
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Color Space Conversion in Hardware
for Multimedia Applications

Carlos Rodrigues

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor FEUP: Prof. João Canas Ferreira

Supervisor Synopsys: Eng. João Gonçalves

June 29, 2015



c© Carlos Rodrigues, 2015





ii



Resumo

Em aplicações multimédia de transmissão de vídeo existe por vezes a necessidade de ter em conta
as caraterísticas do recetor, por exemplo negociar os formatos de espaços de cor ou de frequências
de vídeo antes de iniciar a transmissão. Consequentemente, em situações em que o conteúdo não
está disponível num espaço de cor suportado pelo recetor existe a necessidade de converter esse
conteúdo para um espaço que seja suportado, para possibilitar a transmissão.

Esta tese desenvolve um módulo de hardware capaz de converter streams de vídeo entre difer-
entes espaços de cor em tempo real. Este módulo é sintetizável para frequências de 600 MHz
em tecnologias de 40 nm. Suporta conversões de formatos RGB e YCrCb 4:4:4 e 4:2:2 entre
os espaços de cor: ITU-R BT.601, ITU-R BT.709, ITU-R BT.2020, sRGB, opRGB, bg-sRGB,
xvYCC601 e xvYCC709. Também suporta repetição de pixel e formatos de vídeo 3D.

O módulo desenvolvido implementa todos as etapas necessárias para converter corretamente
entre espaços de cor, desde as conversões matriciais RGB para YCrCB e RGB para RGB à cod-
ificação e descodificação gamma. As opções de reamostragem dos canais de crominância são
implementados por filtros de decimadores e interpoladores em duas configurações, de 30a e 18a

ordem, entre as quais a primeira é compatível com os requisitos de filtros definidos pelos standards
ITU-R BT.601 e ITU-R BT.709.
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Abstract

In multimedia applications of video transmission there is usually the need to account for the re-
ceiver’s capabilities, for example negotiating color formats and video frequencies before initiating
the transmission. Consequently, in situations where the content is not available in a color space
supported by the receiver, there is the need to convert that content to one color space that is sup-
ported.

This thesis develops an hardware module that is capable of performing real-time color space
conversion of video streams. This module is synthesizable for 600 MHz frequencies in 40 nm
technologies. It supports the RGB and YCrCb 4:4:4 and 4:2:2 conversions between: ITU-R
BT.601, ITU-R BT.709, ITU-R BT.2020, sRGB, opRGB, bg-sRGB, xvYCC601 and xvYCC709
color spaces. This module is also compatible with pixel-repetition and 3D video formats.

The developed module implements all the steps required to properly convert between color
spaces, from RGB to YCrCb and RGB to RGB conversion matrices to gamma encoding and de-
coding. The chroma resampling capability is implemented by chroma upsampling and downsam-
pling filters, available in a 30 taps and a 18 taps configurations, from which the first is compliant
with the templates defined in the ITU-R BT.601 and ITU-R BT.709 standards.
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Chapter 1

Introduction

1.1 Context

In multimedia applications of video transmission there is usually the need to account for the re-

ceiver’s capabilities, for example negotiating color formats and video frequencies before initiating

the transmission. Consequently, in situations where the content is not available in a color space

supported by the receiver, there is the need to convert that content to one color space that is sup-

ported.

The representation of color in digital systems is done using mathematical models called color

spaces. Each color space defines a set of coordinates to be used as primaries in the reference CIE

XYZ color space, which contains all visible colors. These primaries are usually red, green and blue

(RGB) although their exact location varies. The other representable colors are derived from these

primaries, whose coordinates in the XYZ color space define the range of colors that each particular

color space is capable of representing - its color gamut. Moreover, the use of different color

spaces is also related with the capability of the display systems (televisions, computer monitors,

projectors, printers, etc.) and their technology (CRT, LCD, LED, plasma, OLED, etc.) to display

colors, providing different experiences to the viewers.

Besides the RGB model of representation of color, the luma/color-difference system (YCrCb

or YCC) is also broadly used. Luma is a quantity related to the luminance of the picture, which,

together with the color difference signals (Cr and Cb), generates a representation of color that can

be derived from the RGB signals. The YCrCb model takes advantage from the fact that the human

vision is less sensitive to color variations than to luma variations by providing chroma subsampling

schemes. In these schemes, the number of chroma samples per luma sample is horizontally and/or

vertically reduced, thereby allowing for a bandwidth reduction of the signal without a noticeable

loss of image quality.

The development of image systems not only provided new color spaces for data encoding

but also demanded the development of transmission and processing systems capable of supporting

the increase of image resolutions from standard television to high definition (1920x1080) and ultra

high definition television (4k and 8k). In addition, the introduction of 3D broadcasting formats and

1



2 Introduction

the necessity of keeping backward compatibility with legacy contents also imposes new challenges

for video systems. These improvements require hardware designs that are compliant with the

various systems standards and provide the necessary performance capabilities.

When one of the systems involved in the video transmission (for example between a DVD

player and a LCD television) is not compatible with the data encoding format, one possibility is to

convert the content to a format that is mutually supported.

This MSc Dissertation has been developed in the context of the Master in Electrical and Com-

puters Engineering at Faculty of Engineering of University of Porto. This thesis was proposed by

Synopsys Portugal and has been developed at the company’s offices in Maia, Portugal.

Synopsys, Inc. (Nasdaq:SNPS) is an American company headquartered in Mountain View,

California, which is a global leader in software for electronic design automation (EDA) and semi-

conductor intellectual property (IP). Synopsys provides their costumers with solutions that accel-

erate innovation, allowing their clients to address the challenges of designing integrated circuits

and bring their products to market faster with lower costs and schedule risks [10].

In its portfolio, Synopsys provides interface IP cores for multimedia systems as HDMI and

MHL solutions, JPEG encoders/decoders and MIPI interfaces. For these systems, but also to any

others that deal with video transmission or processing, real-time color space conversion of the

video stream can be an interesting feature that adds value to the final product and increases its

interoperability capabilities.

1.2 Objectives and Contributions

The goal of this work is the development of a hardware module capable of performing real-time

color space conversions of video streams. The color spaces which are meant to be supported are

defined in the following standards:

• ITU-R BT.601-5 - Studio encoding parameters of digital television for standard 4:3 and

wide-screen 16:9 aspect ratios [8];

• ITU-R BT.709-5 - Parameter values for the HDTV standards for production and interna-

tional programme exchange [7];

• ITU-R BT.2020 - Parameter values for ultra-high definition television systems for produc-

tion and international programme exchange [11];

• IEC 61966-2-1/Amendment 1 - Default RGB colour space sRGB and its counterpart sYCC.

Also defines two extended gamut encodings: bg-sRGB and bg-sYCC [12];

• IEC 61966-2-5 - Optional RGB colour space - opRGB and its luma/colour-difference coun-

terpart opYCC [13]. Referred in HDMI specs as AdobeRGB and AdobeYCC601 [14];

• IEC 61966-2-4 - Extended-gamut YCC colour space for video applications - xvYCC601 and

xvYCC709 [15].



1.3 Structure of the Document 3

The module should be capable of converting content coded in RGB and in the chroma sub-

sampling formats YCrCb 4:4:4 and YCrCb 4:2:2.

The utilization of this converter in video formats with pixel-repetition and 3D video should

also be considered.

This module is meant to be implemented using Verilog hardware description language and

should be synthesizable for frequencies over 600 MHz in 40 nm technologies.

This work will contribute to the Synopsys IP portfolio with a module that supports real-time

color space conversions of video streams between the main color spaces used currently, notably all

the color spaces supported by the HDMI 1.4 and 2.0 specifications. The functionality offered by

this module will enable Synopsys video interface IPs to connect with a broader number of devices

which have limited color spaces support. This module is synthesizable for the frequencies needed

to support all the video formats supported by HDMI specifications and features pixel-repetition

and 3D modes compatibility, which enables the compatibility with great part of the video formats

supported by those video transmission standards.

Furthermore, this work will contribute to science and engineering with the knowledge and

results obtained from the implementation of a computer-intensive task as color space conversion

of video streams in an hardware design, which enlarges the number of applications for ASIC and

FPGA technologies and can be useful for future works in the area of hardware accelerated video

and image processing.

1.3 Structure of the Document

An overview of background information concerning color and video theory are presented in chap-

ter 2, as well as a description of the standards meant to be supported. The proposals found in the

state of the art research are discussed and analyzed in chapter 3.

The design of the architecture of the system and the verification methodology are discussed

in chapter 4. After a brief presentation of the EDA tools used and their project flow in chapter 5,

follows the presentation of the hardware implementation, verification results and synthesis results

obtained for the final implementation from which some conclusions are driven in chapter 6, and

future developments for this module capabilities are proposed.
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Chapter 2

Background Information

2.1 An Introduction to Colorimetry

The representation of color in both analog and digital systems is based on the properties of the

human visual system.

The human vision sensation is created in the eye by the incidence of radiation in the cells

known as cones and rods. Rods are a type of eye cells that are particularly sensitive to light

intensity and provide us the notion of luminosity. There are three types of cone cells, with different

responses to light wavelengths. The combination of this tri-stimulus signal in the brain is what

gives us the sensation of color. The brain perceives the different wavelengths of light in the visual

spectrum as colors.

Moreover, according to Grassman’s Third Law, the linear combination of light in different

colors (wavelengths) can be used to generate other colors [16]. This is the principle of the additive

color model which is observable in the color-matching experience (Figure 2.1) in which a user

can match the colors reflected in two targets inside a black box by controlling the intensity of the

controllable light sources [17].

Inside the box, one target reflects the light from one reference color source and a separate

target reflects the light from three controllable sources of light. Each controllable source has a

different fixed wavelength (for example red, green and blue) and the user can match the reflected

colors in both targets by adjusting the intensity of these three controllable sources.

2.2 Color Spaces

In 1931 the International Commission on Illumination (CIE - Commission Internationale de l’Éclairage)

defined a tri-coordinate system for a Standard Observer in which each color is defined with three

primary stimulus X, Y and Z using three sensibility functions [16], similarly to the color matching

experience. In this system Y is meant to represent luminance from the scene.

From the normalization of X,Y and Z a chromaticity diagram is obtained ( Figure 2.2), where

colors are represented for the same amount of luminosity. This chromaticity diagram represents

5



6 Background Information

Figure 2.1: Color matching experiment (from [1]).

the complete color gamut, i.e. all colors of the visible spectrum (400-700 nm), with white being

approximately at the center of the diagram and the pure wavelengths (monochromatic colors)

located in the spectral locus line (borders of the diagram with the wavelengths marked in figure

2.2). The chromaticities from which this diagram is drawn are known as the CIE chromaticities.

A set of white points coordinates are also defined by the CIE, for instance the D65 white point,

which is broadly considered for broadcasting system, because of the type of illumination used in

filming studios and the assumptions made about the visualization conditions.

The CIE XYZ color space is not useful for practical implementation because it is impossible to

develop a display that would have the XYZ tri-stimulus functions spectral density distribution and

properly display colors, as it would require the light source to emit negative light power. Although

there are displays that work with the XYZ stimulus, they do not implement their spectral density

power.

Consequently, derived from this color space, other color spaces were developed that support

a portion of the CIE 1931 color space and are physically realizable. To define a color space one

should specify its white point and three primaries between which lie all the colors existing in that

color space.

From the shape and color distribution of the chromaticity diagram it is possible to conclude

that using red, green and blue as primaries maximizes the surface of the diagram covered by the

new color space. Indeed, the majority of the addictive color spaces use these same primaries only

differentiating from each other in their exact location.

The conversion between the CIE XYZ color space and a defined linear RGB color space can

be made by computing the multiplication between the input vector and a matrix of conversion
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Figure 2.2: CIE 1931 chromaticity diagram with sRGB color space represented (from [2]).

coefficients, derived from the chromaticity coordinates of the color space.X

Y

Z

=

xr xg xb

yr yg yb

zr zg zb


R

G

B

 (2.1)

2.3 Gamma correction

The human vision system sensibility to luminance is not linear, it is more sensitive to the same

relative variation of luminance in low intensities than in high luminosity intensities. Taking advan-

tage of this property, it is possible to reduce the number of bits used in the intensity codification

by expanding the quantization intervals for high luminance values and compressing them for low

intensity values, to which we are more sensible so increased precision is desirable. This is done by

applying a nonlinear transfer function that implements this behavior - gamma correction (Figure

2.3). Not using gamma encoding would require a larger number of bits than necessary this way to

code the luminance for the same perceptible amount of quantization noise.

Generally each color space defines its own transfer function coefficients, but they are all ap-

proximately the form of an exponential function that for some color spaces is piece-wise defined

for the values near zero where the exponential functions are steeper.

After this transformation applied in the source devices of the transmission chain it would be

expected the inverse transformation to be applied in the sink’s end, the monitor’s decoder. Curi-

ously, the CRT monitors transfer function is also nonlinear and it is approximately the inverse of

the gamma correction transfer function. Consequently, to reduce the overall system’s complexity
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Figure 2.3: Generic gamma correction transfer function (from [3]).

video engineers decided to let the compensation of the gamma correction to be directly applied by

the CRT’s nonlinear power function. Modern non-CRT monitors (LCDs or plasma, p.e.) are ex-

pected to be compliant with this decision, by applying the gamma compensation function adequate

to their power transfer response.

When a signal is gamma corrected it should be written with apostrophes like in R’G’B’ to

indicate that it isn’t a linear light signal.

When converting between color spaces one should account for the differences in gamma cor-

rection of each color space, which usually means converting the signal to linear RGB before color

space conversion and after it re-apply the gamma transformation. Otherwise noise would be being

added to the output.

2.4 Luma/Color-difference encoding

Besides the RGB representation of color in multimedia systems, one can take advantage of the

human vision inferior sensitivity to color variations than to luminance variations and use the

luma/color-difference representation. This representation encodes color in one luma and two

color channels, which can be sub-sampled (filtering high frequency chromatic signals) to save

bandwidth, due to the less sensitiveness of the human vision to this content. Several luma/color-

difference encodings exist both in analog and digital systems. In analog systems we talk of com-

posite coding like YUV or YIQ in NTSC system and in digital systems we talk usually of com-

ponent coding noted as YCrCb. During the analog broadcasting systems period this encoding

allowed backwards compatibility with black and white systems (which supports only the Y chan-

nel) and allowed the reduction of the necessary bandwidth , as it does also in the context of digital

systems.

All luma/color-difference systems are built on the premise, from color science, that in RGB

the luminance is concentrated mainly in the green component. This is implied in the values of the

coefficients used in the computation of Y’, where the green channel has a weight of 60 to 70%.

Therefore, after deriving the luma value the color components are extracted from the blue and red

channels. The chroma channels are coded as the difference between blue and red channels and the

luma channel by subtracting the remainder of luma present in R and B components.
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Y ′ = xrR′+ xgG′+ xbB′, (2.2)

Cr′ = R′−Y ′, (2.3)

Cb′ = B′−Y ′, (2.4)

In Y’Cr’Cb’ system, luma (Y’) is a weighted sum of R’, G’ and B’ parameters which is a

quantity related to the luminance of the image. Note that Y’ is computed after the RGB signal is

gamma corrected, therefore it is built upon a nonlinear signal R’G’B’, not after the CIE linear-light

luminance, so it should also be written with an apostrophe. Cr’ and Cb’ are the color-difference

signals, respectively R’-Y’ and B’-Y’, which can be sub-sampled with respect to luma (Y’) signal

without visually evident loss in quality, due to the less acuity of the human visual system to the

color, compared to luminosity. There are several chroma subsampling schemes that are explained

in section 3.2.

In Y’Cr’Cb’ coding it is possible to represent a wider gamut of colors than in the original

R’G’B’ signal so it is usually necessary to limit the excursion of the Y’Cr’Cb’ to keep it inside the

valid R’G’B’ values.

R’G’B’ and Y’ signals swing in real number interval [-1;1] and Cr’ and Cb’ in [-0.5;+0.5].

Their digital representation is usually in 8-bit codification (0-255) for standard quality although

some standards define 10-bit or more. This feature is announced in multimedia products with the

name of Deep Color support. These extra bits increase the quality of the picture by reducing the

quantization noise, they add precision on sampling and signal processing computations and the

downsizing to 8-bit coding can be made by discarding the extra least significant bits.

Moreover, some standards guarantee a headroom and footroom in signal excursion, that is,

they limit the signal excursion to a interval smaller than 2Nbits to guarantee codes over and under

the reference signal excursion which allow overshoots and undershoots in the signal caused by

signal processing.

The color conversion between different color spaces (not considering gamma encoding and

decoding) consists essentially in a matrix transformation applied to the input tri-component signal

like the operation represented in 2.1.

This operation requires the input signal to be upsampled to a 4:4:4 representation and down-

sampled to the desired chroma subsampling scheme after the matrix operation. Therefore, the

color space conversion will be divided in two phases: the chroma subsampling and the 4:4:4 color

conversion operations. The path of the color conversion process is illustrated in figure 2.4.

2.5 Video Formats and Structure

In video stream the video images are not the only data transmitted. In fact, the video frame contains

one vertical and one horizontal blanking spaces, respectively at the top and at the left of the active

video area in the video frame (figure 2.5). This blanking periods are inherited from the era of
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Chroma
Upsampling

Limited Range A to Full Range 
Conversion

RGB A to RGB B
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RGB B to YCrCb B
Conversion

Gamma Encoding
(gamma function B)

Gamma Decoding
(inverse gamma function A)

Chroma Downsampling

Full Range to Limited Range B 
Conversion

Input Color Space A

Output Color Space B

Figure 2.4: Color conversion process.
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Figure 2.5: Video frame structure.

cathode ray tube television, where they were need to allow the electron gun the time to return

to beginning of the line, or to the beginning of the screen. The blanking periods have variable

sizes, depending on the video resolutions and pixel clock frequencies, and are used for audio data

transmission, as well as other type of data or meta-data, like information about the content being

transmitted [16].

Parallel to the video data signals, there are three control signals that ensure the synchronization

across the video frame structure. Horizontal sync signal (hsync) is a signal that has a pulse in each

line, during the horizontal blank period, marking the beginning of a new line although the pulse

doesn’t start necessarily at beginning of the line. The vertical sync signal (vsync) is pulsed once

in a frame, during the vertical blank period, indicating the beginning of a new frame, although the

pulse may start after the first line of the frame and last for several line periods. Finally, active data

or data enable signal indicates that the data transmitted in the data channels is valid, that is, we are

in a active video period. The duration of this signals is illustrated in figure 2.5.

The video pictures can be transmitted in three formats: progressive, interlaced, or segmented.

In progressive format, one complete picture (one field) is transmitted in each active video frame.

In interlaced format, in each active frame two different fields are transmitted in alternating lines,

one from each field and usually one field is transmitted in two consecutive frames: one carries the

odd lines and the next the even lines. Segmented frames are a technique used to split progressive

frames so they can be used in interlaced systems.

In 3D video the right and left fields are transmitted in one of three schemes [14]:

• Top-bottom - where the fields are transmitted one after the other in the same frame or in

consecutive frames;

• Side-by-side - the two fields are transmitted by dividing half of the horizontal active video

area to each one;
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• Line alternative - the two fields are transmitted in alternating lines, similar to interlaced

video;

Moreover, in HDMI systems, when the video resolution does not have the minimum pixel rate

to be transmitted under this systems pixel-repetition is applied to increase the pixel rate 2 to 10

times and allow transmission [14].

2.6 Color Space’s Standards

2.6.1 ITU-R BT. 601

This standard [8] was first published in 1982 and defines the studio encoding parameters of digital

television for standard 4:3 and wide-screen 16:9 aspect ratios. The 7th and last revision of this

standard dates from 2011.

Recommendation 1 601 sets two sampling frequencies families: 13 MHz for 4:3 and 16:9

ratios and 18 MHz for 16:9 aspect ratio. The encoding should be R’G’B’ or Y’Cr’Cb’ 4:2:2,

both co-sited 2, and it defines the coefficients for transforming between these formats for gamma

corrected signals. It allows for 8-bit or 10-bit encoding, which in the latter case the two extra bits

are indicated to represent a fractional part of the signal value.

R’G’B’ signals use the full 255-0 signal excursion while Y’ is only allowed 220 values with

footroom and headroom defined by reference black at level 16 and reference white at level 235. Cr’

and Cb’ signals may use 225 levels with 0 value referenced at level 128. An optimized derivation

and quantization method for the coefficients for R’G’B’ to Y’Cr’Cb’ conversion that minimizes

the quantization error of the Y’Cr’Cb signal is proposed.

The two sampling frequency families define 525-lines, 60 fields/s and 625-lines, 50 fields/s

formats, both interlaced. These formats are also referred to by 480i and 576i, respectively.

Since revision 6 of this standard chromaticity coordinates based on CIE 1931 color space are

defined, as well as a gamma correction transfer function. Previous versions of the standard didn’t

define his although the NTSC and PAL standards chromaticities were conventionally used. It is

recognized in the recommendation that it is common practice to use HDTV RGB contents re-

mapped to SDTV RGB format without performing the proper colorimetry conversion, due to the

similarities of both color spaces.

2.6.2 ITU-R BT. 709

Recommendation 709 [7] defines parameter values for the HDTV standards for production and

international programme exchange.

The definition of HDTV is carried from Report ITU-R BT.801 [18] where "a high-definition

system is a system designed to allow viewing at about three times the picture height, such that

1ITU-R BT standards are self-referred as Recommendations.
2Co-sited means the three components of the pixel (R, G and B or Y, Cr and Cb) are sampled in the same spatial

point of the picture.
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the system is virtually, or nearly, transparent to the quality of portrayal that would have been

perceived in the original scene or performance by a discerning viewer with normal visual acuity".

This standard was first published in 1990 and its last revision (5th) dates from 2002.

The document is divided in two sections, one part that relates HDTV systems to conventional

television, defining parameters used in early analogue HDTV systems, and one part for HDTV

systems with square pixel common image format (CIF) which aims to specify picture parameters

independently of picture rates.

Early days systems define 1125 lines, 60 Hz and 1250 lines, 50 Hz formats and CIF specifies

several picture rates: 60 Hz, 50 Hz, 30 Hz, 25 Hz , 24 Hz, 60/1.001 Hz, 30/1.001 Hz and 24/1.001

Hz.

CIF supports progressive (P), interlaced (I) and progressive segmented frames (PsF) scheme.

A set of rules to allow progressive images to be transported as segmented frames (and the contrary)

is defined.

The second part of this standard sets sampling frequencies at 148.5 MHz, 74.25 MHz and

74.25/1.001 MHz for R’G’B’ and Y’, half those frequencies for Cr’ and Cb’. Chroma subsampling

supported schemes are the same as in Rec. 601.

Both parts use the same chromaticity coordinates and gamma correction transfer function. The

chromaticity coordinates are different from the ones defined in Rec.601.

As previously stated in 2.6.1, the chromaticity coordinates from Rec. 709 and Rec.601 are not

very different. However the luma/color-differences encoding coefficients from this two standards

differ significantly and proper conversion must be implemented.

Signal excursion and binary representation rules are the defined for SDTV in Rec. 601.

2.6.3 ITU-R BT. 2020

This recommendation [11] defines parameter values for ultra-high definition television systems

for production and international programme exchange. It was first published in 2012 and its last

revision (1st) is from 2014.

Ultra-high definition television (UHDTV) enhances viewers experience by expanding the size

of the screen size, both for home and public places. This aims to improve the observer sense of

being there.

Rec. 2020 specifies its chromaticity coordinates and gamma correction transfer function. It

defines different gamma correction parameters for 10-bit and 12-bit coding.

Besides R’G’B’ and Y’Cr’Cb’ formats it also defines a Y ′CCr′CCb′C which is constant luminance

luma/color-difference coding. Y ′CCr′CCb′C has different conversion coefficients from Y’Cr’Cb’ and

its luma is derivated from linear RGB and gamma correction is applied already in luma format.

This standard supports three chroma subsampling schemes: 4:4:4, 4:2:2 and 4:2:0, all co-

sited. Signals are quantized in 10-bit or 12-bit coding and it also defines headroom and footroom

intervals for every signal.
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The need for constant luminance Y ′CCr′CCb′C coding arises from the constant luminance issue

stated in Rep. ITU-R BT.2246-3 [19]. In fact, when computing luma Y’ from R’G’B gamma-

corrected signals in the matrix operation some of the energy in luminance signal is leaked to

chroma components. After chroma subsampling, errors generated in chroma signals in the re-

sampling operations will appear also in the luminosity of the picture after reconversion to R’G’B’

format. Due to the inversion of the gamma encoding and RGB to YCrCb conversion, constant

luminance encoding fixes this issue.

2.6.4 IEC 61966-2-1/Amendment 1

This standard [12] was first published in 1999 and defines the sRGB color space. The amendment

dates from 2003 and it adds the specifications for sYCC encoding, as well as bg-sRGB and bg-

sYCC.

sRGB color space is meant to be compatible with Rec. 709 and it aims to further improve the

standardization achieved by Rec.709 by defining a reference display, reference viewing conditions

and a reference observer. The main difference from Rec. 709 is the gamma correction transfer

function specified.

This amendment adds the sRGB color space for a luma/color-difference space sYCC. Both

sRGB and sYCC spaces use 8-bit quantization by default, although longer code words are allowed,

notably 16-bit.

An extended gamut version of this color spaces is also presented: bg-sRGB and bg-sYCC. The

default encoding bit depth of this spaces is 10-bit and when converting from sRGB, input negative

signal values are allowed, as well as values greater than unity.

The sYCC color space defined in this standard is referred in HDMI specifications as sYCC601

[14], where the 601 indicates that the R’G’B’ to Y’Cr’Cb’ conversion is done using the coefficients

of Rec.601.

2.6.5 IEC 61966-2-5

This standard [13] was published in 2007 and specifies a color space based on sRGB but with

wider color gamut: opRGB and its luma/color-difference version opYCC.

It presents reference image display system characteristics, a reference observer and viewing

conditions. The chromaticity coordinates here defined are different from Rec.709 and sRGB, as

they provide a wider gamut while having a default bit depth of 8-bit. Signal quantization with

more than 8-bit is allowed.

The opRGB and opYCC color spaces are referred in HDMI specifications as AdobeRGB and

AdobeYCC601 [14]. Except for some differences in image display system characteristics, refer-

ence observer and viewing conditions this standard parameters are also the same as defined in

AdobeRGB1998 standard [20].
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2.6.6 IEC 61966-2-4

This standard [15] extends the Rec.709 [7] color space by allowing a wider signal excursion in the

Y’Cr’Cb encoded signals. It was published in 2006.

The Y’Cr’Cb’ signals in standard Rec.709[7] are limited between the reference white and

black points (235 and 16, for 8-bit encoding), although it is stated that overshoot signals can go

beyond this limits, guaranteeing that values 0 and 254 are reserved for synchronization purposes.

This standard removes this ambiguity in the limitation of the video signals, allowing them to

use the full excursion, except the synchronization values. This extension provides the Rec.709

color space almost the same gamut area that sYCC and sRGB (sYCC and sRGB don’t have re-

served codes).

2.6.7 Gamut Comparison

The following table presents a comparison on the gamut area of each standard, compared to the

area of the full gamut (all visible colors) [9][21]3.

The extended gamut color spaces(bg-sRGB, xvYYC) and luma/color-difference encoded col-

ors spaces have wider gamuts than the colors spaces to which they relate, however no data was

found to do the comparison.

Color Space % Visible Colors
Rec.601 625 lines 35.7 %
Rec.601 525 lines 31.9 %
Rec.709 / sRGB 35.0 %

opRGB 50.6 %
Rec. 2020 75.8 %

Table 2.1: Comparison of the gamut of the different color spaces, as a percentage of the visible
colors gamut (from [9])

2.6.8 Summary

From the analysis of each standard, some requisites and implementation limitations are herein

summarized:

• The standards considered define 7 RGB color spaces: Rec.601 525-lines, Rec.601 625-

lines, Rec.709 CIF, Rec.2020, sRGB, bg-sRGB and opRGB. This results in 20 unique RGB

to RGB conversion matrices.

• From the above RGB color spaces, 11 YCrCb color spaces are derived: Rec.601 525-lines,

Rec.601 625-lines, Rec.709 1125-lines, Rec.709 1250-lines, Rec.709 CIF, Rec.2020, sYCC,
3Due to differences in naming these values are inferred from the color spaces compared in the references [9][21] by

comparison of their chromatic primaries and white point with the ones from the color spaces considered here. The two
sources considered don’t agree in the values for some of the color spaces, but the differences are in the order of units
and don’t interfere with the relative sizes between different color spaces.
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bg-sYCC, opYCC, xvYCC601 and xvYCC709. This results in 6 RGB to YCC and 6 YCC to

RGB unique conversion matrices.

• These color spaces use three different gamma functions: one for Rec.609, Rec.701 and

Rec.2020 color spaces, one for opRGB color space and one for sRGB color space.

• Rec.2020 also defines a constant luminance Y’Cr’Cb’ encoding. This encoding requires sig-

nificantly architectural changes compared to the non-constant luminance encodings because

of the differences in the order of operations concerning the gamma encoding and conversion

from RGB to Y’Cr’CB’, which require a separate datapath to support this encoding.

• The standards considered define 6 different allowed signal ranges, from full range RGB

and YCC 0-255 4, to limited ranges 16-240 for RGB and Y’ signals and 16-235 for Cr’Cb’

signals, or extended ranges 1-254 for RGB and Y’Cr’Cb signals in extended gamut color

spaces. Additionally, bg-sRGB and bg-sYCC color spaces define particular ranges and

scaling for their signals.

4Represented here for 8-bit width signals, for simplification.



Chapter 3

State of the Art of Architectures for
Color Space Conversion

In this chapter, we will divide our study in two sections: first the pixel to pixel operations: RGB to

RGB conversion, RGB to YCrCb and YCrCb to RGB conversions, gamma encoding and decoding,

and then the filtering operations of chroma upsampling and downsampling.

3.1 Color Space Conversion

Conversion between two tri-component color spaces consists in a 3x3 matrix operation applied to

an input vector of size 3 as exemplified in the matrix of Section 2.1. This applies both to RGB to

RGB conversion and RGB to YCrCb conversion. This operation can also be described in the form

of three equations:

X = xrR+ xgG+ xbB (3.1)

Y = yrR+ ygG+ ybB (3.2)

Z = zrR+ zgG+ zbB (3.3)

The example is given for RGB to XYZ color space conversion without loss of generality.

The matrix operation consists of 9 multiplications and 3 sums, where xi,yi,zi are fixed coef-

ficients in each type of conversion. After this, it is necessary to round the result which may also

have to be clamped or clipped, to ensure it is between the allowed excursion ranges. Usually the

result must be added to a constant value, notably if the color space ensures signal footroom. The

most efficient way to round the value to a integer value, for example, is add 0.5 to it and then

truncate it.

However, as it has been previously stated in Section 2.3 when converting between different

color spaces the gamma correction of the signals must be considered to properly apply the conver-

sion. Only when converting between RGB and YCrCb formats in the same color space this can be

discarded, for example between R’G’B’Rec.709 and Y’Cr’Cb’Rec.709.

17
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Lets consider a practical example: the conversion from the sYCC 4:2:2 color space to the

Rec.601 525-lines YCC 4:2:2 color space considering 8-bit depth data1. First of all, it is necessary

to upsample the input data to a 4:4:4 signal by applying an appropriate interpolation filter. After

that, the data is normalized to [0;+1] and [−0.5;+0.5] intervals:

Y ′sYCC = Y ′sYCC(8)/255, (3.4)

Cr′sYCC = (Cr′sYCC(8)−128)/255, (3.5)

Cb′sYCC = (Cb′sYCC(8)−128)/255. (3.6)

The sR’G’B’ signal is obtained from:R′sRGB

G′sRGB

B′sRGB

=

a00 a01 a02

a10 a11 a12

a20 a21 a22


 Y ′sYCC

Cr′sYCC

Cb′sYCC

 , (3.7)

where ai j are the coefficients defined in [12]. Before converting to the Rec.601 525-lines RGB

color space it is necessary to decode the gamma correction of the signal, to obtain the linear sRGB.

In this particular case for sRGB color space, the gamma correction decoding function is defined

in branches:

x =


−
[
−x′+0.055

1.055

]2.4
if x′ <−0.04045

x′
12.92 if −0.04045≤ x′ ≤ 0.04045[

x′+0.055
1.055

]2.4
if x′ ≥ 0.04045

(3.8)

where x represents the obtained linear signal and x′ the input gamma encoded signal.

The standards may define the coefficients for converting their particular color space to and

from CIE XYZ color space or define the coordinates of their chromaticity primaries from which it

is possible to obtain the coefficients. The conversion from the input color space to CIE XYZ color

space and then to the output color space is done in a linear domain so this double step operation can

be merged in one by multiplying the two intermediate conversion matrices and obtaining matrix

Bi j: RRec601525

GRec601525

GRec601525

=

b00 b01 b02

b10 b11 b12

b20 b21 b22


RsRGB

GsRGB

BsRGB

 . (3.9)

Before converting to Rec.601 525-lines Y’Cr’Cb the content should be gamma encoded with

the Rec.601 525-lines gamma transfer function, which is also defined in branches:

x′ =

{
1.099x0.45−0.099 if 1.00≥ x≥ 0.018

4.500x if 0.018≥ x≥ 0
(3.10)

1Despite the notation used (YCC) both this spaces are non-linear (Y’C’C).
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and only then converted to the luma/color-difference format where Ci j coefficients are defined

in [8] :  Y ′Rec601525

Cr′Rec601525

Cb′Rec601525

=

c00 c01 c02

c10 c11 c12

c20 c21 c22


R′Rec601525

G′Rec601525

B′Rec601525

 . (3.11)

Finally, chroma subsampling can be done by applying the decimator filter and the results can

be coded in 8-bit depth, obtaining opYCC 4:2:2 format.

Y ′Rec601525(8) = round[(Y ′Rec601525
×219)+16], (3.12)

Cr′Rec601525(8) = round[(Cr′Rec601525
×224)+128], (3.13)

Cb′Rec601525(8) = round[(Cb′Rec601525
×224)+128]. (3.14)

In Rec.601 525-lines Y’Cr’Cb the signals should be limited as following:

235≥ Y ′Rec601525(8) ≥ 16 (3.15)

240≥Cr′Rec601525(8) ≥ 16 (3.16)

240≥Cb′Rec601525(8) ≥ 16 (3.17)

A research on available solutions for color space conversion and on scientific publications

addressing this issue was made and the conclusions are presented next. It wasn’t possible to find

solutions that implement all the operations concerned in this module, that is, proposals found only

consider the RGB to YCrCb and YCrCb to RGB conversion or chroma resampling. It was also

researched proposals for the implementation of the gamma encoding and decoding modules.

Altera has two Color Space Converter cores in its Video and Image Processing Suite [22] with

different features that allow conversion between RGB and YCrCB for SDTV and HDTV color

spaces, with components encoded in 4 to 20 unsigned bits. This IPs allow the configuration of the

coefficents (from the set available or custom) to use in runtime, as well as the methods for rounding

and scaling the data. Each coefficient is represented using fixed-point with 0 to 16 integer bits and

0 to 34 fractional part bits.

Xilinx LogiCORE IP family provides two cores for color conversion: RGB to YCrCb Color-

Space Converter [4] (Figure 3.1) and YCrCb to RGB Color-Space Converter [23]. Both this cores

support SD and HD resolutions in Rec.601 and Rec.709 color spaces with 8,10,12 and 16-bit depth

and the conversion implementation is optimized by pre-computing all the arithmetic between fixed

parameters.

Lattice Semiconductor also offers a Color Space Converter IP [24] RGB to YCrCb in its Lat-

ticeCORE products, supporting SD and HDTV conversions, 8 to 16 bits data and parametrized

coefficients from 9 to 18 bits.

iWave Systems Technologies has a core[25] that converts from YCbCr to RGB using a pipeline

implementation of the matrix operations that runs for 8-bit video data.
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Figure 3.1: Direct implementation of conversion operation from [4].

Several papers concerning the implementation of color space conversion in FPGAs were

found, although some concern conversions to color spaces not considered here (HSV, Lab,CMYK),

others simply implement the conversion without further optimization, considerations or studies. A

selection of relevant papers is presented next.

Bensaali et al.[5] proposes two alternatives approaches to the implementation of the color

space conversion, one using distributed arithmetic and one using a systolic design. These archi-

tectures aim to improve the performance of the color conversion cores for FPGA applications.

Despite these alternatives are presented here, in this project it was chosen to optimize the core

through parallelization and pipeline techniques, while conserving the architecture of the opera-

tions.

The systolic design consists in dividing the system in a network of processing elements (PE)

that compute and pass data across the system as described in figure 3.2. To help understanding

the system the correspondent conversion matrix is in figure 3.3. This matrix differs from the one

presented in 2.1 because it includes the summation of constant values Ai3 for setting an offset in

each component. This design is also presented in an alternative architecture which requires less

PE elements in exchange for longer computation times, but the same principles apply.

Distributed arithmetic is a technique that decomposes multiplications into bit level operations

that can be precomputed. This allows for the use of ROM tables to store the precomputed data and

surpass the need for multipliers, which usually need more area and longer clock cycles.

An example for R’G’B’ to Y’Cr’Cb’ conversion is presented in the paper. Using data encoded

with 8-bit depth it would require 3 ROMs (one for each matrix row) with 2N = 24 = 16 entries. N

is the number of columns in the matrix presented in figure 3.3.

A parallel implementation of this system is illustrated in figure 3.4 that allows the computation

of the 8 bits of each component in a cycle, after a initial latency of 8 cycles. A serial version of

this system is also presented in the paper.

The author compares his proposals with other existing cores for FPGA applications and presents

the results in the table of figure 3.5. It concludes that the distributed arithmetic approach effec-
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Figure 3.2: Systolic architecture (from [5]).

tively improves performance in terms of area and running frequency when compared with the

other systems.

A "fast method" [26] for 8-bit video RGB to YCrCb conversion is proposed substituting the

multiplications by lookup tables (similar to the Distributed Arithmetic concept) and pipelining the

add operations, which allows this architecture to be implemented in FPGA’s without embedded

multipliers, as synthesizing multipliers directly in an FPGA is very inefficient in terms of area and

performance.

Several constant matrix multiplications algorithms for hardware implementation are discussed

in [27]. The authors compare their hand-optimized implementation results with the ones presented

in 3.5 from [5], which achieve 229 MHz with full pipelining, but using only 140 slices, or 105 Mhz

and 74 slices without pipelining, in a not specified Xilinx FPGA.

The following table 3.1 summarizes the performance results collected from the references

studied. However, it doesn’t compare the neither the area and power statistics from this propos-

als neither different levels of features in each one of them. The observations column indicates

the FPGA boards used to implement the modules, when indicated by its authors, for better com-

parison. The frequency values achieved may be dependent on the bit width configured or other

options.

Figure 3.3: Conversion matrix (from [5]).
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Figure 3.4: Distributed arithmetic architecture (from [5]).

3.2 Chroma Subsampling

It was referred in 2.4 that one of the main objectives in representing images in color-difference

formats is to allow for chroma subsampling, providing a reduction in data bitrate with little degra-

dation of picture quality due to the less sensitivity of the human vision to color variations when

compared to sensitivity to luminosity variations.

The notation used to refer to the scheme where all samples are present is 4:4:4. This nota-

tion applies both to R’G’B’ systems where no subsampling is allowed and to Y’Cr’Cb’ with all

samples. The chroma sampling schemes are always defined with respect to the luma sampling

rates.

Chroma samples can be subsampled both horizontally or vertically. Horizontal subsampling

provides the 4:2:2 format, where in each line only the odd numbered samples of luma are ac-

companied by Cr’ and Cb’ samples. If vertical subsampling is also applied, then Cr’ and Cb’

samples will only be present once for each square formed by four luma samples in consecutive

lines - 4:2:0. Other sampling schemes exist, for example 4:1:1 used in DV video format where Cr’

and Cb’ samples don’t appear together like in 4:2:0 but each in alternate horizontal luma samples

with chroma presence. Nevertheless, this project is only meant to support 4:4:4 and 4:2:2 chroma

subsampling schemes.

Figure 3.5: Comparison of results (from [5]).
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Source Max. Frequency Observations
Xilinx [23] [4] 226 to 234 MHz Virtex 7 and Zynq-7000.

Altera [22] 148.5 or 100 MHz Arria V or Cyclone V, respec-
tively.

Lattice Semiconductor [24] 196 to 262 MHz Lattice ECP3 LFE3-150EA-
6FN1156C.

iWave [25] 78 MHz ProASIC3
"Fast method" [26] 358.2 MHz Virtex 4 XC4VLX15-10

"Hand-optimized (full pipeline)" [27] 229 MHz Xilinx FPGA
"Distributed Arithmetic" [5] 234 MHz Virtex E XCV50E-8

Table 3.1: Comparison on the performances announced in the proposals found

Chroma subsampled schemes can be achieved from 4:4:4 by discarding chroma samples where

necessary. In signal processing this operation is known as decimation. Although simple discard-

ing of samples (nearest-neighbor method) can be used by simpler systems, higher quality results

require the use of low-pass filters to prevent the apparition of alias and other artifacts in the deci-

mated signal.

The filters used in the decimation should not only block the undesired frequencies of the signal

but should also account to the sampling positions imposed by the reference standards. That is,

although the Cr’ and Cb’ samples are transmitted aligned with the luma samples, their value may

not correspond to that sampling point of the image, for example, they can represent a sampling

point between two luma samples. When luma and chroma sampling points are the same they are

said to be co-sited.

The upsampling of the chroma signals to restore 4:4:4 or 4:2:2 is achieved by interpolation

of the subsampled values. The simplest form of interpolation is repeating the previous chroma

sample - nearest-neighbor method. Better upsampling results can be obtained if a weighted sum

of neighboring samples is used to compute the new sample.

ITU-R BT.601 [8] and ITU-R BT.709 [7] suggest low-pass filters for R’G’B’, Y’ and Cr’Cb’

Figure 3.6: Chroma subsampling schemes (from [6]). Format 4:2:2 from Rec. 601 is co-sited
while 4:2:0 from JPEG is sited interstitially.
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Figure 3.7: Template from Rec.709 for Cr and Cb filtering (from [7]). fs is the sampling frequency
of the R,G,B and Y signals.

signals for filtering in analog-digital and digital-analog conversions that could be applied when

resampling chroma - figures 3.8 and 3.7. However, this filter templates are very exigent and

preliminary studies made using Matlab indicate they would require a heavy hardware cost.

A single-rate lowpass equiripple FIR filter compliant with Rec.601 and Rec.709 templates

would need to be of order 27, which typically would require 27 state registers or taps, 28 multi-

pliers and 27 adders to implement in a direct structure, or only 14 multiplications in a symmetric

structure taking advantage of the symmetry of the coefficients.

Alternatively, a single-rate lowpass half-band FIR filter topology would require a filter of order

30, but because almost half of the coefficients of an half-band filter are zero, only 30 state registers,

17 multipliers and 16 adders are needed to implement a direct FIR structure.

The actual implementation structure and hardware cost details for the filters designed are pre-

sented in section 5.5.

An analysis of the available solutions for chroma resampling systems in the market and in

scientific documentation has been made and the collected proposals are presented next.

In [16] Poynton presents simple averaging filters (2 to 3 taps) which main concern is to respect

the chroma sampling positions defined in the different standards. In other note, [28], an alternative

filter to the templates defined in Rec.601 with 13 taps is suggested, which Poynton considers to

be a good compromise between performance and complexity while being less demanding than the

Rec.601 templates.

Finally, in [29] concerning chroma interpolation Poynton claims that for VHS video quality

nearest-neighbor interpolation is sufficient and that for better results linear interpolation could be

used. For higher quality a multi-tap FIR filter is required and an example of a suitable filter is

presented. These same filters are cited in a Xilinx application note [30] where a 24-tap filter for

4:2:2 to 4:4:4 interpolation respecting Rec.601 templates is also proposed.
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Figure 3.8: Specification from Rec.601 for a digital filter for sampling-rate conversion from 4:4:4
to 4:2:2 color-difference signals (from [8]). The frequencies indicated are for the 13.5 MHz family,
with sampling frequencies of 13.5 MHz and 6.75 MHz for the luminance and chroma-difference
signals, respectively. The same normalized template applies for the 18 MHz family.

Keith Jack [31] also refers that Rec. 601 filter templates are very complex to apply in interpo-

lation from 4:2:2 to 4:4:4 and consequently most NTSC and PAL video decoders implement linear

interpolation.

In Akrammullah [32] one horizontal low-pass filter is proposed to downsample from 4:4:4 to

4:2:2 and a vertical low-pass filter to further downsample to 4:2:0 encoding, both with 11-taps.

A research has been conducted by the R&D department of BBC in order to investigate re-

sampling filters that would allow to convert from 4:2:2 to 4:4:4 or 4:2:0 and then back to 4:2:2

while minimizing conversion losses. This filters are meant to apply in situations where sections

of the broadcasting chain are not compatible with the content chroma format (usually 4:2:2) and

so chroma resampling is needed before and after this sections. The results from this research are

published in a white paper [33] where one linear and one nonlinear filter are proposed for this

problem. Both this filters are reversible and achieve lossless results in the end of the two resam-

pling operations. The linear filter proposed is a 5-tap FIR filter with increased precision relatively

to content bit depth that could be interesting for this thesis problem. The nonlinear filter consists in

a nearest-neighbor interpolation reversible by a weighted-sum average filter which doesn’t require

increased precision.

A comparison between different chroma subsampling schemes is done by Glenn Chan[34]

considering the usual visual problems caused by downsampling: blurry images due to imperfect

frequency response, spurious image detail caused by aliasing and the apparition of ringing arti-

facts around high-contrast edges. From the comparison of combinations of linear, box, multi-tap

FIR and nearest-neighbor downsampling methods with linear and box upsampling methods the

author claims that the best subjective results are obtained with multi-tap FIR and linear/tent filters,

although it concedes that chroma subsampling artifacts are rarely noticed with any method in the

majority of situations.
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An analysis of the out-of-gamut output and the non-constant luminance problems while con-

verting from Y’Cr’Cb’ to R’G’B’ is also presented and possible solutions addressed. However,

the standards considered in this thesis already define the expected responses in this situations.

Keith Jack [35] emphasizes the importance of keeping the filters passband as flat as possible

in exchange for reducing the stopband cutoff rate when trying to optimize the filters design and

implementation.

In Bartkowiak [36] an improved interpolation method for 4:2:0 to 4:4:4 conversion based on

the correlation between Y’ and Cr’Cb’ signals is proposed. Despite this proposal being out of the

scope of this thesis the comparison of this method’s results is made with a 7-tap low-pass FIR filter

which is of interest to this work.

Xilinx LogiCore IP products offer a Chroma Resampler core described in [37]. This core

supports chroma resampling between 4:4:4, 4:2:2 and 4:2:0 formats for progressive and interlaced

video with bit depths of 8, 10 and 12-bits per component.

Simple nearest-neighbor decimation and interpolation (by dropping or replicating samples) are

possible but FIR filters are also provided for all the conversions in two different implementations:

predefined fixed power-of-two coefficients to simplify multiplications to shifts and additions and

a implementation with programmable coefficients and number of taps.

The default filters are 2 and 3-taps polyphase implementations and computations are done

with full precision by extending input and coefficients bit widths in intermediate arithmetic. Co-

efficients are 16-bit with 1 sign bit, 1 integer part bit and 14 fractional bits.

Altera also offers a Chroma Resampler core in its Video and Image Processing Suite [22]

which supports resampling between 4:4:4, 4:2:2 and 4:2:0 by nearest-neighboring or filtering (only

for horizontal resampling). FIR filters are implemented with fixed power-of-two coefficients with

4-tap or 9-tap (upsampling and downsampling, respectively) based on Lanczos-2 function and

its quantized form known as the Turkowski Decimator. The Lanczos-2 function is a two-lobed

windowed sinc function.

Turkowski [38] compares a series of different filters and their quantized versions for decima-

tion and interpolation of image data and conclude that Lanczos functions were one of the best

compromises in reducing aliasing, sharpness and ringing, as well as having one of the best pass-

band and cut off frequency responses.

3.3 Summary

The comparison with the IPs available in the industry [4][22][23][24][25] allowed to evaluate the

list of features proposed for this module. The proposals of color space converters studied only

consider RGB-YCC conversions. In this work, we aim to support not only these conversions but

also conversions between different RGB color spaces.

The architecture that has been developed in this thesis is a direct implementation of the al-

gorithmic structures required by the conversion process, optimized at the performance level by

dividing it into pipeline stages. From the study of the state of the art of color space converters, two
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interesting architectural alternatives using distributed arithmetic[5][26] and systolic structures[5]

have been presented. These alternatives claim to improve performance and area metrics when

compared to direct implementations. However, the results have been obtained from implementa-

tions in FPGAs so we cannot extrapolate the metrics obtained to the 40nm technology.

The responses of the chroma resampling filters proposed in the references are compared in

figure 3.9 against the templates defined in Rec.709 and 601. Most of the proposed filters in section

3.2 don’t respect the templates defined in Rec. 601 and Rec. 709. However, the majority of these

filters have a common 6 dB attenuation at half the sampling frequency, which is a characteristic

that was considered in the design of the smaller chroma resampling filters ( section 5.5), together

with the advise from [35] to keep the pass-band as flat as possible when optimizing a filter’s

architecture, lowering the expectations for the stop-band’s attenuation instead.
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(a) Xilinx [37], Lanczos-2 [22], Turkowski [38].

(b) BBC [33], Poynton [28], Bartkowiak [36],Akrammullah [32].

Figure 3.9: Comparison of the filters proposed in the references against a template (dashed line)
that is compliant with both Rec.601 (figure 3.8) and Rec.701 templates (figure 3.7).



Chapter 4

Architecture Design

4.1 Introduction

The main design goal of this project is to develop a module that is synthesizable for 600 MHz

frequencies at 40 nm technologies. This performance goal is driven from the specification of

4K video formats in the Consumer Electronics Association (CEA) standard of digital television

profiles for uncompressed high speed digital interfaces [39].

These 4K progressive formats have active video resolutions of 3840x2160 and 4096x2160 at

both 50 Hz and 60 Hz frame rates. Considering the full frame sizes (with vertical and horizontal

blanking) of 5280x2250 and 4400x2250 it results in 594 million pixels per second to be transmit-

ted, which requires a pixel clock of 594 MHz. Considering a parallel interface, where the three

video channels are transmitted in parallel, these formats originate a video data rate of 28,51 Gbps

for RGB or YCrCb 4:4:4 16-bits video.

This module implements a parallel video interface with the three video channels and the three

synchronization signals in parallel due to compatibility reasons with other modules, as this is the

most direct interface to be implemented.

The architecture design for this module is heavily driven by the color space conversion algo-

rithm (figure 2.4) necessary to support the conversions between the proposed color spaces. This

algorithm has been divided in indivisible steps, corresponding to the operations that may need to

be executed or bypassed for each conversion configuration.

4.2 Top Level Interface

The top level interface (figure 4.1) of the developed module requires the support of the video in-

terface input and output signals: video data, hsync and vsync. The video data signals are concate-

nated in a 48 bits bus with the most significant 16 bits corresponding to the channel 1 (representing

R or Y), then channel 2 (G or Cr) and finally the least significant 16 bits correspond to channel 3

(B or Cb signals). A register bank was implemented in the module for configuration of its func-

tioning mode, so an interface to access the registers is offered, composed of the following signals:

29
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idata [47:0]

ihsync

ivsync

ipixclk

odata [47:0]

ohsync

ovsync

odataenidataen

icscen

icscrst_n

iaddr [7:0]

iwdata [7:0] ordata [7:0]

iscanen

iscanin oscanout

isel

iwrite_en

Color Space Converter

Figure 4.1: Top level interface

address, write enable, write data, read data and select signal. Finally, the top level has the input

ports for the module’s enable, reset and pixel clock signals. The top level interface signals are

further described in table 4.1.

4.3 Implementation Strategy

The project was divided in different sub-modules corresponding to the tasks performed in the color

space conversion - figure 4.2. This hierarchical division not only allows for a divide-and-conquer

problem solving approach as it allows each module to be tested and validated independently, which

facilitates the verification task. Furthermore, because depending on the running configuration not

all tasks are needed to the required conversion process, some modules can be simply set to bypass

mode.

The color space conversion module was divided in 9 sub-modules: a register bank for con-

figuration purposes, a control unit module which controls the datapath configuration based on the

register bank data, two chroma horizontal resampling filters, one RGB to RGB color space conver-

sion, one gamma encoder and a gamma decoder, one RGB to YCC and an YCC to RGB converters

which also perform the limited/full range data conversion.



4.3 Implementation Strategy 31

C
h

ro
m

a 
U

p
sa

m
pl

er
G

a
m

m
a 

D
e

co
d

er
Y 

to
 G

 
co

n
ve

rt
er

R
G

B
 t

o
 R

G
B

 
C

o
n

ve
rt

e
r

C
h

ro
m

a 
D

o
w

n
sa

m
p

l
er

G
a

m
m

a 
En

co
d

e
r

R
G

B
 t

o
 Y

 
co

n
ve

rt
er

Y 
C

r 
C

b
  t

o
 

R
 G

 B
  

C
o

n
ve

rt
e

r

C
r 

C
b

  t
o

 
R

 B
  

C
o

n
ve

rt
e

r

R
 G

 B
  t

o
 

Y 
C

r 
C

b
  

C
o

n
ve

rt
e

r

R
 B

  t
o

 
C

b
 C

r 
 

C
O

n
ve

rt
e

r
v v

v
v

v
v

v
v

v v

v v

v v

v
v

R
eg

is
te

r 
B

an
k

C
o

nt
ro

l
U

ni
t

co
n

f
C

o
nt

ro
l 

P
ar

am
et

er
s

En
ab

le
,R

es
et

 a
n

d
 

C
o

nt
ro

l S
ig

na
ls

 
to

 a
ll 

su
b

-m
o

d
u

le
s

En
ab

le

R
es

et
R

es
et

En
ab

le

A
dd

re
ss

W
ri

te
 D

at
a

R
ea

d
 D

at
a

W
ri

te
 E

n
ab

le

co
n

f

W
ir

e
B

u
s

Fr
o

m
 T

o
p

 L
ev

el

V
id

eo
 C

H
0

V
id

eo
 C

H
1

V
id

eo
 C

H
2

H
sy

n
c

V
sy

nc

P
ix

el
 C

lo
ck

v

D
at

a 
En

ab
le

Se
le

ct

Fi
gu

re
4.

2:
Sy

st
em

ar
ch

ite
ct

ur
e.

Ta
bl

e
4.

1
re

la
te

s
th

e
to

p-
le

ve
ls

ig
na

l’s
na

m
in

g
of

fig
ur

e
4.

1
w

ith
th

e
hi

gh
er

le
ve

ld
es

cr
ip

tio
n

of
th

is
fig

ur
e.



32 Architecture Design

Signal Bit Width Description
idata 48 Input video data, contains the three 16 bits video channels: video

ch0, ch1 and ch3.
idataen 1 Input data enable signal. High when idata contains active video

data.
ivsync 1 Input vertical synchronizations signal.
ihsync 1 Input horizontal synchronizations signal.
ipixclk 1 Input pixel clock.
icscen 1 Input enable signal. Active high.

icscrst_n 1 Input asynchronous reset signal. Active low.
iaddr 8 Input register bank access address.

iwrite_en 1 Input write enable for register bank access.
iwdata 8 Input write data for register bank write operation.

isel 1 Input select signal for register bank access.
iscanen 1 Input scan enable for DfT.1

iscanin 1 Input scan chain port.
odata 48 Output video data, contains the three 16 bits video channels:

video ch0, ch1 and ch3.
odataen 1 Output data enable signal. High when idata contains active video

data.
ovsync 1 Output vertical synchronizations signal.
ohsync 1 Output horizontal synchronizations signal.
owdata 8 Output read data for register bank read operation.
oscanin 1 Output scan chain port.

Table 4.1: Top level interface signal description.

The implementation process of each module started with the evaluation of the requirements

imposed by the standards and the color space conversion process over each task. After this, a

software model in Matlab or C was implemented using floating point arithmetic. These models

were then converted to fixed point arithmetic and their response compared to the floating point

references, which allowed to make some design decisions as the bit width of the coefficients and

computations. Finally, the RTL module was described in Verilog and verified against the fixed

point software model.

The strategy followed in the synthesis process was to synthesize each sub-module individually

in order to facilitate the iterative process over different optimizations. For this task, each module

was implemented with registered inputs and outputs and the synthesis constraints were applied

with the objective of providing a good working margin for a future physical implementation pro-

cess. The synthesis constraints set are described in the chapter 5.9.

1These scan ports where added to the module to perform the synthesis with scan chain insertion, because the inser-
tion of the scan chain affects the flip-flop cells used, which affects the performance obtained. This project isn’t meant
to consider design for testablity strategies and implementation.



4.4 RGB to RGB Converter 33

4.4 RGB to RGB Converter

This module implements the matrix operation presented in equation 3.9 for a particular example.

Each standard defines its color primaries points from which it is possible to extract the coefficients

to convert from and to each color space and the CIE XYZ color space. By multiplying the coef-

ficients from the conversion RGB-XYZ of the input color space and the XYZ-RGB coefficients

of the output color space, one can obtain the coefficients for the RGB-RGB conversion consid-

ered. The number of color spaces this project is required to support would require 36 matrices to

be computed and somehow made available for conversion. However, due to the overlap between

the gamuts of different color spaces one can eliminate the redundancy between the matrices and

consider only 14 different sets of coefficients.

The process of obtaining the matrix coefficients from the standard’s primaries is presented

next, as described in [16]. The chromaticities of the RGB primaries x, y and z are directly obtained

from each standard, and can be represented in a matrix:

C =

xr xg xb

yr yg yb

zr zg zb

 (4.1)

Usually the values for the zi chromaticities are omitted, but can be driven from zi = 1−xi−yi.

The RGB to RGB conversion matrix R is obtained from

R =C×

Jr 0 0

0 Jg 0

0 0 Jb

 (4.2)

where J is computed with the chromaticities matrix C and the coordinates wi of the white point

w used by the standard concerned: Jr

Jg

Jb

=C−1×

wx

wy

wz

× 1
wy

(4.3)

There is a set of standard white-points defined by the CIE, which the majority of standards

supported in this thesis use the D65, with coordinates WD65 = [0.3127,0.3290,0.3583].

This process is validated against the coefficients presented in examples described in some stan-

dards. However, there are some differences between values for the same coefficients presented in

different standards. In these cases, the values from the most recent standard (by date of publica-

tion) has been used, which are coherent with the ones obtained by the mathematical derivation.

The RGB to RGB conversion algorithm has been implemented in C using both floating point

arithmetic and fixed-point arithmetic. The coefficients have been quantized by multiplying them

to 2Nbits and rounding. In the standard IEC 61966-2-1-Am1 [12] it is indicated that for 16 bits

video the coefficients should have 7 decimal values ( 6 bits for RGB to YCrCb conversion), which
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could be represented with full precision by 24 bits (20 bits for RGB to YCrCb conversion), so the

floating point values to be quantized are computed respecting this indication.

A comparison was made between the SNR and probability of error obtained from using dif-

ferent number of bits for storing the coefficients for each video data input width (8 to 16 bits), for

random input pixel values. This comparison was made by taking as reference the results obtained

with floating point arithmetic, quantized with the same method used with the coefficients. The

results obtained for 16-bit video and coefficients width varying between 16 and 30-bits are pre-

sented in table 4.2. The results for 8 to 16 bit data widths are plotted in figures 4.3 and 4.4. The

8 extra bits when comparing 8-bit to 16-bit video can be understood as increased precision, so it

was decided to implement all tasks in the color conversion process for 16 bit video, which can

be reduced to a smaller width at the output (and expanded in the input) without additional loss of

precision.

These results, together with the ones obtained for the RGB-YCC and YCC-RGB conversions

presented in section 5.3, show that little advantage is obtained from using more than 24-bit for

the coefficients, as the SNR values tend to stabilize and seem to vary based on the variability

of the input vectors instead of added precision. This behavior is expected and coherent with the

use of 7 decimal values floating point coefficients, which require 24 bits binary representation for

full precision. It was decided to implement the modules with 24-bit coefficients and to consider

also 24-bit video for reducing the quantization error accumulated in each operation. This decision

could be reverted in a later stage if necessary for the achievement of the performance goals.

Coefficients Width SNR (dB) Probability of Error (%)
16 bits 104.2 11.568
18 bits 110.8 2.5048
20 bits 116.3 0.7208
22 bits 121.3 0.2305
24 bits 124.5 0.1135
26 bits 124.8 0.1045
28 bits 124.7 0.1083
30 bits 124.9 0.1015

Table 4.2: Comparison of the variation of the RGB to RGB conversion coefficients width and SNR
and probability of error measured for 16 bit width video.

4.5 R’G’B’-Y’Cr’Cb’ Converters

These modules implement not only the conversion between R’G’B’ and Y’Cr’Cb’ color spaces but

they also perform the scaling and offsetting of the video data values - exemplified in equations 3.6,

3.7, 3.11, 3.14 and 3.17. Despite the scaling operations, this is the same mathematical operation

as the RGB to RGB converter.

The coefficients for R’G’B’-Y’Cr’Cb conversion are directly defined in the respective stan-

dards. Based on the analysis made for the RGB to RGB module and the similarities between these
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modules arithmetic operations, the coefficients used by this module were also quantized after its

floating point 7 decimal values representation by multiplying them to 224 and rounding, despite

some of the standards define the coefficients with lower precision.

The first step in the Y’Cr’Cb’ to R’G’B’ module is to scale the signals from the input range,

if it is a limited range, to full range and adjust their offsets accordingly. The natural range of the

chroma signals Cr and Cb is [-0.5;+0.5] which requires these signals to be treated as signed.

After this, we can perform the conversion to the R’G’B’ color space using the coefficients

matrix defined in the concerned color space standard. The Y’Cr’Cb’ color space has a wider

gamut than its equivalent RGB color space which may result in out of gamut values after this

conversion so the RGB values must be limited to the interval [0;224−1].

The R’G’B’ to Y’Cr’Cb’ module implements the inverse operation, first converting from

R’G’B’ to Y’Cr’Cb’ using the matrix multiplication and then scaling the signals to the output

ranges, limiting them to the range limits.

Besides the non-constant luminance R’G’B’-Y’Cr’Cb’ conversion modules shared between

all color spaces conversions, the constant luminance conversion defined by Rec.2020 requires the

use of different modules, because of the algorithmic differences.

In R’G’B’ to Y’Cr’Cb’ constant-luminance conversion, the linear Y signal is obtained from the

linear RGB signals, and only then gamma encoded into Y’. The Cr’ and Cb’ values are computed

from the gamma encoded Y’, R’ and B’ signals.

Although the computation of Y is a weighted sum of the RGB channels, the coefficients used in

the scaling of Y’-R’ and Y’-B’ that originate Cr’ and Cb’ respectively depend if these differences

have positive or negative values.

In the Y’Cr’Cb’ to R’G’B’ constant-luminance conversion the inverse algorithm is applied.

Due to the significant differences between non-constant luminance and constant-luminance

conversions these were implemented in independent modules in the datapath - figure 4.2. When

converting in Rec.2020 constant-luminance mode the data flows through the Cr’Cb’-R’B’ con-

verters and Y-G converters. Otherwise, it flows through Y’Cr’Cb’-R’G’B’ converters and the Y-G

are set to bypass mode.

4.6 Gamma Encoder and Decoder

The gamma function is a non-linear function described by an exponentiation of the input value.

Moreover, the gamma functions defined in some of the concerned standards are defined in branches,

where in the section near zero the function is linearized, due to the high derivative of the exponen-

tial function in that section - see equations 3.8 and 3.10.

It isn’t possible to implement directly a non-linear function in hardware, because only linear

arithmetic operators are available (adders, multipliers, dividers). Therefore, some strategy must

be set.

One usual approach to this situations is to implement a lookup table which relates a set of

input values with output values. This method allows us to approximate the expected output value
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with a precision that grows with the size of the lookup table implemented. It is also possible to

interpolate the output value from the nearest table values, instead of simple substitution. There are

other possibilities of approximation of exponential functions, as the Newton-Raphson algorithm.

However, this algorithms are recursive, which imposes some difficulties in their implementation

due to the real time nature of this module. It was chosen to develop a lookup table based solution,

depending on the results obtained by this approach.

The specifications for this module require the implementation of 3 pairs of gamma encoding

and decoding functions. These functions were coded in Matlab with the objective of linearize them

by segments. The strategy followed was to divide the function in segments and in each segment the

approximation would be obtained by the computation of a first order linear function y = mx+ b,

where the m and b constants for each segment would be stored in a LUT.

Because the highest the precision the larger the LUTs, it was decided to keep the data width as

16 bits, to constraint the number of segments required, and a allowable maximum error of 1 LSB.

Several attempts of linearization of the 6 functions with this requisites were made: growing

number of segments with the same length, varying the length of each segment across the input

range to better fit the derivatives of the functions, dynamically defining the length of each segment

based on the output error generated. None of this strategies conducted to a solution which fulfilled

the error constraint without an excessively large number of segments. At some point, the number

of segments required started to compare to the size of the LUTs required to relate every possible

input, that is, 216 = 65536 entries. The errors didn’t appear in a specific pattern which could

indicate that some section of a function just required a little extra precision, as they were scattered

around the full range, and after a certain level of reducing the probability of error, further advances

required an exponential increase of the effort.

The analysis of the distribution probability of the errors suggested an alternative solution which

was developed using segments of constant length. The dynamic range of the function was divided

in segments with lengths power of 2, which allows a vector of the most significant bits of the input

to be the LUTs address. On top of this, an additional third LUT (besides the gain m and offset b

LUTs) registers the pre-computed outputs for a set of vectors for which the method doesn’t offer

the 1 LSB maximum of error. A comparison was made between the total number of LUT entries

that would be required for different segments lengths, and the minimizing solution was chosen -

table 4.3.

The increase of the segment length reduces the number of segments needed, which reduces the

number of entries in the linear LUTs that store the gain and offset values. However, the increase

of the distance between the interpolation points increases the number of errors and therefore the

size of the additional LUT. The total number of entries required for the overall of the encoding

and decoding modules is computed by adding six times the number of linear LUTs entries (which

includes the entries for the twin LUTs that store the gain and offset values) plus the number of

entries in the error LUTs (the value includes the number of entries for the 6 functions, which is

variable by function).
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The encoding and decoding functions were linearized in segments of 64 bits for 16-bit in-

put/output values, which means that the most significant 10 bits of the input are the address to the

LUTs were the gain m and offset b of that segment are stored. The additional LUT for special

values receives the full 16-bit input and if there is a value stored for the current input, then the

output of this LUT is preferred to the output of the segmented linearization. This strategy allow us

to use only 4.92% of the LUT entries compared with mapping the 216 values for the 6 functions.

Segment
length

Total Entries Linear LUT
entries

Error LUT
entries

% Full mapping en-
tries

8 99 273 16 384 969 25.25
16 50 873 8 192 1 721 12.94
32 27 829 4 096 3 253 7.08
64 19 316 2 048 7 028 4.92
128 25 368 1 024 19 224 6.45
256 84 888 512 81 816 21.59
512 226 782 256 225 246 57.68

Table 4.3: Comparison on the length of the segmentation segments and the size of the LUTs
required.

4.7 Chroma Resampling Filters

In section 3.2 we have discussed some existing alternatives to perform the 4:4:4 to 4:2:2 conver-

sion. Because in this project the compliance with the industry standards and the assurance of the

highest quality of results is a necessity, it was decided to implement resampling filters according

to the indicated in the standards. From the filter response guidelines presented in Rec. 601 for

4:4:4 to 4:2:2 filtering and in Rec. 709 for Cb and Cr signals a filter specification that respects

both this indications was elaborated.

A Finite Impulse Response (FIR) was the choice for this application, because of its linear

phase response and simple polyphase decomposition. Moreover, FIR filters are less sensitive

to quantization effects due to the lack of feedback, which in IIR filters can originate increased

quantization effects.

Using the Matlab Filter Design Tool it was possible to obtain a 30th order lowpass half-band

filter with these characteristics, computed using the Parks-McClellan algorithm. In a half-band

filter, almost all odd numbered coefficients are zero, except for one which is 0.5, which allows

efficient hardware implementations. The coefficients obtained from the tool were quantized to 24

bits integer coefficients by multiplying them by 224 and rounding.

The chroma upsampling filter was implemented using a polyphase decomposition of the orig-

inal filter. Because this filter is an interpolator of ratio 2, the filter has been decomposed in two

phases. Each of the phases is implemented in a direct FIR structure, which requires a total of 17

multipliers (16 for phase 0 and 1 for phase 1), 15 adders and 15 registers - structure exemplified

in figure 4.5 for a generic smaller order filter. Obviously, although the figure 4.5 presents all the



4.7 Chroma Resampling Filters 39

Figure 4.5: Architectures of the upsampling and downsampling filters.
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multipliers for better comprehension of the polyphase structure, the multiplications by zero coeffi-

cients are discarded. Taking advantage of the noble identities [40], the polyphase implementation

allows the upsampling to be done after filtering each phase, instead of before filtering to prevent

aliasing, as usual. At the end of the adders chain, each of the outputs is interpolated with zero-

values and the phase 1 is delayed one cycle. The output of the filter is obtained in alternating the

outputs from the phase 0 and the delayed phase 1.

The advantage of the polyphase decomposition by ratio of 2 is that it allows each of the phases

to be working at half the cadence of the original signal, i.e. for each input value (or pair of output

values) each phase will only compute a single value, which reduces the timing constraints for the

adders and multipliers logic by half. Otherwise, if using a normal filter, we would have to be

computing samples at twice the input’s frequency.

The downsampling filter was designed using the same method described above for the upsam-

pling filter, but it was implemented in a polyphase transposed FIR filter structure - exemplified in

figure 4.5. The transposed structure in a decimator reduces the number of state registers required,

compared to a direct structure implementation. In this case, the decimation is performed before

the filtering in each phase, taking advantage once more of the noble identities [40]. This way, each

phase filtering is also computed at half the rate of the input signal.

The phase 0 of each of this filters has a symmetric response, and in the downsampling filter all

the multiplications are computed using the same input value - figure 4.5. This allows to implement

a symmetric structure in the phase 0 that further reduces the number of phase 0 multipliers in half.

Besides having a filter with the wanted frequency response, it is necessary to control its be-

havior in the borders of the image, when there are no available inputs to fill the filter taps. In other

image processing applications, it is usual to extend the image borders to accommodate this need.

This extension can be made by padding the image with zero-valued pixels, replicating the pixel on

the border or mirroring the image by the margin. There are also the possibilities of adapting the

filter’s order near the margin or crop the output image to consider only pixels computed with the

available data.

Padding the image with zero-valued pixels is the most simple approach. However, it usually

results in a output image with black margins, due to the injected zero-values. Replicating the

border pixels is a good compromise between the quality of the outputs (the border pixel values

are over-weighted in the margins of the output image) without adding too much complexity to the

hardware implementation, as the other mentioned strategies.

The impulse response y[n] of these linear FIR filters is non-causal, that is, it depends on the

values of past and future pixels relatively to the current filter (n<0 and n>0), and its response is

symmetrical in respect to the instant n = 0, which results in output values also at the right and left

of the current pixel (past and future pixels). Therefore, it is necessary to set the values of the filter

registers at the borders of the image, padding the image by replication, and adjust the latency of its

response so that only the half of the response inside of the image is propagated during the active

video (the filter becomes causal). During the blanking periods (data enable is not active) the data

channels are required to stay constant.
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Additionally, when in the left-right 3D mode, the two fields are sent in the same frame side-by-

side so at the edge between the two images it is necessary to perform the same padding process.

The implementation of this feature required the duplication of the filter logic to avoid interference

from one image to the other, and the output is multiplexed from the filter correspondent to the

current image.

These FIR filters are the largest sub-modules of this project. Because of this, it was imple-

mented two smaller filters of order 18, that aim to be a compromise between the quality of results

and the hardware implementation cost. The compromise on the filter response was achieved by

relaxing the stop-band response and the pass-band response, although maintaining the pass-band

as flat as possible, as indicated in [35]. Both the half-band filters have an approximately -6 dB

attenuation at the stop frequency, which is a requirement from the templates and a common char-

acteristic of the alternative proposals presented in 3.2.

The comparison on the hardware requirements of the 30th and 18th orders filters considering

the already mentioned optimizations is presented in table 4.4, and their magnitude response is

compared in figures 4.6 and 4.7 against the template used, based on the requisites of both Rec.601

and Rec.709 filter templates.

Filter
Upsampling Downsampling

30 taps 18 taps 30 taps 18 taps
Adders 15 9 15 9

Multipliers 17 11 9 6
Registers 15 9 15 9

Table 4.4: Comparison of the hardware costs of 30th and 18th order filters.

4.8 Control Unit and Register Bank

This sub-modules work together in managing the control signals to each of the datapath sub-

modules according to the configurations defined in the register bank. The control unit also for-

wards the enable and reset signals from the top-level inputs to the other sub-modules.

The register bank allows the configuration of the system to a desired functioning mode. To

each register of the bank corresponds an output of its module, wired to the control unit.

The generic interface implemented for the register bank can be easily coupled to a reusable

bridge that adapts the interface to one of the standard bus protocols used in the industry, for

instance the Advanced Microcontroller Bus Architecture (AMBA) introduced by ARM in 1996.

The configuration codes were built upon the ones used in a ANSI/CEA standard [39] for AVI

infoframes and other metadata packets used in video transmission to transmit information about

the content transmitted. This way the integration of this core in a higher level video interface core

can be facilitated.

The register bank provides the configuration of the following parameters:
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Figure 4.6: Magnitude frequency response of the 30th and 18th order filters, against the template
(dotted line). At the edge of the stopband 0.5πrads/sample or 0.25 fs the 30 taps and 18 taps filter
magnitude responses are approx. -6 dB, being compliant with the template requirement of at least
-6 dB.
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Figure 4.7: Detail of the magnitude frequency response of the 30th and 18th order filters in the pass-
band. The standards templates require the passband (frequencies up to 0.2 fs or 0.4πrads/sample)
attenuation to be |A| ≤ |0.05|dB.
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• range_in - defines the range of the input data: limited or full;

• range_out - defines the range of the output data: limited or full;

• cspace_in - defines the color space of the input data;

• cspace_out - defines the color space of the input data;

• chroma_in - defines the chroma format of the input data: RGB 4:4:4, YCrCb 4:4:4 or YCrCb

4:2:2;

• chroma_out - defines the chroma format of the output data: RGB 4:4:4, YCrCb 4:4:4 or

YCrCb 4:2:2;

• width_in - defines the bit width of the input data: 8, 10, 12, 14 or 16 bits;

• width_out - defines the bit width of the output data: 8, 10, 12, 14 or 16 bits;

• px_rep - defines the number times an active video pixel is repeated : 0 to 9 repetitions (plus

the original pixel).

• half_hactive - defines the horizontal width in pixels of the L/R fields in side-by-side 3D

modes, or half the horizontal width of the active video. Configuration required even in 2D

modes.

• 3D_structure - defines the 3D structure if in 3D mode: side-by-side, top-bottom, etc.

• 3D_enable - enables the 3D mode.

4.9 Verification Environment

The verification environment is presented in figure 4.8. The testbench module of the verification

environment allows the user to configure the test scenario by setting a set of parameters. These

configurations are directly loaded to the instantiated modules using the respective interfaces and

protocols.

The reference model is constituted by C functions which implement the conversion opera-

tions. To each RTL module there is a C model to which it relates. The C functional models are

encapsulated in SystemVerilog modules that replicate the architecture and latency from the RTL

modules.

The fact that the reference model replicates the structure of the DUT, allows the output lines

monitor to compare not only the outputs of the top levels, but also the signals between internal

modules (grey box approach), which facilitates the debugging process and enables the detection

of errors that could be masked by the following operations of the datapath. The video comparator

contains a FIFO where it records a set of recent input stimulus applied, which it prints to a file

together with a message indicating the running configuration when an error is found, for later
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replication of the test scenario. This allows longer simulations to be performed, without the need to

save the waveform databases. Saving the waveform databases not only slows down the simulation

but the size of the database can also reach the dimension of several gigabytes, which becomes

impracticable to save on disk and load into a waveform viewer like DVE. The results interface

consists not only in this log printed to file but also in the logs printed to the terminal and error

signals in the testbench for each internal and input/output net.

The video generator is a re-used module which generates video data that covers the input sig-

nals range, for any video format structure: frame sizes, 3D modes, pixel repetition, YCrCb modes.

A simpler testbench without the video generator was also built to test with random and directed

input values, although it doesn’t aim to implement correctly the different video formats. This sim-

pler testbench enables the creation of directed tests, for instance for testing the impulse response

of the filters. Each sub-module was also tested in dedicated testbenches during the development

phase.

The downsampling and upsampling filters impulse responses were manually compared with

the responses computed of the floating-point filter models in Matlab.

4.10 Verification Plan

The verification plan was developed based on the requirements each operation in the color space

conversion imposes. It contains verification tasks for each module of the RTL Color Space Con-

verter individually, by configuring the other modules to bypass mode, and for the global system -

table 4.5.
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Figure 4.8: Verification Environment architecture.
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Module Task

RGB-RGB Converter
Correctness 36 types
Overflow and underflow processing
Sync propagation of hsync,vsync,data enable
Bypass mode

RGB-YCrCb onverter

Correctness 14 types
Overflow and underflow processing
Sync propagation of hsync,vsync,data enable
Limited to full range correctness
Full to limited range correctness
Bypass mode

Gamma Encoder
Correctness 3 encoding types
Overflow and underflow processing
Sync propagation of hsync,vsync,data enable
Bypass mode

Gamma Decoder
Correctness 3 decoding types
Overflow and underflow processing
Sync propagation of hsync,vsync,data enable
Bypass mode

Upsampling Filter

Horizontal interpolation
Pixel Repetition correctness
3D side-by-side correctness
Image borders processing
Step/Impulse response compared with Matlab
Correct behavior in blanking periods
Sync propagation of hsync,vsync,data enable
Sync propagation of Y channel
Bypass mode

Downsampling Filter

Horizontal decimation
Pixel Repetition correctness
3D side-by-side correctness
Image borders processing
Step/Impulse response compared with Matlab
Correct behavior in blanking periods
Sync propagation of hsync,vsync,data enable
Sync propagation of Y channel
Bypass mode

Control Unit

Correct RGB-RGB types
Correct RGB-YCC types
Correct Gamma types
Correct Upsampling types
Correct Downsampling types

Register Bank
Read correctly from all registers
Write correctly to all registers
Correct valid flag bit behavior
Correct write flag bit behavior

Table 4.5: Verification Plan
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Chapter 5

Hardware Implementation and Results

5.1 Tools and Development Flow

The design of a digital integrated circuit usually follows a development flow that is common to

the majority of projects. The first step in this flow, is the definition or analysis of the specification

and requirements of the design. It is fundamental to have a precise specification of the design

before developing the architecture or even the RTL, because otherwise during the development

of the design, some of the features or design choices may be driven by the implementation and

not the project’s specification, which may originate a final product that doesn’t correspond to the

stakeholders1 interests.

After the design specifications and requisites are well defined, the architecture of the system

is designed. The system may be divided in smaller sub-modules (divide-and-conquer approach)

and the top-level and internal interfaces are defined, as well as block level specification describ-

ing the functional specifications of each component. During this phase, a functional model of the

project may be developed to help the definition of the architecture. This was the strategy followed

in this work, with the C and Matlab models of the blocks being developed prior to the RTL im-

plementation. Finally, the RTL (register-transfer level) description of the system can be written

using a hardware description language as Verilog, SystemVerilog or VHDL, using any text editor

software.

After the design is implemented, it is necessary to verify its logical and functional correctness.

The verification is usually done by simulation, developing a testbench where the device under test

(DUT) is built on and stimulated to verify if it behaves accordingly. This verification can be done

by comparing the DUT’s output with the outputs from a functional model of the system, which

is the case in this work as explained in section 4.9. The simulation is executed using a HDL

simulator, which in this work was used the Synopsys tool VCS and its waveform viewer DVE to

debug the modules.

1The stakeholders of a project are all the parts interested in the project. Not only the project’s clients (internal or
external to the company), but also the engineers that develop the project, managers, company’s owners and investors,
suppliers, creditors, etc.

49
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The verification of the design is a task usually done by a verification team, independent from

the implementation team, which allows the functional models and the RTL models to be imple-

mented on different interpretations of the same specification, which helps on identifying structural

errors. Unfortunately, by this point of view, the verification environment, functional model and

RTL implementation of this project were done by the same person.

Two levels of functional verification by simulation can be done: one at the block level, when

each sub-module is verified using its dedicated testbench, and another at the top-level, where the

functional correctness of the global system is evaluated. In this level, the complexity of the tests

to fully stimulate the system increase significantly. Techniques like the use of constrained random

variables, which stimulate the DUT randomly but from a set of intended configurations, the use

of assertions and object-oriented frameworks in the construction of the verification environment

are now common practice, in contrast with the use of directed tests to evaluate specific parts of

the system. Moreover, standard verification methodologies as VMM, UVM and OVM have been

developed which aim to standardize the verification strategies across teams and projects.

The quality of a testbench can be assessed from its coverage metrics, which measure if the

DUT has been completely stimulated and tested during the simulation. There are several metrics

usually considered: line coverage measures the number of lines of the DUT’s RTL code evaluated

during the simulation; toggle coverage measures the transitions (1 to 0 and 0 to 1) of each bit in

the simulated system; branch and condition coverage measure the decision and evaluation of the

conditional statements in the code; FSM coverage measures if the state machines of the module

reach all possible states. Finally, the verification engineers define a set of coverage points that

should be stimulated in order to verify the functional features of the system. The execution of this

coverage points is measured in the functional coverage.

The goal of the design of a verification environment is to achieve 100% of coverage in all

these metrics. However, achieving full coverage doesn’t mean the design is completely tested,

specially concerning the functional coverage where fault scenarios that weren’t considered during

the verification plan elaboration may be found using randomized tests.

The quality of the RTL code can also be evaluated using linting tools, like LEDA from Synop-

sys, which check if the code follows the norms defined by the language standards and coding styles

meant to be followed. They also check if the code contains constructs that may arise problems

during the development flow, as unintended latches, bad modeled state machines and problematic

assignments between variables of different bit-width.

The synthesis of the design is an automatic process in which the RTL description of the design

is synthesized into a gate-level netlist of cells of the target library. The target library of this project

is a 40nm technology library and the synthesis tool used was Design Compiler from Synopsys.

The synthesis tool analyses the RTL code to extract standard constructs used like arithmetic

operations, finite state machines, conditional evaluations, etc. and builds a gate level description

using cells from a generic technology-independent library. This description is then converted into

the target technology library. During these steps, several optimizations are performed concerning

the goals of performance, area and power consumption of the resulting circuit. The designer
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should define the constraints that guide this process before running the tool, using the GUI of the

tool or scripts in TCL.

The set of constraints to be defined include: the target technology library; target clock fre-

quency of the system; clock non-ideal characteristics as jitter and clock skew; delays in the paths

between the inputs and outputs from the synthesized design and the environment where it will

be integrated; loads at the input and output ports of the design and finally the driving cells to be

considered at the input ports of the design. These constraints help the tool evaluate the results of

the synthesis process considering the electrical conditions of the environment where the design

will be used.

Design Compiler also has several switches and configurations that may be used to optimize the

synthesis process [41]. In this project, it has been taken advantage of the clock gating switch, that

enables the automatic implementation of clock gated cells that help reducing the power consump-

tion of the system and also its area. The clock gating technique consists essentially in turning off

the clock to flip-flops that aren’t needed at a particular moment, reducing transitions and saving

dynamic power. The use of clock gated cells allows the tool to reduce parts of mux logic, which

results in a reduced circuit area. It has also been used the pipeline re-timing switch that enables

the automatic optimization of the location of pipeline stages, and the switch that enables the repli-

cation of registers in order to overcome large fanout problems. The synthesis of this project was

done in a bottom-up approach, synthesizing the sub-modules first and then the top-level with the

output results of the already synthesized sub-modules. The pipeline re-timing wasn’t applied to

the top-level neither the filter’s modules, because the register’s re-timing could interfere with the

filter’s response.

The synthesis of the upsampling and downsampling filters have also taken advantage of the

definition of multi-cycle paths in the arithmetic paths where data changes at half the input/output

cadence due to the polyphase structure and also of the definition of false paths in the paths con-

cerning configuration settings which are quasi-static. This options untie the timing constraints

in these paths without changing their functionality, allowing the tool to achieve a solution more

quickly, and using smaller logic. Without this strategies, this modules wouldn’t be synthesizable

for the proposed goal, at least with this architecture.

During the synthesis process the tool may also insert the scan chains for automatic tests of the

fabricated chips, that help identifying problems generated during the production of the chips, like

short circuits and open circuits (stuck-at faults). After synthesis, the test vectors to this scan tests

can be automatically generated using tools like TetraMax from Synopsys.

After the synthesis process, it is important to verify if the resultant gate-level netlist is logically

equivalent to the RTL description, because the synthesis process may originate errors if it hasn’t

run correctly. This verification equivalence may be done using the tool Formality from Synopsys.

This tool identifies a set of comparison points between the two descriptions and elaborates a formal

logical comparison between them.

The synthesized circuit performance should be evaluated using a static timing analysis tool

like PrimeTime from Synopsys, which performs an analysis of the paths in order to find timing
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violations, as setup and hold violations. Design Compiler also performs a similar analysis during

the synthesis process, although it uses different assumptions, oriented to the synthesis process,

which originate different results.

This flow of tasks since the beginning of the project is known as the front-end flow. After

this, follows the back-end flow that drives the design from gate-level netlist to its final physical

implementation, ready to be fabricated.

This project objectives don’t consider the last steps of the front-end flow. It was performed the

insertion of the scan chains during synthesis because it is a step that affects the synthesis results

of the design, but it weren’t generated any automatic test patterns. The static time analysis was

conducted considering only the synthesis reports.

5.2 RGB to RGB Converter

The RTL description of this module implements the arithmetic operations concerned in signed

combinational logic, considering input and output data widths of 24 bits per channel. The values

of the coefficients are implemented in 26 bits constant signed wired logic and selected depending

on the configuration (input control signal) from a parallel case with its outputs registered. The

value of the video channels data is saturated between zeros and 224− 1 before being asserted to

outputs. The widths of the intermediate results vary depending on the operations performed due to

the width growth each operation originates. The values are right-shifted only after all arithmetic

operations to limit the quantization noise added by rounding, which is made before the right-shift

by adding 0.5 and truncating.

The fact that the outputs from the multiplications between the constant coefficients quantized

to 24 bits, so that 1.0 is encoded by 224, and the 24 bits video data are right-shifted by 24 bits, same

as dividing it by 224, results that in fact the coefficients stored in integer representation originate

the same results as if they were coded in fixed-point representation with integer and decimal part.

The synthesis of this module with registered inputs and outputs didn’t match the performance

goal. Therefore, it was optimized into a pipeline architecture taking advantage of the register

retiming capabilities of the Design Compiler for pipelines. This consists in writing the pipeline

registers concentrated at the input or output of the module so this way Design Compiler can relo-

cated them freely, achieving better results than if the pipeline registers were pre-located across the

module’s datapath [41]. At least 4 pipeline stages are needed to fulfill the requirements and a com-

parison was made between the number of stages implemented and the area2 and power statistics3

reported for the synthesis.

This data indicates that by using a larger number of pipeline stages and therefore reducing

each stage timing constraints the synthesis tool is able to use combinational logic with smaller

area, although the sequential area increases. The estimated power consumption of the module

2The area values reported by the synthesis tool were divided by the area of a 2x1 NAND gate of the technology
library used to obtain the presented values in number of gates.

3The power statistics were reported by the synthesis tool with clock gating enabled.
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Figure 5.1: Comparison of the estimated area and power consumption of the RGB to RGB module
with the number of pipeline stages implemented.
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doesn’t change significantly as a function of its number of pipeline stages. Because the latency of

the module isn’t a project requirement and the latency added by the increasing of pipeline stages

(one cycle per stage) tends to be irrelevant when the system is running compared to possible area

savings, it was decided to use 5 pipeline stages, which is the optimum number of stages indicated

by this area and power data.

The statistics reported by the synthesis tool are based in estimations that at this stage of the

design - RTL code - have a large uncertainty. One way this predictions can be improved is to

provide the synthesis tool with databases of simulation results, which allow the tool to compute the

number of transitions in each node in a more accurate way. Performing area and power estimations

after the physical implementation of the module also provides more accurate results.

However, one would expect the global area/power behavior as a function of the number of

pipeline stages to be similar in a physical design estimation, or even in the fabricated chip.

It was attempted to synthesize this module with the coefficients declared as input ports instead

of local constants - this would allow the coefficients to be dynamically programmed in the register

bank, for instance - but it didn’t met the performance goals this way, even when adding more

pipeline stages. This may suggest that the synthesis tool is parallelizing the arithmetic logic of the

14 sets of coefficients and replacing the multiplications by constants by shifts and adds operations,

or, at least, eliminating a significant part of the combinational logic that implements the multipliers

which is, in this case, only propagating constant values.

5.3 R’G’B’-Y’Cr’Cb’ Converters

These modules were implemented using the same strategies and HDL techniques as the RGB to

RGB module, as it performs very similar operations. The datapath is in signed encoding and the

coefficients values from both the scaling and matrix operations are implemented in constant wires

and selected from parallel cases.

The main differences are that in this modules there are two control signals, one for the matrix

conversion and one for the data range conversion, and two rounding operations are done to limit

the growth of intermediate values. The data is shifted-right and rounded at the end of both the

scaling and the matrix operations. Moreover, in the R’G’B’ to Y’Cr’Cb’ converter the limiting

values for the clipping and clamping operations are also driven from a parallel case because they

depend on the output color space ranges.

The analysis of the number of pipeline stages to use in each of this modules is presented in

figures 5.2 and 5.3, from which it was decided to implement 9 pipeline stages in the R’G’B’ to

Y’Cr’Cb’ module and 7 in the Y’Cr’Cb’ to R’G’B’ module. Interestingly, the difference in the

order of the scaling and matrix operations allows the synthesis tool to achieve different levels of

datapath optimization which result in significant differences in the area of the synthesized modules.

The modules for constant-luminance conversion were implemented using the same principles.

They are significantly smaller than the other modules of the system so it wasn’t performed any

comparison on the influence of the number of pipeline stages, as it would have relatively smaller
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effects in the global area. They were synthesized with the fewer number of pipeline stages possi-

ble. Their synthesis results are presented in table 5.1.

In the Cr’Cb’-R’B’ conversion modules the coefficients used depend on the signal of the

Y ′−Cr′, Y ′−Cb′, Y ′−R′ and Y ′−B′ differences, respectively. To improve the timing perfor-

mance of this conversion, this operations were parallelized so the all the computations (for nega-

tive and positive differences) are done in parallel with the evaluation of the difference values and

the selection of the output value is done at the end.

Module Cr’Cb’ to R’B’ Y to G RGB to Y R’B’ to Cr’Cb’
Pipeline Stages 2 5 2 4

Combinational Area (gates) 12 853 8 020 6 097 12 366
Sequential Area (gates) 7 396 4 803 3 619 7 067

Total Area (gates) 20 250 12 822 9 716 19 432
Internal Power (mW) 0.410 1.89 1.36 2.10

Switching Power (mW) 358.99 1.13 0.98 326.65
Total Power (mW) 359.40 3.03 2.35 328.76

Table 5.1: Synthesis results of the constant-luminance R’G’B’-Y’Cr’Cb’ converters modules.

5.4 Gamma Encoder and Decoder

The encoding and decoding functions were divided in two independent modules which were suc-

cessfully synthesized once more taking advantage of pipeline optimizations with the automatic

re-timing option- figures 5.4 and 5.5. Based on the comparisons about the number of pipeline

stages to use it was decided to implement 2 pipeline stages in both modules. Due to the differ-

ences of the encoding and decoding functions, the encoding module has approximately the double

of the area since there are a larger number of entries that the additional LUT requires, compared

to the decoding function (i.e. the nature of the encoding functions originates more errors using the

linear segmentation method).

The lookup tables are implemented in parallel cases, which reduces the propagating delay

compared to the use of nested conditional logic. The arithmetic computations required to interpo-

late the output value from the gain and offset values stored in the LUTS don’t require the use the

of signed arithmetic, so they are implemented in unsigned logic.

Finally, the computed output values are limited to the range [0;216−1].

5.5 Chroma Resampling Filters

The RTL implementation of the filters follows directly from their polyphase structure which is

exemplified for shorter filters in figures 5.6 and 5.7. They are implemented using signed arithmetic

logic and the multiplication coefficients are described as constant wired logic. The multiplications
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Figure 5.2: Comparison of the estimated area and power consumption of the RGB to YCC module
with the number of pipeline stages implemented.
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Figure 5.3: Comparison of the estimated area and power consumption of the YCrCb to RGB
module with the number of pipeline stages implemented.
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by zero-coefficients are discarded and in the downsampling filter it is taking advantage of the

symmetry of the phase 0 coefficients to reduce the number of multipliers implemented.

The polyphase decomposition by ratio of 2 reduces the timing constraints for the adders and

multipliers logic by half, by allowing it to work at half the input/output cadence. Otherwise, if

using a normal filter, we would have to be computing samples at twice the input’s frequency.

However, concerning the upsampling filter, the long chain of subsequent additions for each

phase results in a critical path which isn’t synthesizable for the target frequency, even with the

polyphase decomposition. Because of this issue, the filter was divided in three pipeline stages,

cutting the critical path in smaller sections.

For a proper implementation of pipelining in a FIR filter without modifying its frequency

response, one must guarantee that the data flow in the datapath is cut completely transversely. For

that purpose, it is necessary to add a pipeline register both in the state’s register chain and in the

adders chain, in the same chain position - lighter color registers in figure 5.7.

The synthesis of this module was successfully achieved using 3 pipeline stages and setting

each stage as multicycle paths which dispose of 2 clock cycles for its computations.

A fundamental concept of linear and time-invariant (LTI) systems is that its behavior can be

completely characterized by its impulse or step response. Therefore, the step and impulse re-

sponses of the filter were computed using the Matlab model and quantized using the same process

as the coefficients. This way, it was possible to validate the frequency response of the implemented

filter. The results from this validation are presented in section 5.8.

The resampling filter are the only modules in the system that don’t process in a pixel-to-pixel

basis. Therefore, they need to be adapted to support pixel repetition formats, in which we’re not

interested in filtering the copies of each pixel. This feature was implemented by adding controlled

enable signals to the flip-flops that implement the filters states so that they only update their stored

value on the first sample of the same pixel. This control enables signals are generated by counters

that are synchronized with the data enable signal positive edge, because the repetition of pixels

only applies to video data signals during active video periods. During blanking periods the video

channels are expected to stay still.

Furthermore, the padding of the image borders requires the implementation of input buffers

in both filters and the saving of the border values in registers. This way, in the upsampling filter,

when the first pixel of the video active period arrives at the input of the filter, and the border

value register, all the state registers are set to the border value, effectively padding the image with

border’s value. At the end of the video active period, instead of setting all the states to the border

value, it should only be fed to the input of the filter, as if the image continued to be propagated.

The same strategy is implemented in the downsampling filter. However, because in this filter

the state registers accumulate the results of the multiplications, it isn’t possible to set them all to

the border’s value at the beginning of the video active period. This requires the input buffer of the

filter to have the size of the filter’s latency in order to execute the same process as at the end of the

video active period.
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In 3D side-by-side mode, the filtering of the two images must be independent. For that reason,

two filters for each chroma channel were implemented, one for the left image and one for the right

image. This imposes an hardware cost for these modules that is double that the predicted in the

table 4.4.

In the middle of the active video line, at the left and right images division, there are no syn-

chronization signals that could be used to control the padding of the two images and the selection

of the output value to be propagated. An additional counter was implemented that counts the num-

ber of pixels during each active video period. The horizontal width of the two fields (images) is

fed to the module as an input, together with control inputs that define the pixel repetition mode

and the 3D or 2D modes. Depending on the number of pixel repetitions (1 to 10 samples of the

same pixel), a set of flag values are computed from constant values and the width of the fields,

which are compared to the state of the pixel counter and activate control signals that manage the

padding and filter swap in 3D mode.

In 2D modes or 3D non side-by-side modes only the left image filters are used. In both modes,

the luma channel and the control signals are propagated through buffer chains. The luma channel

registers are controlled with the same enable signals as the chroma states registers because of the

pixel repetition support. However, pixel repetition doesn’t apply to hsync, vsync and data enable

signals which requires longer buffer chains to which the output registers are connected to different

positions depending on the pixel repetition mode. The luma buffers have the same length as the

chroma chain of registers.

At the output of the filters the chroma values are limited to the full range [0;224− 1] in the

upsampling filter or to the range required by the output color space in the downsampling filter,

which requires the output range control signal which is fed to the R’G’B’ to Y’Cr’Cb module to

be wired also to this module.

The synthesis results of the 30 taps and 18 taps filters implemented are presented in table

5.2. The 18 taps filters represent a decrease of 44% and 34% in the area of the upsampling and

downsampling filters, respectively.

Filter
Upsampling Downsampling

30 taps 18 taps 30 taps 18 taps
Combinational Area (gates) 139 494 74 400 65 819 39 836

Sequential Area (gates) 39 550 25 242 37 924 28 344
Total Area (gates) 179 045 99 642 103 742 68 181

Internal Power (mW) 3.12 2.20 1.61 1.37
Switching Power (mW) 35.82 11.18 349.50.68 358.32

Total Power (mW) 39.03 13.42 351.32 359.71

Table 5.2: Synthesis results of the 30th and 18th order resampling filters.
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Figure 5.8: Register bank interface transfer diagrams.

5.6 Control Unit and Register Bank

The implementation of the control unit consists in a set of parallel cases that select the values

of the control signals wired to the other modules, depending on the parameters configured in the

register bank.

The memory of the register bank module is implemented using flip-flops directly connected to

this module outputs which are wired to the control unit inputs. The reading and writing operations

to this module are managed by a block of conditional logic, which controls the selection of the

addressed positions and its accessibility. The transfer diagrams of the register bank interface are

presented in figure 5.8, which describes the expected sequence of input signal values to perform

read and write operations. The lighter grey blocks in the bus ports are the periods during which

the data in that port is valid to be written or read.

5.7 Top Level

The top level module of the color space converter not only instantiates its internal modules but

it also performs the video data shifts from and to the input and output data widths to the 24 bits

width used in the internal datapath. All the modules of this project have been developed using

parameterized data and coefficient widths but the values of the coefficients needed in each module

must be manually replaced. However, the matrix operations and the LUT tables coefficients are

defined in independent Verilog files that are automatically generated for different bit widths by

Matlab scripts developed in this project.
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Figure 5.9: Coverage results obtained from simulation.

5.8 Verification Results

The verification of the module was conducted considering the verification plan presented in section

4.10. It were developed testcases that simulate the tasks described, and some of them were also

verified manually because they have a higher probability of having structural errors in both the

DUT and the reference model, as it is the case of the verification of the propagation of the control

signals, synchronized with the flow of the video data.

The coverage results obtained from the testbench developed are presented in figure 5.9. These

results demonstrate that the testbench developed fully exercises the DUT. To achieve this results,

the coverage metrics of non-controllable nodes have been excluded, for instance toggle coverage

in constant coefficients nets or in control signal nets, which can only have a predefined set of

values.

The impulse response of the resampling filters have also been compared with the impulse

response of the filter models in Matlab, which response has been quantized the same way as the

implemented filters coefficients.

In the figures 5.10 and 5.11 the output values of the luma and data enable signals are also

plotted, which allows to evaluate also the behavior of the filter response at the border of the active

video period. To facilitate this comparison the impulse response of the reference filter model is

only stimulated for the impulses at the right. The impulse response from the reference filters

haven’t be clamped to only unsigned values, which allows to verify that the implemented filters

are correctly limiting the output chroma signals to values greater or equal to zero, as expected.
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5.9 Results

All sub-modules and the top level module were synthesized with the target clock frequency set to

660 MHz (10% margin over the required) and the clock uncertainty (variations in the clock skew)

was defined to approximately 5% of the clock period. It was also defined that in the input and

output paths 40% of the clock period was scheduled to hypothetical combinational paths outside

of the module. The input pins driving cells were defined to inverter cells with its load capacity

increased 10 times. The output pins were loaded with the cells with highest load capacity from

the technology library used. The narrowing of the synthesis constraints beyond the goals defined

allow us to have better confidence on the physical feasibility of this module with the requirements

proposed.

The color space conversion module was successfully synthesized with the constraints de-

scribed above for the two configurations considered: with 30th order filter and 18th order filters -

table 5.3. The 18 taps configuration is 18,7% smaller than the 30 taps configuration, which also

results in less consumed power.

The verification of equivalence tool was executed after the synthesis process of each module,

but for some reason that wasn’t possible to identify, all the verification equivalence tests failed. The

execution reports from Design Compiler and Formality were extensively analyzed, and the linting

reports obtained from LEDA also, but the root cause of this problem remained unidentified. To

verify if the synthesized gate-level netlist was functionally correct the verification environment

developed was simulated with the gate-level netlists of the DUT obtained from the synthesis tool.

This verification validated the functional equivalence between the RTL description of the module

and its gate-level netlist.

Configuration 30 taps 18 taps
Combinational Area (gates) 461 082 369 422

Sequential Area (gates) 152 503 129 575
Total Area (gates) 613 585 498 996

Internal Power (mW) 17.39 16.34
Switching Power (mW) 2002.00 1692.10

Total Power (mW) 2019.60 1708.60

Table 5.3: Top-level synthesis results of the 30th and 18th order filters configurations.

Despite the verification tasks that have been conducted it was also achieved to simulate the

module with real images as inputs so the output results could be evaluated at a higher abstraction

level.

For this task, it was used one of the images usually used for image processing tests, known as

mandrill. This image has the advantage that besides having varied color content it has segments

with high frequency content in the mandrill’s fur. The image matrix was transformed in Matlab

into input vectors that are loaded into memories in the SystemVerilog testbench. The output of the

module is written to a file that can be loaded to Matlab to reconstruct the image.
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The evaluation of the correct colors appearance in each output color space isn’t possible be-

cause it would require the operating system of the visualization system and the monitors used to

be capable of supporting those color spaces. Moreover, the environment’s visualization conditions

would also need to be controlled. Nevertheless, the methodology applied allows to evaluate if the

color content of the image is being modified according to the expectations.

In a RGB to RGB conversion, it is expected that the colors of the image will change slightly,

because of the differences between the gamuts. These changes are expected to be more visible in

saturated colors, that are located at the boundaries of the gamuts of each color space - figure 2.2.

The less saturated colors (nearer the white point) are expect to change less because they’re visible

in all color spaces and the considered color spaces use all the same white point - D65.

Moreover, if we open an image coded in a particular color space and read it as if it is coded

in other color space with a wider gamut (without converting the color values), it is expected the

saturation of the colors to increase, because the image’s color map is being expanded so the colors

shift towards the boundaries of the CIE 1931 color space. So when we convert an image to a wider

gamut color space but read it as if it is in the original color space it is expected the image to appear

less saturated, because the conversion changes the color values (in this situation, decreases them)

in order to keep the appearance in the wider color space. This happens considering that the wider

color space encodes a wider range of values with the same number of codes.

This behavior is observable in the figure 5.12, where the image was converted from a smaller

gamut to a wider gamut color space (sRGB to Rec.2020 non-constant luminance - see section

2.6.7), but the Matlab image viewer interprets the input and output images as being in the same

color space so the output image appears less vivid, specially in the areas of more saturated colors

like the nose of the mandrill.

Reading images encoded in Y’Cr’Cb’ as if they are encoded in RGB originates the results

presented in figure 5.13, where the output image obtained from the module is compared with the

output from a Matlab function that performs the same conversion.

The effect of the chroma downsampling using the two implemented filters is presented in

figures 5.14 and 5.15. Instead of the mandrill figure it was used an image with textual content

in different colors, referred to as specifically designed to identify chroma subsampling schemes

in televisions and monitors [42]. From this very subjective comparison, it seems that the use of

the smaller filters which reduce the size of the global module in 18.7% when compared with the

standards compliant ones doesn’t affect significantly the perceptible quality of the image, as this

distortion suffered by the text appears to be approximately the same, except in the last two lines of

text where the 30 taps filter performs significantly better. Nevertheless, it has to be considered that

this image is an extreme situation, with the purpose of detecting if chroma sub-sampling schemes

have been applied or not.

In figure 5.16 the output results of downsampling the mandrill’s image from RGB 4:4:4 to

YCC 4:2:2 and then back to RGB 4:4:4 are compared for the two filter configurations, considering

the Rec.601 525-lines color space. There are no perceptual differences between these two pictures

and in fact, computing the PSNR between these images and the original image it is obtained a
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small difference of 25.33 dB for the 30 taps configuration and 25.19 dB for the 18 taps config-

uration. Once more, this seems to indicate that the smaller filters would be sufficient for video

content, where the images aren’t static, with a similar performance as the filters compliant with

the standards.

However, it would be needed further tests with methods of evaluation of perceptual quality of

images and video to be able to driven further conclusions.
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(a) Original mandrill image.

(b) Output mandrill image.

Figure 5.12: RGB Rec.2020 non-constant luminance output image, input image read as RGB
sRGB image.
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(a) Y’Cr’Cb’ 4:4:4 Rec.601 525-lines output image, input image read as RGB Rec.601 525-
lines image.

(b) Y’Cr’Cb’ 4:4:4 Rec.601 image obtained using Matlab rgb2ycbcr function which converts
RGB images to YCC using Rec.601’s coefficients matrix.

Figure 5.13: Comparison of theY’Cr’Cb’ 4:4:4 Rec.601 image obtained using the developed mod-
ule and the Matlab rgb2ycbcr function.
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(a) 18 taps filter configuration.

(b) 30 taps filter configuration.

Figure 5.14: Comparison of Y’Cr’Cb 4:2:2 Rec.601 525-lines output images obtained with the
two filter configuration, input image read as RGB sRGB image.
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(a) 18 taps filter configuration.

(b) 30 taps filter configuration.

Figure 5.15: Comparison of Y’Cr’Cb 4:2:2 Rec.601 525-lines output images obtained with the
two filter configuration and then converted to RGB using Matlab ycbcr2rgb function to improve
the legibility of the text. Input image read as RGB sRGB image.
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(a) 18 taps filter configuration.

(b) 30 taps filter configuration.

Figure 5.16: Comparison of the RGB 4:4:4 mandrill’s images after being downsampled to YCC
4:2:2 and then upsampled to back to RGB 4:4:4, considering the Rec.601 525-lines color space.
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Chapter 6

Conclusions and Future Work

The development of this thesis achieved the proposed goals: it was developed an hardware module

capable of performing real time color space conversion of video streams. This module supports all

the color spaces presented in the standards proposed, performs downsampling and upsampling to

Y’Cr’Cb 4:2:2 formats with two different FIR filter implementations and supports pixel repetition

and 3D video structures. The two FIR filter implementations provide configurations of the module

with different image quality/area and power compromises, which may be a competitive strength

of this module. It was verified by comparing with a software model implementing its expected

behavior and it was successfully synthesized to a 40nm technology, achieving the goal frequency

of 600 MHz.

The module developed is innovative in the sense that the market and bibliographic research

didn’t provide results of other cores that implement the full color space conversion chain, from any

RGB/YCrCb color space to any RGB/YCrCb color space. The majority of the available solutions

only consider RGB-YCrCb conversion.

Therefore, this module offers a real-time hardware accelerated solution for a task very compu-

tationally intense, which effort is growing with the increase of video frame resolutions, following

the industry tendency of moving imaging computational exigent tasks to dedicated hardware with

the arising of embedded image and vision processing solutions from several IP vendors.

Concerning future work, the capability of upsampling and downsampling to YCrCb 4:2:0

formats would be an interesting addition to the features list of this module. It could be easily done

using the nearest neighbor method, where it would be needed to have buffers the size of half a line

in progressive mode (in 4:2:2 the number of Cb or Cr samples is half of the Y samples), or two half

lines in interlaced mode. An implementation of this feature has been already done, although this

feature was discarded from the features list due to the increased area it would require: the largest

horizontal video active width is 4096 pixels, which means at least 2048 flip-flops in progressive

mode, if implementing the buffer with a chain of registers. Using a multi-tap FIR filter to re-sample

from and to 4:2:0 would impose an even larger area.

For improving the quality of the IP, the implementation of the module could be reviewed

having in consideration power and area implications, which was not a goal during the development
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of this thesis.

Finally, one could integrate this module in a higher level design or follow the backend flow

on this module, developing the place-and-route, parasitic extraction, static timing analysis and

verification of the physical design, obtaining an IP ready to be produced into a physical chip.
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