the reference map and the simulated map, kappa location is the simulation’s ability 

to specify location perfectly between both maps, and kappa histogram is an estimation of the 

frequency distribution of pixels in the reference map and the simulated map (Landis and 

Koch, 1997).  

Multi resolution 

The mulit resolution is an error of the location and quantity information between the 

reference map and the simulated map (Pontius and Suedmeyer, 2004). In MOLUSCE, the 

location and quantity information are explained by 5 plots include: 1) No location 

information, no quantity information; 2) No location information, medium quantity 

information; 3) Medium location information, medium quantity information; 4) Perfect 

location information, medium quantity information; and 5 )Perfect location information, 

perfect quantity information (GISLAB, 2014).   
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Chapter 5 - Results  

5.1. Accuracy assessment of satellite image classification 

The LULC classified maps were carried successfully (see Figure. A.1-5 in Appendix). 

The accuracy assessment indicated that the overall accuracies of classified LULC maps were 

higher than 80% (see Tables B.8-12 in Appendix).  The classified LULC map of 2017 was 

the highest overall accuracy of 89.29% and kappa coefficient of 0.85, which the  producer 

and user’s accuracies of forest, built-up, permanent agriculture and shrub classes were higher 

than 60% but water class was the lowest producer’s accuracy with 50% (see Table B.12 in 

Appendix). The classified LULC map of 2003 was obtained the lowest overall accuracy with 

80.88% and kappa coefficient with 0.73. In this classified map, the producer and user’s 

accuracies of water, forest, built-up and permanent agriculture were higher than 60%, only 

shrub class was the lowest producer’s accuracy (see Table B.9 in Appendix).  

For other classified LULC maps of 1997, 2007 and 2013, the overall accuracies were 

83.33%, 85.79% and 89.04 %, and the kappa coefficients were 0.74, 0.79 and 0.84 

respectively (see Tables B.8, B.10, B.11 in Appendix).   

5.2. LULCC analysis 

5.2.1. LULCC in magnitude and rate 

The major dominant of LULC class in 2017 was shrub (30.55%), followed by forest 

(25.11%) and permanent agriculture (25.15%), built-up (16.37%) and water (2.95%) (see 

Table 5.1 and Figures 5.1 and 5.2). 

The changes of LULC classes in km2 and percentage in each period are showed in table 

5.2.  The built-up class had the highest increase area compared to other classes with a total 

of 99 km2 (14.16%). The foremost increase of built-up was between 2007 and 2013 with 

34.51 Km2 (4.92 %). Permanent agriculture class also had a high increase with a total of 70 

km2 (10.03%).  During 2007-2013, the permanent agriculture had a significant increase with 

35.78 km2 (5.10%) that corresponds to the highest increase period.  
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On the other hand, the decreases of LULC classes were in forest class with -113 km2  

(-18.98%), shrub class with -30.83 km2 (-4.40%), and water class slightly decreased -5.69 

km2 (-081%). The forest class had the highest decrease area in 1997-2003 with -56.45 km2 

(8.05%)  Another important decrease was in the shrub class that had the highest loss in the 

period 2007-2013 with -52.40 km2 (see Table 5.1 and 5.2).  

From Table 5.2 and Figures 5.1 and 5.2 can be concluded that the built-up and 

permanent agriculture classes steadily increased over 20 years, especially during 2007-2013, 

the built-up and permanent agriculture had the highest increase areas. While the major 

decrease was in the forest class, particularly in the period 1997-2003 that had the highest 

forest loss.  For the shrub class was quite lower decrease than the forest class but its number 

was still too much and the water can be noticed with very small number declined. All the 

classified LULC maps are showed in figure 5.3. 

Table 5.1: LULC classes in km2 and % in the year 1997, 2003, 2007, 2013 and 2017. 

                                Land use and land cover  in km2 and Percentage 

Classes 1997 2003 2007 2013 2017 

     Km2               % Km2               % Km2               % Km2               % Km2               % 

Permanent 

Agriculture 
105.08 14.99 114.82 16.38 117.76 16.79 153.54 21.90 175.40 25.01 

Built-up 15.51 2.21 29.44 4.20 56.13 8.01 90.64 12.93 114.80 16.37 

Forest 309.15 44.09 264.67 37.75 208.22 29.70 190.91 27.23 176.06 25.11 

Shrub 245.07 34.95 269.39 38.42 296.79 42.33 244.39 34.85 214.24 30.55 

Water 26.37 3.76 22.86 3.26 22.28 3.18 21.70 3.09 20.68 2.95 

Total 701.18 100.00 701.18 100 701.18 100 701.18 100.00 701.18 100 

           

 

Table 5.2: LULCC of the different classes in Km2  and % for four periods. 

Land use and land cover  changes in Km2 and percentage 

 1997-2003 2003-2007 2007-2013 2013-2017 Total 

 Km2 % Km2 % Km2 % Km2 % Km2 % 

Permanent 

Agriculture 
9.74 1.39 2.94 0.42 35.78 5.10 21.86 3.12 70.32 10.03 

Built-up 13.93 1.99 26.69 3.81 34.51 4.92 24.16 3.45 99.29 14.16 

Forest -44.48 -6.34 -56.45 -8.05 -17.31 -2.47 -14.85 -2.12 -133.09 -18.98 

Shrub 24.32 3.47 27.4 3.91 -52.40 -7.47 -30.15 -4.30 -30.83 -4.40 

Water -3.51 -0.50 -0.58 -0.08 -0.58 -0.08 -1.02 -0.15 -5.69 -0.81 
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Figure 5.1: LULC classes of the year 1997, 2003, 2007, 2013 and 2017. 

 

Figure 5.2: Changes of LULC classes in four periods. 
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Figure 5.3: Classified LULC map in the years 1997(A), 2003(B), 2007(C), 2013(D) and 2017(E). 

5.2.2. LULC conversions 

In the first and second periods, forest presented the highest loss that had converted to 

shrub class with 61.53 km2 (1997-2003) and 62.49 km2 (2003-2007). The shrub class 

presented the highest total gain with more than 80 km2 in these periods (see tables B.13-14 

and figures A.7-8 in Appendix).  In the third and fourth periods, the highest LULC loss was 

replaced by shrub class that converted to permanent agriculture and built-up classes with 

more than 50 km2, especially the shrub class conversion to permanent agriculture reached to 

49.16 km2 (2007-2013) and 43.57 km2 (2013-2017) (see Tables B.15-16 and Figures A.9-10 

in Appendix). 

The total loss and gain of LULC classes over 20 years are showed in table 5.3 and 

Figure 5.4. Forest presented the highest loss with a total of 146.54 km2, next to the forest was 
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shrub area with a total loss of 129.34 km2. In contrast, built-up and permanent agriculture 

classes were the highest total gain areas that from the conversion of forest and shrub areas. 

The built-up gained 99.80 km2 and permanent agriculture gained 97 km2.  

Three highest conversions of LULC classes are showed in table 5.3 and figure 5.5 

including: 1) forest converted to shrub with 90.86 km2; 2) shrub converted to agriculture with 

67.93 km2; and 3) shrub to built-up conversion was 48.52 km2.   

These three LULC conversions were considered as the main proximate drivers of 

LULC changes and these conversions will be used for the MBLR analysis. These three 

conversions are showed in figure 5.6 (see Figure A.11 in Appendix for all LULC class 

conversions between 1997-2017). 

Table 5.3: LULC class conversions between 1997-2017. 

 
 
 
 

2017 
 

 

1997 

Class PA B F S W Total Gain 

PA 78.40 0.16 27.14 67.93 1.77 175.40 97.00 

B 18.95 15.00 28.47 48.52 3.86 114.80 99.80 

F 0.53 0.08 162.62 12.60 0.24 176.06 13.45 

S 6.59 0.12 90.86 115.73 0.94 214.24 98.51 

W 0.61 0.16 0.07 0.29 19.55 20.68 1.13 

Total 105.08 15.51 309.15 245.07 26.37 701.18 309.89 

Loss 26.68 0.51 146.54 129.34 6.82 309.89 619.77 

 

 

Figure 5.4: LULC classes in gain and loss over the study period. 
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Figure 5.5: Three LULC conversions considered as the main proximate drivers of LULC changes 
over the study period. 

 

 

Figure 5.6: Three main LULC conversions map. 
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The three LULC conversions were used to analyze the spatial trends over 20 years that are 

showed in figure 5.7.  The conversion trends were presented in polynomial order from the 

lowest to the highest value. A lower value means a less change and a higher value means that 

having more change (see Figure 5.7).  The spatial trends of forest conversion to shrub areas 

were similar to shrub conversion to permanent agriculture areas, which the changes were 

mostly distributed from the southwest to the southeast of the study area where there were 

high forest and shrub coverages, as well as the changes also occurred in some parts of the 

northern study area. For shrub conversion to built-up areas, the spatial trend of the 

conversions was mostly inside and around the western part of the study area that is the main 

urban areas of Kaysone Phomvihan district. 

 

Figure 5.7: Spatial trends of the three LULC conversions map. 
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5.3. Multi binary logistic regression 

5.3.1. Exploratory data 

The correlation was tested by Pearson’s correlation that showed the coefficient values 

of the independent variables with a low correlation but the population density in 2000, 2005, 

2010 and 2015 had a high correlation with the coefficient values almost 1 (see Table 5.4). As 

mentioned in the Methodology chapter, the variables that have a correlation value between 

0.50-1.00 will be excluded or not used together in each model of the MBLR. The moderately 

correlated coefficients were found in proximate to roads variable (-0.47 to -0,45), soil 

variable (-0.42 to -0.45) and proximate  to town variable (-0.65 to -0.55).  Therefore, the 

multicollinearity of the independent variables was tested by VIF in each model. If the VIF 

value of the variables exceeds 10, it will be removed from the models and for the variables 

are between 0-8, will be included in the models (see Table 5.5).  

Table 5.4: Correlation test based on Pearson’s rank. 

 

Pearson’s rank  

 

Correlation 1 2 3 4 5 6 7 8 9 10 11 12 13 

Population 

density 2000 1             

Population 

density 2005 .922** 1            

Population 

density 2010 .987** .931** 1           

Population 

density 2 015 .893** .964** .901** 1          

DEM -.27** -.29** -.24** -.22** 1 

 

        

Rainfall -.21** -.21** -.21** -.22** .264** 1 

 

       

Proximate to 

Roads -.47** -.46** -.46** -.45** .15** .343** 

1 

       

Slop -.01** -.02** -.01** -.03** .013* -0.003 .011* 1 

 

     

Soil type -.42** -.42** -.43** -.45** -.022** .035** .256** .040** 

 

1     

Temperature .137** .144** .140** .139** -.143** .036** -.023** -.015** -.086** 

1 

    

Proximate  to 

town -.65** -.64** -.62** -.58** .550** .356** .160** 0.009 .251** -.08** 

1 

   

Proximate to 

villages -.01** -.01** -.03** -.02** -.110** -.159** .017** 0.003 .189** -.06** -.059** 1  

Proximate to 

water source -.28** -.30** -.27** -.28** .008** .274** .356** -.015** .205** -0.006 .275** -.024** 1 

 
* Red color indicates that strong correlation between population density in 2000, 2005, 2010 and 2015  

* Yellow color indicates that distance to roads variable has moderately correlated with population density 2000, 2005, 2010 and 2015 

* Blue color indicates that soil variable has moderately correlated with population density 2000, 2005, 2010 and 2015 

* Green color indicates that distance to town variable has moderately correlated with population density 2000, 2005, 2010 and 2015, and 

DEM variable 
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5.3.2. LULC conversion models 

Coefficient and VTF value of the variables in each period that were significant to the 

three LULC conversion models are showed in Table 5.5. The odds ratios are when the 

independent variables increase, the probability of the dependent variables increase (LULC 

conversion) for example in period 1 showed  the temperature increased 1 unit (in this case is 

mm), odds ratio increased  2.24 times of the probability that forest conversion to shrubland. 

For VTF values indicated a low multicollinearity between variables in each model that was 

less than 8 (see Table  B.17-21 in Appendix for all statistical values). 

The models were validated by considering pseudo R-square (Nagelkerke and Cox & 

Snell ) (see Table 5.5), Receiver Operating Curve (ROC) and Area Under Curve (AUC) (see 

Figure 5.8). The pseudo R-square showed the percentage of the dependent variables that were 

explained by the independent variables. For ROC, if the curve is closer to left-top, the model 

is more accurate. The AUC indicated that a good fitting of the model. The following sections 

are an explanation of the three models in each period. 

Forest to shrub conversion model 

This model indicated that the most important periods were periods 4 and 3 that had 

more effect on the forest conversion to shrubland. In period 4, the variables that contributed 

to the conversion included temperature, population density, as well as proximate to town, 

roads and to water sources, which the conversion mostly occurred in the forest areas that are 

proximity to the highly populated urban areas, roads and water areas.   

In period 3, the temperature, soil type, population density, proximate to urban and roads 

were significant in this model, especially the population density that increased 1.39 times of 

the conversion probability.  

In periods 1 and 2 had the same variables such as temperature, proximate to urban and 

water sources. The temperature variables increased 2.24 times and 2.63 times the probability 

of the forest conversion. This happens because the temperature is climate determination of 

land use function that leads to the forest transition (MRC, 2009). 

The overall period of this model can be concluded that the temperature, population 

density, proximate to town and water sources had contributed to the forest conversion. The 
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proximate to the town and roads increased the probability with 2.17 and 2.05 times of the 

forest conversion.  This means that good accessibility and infrastructure to the forest area had 

a higher probability of the conversion. Another important variable was the temperature that 

was included in all periods. The probability of forest to shrub conversion map over the study 

period that are based on logistic regression coefficients is showed in figure 5.9.  

Shrub to agriculture conversion model 

In this model indicated that the period 3 was the most important because the population 

density increased 2 times of the probability that shrub conversion to agriculture. Soil variable 

appeared in this period, which means that proper soil is important for agriculture activities, 

especially for industrial agriculture production in the study area such as rice, eucalyptus, 

vegetables (MRC, 2009). 

In periods 1 and 2, the temperature variables increased 2.37 and 2.12 times the 

probability of shrub conversion. In period 4 was found that shrub areas that are near to roads 

and town with the high population density had the probability of the conversion.  

The temperature, population density, as well as proximate to town, roads and water 

sources were important in the overall period of this model.  Slope appeared in the overall 

period, which means that less steeper areas are important for agriculture purpose. The 

population density and accessibility (town, roads and water sources) increased the probability 

of agriculture expansion. The probability of shrub to agriculture conversion map over the 

study period is showed in figure 5.10.  

Shrub to built-up conversion model 

The most important periods were 3 and 4 that contributed to shrub to built-up 

conversion model. Both periods had the same variables such as climate conditions 

(temperature and rainfall), population density, and proximate to town and to water sources. 

In period 3, the temperature increased 1.16 times of the probability of shrub conversion to 

built-up areas.  For the period 4, proximate to roads and temperature increased 1.64 times 

and 1.34 times of the probability of this conversion. Both periods have the same patterns of 

the conversions:  the shrub areas that are near to the town and roads with high population 

density have the probability of built-up expansion.  
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In period 1, the proximate to town increased 1.7 times of the probability that shrub 

conversion to built-up areas that mostly occurred in the areas that are close to the city center 

(Kaysone Phomvihan district).  For the period 2, the temperature increased 1.56 times the 

probability of the shrub conversion.  

The overall period indicated that the climate condition (temperature and rainfall), 

population density and proximate to town, roads and to water sources (basic infrastructure) 

were important to the built-up expansion (see Figure 5.11 for shrub to built-up conversion).  

Slope variable appeared in the overall period, this might be related to flat areas in the study 

area are the purpose of urban expansion. The climate conditions (temperature and rainfall) 

are the determination of land use function, especially the sensitive climate areas had a higher 

risk of the forest and shrubland degradation and conversion (MRC, 2009). The infrastructure 

provides facilities and accessibilities to land use resources, which appear the proximate to 

town, roads and to water sources had highly contributed to built-up expansion in each period 

of this model. This can be referred to the development of infrastructure and accessibilities is 

correlated with urban growth and also leads LULC conversion (Geist and Lambin, 2002; 

Hosonuma et al., 2012; Kissinger et al., 2012). The better access to markets is correlated with 

land use conversion by infrastructure can trigger market development, cash crop adoption 

and economic growth. Infrastructure extension can be a component of rural development and 

settlement policies that drive market integration (Kissinger et al., 2012). 
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Table 5.5: Three LULC conversion models in each period. 

Time 

Periods 

Forest to shrub conversion model Shrub to agriculture conversion model Shrub to built-up conversion model 

Variable Coefficient Odds ratio VTF Variable Coefficient Odds ratio VTF Variable Coefficient Odds ratio VTF 

1) 1997-

2003 

Temperature 0.80 2.24 1.87 Temperature 0.86 2.37 2.3 Temperature 0.53 1 2..28 

Proximate to 

town 
0.20 1.23 

1.16 
Rainfall 0.02 1.02 

1.24 
Rainfall 0.03 1.03 

1.24 

Proximate to 

villages 
0.03 1.03 1.34 

Population 

density 2000 
0.01 1 1.62 

Population 

density 2000 
0.34 1 1.66 

Proximate to 

water sources 
0.01 1.01 1.21 Proximate to town 0.01 1.01 1.1 

Proximate to 

town 
0.19 1.7 1.1 

 
 

 
 Proximate to 

villages 
0.04 1.04 

1.57 Proximate to 

roads 
0.05 1. 

1.68 

2) 2003-

2007 

Temperature 0.96 2.63 1.82 Temperature 0.75 2.12 2.26 Temperature 0.45 1.56 2.27 

Proximate to 

town 
0.31 1.36 1.19 

Population 

density 2005 

0.54 
1.08 1.5 Rainfall 0.04 1.06 1.25 

Proximate to 

water sources 

0.08 
1.09 1.28 Proximate to town 

0.08 
1 1.1 

Proximate to 

town 
0.08 1 

1.11 

 
 

 
 Proximate to 

roads 

0.08 
1.08 

1.64 Proximate to 

villages 
0.39 1.09 

1.59 

 
 

 
 

 
 

 
 Proximate to 

roads 
0.45 1.02 

1.7 

 
 

 
 

 
 

 
 Proximate to 

water sources 
0.06 1.06 1.19 

3) 2007-

2013 

Temperature 0.33 1 1.98 Temperature 0.65 1.91 2.25 Temperature 0.15 1.16 2.18 

Soils 0.07 1.073 1.28 Soils 0.09 1.1 1.38 Rainfall 0.03 1.03 1.25 

Population 

density 2010 

0.01 
1.395 1.32 

Population 

density 2010 

0.67 
2 1.42 

Population 

density 2010 

0.76 
1 1.54 

Proximate to 

town 

0.11 
1.12 

1.22 
Proximate to town 

0.06 
1.06 

1.11 Proximate to 

town 

0.05 
1 

1.1 

Proximate to 

roads 

0.04 
1.04 

1.28 Proximate to 

roads 

0.03 
1.03 

1.58 Proximate to 

roads 

0.01 
1 

1.61 

 
 

 
 Proximate to 

water sources 

0.11 
1.01 1.24 

Proximate to 

water sources 

0.10 
1.11 1.21 

4) 2013-

2017 

Temperature 0.08 1.08 1.38 Temperature 0.61 1.85 1.27 Temperature 0.29 1.34 1.26 

Population 

density 2015 

0.56 
1 1.31 Proximate to town 

0.08 
1.09 2.2 

Population 

density 2015 

0.01 
1 1.42 

Proximate to 

town 

0.07 
1.08 

1.87 Proximate to 

roads 

0.01 
1.02 

1.48 
Rainfall 

0.06 
1.06 

1.30 

Proximate to 

roads 

0.08 
1.08 1.25 

Proximate to 

water sources 

0.03 
1.03 1.47 

Proximate to 

town 

0.01 
1.04 2.141 

Proximate to 

water sources 

0.07 
1.08 1.32  

 
 

 Proximate to 

roads 

0.44 
1.64 1.50 

 
 

 
 

 
 

 
 Proximate to 

water sources 

0.02 
1.02 1.48 

            

Overall 

period 

 

 (1997-

2017) 

Temperature 0.47 1.6 1.4 Temperature 0.97 2.65 1.25 Temperature 0.65 1.92 1.24 

Population 

density 2015 

0.89 
1.6 1.28 

Population 

density 2015 

0.23 
1.06 1.3 

Population 

density 2015 

0.01 
1 1.55 

Proximate to 

town 

0.19 
2.17 

1.77 
Slope 

0.04 
1.04 

1.01 
Rainfall 

0.02 
1.02 

1.25 

Proximate to 

roads 

0.05 
2.05 

1.27 Proximate to 

roads 

0.01 
1.01 

1.51 
Slope 

0.18 
1.2 

1.01 

Proximate to 

water sources  

0.03 
1.03 1.29 Proximate to town 

0.14 
1.16 2.21 

Proximate to 

town 

0.08 
1 2.13 

 
 

 
 Proximate to 

water sources 

0.01 
1.01 1.49 

Proximate to 

toads 

1.09 
1 1.58 

 
 

 
 

 
 

 
 Proximate to 

water sources 

0.13 
1.13 1.14 

            

 Nagelkerke R² = 0.160 Cox & Snell R² = 0.196 Nagelkerke R² = 0.187 Cox & Snell R² = 0.275 Nagelkerke R² = 0.269 Cox & Snell R² = 0.428 
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From table 5.5 can be concluded that the most significant variable is a temperature that

contributed to three LULC conversion models in each period. The temperature variable was 

extracted by LST from Landsat thermal infrared band (OLI, ETM+ and TM) over the study

period, which is more accurate of the spatial resolution and land surface temperature in the 

study area. Zhou and Wang (2011) mentioned that LST derived from Landsat sensor is an

accurate  measurement of temperature and  the LST result is a more reliable  for  LULCC 

because the derived temperature from Landsat sensor is an indication of the energy exchange

balance  between  the  atmosphere  and  the  Earth that  affected the  surface attributes and  is  a 

good factor for explaining LULCC. The result of LULC conversion models was found the

dependent variables (LULC conversion) were well explained by temperature in each model 

compared to other independent variables.

Many studies were also proved that LST derived from Landsat sensor is suitable and

proper for LULCC studies, for instance, the study of urban heat island of Singapore (Winston 

and Matthias, 2006), urban heat island and shifting behavior in Delhi and Mumbai (Grover 

and Singh, 2015), the effect land use/cover change by LST in Netherlands (Youneszadeh et

al., 2015), the impacts of LULCC on LST in the Zhujiang Delta (Qian et al., 2006).

  Another important variable was the population density that significantly contributed to 

the models except for the periods 1 and 2 of the first model, the period 4 of the second model, 

and the period 2 of the third model, which the population density was not significant. This

might be because of population density in 2000, 2005, 2010 and 2015 were highly correlated 

with other variables (see Table 5.4). When the independent variables are highly correlated, 

they influence predictive values of the variables and generate an uncertain of the model (Ott 

and  Longnecker,  2010). Therefore,  the overall period  of  each  model  was  considered  to

include only  one  population  density in  order  to  avoid  the  correlation.  Since, the  result 

indicated that  population density 2015  was  significant  in  each overall  period model  (see

Table 5.5). 
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5.3.3. Model validation 

The model validation indicated that the most accurate model was in the third model 

(shrub to built-up conversion), the second model (shrub to permanent agriculture conversion) 

was moderate accurate and the first model (forest to shrub conversion) was less accurate. 

In the third model  showed  R² (Nagelkerke R² and  Cox & Snell R²)  with 26% and 

43% of the dependent variable (shrub to built-up conversion) were explained by the 

independent variables (see Table 5.5). The AUC (0.87) indicated that the model was a good 

fitting and ROC curve was near to the left-top, which means the model was correctly 

classified between changed and not changed areas of the shrub conversion to built-up (binary 

0= not change and 1= change)(see Figure 5.8).  

The second model indicated  R² of 18 % and 27%. The goodness fit of the model was 

satisfactory with AUC (0.78), and the ROC curve was between diagonal line and left top that 

presented the good model performance (see Table 5.5 and Figure 5.8). 

The first model was the lowest in terms of R², AUC and ROC curve (see Table 5.5 and 

figure 5.8). The R² showed only 16% and 19% that were predicted by the independent 

variables. The AUC (0.72) indicated that the model was less accurate of the prediction 

between the dependent and independent variables. The ROC curve was closer to the diagonal 

line than left-top that presented the weak model.  

 

 

 

 

 

 

 

 

 

 

 

 

    A. Model 1                                          B.   Model 2                                         C. Model 3 

        AUC: 0.72                                                         AUC: 0.78                                                            AUC: 0.87               

 Figure 5.8: The ROC and AUC of three LULC conversion models. 
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Figure 5.9: The probability of forest to shrub conversion over the study period. 

 

Figure 5.10: The probability of shrub to permanent agriculture conversion over the study period. 
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Figure 5.11: The probability of shrub to built-up conversion over the study period. 

 

5.4. LULC simulation 

5.4.1. Simulated LULC in 2017 

As mentioned in Methodology Chapter (see section 4.6 in chapter 4) the simulated 

LULC of 2017 was conducted  in order to estimate the accuracy and predictive ability of the 

model in forecasting LULC for 2022. The simulated LULC in 2017 was established from 

historical LULCC process by simulating LULC for time t1 (2007) and for time t2 (2013). 

The result was validated by comparing the simulated LULC map of 2017 and the reference 

LULC map of 2017 (classified LULC map in 2017). Therefore, if the validated result is 

accurate and reliable, then the LULC simulation for 2022 will be implemented.   

The simulated LULC in 2017 was carried out in QGIS MOLUSCE plugin that is based 

on Cellular Automata, which analyzed the transitional potential of LULC between 2007 and 

2013 to predict LULC patterns in 2017. In table 5.6 shows the differences of permanent 

agriculture and forest areas between the reference map of 2017 and the simulated map of 
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2017 that were 27 km2 .  For built-up and shrub areas were slightly different around 8.29 km2 

and 7.20 km2 between both maps. As can be clearly seen in figure 5.12 that forest had 

increased in the simulated map of 2017.  The increase of shrub areas occurred in small pixels 

that cannot be noticed on the map. 

Table 5.6: Changed areas in km2 and in % between the reference LULC map 2017 and the simulated 
LULC map 2017. 

Classes 

Reference LULC map 
2017 

Simulated LULC map 
2017 

Change detection 

Area km2  % Area km2  % Area Km2 

Permanent agriculture 175.40 25.01 148.11 21.12 -27.29 

Built-up 114.80 16.37 106.51 15.18 -8.29 

Forest 176.06 25.11 203.45 29.014 27.39 

Shrub 214.24 30.55 221.44 31.58 7.20 

Water 20.68 2.95 21.70 3.094 1.02 

Total 701.18 100.0 701.18 100  

 

 
Figure 5.12: The Reference LULC map 2017 and the simulated LULC map 2017. 
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For validating the output of the simulated LULC map in 2017, two maps were compared 

the reference LULC map of 2017 and the simulated LULC map of 2017. The validation was 

based on kappa statistic and multiple-resolution. The kappa statistic is showed in table 5.7 

that includes kappa histogram (0.932) that is an estimation of frequency distribution of the 

simulation, Kappa location (0.754) that is the simulation’s ability to perfectly specify location 

between the reference map and the simulated map, and Kappa overall (0.703) that is the total 

accuracy of the number pixel correctly classified between the reference map and simulated 

map. All of these Kappa values can be referred to Landis and Koch (1997), which explained 

the kappa value range. The value between 0.61-0.80 corresponds to a moderate agreement 

between the reference map and the simulated map, the value between 0.81-1 corresponds to 

almost perfect agreement in both maps.  For the total correctness value is 77.72%, which 

indicates that the moderate accuracy of the simulated LULC map in 2017. 

The multiple resolution is the accuracy in location and in quantity of the reference map 

and the simulated map that correspond to the agreement and disagreement component 

between two maps (Pontius and Suedmeyer, 2004).  In figure 5.13 appears 4 types of the 

plots but the most important plot is “perfect location, medium quantity inform” where the 

plot is almost 1 (back color line in figure 5.7). This presents the perfect location and medium 

quantity information are almost 100% between both maps. According to Pontius and 

Suedmeyer (2004), the perfect location is a grid cell level information of the reference map 

that has a perfect location in the simulated map and for the medium quantity is the reference 

map that has the same quantity as the simulated map. So, the perfect location and medium 

quantity information are considered as a good agreement for the simulated map in 2017.  Both 

Kappa statistics and multi resolutions of the simulated LULC map in 2017 are acceptable 

accuracies and good predictive ability of the LULCC model. Therefore, the simulated LULC 

in 2022 was implemented (see section 5.4.2). 

Table 5.7: Kappa and correctness of the simulated LULC map in 2017. 

Simulated LULC map in 2017 

Correctness 77.72 % 

Kappa (overall) 0.703 

Kappa (histogram) 0.932 

Kappa (location) 0.754 
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Figure 5.13: Multi-resolution included 4 plots of simulated LULC in 2017. 

5.4.2. LULC simulation for 2022 

The simulated LULC in 2022 was done through the Cellular Automata simulation of  

LULC transitional potential between 2013 and 2017 to predict LULC for the next five years 

(2022). The result of LULC simulation in 2022 is showed in table 5.8. The dominant area is 

shrub class (220.55 km2), followed by forest (171 km2), agriculture (167.13 km2), built-up 

(122.12 km2) and water (20.32 km2).  

The built-up and shrub classes in 2022 are estimated to increase 7.32 km2 and 6.31 km2 

(1.04% and 0.9%) but the agriculture and forest classes are estimated to decrease -8.27 km2 

and -5.06 km2 (-1.18% and -0.72%). When comparing LULC maps of 2017 and 2022, there 

are slightly different between them. The built-up areas present a pronounced change as can 

be clearly seen in figure 5.14. The built-up areas expanded inside and around the urban areas 

and road network, which mean that the expansion was mostly affected by these spatial 

variables such as proximate to roads, town and the population density. For other changed 

areas are a smaller scale that cannot be noticed on the map. 

Table 5.8: Changed areas in km2 and % between LULC in 2017 and LULC in 2022. 

Classes 
LULC in 2017 LULC in 2022  Change 

km2 % Km2 % Km2 % 

Permanent Agriculture 175.40 25.01 167.13 23.84 -8.27 -1.180 

Built-up 114.80 16.37 122.12 17.42 7.32 1.044 

Forest 176.06 25.11 171.00 24.39 -5.06 -0.722 

Shrub 214.24 30.55 220.55 31.46 6.31 0.900 

Water 20.68 2.95 20.32 0.24 0.36 0.051 

Total 701.18 100.0 701.18 30.1 27.32 10.34 
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Figure 5.14: LULC map 2017 and simulated LULC map 2022. 

The result of LULC transitional potential between 2017 and 2022 is showed in table 

5.9 and figure 5.15. Large LULC conversions are similar to the overall study period that 

included shrub to agriculture conversion with 43.57 km2, forest to shrub conversion with 

30.90 km2, shrub to built-up conversion with 13.31 km2 (see table 5.9).  These mean that in 

responding to economic growth and urban process in 2022, the potential forest and shrub 

areas will be converted to multi land use functions, especially for agriculture and built-up 

purposes that may affect to land use and natural resource in the future.  

Moreover, figure 5.16 presents the probability percentage of LULC conversions. 

According to Mkrtchian and Svidzinska (2016), a lower percentage is an uncertain area on 

the time of simulation and has the probability to the conversion, and for a higher percentage 

is  the certain area on the time of simulation and lower probability of the change. Therefore, 
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from figure 5.16 can be concluded that the areas with low percentage have a high probability 

of the change, and for high percentage areas mean less probability of the conversion in the 

simulated LULC of 2022.  

Table 5.9: LULC class conversions between 2017-2022 in km2 . 

2022 

2017 

Classes PA BU F S W 

PA 124.98 0.88 5.20 43.57 0.83 

BU 7.20 87.58 5.85 13.31 0.87 

F 3.40 0.82 148.93 22.88 0.05 

S 3.40 1.29 30.90 164.38 0.38 

W 0.73 0.08 0.03 0.26 19.57 

 

 

Figure 5.15: Three main LULC conversions  map between 2017-2022 based on Cellular Automata 
simulation. 
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Figure 5.16: LULC conversion probability 2022 indicates in percentage from the highest (certain 

areas) to the lowest (uncertain areas). 
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Chapter 6 - Discussion 

6.1. Satellite image classification 

This thesis analyzed LULCC the in Kaysone Phomvihan district by utilizing satellite 

images classification (Landsat data). In which, uncertainties generated at different stages in 

a procedure have influenced the classification accuracy and area estimation of LULC classes 

(Canters, 1997;  Friedl et al., 2001; Dungan, 2002). Another impact is the spatial resolution 

that affects in the classification method and accuracy (Chen et al. 2004). This study used 

Landsat images from the different sensors: TM, ETM+ and OLI that have a medium spatial 

resolution (930x930m).  Strahler et al. (1986) explained that H- and L-resolution (high and 

low-resolution) have an impact in the classification process. In the fact that, the scene 

elements in the H-resolution images are larger than the resolution cell and can, therefore, be 

directly detected. In contrast, the elements in the L-resolution image are smaller than the 

resolution cells and are not detectable.  For the medium spatial resolution data such as 

Landsat TM/ETM + and OLI are attributed to the L-resolution images. Mixed pixels are 

common in these data that can lead to inaccurate classification results.  

This study found that permanent agriculture and built-up were the most of LULC 

classes that had the mixed pixels. The agriculture class did not show an explicitly spatial 

pattern, which it was mixed with other class pixels.  According to Václavík and Rogan 

(2009), the category of agriculture is normally the most problematic class at the medium 

spatial resolution because it represents a mixture of various crops in different periods as well 

as bare soil (plowed fields). The built-up class had no obvious pattern and most areas were 

mixed with other classes such as forest, permanent agriculture and shrub.  According to Zhou 

et al. (2009), mapping accurate pattern of the urban area is a challenge. Using high spatial 

resolution images from satellite sensors such as IKONOS and QuickBird are more accurate. 

For the reliable classification results, the accuracy assessment was performed. Lu et al. 

(2004) noted that the accuracy of change detection results highly depends on many factors 

such as the complexity of landscape of the study area, the change detection methods or 

algorithms, and availability and quality of ground truth data. However, the accuracy 

assessment in this study was implemented without the ground truth data from the fieldwork 
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and it was computed with random sampling points. Since the built-up, agriculture, shrub and 

water classes of each image had sampling point less than 20 pixels, which made the results 

not statistically validated (Congalton and Green, 2008). For the overall accuracy, as 

mentioned by Anderson et al. (1976), the minimum overall accuracy value computed from 

an error matrix should be 85%. However, some authors mentioned lower values of overall 

accuracy (e.g., 75%).  The overall accuracy of the first and second classified LULC maps in 

this study were lower than 85% that less accurate results and the rest classified LULC maps 

were higher 85% with acceptable results.  

6.2. LULCC drivers 

6.2.1 Proximate drivers 

This study found that forest and shrub areas presented the highest losses with 146.54% 

and 129% in the overall study periods but the built-up and agriculture presented the highest 

increase areas with 97% and 99% respectively. The foremost LULC conversions were: forest 

to shrub conversion; shrub to agriculture conversion; and shrub to built-up conversion. These 

conversions were identified as the proximate driver of LULCC in the study area.  

The forest in Kaysone Phomvihan district had the highest loss of 56.45% during 2003-

2007 due to the conversion to shrub areas. This corresponded to the total forest loss in the 

whole Savannakhet province that was about 60% of a total area in 2005. The loss of forest 

land use mainly occurred in these districts: Kaysone Phomvihan, Champhone, 

Outhoumphone, Xayboury, Atsaphangthong, Sephonh and Songkhone (UNDP, 2011). 

According to PDPI (2009), Savannakhet has experienced forest and rich forest losses, and 

poorly stocked areas due to deforestation and wood industry, especially deforestation are the 

main cause of the forest and natural resource degradation. As explained by Geist and Lambin 

(2001), the tropical deforestation is caused by multiple proximate factors that are the 

combination of wood extraction, agricultural expansion and infrastructure expansion, 

particularly commercial wood expansions in mainland Asia and Southeast Asia are fluently 

reported. Therefore, in case of the forest conversion to shrubland in the study area was 

identified that caused by the deforestation.  
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Shrub to agriculture conversion increased over 20 years from 9.77% in 1997 to 21.86% 

in 2017. This result is related to agriculture production expansion and investment in the 

district such as rice, maize, vegetable, and industrial crops like sugarcane, rubber, acacia and 

eucalyptus. According to UNDP (2011), agriculture was the main economic sector in 

Savannakhet province that contributed to 52.32% of the total economic sectors in during 

2000-2010, especially agriculture production from Kaysone Phomvihan, Outhoumphone and 

Songkhon. This can be concluded that the shrub conversion is mainly caused by agriculture 

expansion that is one of the proximate drivers of LULC changes in the study area.  

Shrub to built-up conversion is related to the urban expansion because of the built-up 

areas dynamically increased more than 10 times compared from the year 1997 (15.51 km2) 

to the year 2017(114.80 km2). The built-up areas were expanded around Kaysone Phomvihan 

district, alongside the Mekong River and road network. This was proved by the research of 

Nolintha and Masami (2011) that Kaysone Phomvihan’s urban transformation on the north-

south axis, along the Mekong River and parallel streets that gathered administrative 

buildings, equipment, residential areas, main market and temples.  

6.2.2. The underlying drivers 

The underlying drivers have an influence in LULCC, which resulted from the complex 

interaction of social, political, economic, technological and biophysical variables (Geist and 

Lambin, 2002). It is not possible to capture all of these interactions, especially the social, 

economic, political, and technology due to this study timeline and scale. Therefore, this study 

only considered biophysical and socio-economic variables. 

The biophysical variables were rainfall, temperature, elevation, slope and soil types. 

The socio-economic variables included the population density and proximate to roads, urban 

areas and water sources, even these variables are not directly as socio-economic but can be 

identified as the related factors that provide facilities to access market and economic 

development (Swart, 2016). 

Multi binary logistic regression was applied to analyze the relationship between LULC 

conversions and the independent variables in three different models: forest to shrub 
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conversion (deforestation); shrub to agriculture conversion (agriculture expansion); and 

shrub to built-up conversion (built-up expansion).  

The pseudo R-square revealed that all models presented weak performances. The 

lowest pseudo R-square presented for the first model where only 16% and 19% of the 

dependent variable (forest to shrub conversion) were explained by the independent variables 

(biophysical and socio-economic).  The highest pseudo R-square was obtained in the third 

model with 26% and 42% were explained between both variables. These weak performances 

can be explained by the poor data quality of both the dependent and the independent variables 

such as less inaccurate of the LULC classification (as discussed in section 6.1) and the 

quantification of the biophysical and socio-economic variables was difficult due to the data 

limitation and unavailability. For instance, the population density is an estimation of 

population number that not corresponding to real population figure in the study area, as well 

as road network, water sources data that were not updated over the times.  

According to Swart (2016), the drivers cannot  be incorporated in the models because 

of the absence of spatial data and the difficulties of quantifying some variables and some 

missing variables such as poverty, technological changes, environmental governance and 

policies, international drivers and behaviour of people. The economic, social, cultural and 

political drivers have influenced each other, they interact and do not operate independently 

in the model (Geist and Lambin, 2001). 

6.3. LULC conversion models 

6.3.1. Forest to shrub conversion 

This model indicated that the socio-economic variables had more contribution to the 

conversion than the biophysical variables. The socio-economic variables significantly 

contributed to this model such as proximate to town and population density increased 2.17 

times and 1.6 times the probability of the forest conversion that caused by the deforestation. 

Geist and Lambin (2005) mentioned that socio-economic factors are prominent underlying 

forces of tropical deforestation. Commercialization and growth of mainly timber markets (as 

driven by national and international demands) have driven the deforestation. Moreover, the 
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population growth and economic development lead to land use and natural resource demands 

that play a role as the drivers of deforestation and forest degradation.   

Temperature variable was the only one of the biophysical factors that contributed to 

forest conversion due to Kaysone Phomvihan district is located at the hottest area in Laos. 

High temperature has an impact in the fertilization of forested areas and led to the conversion.  

In Laos, an increase of annual temperature is predicted to impacts environmental change and 

ecosystem service, especially in the Mekong river basin, an increases temperature have 

affected to land degradation and soil erosion as well as changes of vegetable cover type from 

forest to grassland shrubland and agriculture land that occurred in large landscapes of the 

Mekong River basin (MRC, 2009). 

6.3.2. Shrub to agriculture conversion 

Both biophysical and socio-economic factors played a role in shrub conversion to 

agriculture. The socio-economic was pronounced factors to drive agriculture expansion such 

as population density, proximate to town and water sources were significant to the model, 

and they increased the probability of shrub conversion. Serneels and Lambin (2001) pointed 

out that the conversion to agriculture is controlled by the proximity to the market, as a proxy 

for transportation costs, and agro-climatic potential. The accessibility to main roads and 

proximity to markets (urban areas) are important variables in explaining agriculture 

expansion in Kaysone Phomvihan district (Nolintha and Masami, 2011; UNDP, 2011). 

Slope and temperature variables were the biophysical factors that contributed to 

agriculture expansion. The slope relates to flat areas in Kaysone Phomvihan district is the 

purpose of agriculture expansion because of easier access to facilities such as markets, water 

supply, etc. For each unit of temperature increases, it increased 2.65 times of the probability 

of shrub conversion to agriculture. This can be explained by shrub land modification is 

influenced by the sensitivity to climate fluctuations and determining land use functions 

(Serneels and Lambin, 2001).  
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6.3.3. Shrub to built-up conversion 

Shrub to built-up conversion revealed that high population areas that are near to the 

town, roads and water sources were converted into built-up areas. These areas are likely urban 

areas of Kaysone Phomvihan district that have the high population density and are close to 

the Mekong River.  This can refer that the expansion of settlements is controlled by land 

concession such as  proximity to permanent water, location near an economic development 

center, tourism market and vicinity to town that can access to social services and facilities     

(health clinics, schools, local market) (Serneels and Lambin, 2001). In case of Kaysone 

Phomvihan district is the city center that includes Special-Specific Economic Zone, 

commercial center and facilities such as Center hospital, University, schools and others). The 

slope increased 1.2 times the probability of shrub conversion, which means that flat areas in 

the western district are the urban expansion purpose.  

6.4. LULC simulation.  

The LULC simulation for 2022 was based on the Cellular Automata. The validation of 

the model accuracy is needed, in order to achieve acceptable accuracy, this study had 

employed an approach to simulate LULC of 2017 (time t3) from the historical LULCC 

process for time t1 (2007) and for time t2 (2013) and then the simulated result was compared 

to the reference LULC map of 2017 (classified LULC map 2017).  Since, the reference map 

is usually considered more accurate in the study area at time t3 (Dushku and Brown, 2003; 

Ponstius and Chen 2006). The simulated LULC in 2017 was successful in both correctness 

value and multi resolution. The correctness value was 77.72% that is a good agreement 

between the reference map and the simulated map. The multi resolution indicated the perfect 

location and medium quantity information between the reference map and the simulated map, 

which means that the historical LULCC process from 2007 to 2013 is accurate and reliable 

to predict LULC patterns in 2022.  However, the validation of the simulated map is a 

challenge because there is no criterion to assess the performance of the different LULCC 

models. Another problem is parameters to indicate the overall accuracy, parameters for 

comparing different modelling results and the minimum accuracy standard (Pontius and 

Chen, 2006). Therefore, this research was considered to simulate LULC for short-time period 
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(2017-2022) because as Araya and Cabral (2009) mentioned that short-term prediction is 

more reliable than long-term due to is not easy to assess the accuracy of the long-term 

simulation. 

The result of simulated LULC in 2022 showed a number of the areas in each LULC 

class were slightly different compared to the years 2017. The built-up and shrub areas 

increased 7.32% and 6.31%. The forest and agriculture areas decreased -5.06% and -8.27%. 

These indicate that in 2022, natural forest and agriculture areas will decrease. This has 

corresponded to reporting from Savannakhet PDPI that forest is decreasing and has been 

converted to other lands illegally and legally. The agricultural is shrinking because of 

agriculture sector is being replaced with industry and service sectors (ADB, 2012).  

The built-up areas trend to increase over the time because the local government is 

making the fundamental factors for the future development and population flow from rural 

villages to the sub-urban areas that are vicinity of the town center because over next decades 

(2020-2030). Kaysone Phomvihane district envisions are becoming the international and 

regional core city for increasing trade and flows of people, goods and services along the East-

West Economic Corridor (EWEC) (ADB, 2012). 

6.5. LUCC and spatial planning challenges 

From the result of LULCC analysis over the study periods indicated that forest and 

shrublands had the highest losses and built-up and agriculture are the highest increase areas, 

which encourage land use planners to have more concern on land use management and 

planning.   

Urban planning terms may have been concerned more on land use changes because of 

ADB (2012) mentioned that the core problem in urbanization of Kaysone Phomvihan district 

is inadequate infrastructure and insufficient concern for environmental impacts. This results 

in disorganized growth, inefficient land use, damage and loss of natural resources and 

inadequate access to urban services.  Therefore, land use management and planning should 

be focused on both contexts of urbanization, and environmental and natural resource 

protection in the district.  
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In terms of the urban planning, the Urban Master Plan was approved in 2001 and The 

updated Kaysone Phomvihane SEDP (see section 3.3 in chapter 2) are established to provide 

sufficient urban infrastructure, and formulate a planned development to meet the demands 

from increasing trade and traffic flows along EWEC of the district (ADB, 2015; Nolintha & 

Masami, 2011). Their development visions are to become “a socially responsible, 

environmentally friendly and economically successful town” in order to be the economic 

center for increasing trade and investments in the East-West Economic Corridor road. All of 

these through the provision of adequate urban and infrastructure and essential services to 

facilitate growth and increase urbanization (ADB, 2015; Nolintha & Masami, 2011; Reid, 

2015). The urbanization has corresponded to the result of the spatial trends of urban 

expansion occurred in the western of the district alongside Mekong River and road network. 

Especially, in SSSEZ and around the Thai-Lao friendship bridge, the development projects 

covered the 600 ha over past decade, and land use around these projects are being converted 

to economic and residential zone. In responding to the urban growth, local government has 

set out the different land use zone categories for agricultural production, industrial zones, 

commercial and residential areas in the updated urban master plan (Reid, 2015).   

 However, this urban plan does not cover the natural land use context, even the study 

found that forest and shrub lands are close to urban areas increased the probability of urban 

expansion. Since, the urban land concession of local people leads them to access a new land 

likely richer forest and shrub lands, which make further issues of land use conversion.   

In terms of natural forest and shrub land uses have been protected through Land and 

Forest Allocation program (LFA) and the relevant law such as Law of forest and 

Environmental protection Law, but it seems these laws are not compliant with forest 

management because the study indicated that forest and shrub lands still have high rates of 

losses and their trends of losses are still increasing in 2022.  According to Tong (2007), the 

LFA achievement is limited and various obstacle policy because of LFA is constraint of Lao 

policies are oriented towards economic development such as land concessions, timber 

extraction, commercial agriculture explanation and forest production that highly benefit to 

national economic development, which leads the LFA has not enough attention in the 

practical context.  
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Therefore, the different of land use management context between urban and natural 

land use, as well as the inefficiency of law enforcement in the study area can lead the gap in 

administrative level and inefficiency of land use management between local government and 

community in the study areas. In which, it has encouraged policy makers to reconsider on 

their land use planning and the laws that are more appropriate in the practical terms for 

sustainable land use management.  
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Chapter 7 - Conclusions and Recommendations 

7.1. Conclusions 

The changes of LULC caused by direct and indirect human activities have a wide range 

of consequences at spatial and temporal scales. Understanding LULCC patterns and the 

driving forces are needed to project LULCC processes and spatial trends, which will provide 

relevant knowledge that is a useful guideline for decision‐makers at the national and local 

government, and civil society.  This study was conducted to analyze LULCC and the driving 

forces over 20 years (1997-2017), as well as simulating LULCC for the year 2022 in Kaysone 

Phomvihan district by using RS data and GIS combined with statistical analysis and LULCC 

model. 

This research started with the satellite image classification for the years 1997, 2003, 

2007, 2013 and 2017 into five LULC classes: permanent agriculture, built-up, forest, shrub 

and water. Then, characterizing LULCC and spatio-temporal trends of the proximate drivers, 

and quantifying the underlying drivers of biophysical and socio-economic variables for 

further analysis. MBLR was applied in order to analyze the relationship and interaction 

between the proximate and underlying drivers in terms of cause and effect over the study 

period. The last section corresponds to the analysis of spatial transitional potential and 

LULCC prediction for 2022 through Cellular Automata simulation.  

Based on LULCC analysis over 20 years was found that forest and shrub areas had the 

highest losses. Built-up and permanent agriculture areas had the highest increases. The 

highest conversions of LULC classes were: forest to shrub conversion (deforestation); shrub 

to agriculture conversion (agriculture expansion); and shrub to built-up conversion (urban 

expansion). These three conversions were considered as the proximate driver of LULCC. 

The spatio-temporal trends of deforestation and agriculture expansion occurred from 

the southwestern to the southeastern areas of Kaysone Phomvihan district where there is high 

coverage of the forest and shrub areas. For built-up expansion’s trends occurred in the 

western of the district alongside the Mekong river, as well as on the areas that are close to 

the road network.  
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The MBLR revealed that both biophysical and socio-economic factors had significantly 

influenced the three LULC conversion models that can be concluded that: 1) forest to shrub 

conversion the socio-economic factors had an effect on the forest conversion that identified 

as the deforestation that occurred in the areas that are vicinity to road network and town with 

high population density. In which, good accessibility to forest areas and had a high risk of 

the deforestation; 2) shrub to agriculture conversion had an impact from both factors that 

caused from agriculture expansion, especially in the areas that can access to markets, 

transportation, water sources and labor (population) are mostly converted to agriculture 

croplands; 3) shrub to built-up conversion had been driven by both factors to urban expansion 

because the population and economic growth over few decades in Kaysone Phomvihan 

district, which led to establishing new urban areas and infrastructure development (roads, 

schools, hospitals etc.) that occurred mostly in the areas where  proximate to the western 

district that is landscape and high potential economic development.  

The LULC simulation for 2022 was carried out and the result was satisfactory. In 2022, 

forest and permanent agriculture areas will decrease -1.18% and -0.72% compared to LULC 

in 2017, but built-up and shrub areas will slightly increase 1.04 % and 0.9%.  

The transitional potential in 2022 indicated that forest loss is mainly due to the forest 

conversion to shrubland that will consequence from the deforestation.  Agriculture land loss 

will result from the urban expansion (permanent agriculture to built-up conversion) Both 

LULC losses imply that high economic growth and land demands for urban developments in 

the district is due to in responding to the Government policy in ”Turning lands to capital” 

this is needed policy-makers to reconsider on land use planning, especially improving urban 

master plan that covered both urban and natural land use context, as well as increasing the 

efficiency of the relevant laws enforcement for sustainable land use management in the 

future. 
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7.2. Limitations and recommendations 

7.2.1. Limitations 

The main limitations of this study are related to data acquisition and analysis process. 

Most of the data were based on online sources such as satellite images and spatial data. The 

main limitations are:  

1) Data of the proximate driver: LULC maps were produced from Landsat satellite 

images classification that are the medium spatial resolution sensors and the study area is 

small scale, which gives the mixed pixels in each LULC class. Since, the mixed pixels create 

a problem in the medium spatial resolution image, based-pixel classifier has difficulty dealing 

with them, as well as uncertainties generated in each step of the classification method have 

influenced the result.  Validating the results were difficult due to lacking reference maps and 

absence of the fieldwork. Therefore, the accuracy assessment is only based on satellite image 

references. 

2) The underlying drivers: only were considered socio-economic and biophysical 

variables because LULCC processes are complex and difficult to capture all the drivers. Even 

analyzing two variables are still limited because of availability and accessibility of these data. 

For example, only the road network, water sources and administrative boundary data were 

obtained from an official source, but these data were not updated over the times. The 

population density used the global data that is an estimation of the population number, which 

is less inaccurate and not corresponding to the real population figure in the study area.  

Rainfall data acquired from online sources, the data is an average precipitation over the 50 

years from 1950-2000.  

7.2.2. Recommendations  

This thesis addressed the potential of GIS, RS and modelling tools for analyzing 

LULCC and the relationship between the drivers in order to predict LULCC in the future. 

Therefore, based on the findings of this study, these followings are recommended to:  
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Implementer 

1) The current trends of urban land use and on-going economic development will have 

remarkable impacts on the surrounding land resources. These results will assist policy makers 

and decision makers to reconsider on their current and future economic development plans 

to integrate with land use management, especially improving urban master plan on the 

infrastructure development for East-West Economic Corridor project in Kaysone Phomvihan 

district in order to avoid future of urban sprawl. 

2) These results can be used as a guideline for the environmentalist to investigate 

impacts of land use change and urban growth to natural resources and ecological service 

systems, as well as an effect to people’s livelihood for natural and land resources 

management in the future. 

For future research  

1) The future research should have a good understanding and comprehensive context 

of LULCC processes and the interactions of the drivers such as economic, policy, technology, 

institution and biophysical, which will help to identify the  drivers and improve LULCC 

model performance.  

2) The proper satellite image resolution and classification process should be considered. 

High spatial resolution images are needed such as QuickBird and IKONOS will provide good 

quality of LULC maps because urban areas have complex and heterogonous features, the 

high spatial resolution image provides better information to map land use areas. If the 

medium spatial resolution image, subpixel features such as fraction images of spectral 

mixture analysis or fuzzy membership information are considered as the classification 

method. Moreover, the accuracy and updated data of underlying drivers are important such 

as socio-economic, biophysical, etc. that will provide a more accurate result and predictive 

ability for the LULCC model.  

3) The qualitative assessment is highly recommended as visiting study area, conduct a 

fieldwork and interview in order to obtain expert knowledge and validating of the data 

analysis. It is essential to have knowledge of the study area context because in this way it is 

easier to identify and understand LULCC processes and the spatial relationships.  
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Appendices 

Appendix A 

Figure A.1:  Land use and land cover map of 1997. 
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Figure A.2:  Land use and land cover map of 2003. 
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Figure A.3:  Land use and land cover map of 2007. 
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Figure A.4:  Land use and land cover map of 2013. 
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Figure A.5:  Land use and land cover map of 2017. 
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Figure A.6:  Land use and land cover map of 2022. 
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Figure A.7: Land use and land cover conversions between 1997 and 2003. 
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Figure A.8: Land use and land cover conversions between 2003 and 2007. 
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Figure A.9: Land use and land cover conversions between 2007 and 2013. 
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Figure A.10: Land use and land cover conversions between 2013 and 2017.  
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Figure A.11: Land use and land cover conversions between 1997 and 2017. 

 

 

 

 

 

 

 

 

 

 

 



126 
 

Figure A.12: Land use and land cover conversions between 2017 and 2022. 
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Appendix B 

Table 1.B: Landsat sensor wavelength. 

Landsat  Band  Wavelength Resolution (m) 

Landsat TM 
199 and 2007 

Band 1 - Blue 0.45-0.52 30 
Band 2 - Green 0.52-0.60 30 
Band 3 - Red 0.63-0.69 30 
Band 4 - Near Infrared (NIR) 0.76-0.90 30 
Band 5  - Shortwave Infrared 
(SWIR) 1 

1.55-1.75 30 

Band 6 - Thermal 10.40-12.50 120* (30) 
Band 7 - Shortwave Infrared 
(SWIR) 2 

2.08-2.35 30 

    

Landsat 2003 

Band 1 - Blue 0.45-0.52 30 
Band 2 - Green 0.52-0.60 30 
Band 3 - Red 0.63-0.69 30 
Band 4 - Near Infrared (NIR) 0.77-0.90 30 
Band 5 - Shortwave Infrared 
(SWIR) 1 

1.55-1.75 30 

Band 6 - Thermal 10.40-12.50 60 * (30) 
Band 7 - Shortwave Infrared 
(SWIR) 2 

2.09-2.35 30 

Band 8 - Panchromatic .52-.90 15 
    

Landsat 
2013 and 2017 

Band 1 - Ultra Blue 
(coastal/aerosol) 

0.435 - 0.451 30 

Band 2 - Blue 0.452 - 0.512 30 
Band 3 - Green 0.533 - 0.590 30 
Band 4 - Red 0.636 - 0.673 30 
Band 5 - Near Infrared (NIR) 0.851 - 0.879 30 
Band 6 - Shortwave Infrared 
(SWIR) 1 

1.566 - 1.651 30 

Band 7 - Shortwave Infrared 
(SWIR) 2 

2.107 - 2.294 30 

Band 8 - Panchromatic 0.503 - 0.676 15 
Band 9 - Cirrus 1.363 - 1.384 30 
Band 10 - Thermal Infrared 
(TIRS) 1 

10.60 - 11.19 100 * (30) 

Band 11 - Thermal Infrared 
(TIRS) 2 

11.50 - 12.51 100 * (30) 
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Table B.2: Landsat OLI in 2013 calibration file. 

Landsat 8 OLI in 2013 path/row 127/48 
Band  RADIANCE_ADD_BAND (C0 ) RADIANCE_MULT_BAND (C1 ) Cal-file (C0) Cal-file (C0) 

1 - 64.84140 1.2968E-02 -0.6484140 0.0012968 
2 -66.39838 1.3280E-02 -0.6639838 0.0013280 
3 -61.18554 1.2237E-02 -0.6118554 0.0012237 
4 -51.59509 1.0319E-02 -0.5159509 0.0010319 
5 -31.57362 6.3147E-03 -0.3157362 0.0006314 
6 -7.85207 1.5704E-03 -0.7852070 0.0001570 
7 -2.64657 5.2931E-04 -0.2646570 0.0000529 

 

Table B.3: Landsat TM in 2007 calibration file. 

Landsat TM in 2007 path/row 127/48 

Band  RADIANCE_ADD_BAND (C0 ) RADIANCE_MULT_BAND (C1 ) Cal-file (C0) Cal-file (C0) 

1 -2.28583 7.6583E-01 -0.228583 0.76583 

2 -4.28819 1.4482E-01 -0.428819 0.14482 

3 -2.21398 1.0440E-01 -0.221398 0.10440 

4 -2.38602 8.7602E-01 -0.238602 0.87602 

5 -0.49035 1.2035E-01 -00.49035 0.12035 

7 -0.21555 6.5551E-01 -0.021555 0.65551 

 

Table B.4: Landsat TM in 2007 calibration file. 

Landsat TM in 2007 path/row 127/49 
Band  RADIANCE_ADD_BAND (C0 ) RADIANCE_MULT_BAND (C1 ) Cal-file (C0) Cal-file (C0 ) 

1 -2.28583 7.6583E-01 -0.228583 0.76583 
2 -4.28819 1.4482E-01 -0.428819 0.14482 
3 -2.21398 1.0440E-01 -0.221398 0.10440 
4 -2.38602 8.7602E-01 -0.238602 0.87602 
5 -0.49035 1.2035E-01 -00.49035 0.12035 
7 -0.21555 6.5551E-01 -0.021555 0.65551 

 

Table B.5: Landsat ETM+ year 2003 calibration file. 

Landsat ETM+ in 2003 path/row 127/48 
Band  RADIANCE_ADD_BAND (C0 ) RADIANCE_MULT_BAND (C1 ) Cal-file (C0) Cal-file (C0) 

1 -6.97874 7.7874E-01 -0.697874 0.077874 
2 -7.19882 7.9882E-01 -0.719882 0.079882 
3 -5.62165 6.2165E-01 -0.562165 0.062165 
4 -6.06929 9.6929E-01 -0.606929 0.096929 
5 -1.12622 1.2622E-01 -0.112622 0.012622 
7 0.39390 4.3898E-02 0.039390 0.004389 
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Table B.6: Landsat ETM+ in 2003 calibration file. 

Landsat ETM+ in 2003 path/row 127/49 
Band  RADIANCE_ADD_BAND (C0 ) RADIANCE_MULT_BAND (C1 ) Cal-file (C0) Cal-file (C0) 

1 -6.97874 7.7874E-01 -0.697874 0.077874 
2 -7.19882 7.9882E-01 -0.719882 0.079882 
3 -5.62165 6.2165E-01 -0.562165 0.062165 
4 -6.06929 9.6929E-01 -0.606929 0.096929 
5 -1.12622 1.2622E-01 -0.112622 0.012622 
7 0.39390 4.3898E-02 0.039390 0.004389 

 

Table B.7: Landsat TM in 1997 calibration file. 

Landsat TM in 1997 path/row 127/48 
Band  RADIANCE_ADD_BAND (C0 ) RADIANCE_MULT_BAND (C1 ) Cal-file (C0) Cal-file (C0) 

1  -2.28583 7.6583E-01   -0.228583 0.0765837 
2 -4.28819 1.4482E+00 -0.428819 1.448200 
3 -2.21398 1.0440E+00 -0.221398 1.044000 
4 -2.38602 8.7602E-01 -0.238602 0.087602 
5 -0.49035 1.2035E-01 -0.049035 0.012003 
7 -0.21555 6.5551E-02 -0.021555 0.0065551 

 

Table B.8: Confusion matrix of Landsat images classification in 1997. 

Confusion Matrix 1997 
Class W F BU PA S Total Producer’s Accuracy User’s Accuracy 
Water 2 0 0 0 0 2 66.67 % 100 % 
Forest 1 31 0 0 6 38 100 % 81.58 

Built-up 0 0 1 0 0 1 25 % 100 % 
Permanent Agriculture 0 0 1 12 0 13 85.71 % 92.31% 

Shrub 0 0 2 2 14 18 70% 77.78 % 
Total 3 31 4 14 20 72   

Overall Accuracy = 83.33 %     Kappa  = 0.74 

 

Table B.9: Confusion matrix for Landsat image classification in 2003. 

Confusion Matrix 2003 

Class W F BU PA S Total Producer’s Accuracy User’s Accuracy 
Water 2 0 0 0 0 2 66.67 % 100 % 
Forest 0 25 1 0 2 28 96.15 % 89.29 % 

Built-up 1 1 3 0 0 5 60 % 60 % 
Permanent Agriculture 0 0 1 9 0 10 56.25 % 100 % 

Shrub 0 0 0 7 16 23 88.89 % 66.67 % 
Total 3 26 5 16 18 68   

Overall Accuracy = 80.88 %    Kappa = 0.73 
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Table B.10: Confusion matrix of Landsat image classification in 2007. 

Confusion Matrix 2007 
Class W F BU PA S Total Producer’s Accuracy User’s Accuracy 
Water 1 0 0 0 0 1 100 % 100 % 
Forest 0 27 1 1 1 30 100 % 90 % 

Built-up 1 1 3 1 0 6 42.86 % 75 % 
Permanent Agriculture 0 0 2 10 0 12 71.43 % 83.33% 

Shrub 0 0 1 2 13 16 92.86 % 81.86% 
Total 2 28 7 14 14 65   

Overall Accuracy = 85.71 % Kappa = 0.79 

 

Table B.11: Confusion matrix of Landsat image classification in 2013. 

Confusion Matrix 2013 
Class W F BU PA S Total Producer’s Accuracy User’s Accuracy 
Water 3 0 0 0 1 4 100 % 75 % 
Forest 0 20 0 0 1 21 100 % 95.24 % 

Built-up 0 0 6 0 2 8 100 % 75 % 
Permanent Agriculture 0 0 0 12 2 14 85.71 % 85.71% 

Shrub 0 0 0 2 24 26 80 % 92.31 % 
Total 3 20 6 14 30 73   

Overall Accuracy = 89.04 % Kappa = 0.84 

 

Table B.12: Confusion matrix of Landsat image classification in 2017. 

Confusion Matrix 2017 
Class W F BU PA S Total Producer’s Accuracy User’s Accuracy 
Water 1 0 0 0 0 1 50 % 100 % 
Forest 0 22 0 0 1 23 95.65 % 95.65 % 

Built-up 1 0 9 0 4 14 100 % 62.29 % 
Permanent Agriculture 0 0 1 18 2 21 100 % 90% 

Shrub 0 1 0 0 25 26 78.13 % 96.15 % 
Total 2 23 10 18 32 85   

Overall Accuracy = 89.29 % Kappa = 0.85 

 

Table B.13: LULC class conversions between 1997 and 2003 in km2  

  1997 

2003 

Classes PA Built-up Forest Shrub Water Total Gain 
PA 80.35 0.83 3.03 29.50 1.11 114.82 34.47 
B 3.89 13.44 1.08 9.12 1.92 29.44 16.00 
F 0.88 0.29 243.46 19.77 0.27 264.67 21.21 
S 19.04 0.82 61.53 186.10 1.90 269.39 83.29 

W 0.93 0.13 0.06 0.57 21.17 22.86 1.69 
Total 105.08 15.51 309.15 245.07 26.37 701.18 156.67 
Loss 24.73 2.07 65.69 58.97 5.20 156.67 313.35 
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Table B.14: LULC class conversions between 2003 and 2007 in km2 

   2003 

2007 

Class PA B F S W Total Gain 
PA 89.40 0.12 2.26 25.56 0.42 117.76 28.36 
B 7.33 28.28 5.18 14.65 0.68 56.13 27.84 
F 0.91 0.44 194.69 11.93 0.26 208.22 13.53 
S 16.85 0.09 62.49 216.89 0.47 296.79 79.90 

W 0.34 0.51 0.04 0.36 21.03 22.28 1.25 
Total 114.82 29.44 264.67 269.39 22.86 701.18 150.89 
Loss 25.42 1.16 69.98 52.50 1.83 150.89 301.77 

 

Table B.15: LULC class conversion between 2007 and 2013 in km2 

   2007 

2013 

Class PA B F S W Total Gain 
PA 92.09 0.56 10.71 49.16 1.01 153.54 61.44 
B 8.29 54.90 3.77 23.26 0.42 90.64 35.74 
F 0.45 0.07 163.99 26.31 0.09 190.91 26.92 
S 16.31 0.58 29.39 197.74 0.38 244.39 46.65 

W 0.62 0.02 0.37 0.32 20.38 21.70 1.32 
Total 117.76 56.13 208.22 296.79 22.28 701.18 172.07 
Loss 25.67 1.22 44.23 99.05 1.90 172.07 344.15 

 

Table B.16: LULC class conversions between 2013 and 2017 in km2 

2017 

 2013 
Class PA B F S W Total Gain 

PA 124.92 0.87 5.20 43.57 0.83 175.40 50.48 
B 7.20 87.58 5.85 13.31 0.87 114.80 27.23 
F 3.40 0.82 148.93 22.88 0.05 176.06 27.14 
S 17.29 1.29 30.90 164.38 0.38 214.24 49.86 

W 0.73 0.08 0.03 0.26 19.57 20.68 1.10 
Total 153.54 90.64 190.91 244.39 21.70 701.18 155.81 
Loss 28.61 3.06 41.98 80.01 2.13 155.81 311.61 
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Table B.17: LULC conversion model in period 1997-2003. 

LULC conversion models in 1997-2003 

Forest to shrub conversion  
Variables B Odds ratio Sig. S.E. VIF 

Constant -0.915 0.4 0.073 0.511  

Population density 2015 -0.001 0.999 0 0 1.448 
DEM -0.03 0.97 0 0.001 1.791 

Rainfall -0.105 0.9 0 0.003 1.304 
Roads -0.069 0.934 0 0.005 1.377 
Slope -0.023 0.977 0.107 0.014 1.009 
Soils -0.029 0.972 0.019 0.012 1.351 

Temperature 0.808 2.244 0 0.012 1.871 
Distance to town 0.207 1.231 0 0.007 1.165 

Distance to villages 0.033 1.034 0 0.006 1.341 
Distance to water areas 0.011 1.011 0.017 0.005 1.212 

Nagelkerke R² =  0.167 Cox & Snell R² = 0.237 

Shrub to agriculture conversion  
Variables B Odds ratio Sig. S.E. VIF 

Constant -23.388 0 0 0.578  

Population density 2015 0.01 1 0 0 1.62 
DEM -0.011 0.989 0 0.001 1.929 

Rainfall 0.026 1.027 0 0.004 1.247 
Roads -0.025 0.976 0 0.006 1.644 
Slope -0.086 0.918 0 0.018 1.014 
Soils -0.04 0.96 0.003 0.014 1.498 

Temperature 0.865 2.375 0 0.011 2.307 
Distance to town 0.018 1.018 0.037 0.008 1.103 

Distance to villages 0.04 1.04 0 0.007 1.573 
Distance to water areas -0.028 0.972 0 0.006 1.142 

Nagelkerke R² = 0.105 Cox & Snell R² = 0.187  

Shrub to built-up conversion  

Variables B Odds ratio Sig. S.E. VIF 

Constant -17.729 0 0 1.175  
Population density 2015 0.34 1.007 0 0 1.663 

DEM 0 1 0.823 0.002 1.876 
Rainfall 0.03 1.031 0 0.008 1.248 
Roads 0.056 1.006 0 0.021 1.682 
Slope 0.012 1.012 0.689 0.03 1.013 
Soils -0.194 0.824 0 0.024 1.543 

Temperature 0.535 1 0 0.019 2.283 
Distance to town 0.192 1.707 0 0.015 1.104 

Distance to villages -0.086 0.009 0 0.012 1.599 
Distance water areas -0.076 0.927 0 0.014 1.153 

Nagelkerke R² = 0.098 Cox & Snell R² = 0.29  

 

 

 

                  Positive and increase odds ratio of probability in land use conversion  
                  Negative and decrease odds ratio of probability in land use conversion  
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Table B.18: LULC conversion model in period 2003-2007. 

LULC conversion model in 2003-2007 

Forest to shrub conversion 

Variables B Odds ratio Sig. S.E. VIF 

Constant -3.132 0.044 0 0.585  
Population density 2015 0 1 0.141 0 1.361 

DEM -0.023 0.978 0 0.001 1.756 
Rainfall -0.119 0.888 0 0.004 1.343 
Roads -0.077 0.926 0 0.005 1.298 
Slope -0.019 0.982 0.239 0.016 1.007 
Soils -0.197 0.821 0 0.014 1.296 

Temperature 0.967 2.631 0 0.014 1.82 
Distance to town 0.312 1.366 0 0.009 1.193 

Distance to villages -0.047 0.954 0 0.007 1.312 
Distance water areas 0.087 1.091 0 0.005 1.281 

Nagelkerke R² = 0.196 Cox & Snell R² = 0.267  
Shrub to agriculture conversion 

Variables B Odds ratio Sig. S.E. VIF 

Constant -15.987 0 0 0.609  
Population density 2015 0.54 1 0 0 1.509 

DEM -0.021 0.979 0 0.001 1.966 
Rainfall  0.002 1.002 0.565 0.004 1.249 
Roads 0.08 1.083 0 0.007 1.643 
Slope -0.145 0.865 0 0.019 1.011 
Soils -0.003 0.997 0.813 0.015 1.414 

Temperature 0.756 2.129 0 0.012 2.266 
Distance to town 0.081 1 0 0.009 1.109 

Distance to villages -0.045 0.956 0 0.007 1.557 

Distance to water areas -0.093 0.911 0 0.007 1.135 

Nagelkerke R² = 0.10 Cox & Snell R² = 0.186  

Shrub to built-up conversion 

Variables B Odds ratio Sig. S.E. VIF 

Constant -15.504 0 0 0.799  
Population density 2015 0 1 0.54 0 1.623 

DEM -0.006 0.994 0 0.001 1.873 
Rainfall 0.042 1.006 0 0.005 1.258 
Roads 0.457 1.022 0 0.012 1.708 
Slope 0.012 1.012 0.603 0.023 1.011 
Soils -0.305 0.737 0 0.018 1.475 

Temperature 0.45 1.568 0 0.014 2.275 
Distance to town   0.081 1 0 0.01 1.111 

Distance to villages 0.39 1.09 0.001 0.009 1.595 
Distance to water areas 0.064 1.066 0 0.008 1.193 

Nagelkerke R²= 0.105 Cox & Snell R² = 0.235  

 

                  Positive and increase odds ratio of probability in land use conversion  
                  Negative and decrease odds ratio of probability in land use conversion  
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Table B.19: LULC conversion model in period  2007-2013. 

LULC conversion model in 2007-2013 

Forest to shrub conversion 

Variables B Odds ratio Sig. S.E. VIF 

Constant -1.057 0.348 0.133 0.703  
Population density 2015 0.011 1.395 0 0 1.322 

DEM -0.012 0.988 0 0.001 1.857 
Rainfall -0.044 0.957 0 0.004 1.424 
Roads 0.045 1.046 0 0.006 1.289 
Slope -0.107 0.899 0 0.018 1.006 
Soils 0.07 1.073 0 0.016 1.283 

Temperature 0.333 1.001 0 0.016 1.928 
Distance to town 0.114 1.121 0 0.01 1.223 

Distance to villages 0.003 1.003 0.661 0.008 1.321 
Distance to Water areas 0.002 1.002 0.771 0.007 1.294 

Nagelkerke R² = 0.003  Cox & Snell R² = 0.05   
Shrub to agriculture conversion 

Variables B Odds ratio Sig. S.E. VIF 

Constant -15.431 0 0 0.51  
Population density 2015 0.67 2 0.023 0 1.42 

DEM -0.011 0.989 0 0.001 2.011 
Rainfall 0.003 1.003 0.278 0.003 1.268 
Roads 0.031 1.031 0 0.005 1.58 
Slope -0.078 0.925 0 0.015 1.009 
Soils 0.097 1.102 0 0.013 1.385 

Temperature 0.651 1.917 0 0.01 2.25 
Distance to town 0.066 1.068 0 0.008 1.117 

Distance to villages 0.008 1.008 0.164 0.006 1.515 

Distance to water areas 0.113 1.013 0.008 0.005 1.246 

Nagelkerke R² = 0.095 Cox & Snell R² = 0.145   
Shrub to built-up conversion 

Variables B Odds ratio Sig. S.E. VIF 

Constant -7.874 0 0 0.712  
Population density 2015 0.76 1 0 0 1.547 

DEM -0.002 0.998 0.033 0.001 1.881 
Rainfall 0.037 1.038 0 0.005 1.254 
Roads 0.002 1.003 0 0.01 1.614 
Slope 0.028 1.028 0.163 0.02 1.009 
Soils -0.104 0.902 0 0.017 1.428 

Temperature 0.152 1.164 0 0.013 2.186 
Distance to town 0.05 1.006 0 0.009 1.109 

Distance to villages -0.045 0.956 0 0.008 1.535 
Distance to water areas 0.108 1.114 0 0.007 1.219 

Nagelkerke R² = 0.144 Cox & Snell R² = 0.265  

 

                  Positive and increase odds ratio of probability in land use conversion  
                  Negative and decrease odds ratio of probability in land use conversion  
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Table B.20: LULC conversion model in period 2013-2017. 

LULC conversion model 2013-2017 

Forest to shrub conversion 

Variables B Odds ratio Sig. S.E. VIF 

Constant 18.448 0 0 0.714  
Population density 2015 0.560 1 0 0 1.313 

DEM -0.017 0.983 0 0.001 1.935 
Rainfall -0.141 0.868 0 0.004 1.437 
Roads 0.085 1.089 0 0.006 1.256 
Slope -0.1 0.904 0 0.019 1.008 
Soils -0.351 0.704 0 0.016 1.346 

Temperature 0.082 1.086 0 0.016 1.382 
Distance to town 0.079 1.082 0 0.01 1.876 

Distance to villages -0.027 0.974 0 0.007 1.244 
Distance to water areas 0.077 1.08 0 0.006 1.328 

Nagelkerke R² = 0.058 Cox & Snell R² = 0.087  

Shrub to agriculture conversion 

Variables B Odds ratio Sig. S.E. VIF 

Constant -9.691 0 0 0.52  
Population density 2015 0 1 0.607 0 1.326 

DEM -0.002 0.998 0.027 0.001 2.061 
Rainfall -0.042 0.958 0 0.003 1.293 
Roads 0.019 1.02 0 0.005 1.488 
Slope -0.056 0.946 0 0.016 1.009 
Soils -0.118 0.889 0 0.013 1.353 

Temperature 0.619 1.857 0 0.01 1.275 
Distance to two 0.088 1.092 0 0.008 2.207 

Distance to villages -0.053 0.948 0 0.006 1.12 
Distance to water areas 0.034 1.035 0 0.005 1.479 

Nagelkerke R² =	0.09 Cox & Snell R² = 0.136  

Shrub to built-up conversion 

Variables B Odds ratio Sig. S.E. VIF 

Constant -15.29 0 0 0.799  
Population density 2015 0.001 1.001 0 0 1.425 

DEM 0.002 1.002 0.087 0.001 1.932 
Rainfall 0.063 1.065 0 0.005 1.3 
Roads 0.447 1.64 0 0.01 1.503 
Slope -0.041 0.96 0.08 0.023 1.01 
Soils -0.303 0.739 0 0.019 1.368 

Temperature 0.293 1.34 0 0.015 1.264 
Distance to town  0.018 1.004 0 0.011 2.141 

Distance to villages -0.003 0.997 0.769 0.009 1.127 
Distance to water areas 0.028 1.028 0.001 0.009 1.487 

Nagelkerke R² = 0.125 Cox & Snell R² = 0.248  

 

                   Positive and increase odds ratio of probability in land use conversion  
                  Negative and decrease odds ratio of probability in land use conversion  
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Table B.21: LULC conversion model in period 1997-2017 . 

LULC conversion model 1997-2017 

Forest to shrub conversion 

Variables B Odds ratio Sig. S.E. VIF 

Constant 14.126 1363984.04 0 0.555  
Population density 2015 0.891 1.6 0 0 1.286 

DEM -0.022 0.978 0 0.001 1.898 
Rainfall -0.164 0.848 0 0.003 1.346 
Roads 0.057 2.059 0 0.005 1.275 
Slope -0.026 0.974 0.076 0.015 1.008 
Soils -0.309 0.734 0 0.013 1.337 

Temperature 0.473 1.605 0 0.012 1.406 
Distance to town 0.196 2.17 0 0.008 1.778 

Distance to villages -0.044 0.957 0 0.006 1.195 
Distance Water areas 0.039 1.039 0 0.005 1.295 

Nagelkerke R² = 0.160 Cox & Snell R² = 0.196  
Shrub to agriculture conversion 

Variables B Odds ratio Sig. S.E. VIF 

Constant -16.226 0 0 0.506  
Population density 2015 0.234 1.061 0.003 0 1.309 

DEM -0.01 0.99 0 0.001 2.079 
Rainfall -0.049 0.952 0 0.003 1.261 
Roads 0.014 1.014 0.011 0.005 1.511 
Slope 0.04 1.041 0.008 0.015 1.01 
Soils -0.091 0.913 0 0.013 1.353 

Temperature 0.975 2.65 0 0.011 1.256 
Distance to town 0.148 1.16 0 0.008 2.214 

Distance to villages -0.041 0.96 0 0.006 1.113 

Distance to water areas 0.016 1.016 0.003 0.005 1.498 

Nagelkerke R² = 0.187 Cox & Snell R² = 0.275   
Shrub to built-up conversion 

Variables B Odds ratio Sig. S.E. VIF 

Constant -17.631 0 0 0.645  
Population density 2015 0.001 1 0 0 1.553 

DEM -0.001 0.999 0.165 0.001 1.883 
Rainfall 0.025 1.025 0 0.004 1.252 
Roads 1.09 1 0 0.009 1.58 
Slope 0.186 1.204 0 0.018 1.01 
Soils -0.298 0.742 0 0.016 1.437 

Temperature 0.653 1.922 0 0.012 1.241 
Distance to town  0.084 1.002 0 0.009 2.138 

Distance to villages -0.05 0.951 0 0.007 1.109 
Distance to water areas 0.13 1.138 0 0.006 1.149 

Nagelkerke R² =	0.269 Cox & Snell R² = 0.428  

 

                  Positive and increase odds ratio of probability in land use conversion  
                  Negative and decrease odds ratio of probability in land use conversion  
 




