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Resumo

Os vasos da retina são a única porção diretamente observável da rede vascular humana. Estes vasos
constituem uma janela única para a avaliação não invasiva da saúde da vasculatura sistémica, e
podem ser avaliados através de imagens coloridas de alta resolução do fundo ocular. Alterações no
calibre dos vasos da retina estão associadas com uma variedade de doenças de grande prevalência,
nomeadamente diabetes, hipertensão e aterosclerose. O estreitamento arteriolar da retina é um
marcador de hipertensão e de retinopatia diabética, sendo que as alterações de diâmetro dos vasos
podem ser usadas tanto para prevenção como diagnóstico destas doenças. Contudo, a avaliação
clínica dos vasos da retina é frequentemente cansativa e proposensa a erros, particularmente no
contexto de rastreio. Assim, há a necessidade de desenvolvimento de métodos automáticos para a
medição objetiva e precisa do calibre dos vasos da retina. A variabilidade da aparência dos vasos
sanguíneos e da qualidade e resolução das imagens dificulta este processo. Ademais, há falta de
dados e critérios padrão, necessários para realizar comparações significativas em grande escala.
Apesar de terem sido propostos alguns métodos automáticos de medição do calibre de vasos da
retina, a maioria revela limitações, apresentando um desempenho inferior em imagens de baixa
resolução, estimando mal os diâmetros em vasos mais finos ou sendo suscetível à presença de
artefactos, patologias, etc.

Propõe-se um método de estimação do calibre dos vasos em imagens da retina, baseado no
ajuste de modelos aos perfis de intensidade dos vasos. Inicialmente, os vasos da retina são seg-
mentados. De seguida, é detetada a linha central e são extraídos segmentos de vasos individuais
através da remoção de junções. Os segmentos são suavizados através da aproximação por splines
e os perfis de intensidade transversais aos vasos são extraídos nos diferentes pontos do segmento.
Após determinação do comprimento dos perfis, estes são cortados e suavizados. Cada perfil é
ajustado usando um novo modelo paramétrico com base numa Diferença-de-Gaussianos (DoG)
modificada através da multiplicação por uma linha com inclinação variável que é capaz de descr-
ever a assimetria dos perfis. Este modelo permite um bom ajuste aos perfis mais difíceis, nomeada-
mente os que apresentam reflexo central. Por fim, os parâmetros do modelo que melhor aproxima
cada perfil são usados para determinar a largura do vaso nesse ponto com base num método de
regressão que usa múltiplas árvores de regressão agregadas por bootstrap com seleção aleatória de
características.

Os resultados são avaliados numa base de dados pública, REVIEW, que contém anotações
de diâmetro dos vasos. Os dois novos modelos DoG com 7 e 8 parâmetros, DoG-L7 e DoG-
L8, respetivamente, são comparados com um modelo Hermite de 6 parâmetros. Para avaliar os
resultados, são usadas validação cruzada e validação por exclusão de um segmento do conjunto
de treino, quer para cada um dos subconjuntos da base de dados quer para o conjunto completo
de imagens. Os resultados da validação cruzada apresentam uma precisão próxima dos resultados
das anotações manuais. Tal como esperado, os resultados nos subconjuntos mais desafiantes são
piores do que os obtidos para os subconjuntos mais simples. Os erros são ligeiramente superiores
quando a validação é feita usando a base de dados completa, uma vez que a diversidade dos vasos
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é maior. O modelo com melhor desempenho é o DoG-L7, embora o DoG-L8 dê origem a um
melhor ajuste aos perfis dos vasos. Para além disso, o desempenho é independente do verdadeiro
diâmetro dos vasos. Os resultados obtidos usando validação por exclusão de um segmento são
ligeiramente inferiores aos da validação cruzada, devido à remoção de perfis representativos do
conjunto de treino.

O método proposto neste trabalho apresenta resultados semelhantes ou mesmo superiores aos
métodos do estado da arte. O nosso método apresenta a melhor precisão (menor desvio-padrão
dos erros) quando a validação cruzada com 10 conjuntos é usada. Neste caso, reduz-se aproxi-
madamente para metade o desvio-padrão dos erros reportado por outros autores para alguns dos
subconjuntos da base de dados. Os novos modelos DoG-L7 e DoG-L8 ajustam melhor os perfis
dos vasos do que os modelos conhecidos, especialmente os perfis mais difíceis. A utilização de
várias etapas de processamento previamente ao ajuste do modelo também contribui de forma sig-
nificativa para a melhoria dos resultados. A precisão do nosso método é uma garantia da robustez
do algoritmo e valida a sua utilização para a medição do diâmetro dos vasos da retina e a sua
possível integração num sistema para avaliação da rede vascular da retina.



Abstract

The retinal vasculature is the only portion of the human vascular network that is directly observ-
able. It is a unique window for non-invasive assessment of the health of the systemic vasculature,
and it can be evaluated using high-resolution eye fundus color images. Changes in the retinal
vessel caliber are associated with a variety of major diseases, namely diabetes, hypertension and
atherosclerosis. Retinal arteriolar narrowing is a marker of hypertension and diabetic retinopathy.
Consequently, vessel width alterations can be used both for prevention and diagnosis of these dis-
eases. However, the clinical assessment of the retinal vessels is most of the times tiresome and
prone to errors, particularly in the context of large-scale studies. Therefore, there is the need for
the development of automatic methods for objective and precise retinal vessel caliber measure-
ment. The variability of blood vessel appearance and of image quality and resolution hinders the
process. Further, there is lack of standardized data and criteria, needed for significant comparisons
in large scale. Although some automatic methods have been proposed to measure the caliber of
retinal vessels, most of them present limitations, either showing poor performance in lower reso-
lution images, returning bad estimates on thinner vessels or being susceptible to the presence of
artifacts, pathologies, etc.

A method based on vessel intensity profile model fitting for the estimation of vessel caliber in
retinal images is proposed. First, vessels are segmented from the fundus image. Then the center-
line is detected and individual vessel segments are extracted through junction removal. Segment
smoothing is performed by spline approximation and the cross-sectional intensity profiles at the
segment points are extracted. After a profile length determination, profiles are cut and smoothed.
Parametric model fitting is then applied to the profiles. The fitting is performed using a novel para-
metric model based on a Difference-of-Gaussians (DoG) model, modified through a multiplying
line with varying inclination which is able to describe profile asymmetry. This model allows a
good adjustment to the most difficult profiles, namely those showing a central light reflex. Finally,
the parameters of the best-fit model are used to determine the vessel width through regression
using ensembles of bagged regression trees with random feature selection.

Results are evaluated on REVIEW, a publicly available dataset with width measurement an-
notations. Different models are tested: two modified DoG models with 7 and 8 parameters newly
introduced in this work , DoG-L7 and DoG-L8, respectively, and an Hermite model with 6 parame-
ters. To evaluate the results, cross-validation and leave-one-segment-out validation are performed,
both for each dataset and the whole REVIEW. Cross-validation results show a precision close to
the observers’ results. As expected, results on more challenging datasets are worse than in easier
ones. Errors are slightly higher when validating in the whole REVIEW, since there is a greater va-
riety of vessels. The best performing model is the DoG-L7, although DoG-L8 fits better the vessel
profiles. Further, the performance of the algorithm appears not to depend on the true diameters.
There is a decrease in performance when leave-one-segment-out validation is performed, due to
the removal of representative profiles from the training set.
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The method presented in this work is close and even outperforms other state-of-the art meth-
ods. Our method retrieves the highest precision (lowest standard deviation of the errors) when
10-fold cross-validation is performed, approximately halving the standard deviation of the errors
reported by other, for some datasets. The novel DoG-L7 and DoG-L8 models fit the vessel profiles
better than the known models, specially the most difficult profiles. The use of several processing
steps prior to model fitting also contributes significantly to the improvement of the results. The
precision of our method supports the robustness of the algorithm and validate its use in retinal
vessel width measurement and possible integration in a broader system for retinal vasculature
assessment.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Retina and retinal blood vessels

The retina is a thin transparent tissue that constitutes the third and most internal layer of the eye.

It is placed between the vitreous (interiorly) and the choroid layer (externally) (Fig. 1.1). The

retina is a light-sensitive tissue that converts the incoming light into neural signals that can be

understood by the brain. With the adequate techniques, the retina is visible from the outside,

making it accessible for non-invasive imaging. Retinal vessels are the part of the human vascula-

ture that is most accessible to study, as they are the only portion of the circulation that is directly

observable (Abramoff et al. (2010)).

Optic nerve

Macula

Fovea

Pupil

Iris
Lens

Retina

Choroid

Sclera

Blood vessel

Cornea

Figure 1.1: Anatomy of the eye. Image adapted from WebMD (2015).
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1.1.2 Eye fundus images

The retinal vessels can be evaluated using high-resolution eye fundus color images (Fig. 1.2a).

Fundus photography is a well established technique for retinal imaging, widely used for screening

and detection of several diseases. This technique consists in capturing a photograph of the back

of eye (i.e., fundus). In these images, the intensity represents the amount of reflected light of a

specific waveband (Abramoff et al. (2010)). Fundus cameras are used for capturing these images.

These cameras are described by the angle of view, i..e, field of view (FOV). The normal FOV is

30◦. Wide angle fundus cameras capture images between 40◦ and 140◦, providing proportionately

less retinal magnification (Saine and Marshall (2001)).

In eye fundus images one can distinguish the following main structures (Fig. 1.2a): 1) fovea,

that appears as a reddish spot, with no vessels, in the centre of the macula; 2) optic disc (OD),

located in the center of the retina; it is the beginning of the optic nerve and the entry for vessels

that supply the retina; 3) blood vessels, that radiate from the OD center; normally, arteries appear

lighter and thinner than veins.

1.1.3 Diseases affecting the retina

The most prevalent causes of blindness in the world include macular degeneration, diabetic retinopa-

thy and glaucoma (Abramoff et al. (2010)). Macular degeneration occurs when the central por-

tion of the retina (i.e., macula) deteriorates, and is highly correlated with aging. It is the most

common cause of visual loss in the USA. Glaucoma is also an ocular disease, characterized by

damages on the optic nerve, which is often related to elevated intraocular pressure. Diabetic

retinopathy appears as a complication of diabetes, and involves changes in the retinal blood ves-

sels. These changes include abnormalities at early stages and vessel diameter modifications. Di-

abetic retinopathy is the second cause of blindness in the USA and the most relevant cause in the

working age population (Abramoff et al. (2010)).

Retinal vessels are a window to the systemic vasculature, since they are affected by the factors

that influence the body vasculature in general (Nguyen et al. (2007)). Many relevant systemic

diseases have manifestations in the retinal vasculature. These diseases can originate in the brain,

cardiovascular system, among others. Examples are hypertension and atherosclerosis, that can

cause changes in the relation between artery and vein diameters.

Retinal vessel caliber changes The changes on the retinal vasculature affect several morpho-

metric indices, such as vessel length, vessel caliber, tortuosity and branching pattern. The quantifi-

cation of these features can lead to the identification of markers (i.e., indicators) associated to the

diseases and, subsequently, be useful for diagnosis. Changes in retinal vessel caliber are an impor-

tant sign of diabetes mellitus, hypertension, arteriosclerosis and cardiovascular diseases. Further,

vessel caliber changes can also be associated to pre-diabetes and pre-hypertension (Nguyen et al.

(2007), Ikram et al. (2013)). Consequently, vessel width alterations can be used for prevention and
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(a) Retinal fundus image taken from the
VDIS dataset of the REVIEW dataset (image
VDIS007).

(b) AVR computation (green: region of
measurement; red: arteries; blue: veins).
Image from Dashtbozorg (2015).

Figure 1.2: Eye fundus images.

diagnosis. Hypertension has long been associated with generalized or localized arteriolar narrow-

ing. Diabetic retinopathy was related to arteriolar narrowing in some studies, to venular dilation

in others, and also to wider arteries (Ikram et al. (2013)).

The Arteriolar-to-venular ratio (AVR) is a parameter derived from the vessel caliber measure-

ments (performed at a specific region, normally centered in the OD), that is commonly used as a

descriptor of general arteriolar narrowing (Fig. 1.2b). A reduced AVR is an indicator of diabetes

and hypertension, as well as a predictor of other cardiovascular diseases in adults.

1.1.4 CAD systems and diameter measurement

The early diagnosis of the above mentioned diseases is crucial to prevent and reduce health dam-

ages. The new imaging technologies have allowed more precise detection of subtle changes in

the retinal microvasculature. Image analysis can be used as a tool for diagnosis, since it allows

the assessment of vascular changes. Automated segmentation and measurement of the vessels is

desirable, in order to improve the efficiency, reliability and reproducibility of the results. Besides,

automatic methods are useful in wide screening programs for vascular conditions, since the human

analysis of a large number of images allied with the complexity of the retinal vascular network can

be an extremely heavy task. Consequently, there is the need for developing computer-aided diag-

nosis (CAD) systems to help in the quantification of retinal structures and biomarkers assessment.

CAD systems should incorporate methods for objective and precise measurement of retinal

vessel calibers. Precise caliber measurements are needed if the diameters are to be used directly

for diagnosis or for the computation of the AVR. Several authors stress that the vessel width

measurement stage is sufficiently critical to be individually and carefully studied (Lowell et al.

(2004), Kumar et al. (2012)). The development of automated methods for width measurement is

a demanding process, considering: 1) the variability of the appearance of blood vessels; 2) the
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variability of image quality and resolution and 3) the lack of standardized data and criteria for

comparing algorithms, preventing significant comparisons in large scale (Lupascu et al. (2013)).

Although some automatic methods have been proposed to measure the caliber of retinal ves-

sels, most of them present limitations, either showing poor performance in lower resolution im-

ages, returning bad estimates on thinner vessels or being susceptible to the presence of artifacts,

pathologies, among others.

1.2 Objectives

The main objective of this M.Sc. dissertation is the development of an automatic method for robust

estimation of vessel caliber in fundus images of the retina. This dissertation is thus aimed at:

1. the development of a robust and automatic method for measurement of retinal blood vessel

calibers in eye fundus images, in order to allow the improvement of the current state-of-the-

art results, particularly in the most difficult cases of small blood vessels and images with

pathologies and artifacts;

2. the evaluation of the method on a publicly available dataset designed for vessel width mea-

surement evaluation (REVIEW) and the comparison with the state-of-the-art methods using

adequate performance metrics.

1.3 Contributions

An automatic method for vessel caliber measurement is proposed in this M.Sc. dissertation. The

main contributions of this work are:

1. a novel parametric model for vessel intensity profile fitting. This model is a modified

Difference-of-Gaussians model where a multiplying line with varying inclination modu-

lates the asymmetry of the vessel edges, thus allowing the adjustment of a large variety of

vessel profiles. The performance of this model is quantitatively evaluated and proves to

outperform other known models for fitting of vessel intensity profiles;

2. a top-level performing model fitting-based approach for retinal vessel width estimation. The

method combines model fitting with multiple preprocessing steps, estimating the vessel di-

ameter using ensembles of bagged regression trees with random feature selection. The

combination of different approaches makes the algorithm robust and reliable for width esti-

mation in images with pathologies and artifacts, with performance independent of the true

vessel widths. The results are close to the gold standard and often outperform the state-of-

the-art methods.
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1.4 M.Sc. dissertation overview

This document is divided in 5 chapters. The current chapter presents the motivation, objectives

and contributions of this work. In chapter 2, the methods for retinal vessel width measurement are

described. The state-of-the-art algorithms are divided in two types of approaches and explained

in separate sections. A theoretical explanation of the most pertinent concepts is also presented.

Finally, the two works considered more relevant to the present study are further detailed. Chapter 3

describes the novel method herein proposed for retinal vessel width estimation. The different

steps of the method developed in this dissertation for retinal vessel width estimation are detailed

and motivated. Chapter 4 presents and discusses the experimental results. The publicly available

dataset of fundus images commonly used to evaluate the methods is described, as well as the

evaluation metrics generally used for assessing the algorithms' performance. Further, the results

of the evaluation of some of the works from chapter 2 are compared and discussed. Finally, in

chapter 5 the main conclusions of this work are presented, as well as suggestions of future work

to improve the method.
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Chapter 2

State-of-the art methods for retinal
vessel width measurement

Several methods have been proposed for retinal vessel analysis. Depending on the study, these

methods can target segmentation, landmark detection (such as bifurcation and crossover points) or

vessel feature quantification (such as diameter and tortuosity). As the focus of this work is diame-

ter (i.e., width) estimation, this chapter presents the main algorithms described in the literature for

retinal blood vessel diameter measurement.

In order to estimate vessel widths in retinal images, a step of vessel detection is needed prior

to the measurement. This step allows to determine the vessels' location, leading to the definition

of the positions where the width should be measured. For a given detected vessel, each point in

the vessel centerline will have a correspondent vessel width. However, if the focus of a work is

exclusively the correct diameter estimation, one can use specific vessel locations, known from the

ground truth, for example, and measure the width of the vessel solely on those points.

The majority of the methods for vessel diameter estimation fit in two major broad schemes (Lu-

pascu et al. (2013)): 1) width measurement from parametric intensity profile model fitting and

2) width measurement from contour detection. In the following sections the two types of diameter

estimation methods are discussed and the most relevant algorithms are briefly described. In each

section the method considered to be more relevant to the current study is further detailed.

2.1 Width measurement from parametric intensity profile model fit-
ting

These methods fit a parametric model of the intensity profile across the vessel and estimate the

width based on the best-fit profile. In Fig. 2.1 the general approach of this type of method is pre-

sented. Although the majority of the algorithms follow this broad scheme, the particular methods

used in each step and other details differ from study to study. Further, some methods do not per-

form vessel detection and skip the first steps, starting by the profile determination at a given point

of interest. A brief explanation of each of the steps is given in the next subsections.

7
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vessel segmentation vessel centerline detection segment extraction

model fittingwidth estimation profile determination

vessel segments after 

removal of  junctions

retinal fundus image

 sub-image with 
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vasculature
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best-fit model 

vessel intensity profile 
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Figure 2.1: General approach for retinal vessel diameter estimation using parametric intensity
profile model fitting. First, vessels are segmented from the fundus image, resulting in a binary
image with the vasculature. Then, vessel centerlines are detected, followed by the removal of
junctions, leading to the extraction of vessel segments. For each point in a vessel segment, the
intensity profile normal to the segment at that point is determined. After profile determination,
model fitting is performed, being the parametric intensity model adjusted to the observed intensity
profile. Once the best-fit model is determined, its parameters are used for determining the vessel
width. Images adapted from Fraz et al. (2012) and Girard et al. (2014).

2.1.1 Vessel segmentation

The first step usually consists in obtaining an initial segmentation of the vasculature. This is

needed for posterior centerline detection. For this reason, and because the diameter measurement

is not performed directly on the segmented image, the segmentation does not need to provide ex-

tremely accurate results, contrarily to what happens in contour-based methods. The main require-

ment is that the segmentation detects the majority of vessels, in order to allow the measurement in

all the existent vessel points.

Several algorithms that perform this step are available in the literature. The method to develop

in the context of this work is intended to take advantage of a vessel segmentation algorithm previ-

ously developed in the C-BER group, consisting in a version of the method proposed by Mendonça

and Campilho (2006), adapted for the segmentation of high resolution images (Mendonça et al.

(2014)), combining vessel centerline detection and region growing.
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2.1.2 Vessel centerline detection

Vessel centerlines can now be detected from the vessel image. The most commonly used approach

for this purpose is the skeletonization of the binary image. The skeleton represents the structural

connectivity of the objects in the image with one-pixel width.

Thinning The method generally used for producing the skeleton is thinning (Lam et al. (1992)).

Thinning algorithms can be classified in two broad categories: 1) iterative thinning (i.e., pixel-

based) or 2) non-iterative thinning (i.e., non pixel-based). Iterative thinning methods perform

pixel-by-pixel operations until a skeleton is obtained. Iterative methods can be divided in se-

quential and parallel thinning (Kumar and Kaur (2011)). In parallel thinning (Zhang and Suen

(1984), Guo and Hall (1989)) the decision for pixel deletion at a given iteration is based on the val-

ues of that pixel and of the neighbors at the previous iteration. Hence, all pixels can be processed

simultaneously. In sequential thinning, the points are examined for deletion in a predetermined

order. The produced skeleton may depend on the visiting order of the pixels. Non-iterative thin-

ning methods are not based on individual pixel examination. Examples of non-iterative thinning

include medial axis transforms and distance transforms (Hastings (1992)).

An example of a thinning algorithm commonly used for skeletonization (Gonzalez and Woods

(2002)) is illustrated in Fig. 3.2f. It consists in a binary morphological operation that removes

pixels on the object's boundaries, while maintaining the connectivity scheme. For this a 3×3

neighborhood is defined around the pixel. When applied to a segmented vessel, the method it-

eratively removes exterior pixels from the vessel resulting in a image containing the connected

centerlines.

伀爀椀最椀渀

伀爀椀最椀渀

砀 砀

一漀 洀漀爀攀 挀栀愀渀最攀猀
愀昀琀攀爀 琀栀椀猀⸀

砀

砀 ⨀
䔀渀搀 漀昀 猀琀 椀琀攀爀愀琀椀漀渀

Figure 2.2: Example of thinning operation. The 3×3 structuring elements Bn (n ∈ {1,2, . . . ,8})
are iteratively applied to the image A (× indicate don't care pixels, ~ represents the hit-and-miss
transform and

⊗
the thinning operation). Ai

8 corresponds to A after one iteration, i.e., application
of all Bn. As no changes occurred from Aii

5 to Aii
6 , the process ends with Aii

6 , i.e., after the second
pass of A with B6. Extra pixels are removed by converting Aii

6 to m-connectivity, eliminating mul-
tiple paths. Note that some of the intermediate steps are not shown. Image adapted from Gonzalez
and Woods (2002).
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Scale-space skeletonization Other methods can be used in order to obtain the skeleton, such

as the scale-space skeletonization (da Fontoura Costa and Estrozi (1999)). It consists in a multi

resolution shape representation without border shifting. The methods is based on exact dilations

to determine the Euclidean distance transform and propagate labels to the pixels in an object. An

advantage of this technique compared to thinning is that it avoids the appearance of small branches

along the skeleton of the vessel.

Other approaches In model fitting methods it is also possible to skip the vessel segmentation

part and directly find vessel centerlines using methods for this specific purpose. Zhou et al. (1994)

used a centerline searching strategy that uses tracking based on Gaussian fitting.

Crease detection algorithms can also be applied for finding vessel centerlines. Here, the image

is considered a topographic surface, being the elevation given by the pixel intensity values. The

crease is a set of continuous points that link the highest or the lowest elevation levels. An example

of crease detector is the presented in Lopez et al. (2000).

The tramline algorithm, described in Hunter et al. (2005), can also be applied to find cen-

terlines. It uses two oriented elements: a line oriented along the direction of the vessel (inner

element) and a pair of tramlines lying to either side of the line (outer element). The filter is rotated

to various angles and applied to image. If the inner and the outer elements lie inside and outside

the vessel, respectively, then the inner element pixels should be darker than the outer element pix-

els. When an oriented filter response is greater than or equal to a threshold, the pixel belongs to a

vessel. The resulting vessel map is morphologically cleaned. This not only detects the centerlines,

producing very few false positives (FPs), but also avoids junctions.

2.1.3 Vessel segments extraction (junctions removal)

After vessel centerline location, bifurcation and crossover points are excluded since they would

require special treatment. First, diameters are not well-defined at junctions. Further, diame-

ters measured before and after a junction are not directly comparable due to blood flow differ-

ences (Bankhead et al. (2012)).

As can be seen in Fig. 3.4b, in bifurcation points there are 3 connected neighbors whereas in

crossover points there are 4 or more neighbors (8-connection scheme). As so, to remove bifurca-

tions and crossovers: first, the vessel centerline image is scanned and the number of neighbors for

each of the centerline pixels is counted; afterwards, centerline points with three or more neighbors

are removed. The removal of these points divides the vessel centerlines into individual segments.

It should be noted that the described methods (both for vessel centerline detection and junc-

tions removal) are not exclusively relevant for model fitting-based approaches, but are also com-

monly used in contour-based approaches, as described in section 2.2.
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(a) Single vessel
point.

(b) Bifurcation vessel
point.

(c) Crossover point
(2 vessels).

(d) Crossover point (ves-
sel and bifurcation).

Figure 2.3: Possible vessel point configurations. Bifurcation points occur when one vessel gives
origin to two vessels. Crossover points occur when two or more vessels intersect or when vessels
meet bifurcations.

2.1.4 Curve fitting

Curve fitting is the process of constructing a curve that best fits a series of data points, possibly

under certain constraints (Arlinghaus et al. (1994)). Fitting a model to an intensity profile consists

in finding the parameters of that model curve that lead to the best adjustment between the model

and the observed profile. Depending on the function used for fitting the profile, a different set of

parameters are considered. Further, several methods exist for the optimization of these parameters.

2.1.4.1 Models for vessel profile fitting

For vessel intensity profile fitting, the fitting function often has a Gaussian-like shape, based on

the general appearance of the vessel profile (Fig. 2.4a). As can be observed, vessels are darker

than the background and generally have their minimum intensity along the central line.

1D models 1D-Gaussian models are frequently used for fitting the vessel profile (Zhou et al.

(1994)). A 1D-Gaussian function that can be used for modelling the vessel is defined as:

g(x) = t−h× e−
(x−µ)2

2σ2 (2.1)

where x represents the coordinate along the vessel profile, t is the maximum of the function, h is

the height of the Gaussian, µ the location of the center and σ the spread (standard deviation) of

the Gaussian. This equation has 4 parameters to be optimized in order to fit the model to a vessel

profile. Other Gaussian-based functions can also be used, such as n-order Gaussian derivatives.

One example is the second-order differential Gaussian filter used by Gang et al. (2002). The

combination of multiple Gaussian functions have also been proposed (Aliahmad et al. (2012)).

Generalized Gaussians, i.e., Gaussian functions of higher order, can also be used (Aliahmad et al.

(2012), Girard et al. (2014)). These functions are defined by:

g(x) = t−h× e−
(x−µ)n

2σn (2.2)
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Figure 2.4: Vessel profiles with and without central light reflex (CLR) in a fundus image. Vessel
profiles commonly present a Gaussian-like shape, with the minimum intensity occurring approxi-
mately in the vessel center region. Large vessels can present CLR, that appears as an increase of
intensity in the center of the vessel, i.e., an elevation in the center of the vessel profile.

where n represents the order of the generalized Gaussian and the other parameters have equivalent

meaning as in Eq. 2.1. When using generalized Gaussians models to fit the vessel profile, one

extra parameter has to be optimized compared to the Gaussian model.

Vessel profiles do not always present the shape illustrated in Fig. 2.4a. In some cases, the

intensity profile of some large vessels is not Gaussian due to the central light reflex (CLR). This

phenomena is caused by specular reflection and happens more frequently in digital fundus images

than in fluorescein images (Gao et al. (2001), Martinez-Perez (2000)). As seen in Fig. 2.4b, this ar-

tifact appears as a local intensity elevation approximately in the center of the vessel profile. As the

Gaussian profile assumption can not handle the central light reflex artifact, other functions should

be used for modelling the vessel intensity profile. Consequently, more general models, consid-

ering the CLR, were introduced in the literature such as the twin-Gaussian functions (Gao et al.

(2001)) and piecewise Gaussian model (Li et al. (2003)). The twin-Gaussian function consists in

the difference of two different Gaussian functions (g1(x)−g2(x)), with individual parameters.

Other functions that also consider the CLR have been proposed, as the Hermite polynomial

presented in Wang et al. (2007). A 1D-Hermite model, depending on 5 parameters, is defined by:

h(x) = t−h× (1+β × ((x−µ)2−1))× e−
(x−µ)2

2σ2 (2.3)

where β is an adaptive parameters controlling the depth of the concavity that models the CLR and

the other parameters are equivalent to those in Eq. 2.1.

2D-models The use of a 2D model can prevent problems arising from noisy data, such as small

branches in the vessels, by introducing smoothing in the process. In this case, instead of fitting a

1D model to a 1D cross-sectional profile of the vessel, a 2D model is fitted to a 2D cross-sectional

region of the vessel corresponding to multiple neighboring 1D profiles. Examples of 2D-models

used in the literature are the 2D-Gaussian, 2D-Difference-of-Gaussians and 2D-Hermite models.
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The vessel intensity can be modelled by a y-independent 2D-Gaussian, resulting from the

extrusion of the 1D-model from Eq. 2.1, defined by:

g(x,y) = t−h× e−
(x−µ)2

2σ2 (2.4)

where x is the coordinate along the vessel cross-section, y is the coordinate along the perpendicular

direction, t is the maximum of the function, h is the height of the Gaussian, µ is the center location

and σ is the spread of the Gaussian.

A 2D-Difference-of-Gaussians model can also be used, since it takes in account the CLR (Low-

ell et al. (2004)). Considering the Eq. 2.4, this function is given by:

g(x,y) = t− (h1× e
− (x−µ)2

2σ2
1 −h2× e

− (x−µ)2

2σ2
2 ) (2.5)

where the parameters have equivalent meaning as in Eq. 2.4.

A 2D-Hermite polynomial function has also been proposed for vessel fitting (Lupascu et al.

(2013)). A 2D-Hermite model consisting of an extrusion of the 1D model from Eq. 2.3 to a

cylindric surface and allowing asymmetry can be given by:

h(x,y) = t−h× (1+β × ((x−µ−δ )2−1))× e−
(x−µ)2

2σ2 (2.6)

where x is the coordinate along the vessel cross-section, y is the coordinate along the perpendicular

direction, δ is a parameter that controls the asymmetry of the model and the other parameters mean

the same as in Eq. 2.3. Note that the multi-resolution Hermite model is independent of y. When

modelling the vessel profile using this function, 6 parameters need to be optimized.

Therefore, a relevant aspect that should be considered for vessel profiling is the asymmetry

of the profile, since vessels can present an asymmetrical shape, corresponding to different inten-

sity profiles on each side of the centerline. Some authors addressed this problem, fitting mod-

els that consider non-symmetrical shape of the vessels, either by using a model that includes an

asymmetry-related parameter (Lupascu et al. (2013), Eq. 2.6) or by fitting two different Gaussian-

based models on each of the vessel edges (Aliahmad et al. (2012)).

2.1.4.2 Curve fitting methods

Several techniques can be used for finding the parameters of the best-fit model to a given vessel

intensity profile. The vessel profile fitting problem can be seen as a least squares problem: given

a set of m empirical data pairs of variables (xi,yi), optimize the parameters β of the model curve

f (x,β ) so that the sum of the squared differences, S(β ), given by Eq. 2.7 becomes minimal:

S(β ) =
m

∑
i=1

[yi− f (xi,β )]
2 (2.7)



14 State-of-the art methods for retinal vessel width measurement

Given the nature of the models used for vessel fitting, the least-squares problem is non-linear,

since the functions are non-linear in the parameters. The methods to solve this problem involve an

interactive procedure to improve the parameter values, β , in order to reduce S(β ).

Levenberg-Marquardt method The non-linear Levenberg-Marquardt (LM) algorithm, also known

by damped least-squares method, is commonly used for this purpose (Press et al. (2007)). The

LM method consists in a combination of two minimization methods: the gradient-descent and the

Gauss-Newton methods. The gradient-descent method reduces the sum of the errors by updating

the parameters in the direction of the steepest-descent direction. In the Gauss-Newton method, the

minimum of the least squares function is found by assuming the function to be locally quadratic

(for the parameters near the solution) and finding the minimum of the quadratic (Björck (1996)).

Typically, the Gaussian-Newton method converges faster than the gradient-descent method. The

LM algorithm adaptively varies the way the parameters are updated between the two methods. In

the end, LM behaves closely to the gradient-descent method when the parameters are far from the

solution and more similarly to Gauss-Newton method if otherwise. To start the minimization, an

initial guess of β is required. In each iteration step, β is replaced by a new estimate, β + δ . The

LM algorithm (Levenberg (1944), Marquardt (1963)) is given by:

(JT J+λdiag(JT J))δ = JT [y− f (β )] (2.8)

where J is the Jacobian matrix, with element Ji defined by Ji =
∂ f (xi,β )

∂β
, λ is the damping factor

(updated in each iteration), diag(JT J) is the diagonal matrix consisting of the diagonal elements

of JT J, δ is the increment to the estimated parameter vector (β ) and f and y are vectors with ith

component equal to f (xi,β ) and yi, respectively (as defined in Eq. 2.7). This set of equations can

be solved for δ . As referred before, if an iteration results in a worse approximation, λ is increased,

approximating the LM to the gradient-descent method; otherwise, λ decreases, approximating the

LM to the Gauss-Newton method.

Quasi-Newton method Quasi-Newton (variable metric) method can also be used for parameter

optimization (Bishop (1995)). These methods are used for finding zeros or local maxima and

minima of functions. Quasi-Newton methods rely on Newton' s method to find the point with

zero gradient (i.e., f x′ = 0), using the Hessian matrix of second derivatives of the function to be

minimized ( f ). This function can be equal to the function S from Eq. 2.7 (least squares problem).

The Newton method for minimization of a function f with multiple variables is given by:

xk+1 = xk− [H(xk)]
−1

∇ f (xk) (2.9)

where k is the step (i.e., iteration) of the Newton method, x is the vector of variables of the f ,

∇ f (x) is the gradient of f (x) and H(x) is the Hessian matrix of f (x). Geometrically, in each

iteration the function fx is approximated by a quadratic function around xk, and a step is taken
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towards the minimum of that quadratic function. As usual, an initial guess for x is needed in the

beginning of the algorithm.

Differently from the Newton method, in Quasi-Newton methods the Hessian matrix does not

need to be computed, being approximated based on the gradient values from previous steps (i.e.,

Hessian is approximated by finite differences of the gradients). Consequently, Quasi-Newton

methods are frequently used when the second derivatives are not available.

Needer-Mead method Other methods have been used in the literature for parameter optimiza-

tion, such as the Needer-Mead optimizer, also known as downhill simplex method (Nelder and

Mead (1965)). It is one of the best known algorithms for multidimensional optimization with-

out derivatives. The algorithm uses only the values of the function ( f ) at some points in Rn and

does not perform any gradient approximation at these points. A simplex in Rn is the convex hull

of n+ 1 vertices x0, . . . ,xn ∈ Rn (a simplex in R2 is a triangle and in R3 is a tetrahedron). The

method starts with the set of n+ 1 vertices (in Rn) of the simplex S and their function values

( f (x j), for vertex j). Then, a series of transformations of S are performed targeting the decrease of

the function values at the vertices. The transformations are determined by the comparison of the

function values at certain test points with those at the vertices. These transformations can involve

reflexion, expansion, contraction or shrinkage (Lagarias et al. (1998)). One of the benefits of the

Nelder-Mead algorithm is the low number of required function evaluations, which is particularly

important when each evaluation is time-consuming (Wright (1995)).

There are aspects to consider when performing model fitting, relevant for all the fitting meth-

ods. One of them is the range of the parameters. This restricts the values of the variables to lie

within certain intervals. The optimum range of values for each parameter can be defined using, for

example, the observation of a large number of vessel intensity profiles, as was performed by Lu-

pascu et al. (2013). Besides this, and as mentioned above, one also has to consider the initialization

of the parameters. A better initialization can greatly reduce the steps and time needed to find the

optimal solution. Finally, termination conditions have to be defined. These conditions determine

when to stop the iterations, i.e., when the solution is close enough to the objective.

2.1.5 Width estimation

Once the best-fit model to the vessel profile is found, there is the need to find the relationship

between its parameters and the vessel width. Depending on the functions used for modelling the

profile, different parameters are used for estimating the vessel width. Even for the same model,

several relationships have been proposed in the literature to relate the parameters to the widths.

Single constant scaling factor For the Gaussian model, some authors proposed constant scaling

factors to relate the spread (σ ) of the best-fit model with the vessel width. Examples presented

in the literature estimate the width as 2× 1.96 ∗ σ (Zhou et al. (1994)), 2.33
√

2σ (Chapman

(2001)), or 2
√

2σ (Lowell et al. (2004), Girard et al. (2014)). Others found these factors through
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experiments and calibration procedures, determining widths as 2.4
√

2σ (Gao et al. (2001)) or as

2.03σ +0.99 (Gang et al. (2002)). This procedure uses the measurements of experts to determine

the relationship between σ and the width.

Multiple scaling factors It has been proposed in the literature that a scaling factor should be

used for each individual edge from a profile, in order to match different blurriness level at the

vessel boundaries (Aliahmad et al. (2012)). The factor for a given edge depends on the spread (σ )

of the Gaussian that was fitted to each edge. Also, a process of learning the best scaling factors for

each profile can be applied. Supervised learning has already been used in the literature to learn the

mapping between the 6 parameters of the best-fit 2D-Hermite model to the vessel width (Lupascu

et al. (2013)). The training set is composed by the values of the parameters associated to each

intensity surface fitting and the corresponding widths manually measured by an observer.

2.1.6 Most relevant state-of-the-art methods

Several models have been proposed in the literature to determine the vessel width by fitting retinal

vessel intensity profiles. In this section the most relevant methods for this work are described,

either due to the method itself or by the availability of results on known databases.

Simple rules applied to profiles Brinchmann-Hansen and Heier (2009) proposed the half-

height-full-width (HHFW) algorithm for vessel width estimation. The vessel width is estimated as

the distance between the points on the cross-section intensity profile at which the function reaches

50% of its maximum value to each side of the estimated centerline. Gregson et al. (1995) fitted a

rectangle to the vessel cross-section intensity profile by adjusting its width so that the area under

the profile is equal to the area of the rectangle. The height of the rectangle is fixed to the difference

between the minimum and maximum profile intensity values. Vessel diameter is considered equal

to the width of the fitted rectangular profile.

1D approaches A matched filtering approach coupled with a priori knowledge about retinal

blood vessel properties was proposed by Zhou et al. (1994) for vessel boundary detection, cen-

terline tracking and parameter extraction, including vessel width. The vessel profile is modelled

using 1D-Gaussians. Vessel edges are located by cutting the best-fit Gaussian model on both sides

at the 95% point, meaning that the vessel walls are at 1.96 standard deviations from the mean.

1D approaches considering the CLR and profile asymmetry Aliahmad et al. (2012) presented

a multi-step regression method for diameter measurement. The technique is based on Gaussian

modelling, adaptively combining second and higher order Gaussians to model the vessel profile.

The method comprises the following steps: 1) combinations of multiple second order Gaussians

are used for modelling the central light reflex of the profile; higher order Gaussians are used

for reproducing the edges, being one model fitted to each edge; 2) the orders of the models and

other parameters are estimated through regression analysis: the non-linear Levenberg-Marquardt
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Figure 2.5: Method of Lupascu et al. (2013) for retinal vessel width determination. A - Initial
images of the vessels along with the cross-sectional profiles (red dots) selected around the tar-
geting locations (green squares). Top: vessel without central light reflex; bottom: vessel width
central light reflex. B - Mean intensity profiles around the target locations, with the vessel regions
highlighted (red). C - Intensity surfaces, taken from the 2D regions (profiles) represented in A by
the red dots. D - Best-fit surfaces obtained through parameter optimization of the Hermite model
using the Nelder-Mead method. Images adapted from Lupascu et al. (2013).

method is used for fitting the blurriness level at the vessel contours; 3) the sigma parameters and

the distance between the minima of the best fitted Generalized Gaussians to the boundaries are

used for estimating the diameter. The method, contrarily to some of the previous methods, doesn't

assume the vessel profile as being symmetrical (with similar blurriness level at both edges).

2D approaches considering CLR In the work of Lowell et al. (2004), diameter is measured

based on 2D-Gaussian or 2D-Difference-of-Gaussians (DoG) models, optimized to fit a 2D inten-

sity vessel segment. The method has special attention to the possible light reflex. In the proposed

algorithm, the following steps are applied: 1) a tramline algorithm is used in order to find vessel

centerlines and remove junctions (see subsection 2.1.2); 2) the model is fitted on the green channel

of the original image; 3) variable-metric optimization is used for finding a good set of parameters

for the models; 4) both models (2D-G and 2D-DoG) are fitted and the best-fit is selected: 2D-

Gaussian profile is used taking into account vessels without reflex, whereas 2D-DoG profile is

used for vessels with reflex; 5) parameters of the best-fit model are used for estimating the width.

2D approaches considering CLR and profile asymmetry Lupascu et al. (2013) used bagged

decision trees and an extended multiresolution Hermite model to estimate the width of retinal

vessels. The model is a surface obtained by extruding a 6-parameter Hermite cross-sectional
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model, which is a generalization of Wang et al. (2007). This work is particularly interesting, as it

is robust and generic, allowing a great variety of vessel intensity profiles. Also, the method shows

one of the best performances, as shown in Chapter 4.

The following steps are performed to assess the vessel width:

1. Extraction of vessel local intensity surfaces: Initially, a point for width estimation is selected

inside a vessel. Then, 5 parallel cross-sections are chosen on each side of the target location

(for a total of 11 cross-sections) and their intensity profiles are extracted (see Fig 2.5-A).

This is performed using bilinear interpolation of the intensities at non-integer locations.

The orientation of vessels is given by the eigenvectors of the Hessian matrix. The length of

the profiles is fixed to 100 pixels, in order to be large enough to cover the largest vessel.

As there is the possibility that the profile includes more than one vessel, there is the need

to identify the region containing only the vessel of interest (Fig 2.5-B). For that, the mean

profile of the vessel along the 11 sections is computed. Then, the maximum with lowest

intensity (expected to be the central reflex) is found, along with the two adjacent minimum

and maximum in each side. If this region does not contain the target point, it is removed

from the profile and the process is iterated. If no CLR vessel is found, the process restarts,

this time seeking for the absolute minimum and the adjacent maximum on each side, i..e,

normal vessel configuration. This process is done assuming that vessel intensity maxima

are always lower than background maxima. Finally, a 3D surface is formed by the support

regions of the vessel cross-sections, constituting the data for the surface fit (Fig 2.5-C);

2. Surface fitting using an Hermite model: A parametric surface model of the cross-sectional

intensities of the vessels is then fitted to the surface. The model used is the Hermite model

with 6 parameters, as defined in Eq. 2.6. The 6 parameters allow to control 1) the depth of

the CLR of the profile; 2) the asymmetry of the model; 3) the mean of the Gaussian (shifting

the function along the x-axis); 4) the standard deviation of the Gaussian; 5) the height of the

model and 6) the maximum of the model (shifting the function along the z-axis).

For surface fitting, the sum of the squared differences between the model and the vessel data

is minimized using a Needer-Mead optimizer, described in section 2.1.4. The best-fit model

to the vessel intensity surface is found (Fig 2.5-D). The initialization surface is determined

by finding the peaks of mean profile of the 11-cross-sections, determining the parameters

of a 1D-model based on the peaks and extruding the 1D-model to a surface. The optimum

range for each parameter was estimated by observation of a large number of profiles.

3. Width estimation: A supervised learning method consisting of an ensemble of bagged de-

cision trees is used in order to estimate the width from the parameters of the best-fit sur-

face (Breiman (1996)). This classifier learns the mapping from a point in the 6D parameter

space to the vessel width. The training set is composed by the association of the values of

the 6 parameters of the fitted-model with the manual width estimates of an observer.
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Alternative approach Delibasis et al. (2010) proposed a method for the segmentation of the

whole vessel network and for diameter estimation consisting in a model-based vessel tracing algo-

rithm. The algorithm uses a generic parametric vessel model (that can assume arbitrarily complex

shape), consisting in a “stripe” that exploits geometric properties to define the model parameters.

A Measure of Match (MoM) between the model, i.e., the stripe, and the image is used, that quan-

tifies the similarity between the vessel model and the given image. SPs that lie sufficiently close

to vessels centerlines are automatically determined. The vessel tracking proceeds by identifying

the stripe that better matches the vessel, using the SP, stripe orientation, stripe width and MoM

information. After the current vessel cannot be traced any longer, the algorithm actively seeks

bifurcations in order to avoid user intervention. To determine the vessel diameter, the geometric

model is used, which parameters were already determined during the vessel tracking. A set of

train images are selected to discover the relation between the fitted model “diameter”, i.e., stripe's

width, and the vessel diameter, assuming a linear dependency between them. The derived diame-

ters are subsequently used for segmenting the vessels.

2.2 Width measurement from contour detection

Width estimation algorithms that fit in this category use contour detection methods to directly find

vessels boundaries and determine the vessels' width based on these. The majority of the vessel

segmentation methods uses the contrast between the blood vessel and background. However,

structures in the image (OD, pathological signs, etc.) can hamper the segmentation. Additionally,

narrows vessels show low contrast, hindering the segmentation. Further, the CLR in larger vessels

can lead to the identification of two vessels instead of one.

The methods available in the literature use a wide variety of contour delineation methods, such

as active contours, graph-based approaches, wavelets, classification or tracking-based methods.

The approaches that fit in the category of width measurement from contour detection can be further

divided in methods that: 1) perform vessel segmentation and measure the width based on the

segmentation or 2) perform vessel segmentation but use it only as a starting point for the width

measurement. The most relevant approaches in each of these sub-categories are described in the

current section.

2.2.1 Width measurement directly from segmentation

Active contour-based approach Al-Diri et al. (2009) presented a method for segmentation and

width measurement of retinal vessels, the “extraction of segment profiles” (ESP) algorithm, based

on the “Ribbon of Twins” (ROT) active contour model. The ESP uses two pairs of contours

(i.e., a twin) to capture each vessel edge (one inside and one outside the vessel). In total, each

ROT contains four linked active contours: the two internal contours move outwards toward the

vessel edge and are linked together to maintain width consistency; the two outside contours move

in the opposite direction, towards the internal contour. The major steps of the ESP algorithm

are: 1) tramline algorithm: an initial set of potential vessel segment centerline pixels is located
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(see subsection 2.1.2); 2) segment growing algorithm: segments (consisting of series of profiles)

are produced, while discarding false positive (FP) pixels; the ROT active contour model is used

for exploring the vessel segment and add profiles; 3) junction resolution algorithm: the discrete

segments are extended, and the crossings, junctions and joinings resolved by using an implicit

neural cost function to determine the network topology.

Graph-based approach A graph-based approach for vessel boundary delineation and diameter

estimation was proposed by Xu et al. (2011a) and Xu et al. (2011b). In this algorithm, the two

boundary segmentation is converted into an optimal surface problem on a two slice 3D graph.

Consequently, the two boundaries of the vessel are simultaneously segmented. The main steps of

the algorithm are the following: 1) images are preprocessed: an initial segmentation is generated

from a vessel probability map (Niemeijer et al. (2004)), sequential thinning is applied to find ves-

sels centerlines and bifurcations and crossing points are excluded, cutting the vessels in segments;

2) a 3D graph is constructed based on each vessel segment; the weights of the profile nodes in the

graph are obtained using steerable first order Gaussian derivatives; 3) vessel widths are computed

as the distance between the two corresponding nodes on the optimal surface from the two slices.

Classification-based approach A diameter estimation algorithm that relies on Unsupervised

Linear Discriminant Analysis (ULDM) was proposed by Kumar et al. (2012). The algorithm can

be divided in the following parts: 1) the grader identifies the region of interest (ROI); 2) initializa-

tion: the vessel boundaries are estimated, as described in Aliahmad et al. (2011), and the intensity

cross-section profiles are obtained; 3) Linear Discriminant Analysis (LDA) (Wijaya et al. (2011)):

the training data is automatically generated using the LDA classifier; the classifier is trained in

order to separate the profile in three sections, one corresponding to the vessel surface and the other

two to the background at either side of the vessel; 4) diameter measurement: the trained LDA

identifies the three sections; the width of the first is the vessel diameter.

Tracking-based approach An algorithm for vessel segmentation and diameter estimation was

proposed by Yin et al. (2013), consisting of an automatic tracking-based method using probabilis-

tic formulation. After automatic selection of seed points (SPs), the tracking, for one SP, proceeds

as follows: 1) initialization: initial parameters (vessel center point and direction) are retrieved

from the SP; 2) iteration: vessel edge points are detected iteratively; in each iteration, a dynamic

search window is defined (based on the local vessel parameters); then, statistical sampling is used

for selecting new candidate edge points; after, the criterion of Bayesian method with maximum a

posteriori probability (MAP) is used in order to select edge points among the candidates; finally,

vessel parameters are updated for the next iteration (further, in each iteration, a branch prediction

scheme is applied to detect vessel branches in the area); 3) end: the process stops when the end

conditions are satisfied. Once all the SPs are processed, the whole vascular tree is obtained. Based

on the detected vessel edges it is possible to deternine the vessel diameter at a given point.
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Alternative approach In the work of Yin et al. (2014) a method for retinal vasculature seg-

mentation is presented, being the vessel diameter estimated on the segmented images. The seg-

mentation starts by graph partitioning, using spectral clustering based on morphological features

to pre-group the vessels. The eigen values of Hessian matrix are used for estimating the local

curvature, in order to enhance the vessels. This image is combined with a binarized one, obtained

using a threshold that maximizes the entropy. The binarization is repeated on the original image

using a different threshold that takes into account vessels with CLR. The final result is the combi-

nation of the two segmentations (with and without CLR). For diameter estimation, 1) morpholog-

ical thinning followed by skeletonization are applied for location of the one-pixel thin centerline;

2) edge points are detected with 3x3 windows on the vessel centerline: each window contains

three connected and non-colinear pixels, aligned along one of the 14 different possible configura-

tions/orientations; the selection of such aligned pixels as candidates allows to reject branch pixels

for edge detection; 3) by rotating 90◦ the set of three centerline pixels around the central point

(in order to obtain an approximation of its perpendicular) and extending the segments until they

intersect the closest vessel boundary (in the segmented image), the vessel diameter corresponding

to the central point in study is computed as the Euclidean distance between the intersection points.

2.2.1.1 Methods integrated in frameworks for retinal image analysis

Enhancement of binary vessel masks for width measurement A constrained spline fitting al-

gorithm has been proposed, that does not perform vessel contour detection from the original image,

but refines binary vessel masks. The algorithm of Trucco et al. (2013) is integrated in VAMPIRE
(“Vessel assessment and measurement platform for images of the Retina”), which is a software

application for quantification of retinal vessel properties, including detection of landmarks, deter-

mination of vessel width, tortuosity and others (Perez-Rovira et al. (2011)). The method, which

is applied to binary images with the vasculature, can be divided in the following parts: 1) the

skeleton is obtained through morphological thinning; then, branching points are removed; finally,

a natural cubic spline is fitted to the centerline; 2) two coupled cubic splines are fitted to the vessel

contours by solving a linear system, overconstrained by a parallel-tangent constraint coupling the

two splines and penalizing locally non-parallel contours; 3) the vessel width at each point lying on

the spline-smoothed centerline is found by determining the Euclidean distance between the two

refined contours, lying on the segment orthogonal to the centerline at the point in study.

Width measurement for AVR determination In the work of Vazquez et al. (2013), a de-

formable model-based algorithm was presented for retinal vessel width measurement. The pro-

posed methodology integrates the SIRIUS (“System for the Integration of Retinal Image Under-

standing Services”) framework, a web-application for retinal image analysis arteriolar-to-venular

diameter ratio (AVR). In this framework, vessel widths are measured at equidistant points from the

optic disk (OD) (4-6 radii). The major steps of the algorithm are the following: 1) vessel location

is performed using vessel centerline extraction and tracking: vessel centerlines are detected (for
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each analysis radius) using a crease detector algorithm, the Multilocal Level Set Extrinsic Curva-

ture enhanced by the Structure Tensor (Lopez et al. (2000)); centerline tracking is performed, in

order to avoid FPs and obtain a segment for the measurement; 2) a specific snake is used for mea-

suring each vessel (the initial snake has two chains of nodes initialized in the previously located

centerline); after energy minimization, the snake should be a parallelogram and the nodes should

be in the vessel edges; 3) the vessel width is determined having in account a certain number of

profiles in the snake parallelogram, equally spaced and perpendicular to the centerline.

2.2.2 Width measurement partially dependent on segmentation

These methods usually perform a segmentation of the vasculature that allows to locate the vessels

obtain and/or to obtain a coarse first estimation of the vessel width. Then, the vessel width is mea-

sured in a non-binary image, considering the information obtained from the initial segmentation.

The most relevant work where this strategy is applied is that of Bankhead et al. (2012), who

proposed a method for vessel detection and diameter measurement relying on wavelets and edge

refinement. This method is considered of particular interest for this study, since the segmentation

is used only as an initial step for width determination, being followed by edge refinement, i.e.,

the method takes advantage of a prior segmentation but does not heavily depends on it for width

measurement. Further, results presented in Chapter 4 show the robustness of the method.

In the method of Bankhead et al. (2012), segmentation is performed by thresholding wavelet

coefficients, obtained through Isotropic Undecimated Wavelet Transform (IUWT). The main steps

of the width measurement algorithm, following the vessel segmentation, are:

1. Centerline computation: morphological thinning is applied to the segmented image, result-

ing in vessel centerlines. Then, branch pixels are removed (>2 neighbors), dividing the

vascular tree into individual segments. Next, the segments are processed, being the short

segments (<10 pixels) removed. A coarse estimation of the width is calculated as follows:

1) the distance transform of the inverted segmented image is computed; 2) the diameter at

each center point is computed by doubling the distance transform results; 3) the maximum

of the diameters from a given segment is taken as the width estimation for that segment.

Centerline segments that have fewer pixels than its estimated diameter are not considered.

2. Centerline refinement: a least-squares cubic spline is fitted to each centerline segment in

order to smooth it and allow accurate derivative computation, leading to accurate vessel

orientation determination. A parametric spline curve is used, with the centripetal parame-

terization scheme described in Lee (1989).

3. Image profile generation: Intensity profiles are determined from the original grayscale im-

age, perpendicularly to the spline, at every point, using linear interpolation. The length

of the profiles is computed by doubling the diameters calculated from the distance trans-

form, to ensure that large vessels are included. The image profiles are aligned side by

side in straightened vessel images, in which each row corresponds to a profile (Fig. 2.6-A).
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Figure 2.6: Determination of vessel edges in the method of Bankhead et al. (2012). A - “Straight-
ened” vessel image (stacked vessel profiles). B - Correspondent profiles obtained from the seg-
mented image. White: possible vessel pixels; gray: pixels from other vessels or outside the FOV.
A provisional width is estimated as the median of the sums of the white pixels in each profile, and
is then refined (see F): 1) the average of all vessel profiles is computed (black curve), 2) the max-
imum and minimum gradient to the left and right of the centerline, respectively, are located (blue
lines) 3) the distance between the two positions is computed. C - Smoothing of the profiles in A by
an anisotropic Gaussian filter, followed by a filter to determine the second derivative perpendicu-
larly to the vessel, i.e., horizontally. The size of the Gaussian filters is dependent on the initial with
estimation. Most of the vessel has negative values, except in the CLR. D - Pixels from C where
sign changes occur. Red: positive to negative transitions; blue: negative to positive transitions.
(Transitions belonging to the other vessel (gray in B) were removed). E - Located edges, shown
in the straightened vessel. These edges are determined as follows: the length of each connected
component in D is computed and only the longest lines that fall close to the locations determined
in F (blue lines) are kept, one in each side of the vessel center. The diameter can be computed as
the Euclidean distance between the edges. G - Located edges, shown in the original image (from
REVIEW). Images from Bankhead et al. (2012).

Two corresponding binary images are also generated by applying this procedure to the seg-

mented image (and using nearest neighbor interpolation): 1) one image only with “vessel”

pixels (connected region that overlaps the centerline); this constitutes an initial estimation

of the vessel location (Fig. 2.6-B); 2) another image containing pixels outside the FOV

and other vessel pixels not overlapping the centerline (i.e., belonging to neighbor vessels);

this will be used later to define regions in the profile images where vessel edges cannot be

found (Fig. 2.6-C);.

4. Vessel edge identification: The edge is defined, in this work, as occurring at a local gradient

maximum or minimum, that can be identified by performing a search for zero-crossings

of the second derivative on the direction perpendicular to the vessel. The description of

the vessel edge identification process is available in Fig. 2.6. In the end, the diameter is

extracted from the detected edges.
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2.3 Concluding remarks

In this chapter, the most relevant methods presented in the literature for retinal vessel caliber

estimation are described. These algorithms fit in one of two major schemes: those that measure

the vessel widths from parametric intensity model fitting to the vessel intensity profiles, and those

that measure the widths from vessel contour detection.

Methods that fit parametric models to the vessel intensity profiles use the parameters of the

best-fit model to determine the vessel width. The general approach involves vessel segmentation,

centerline detection, removal of junctions, generation of the intensity profiles, fitting of a para-

metric intensity model to the vessel intensity profile and determination of the vessel widths based

on the parameters of the best-fit profile. Some of the works do not perform vessel detection and

measure the width at specific points. Model fitting-based methods rely on the general behavior

of the vessel profile, which is similar to a Gaussian shape. However, some vessels present CLR,

having a lighter intensity along their central region. Further, vessels can present an asymmetrical

shape. Both 1D and 2D models have been used for modelling vessel profiles, being that 2D mod-

els can reduce problems arising from noisy data. Some of the most recent works address the CLR

and profile asymmetry, but only a few methods consider both aspects. Regarding the estimation

of the vessel width from the model parameters, the majority of the works consider a fixed relation

between the parameters and the width, independently of the vessel and image in study. However,

some of the most recent methods consider multiple scaling factors.

Methods that fit in the category of width measurement from contour detection perform vessel

segmentation and measure the diameter from the vessel contours. These methods rely on the

contrast between vessel and the background. However, other anatomical structures that are present

in the image, low contrast and the CLR in the vessels can hinder the segmentation. A wide variety

of techniques has been proposed for this purpose, such as active contours, graph-based approaches,

classification and tracking-based methods. Although the majority of these methods measures the

width directly from the segmentation, others use the segmentation as a starting point for width

measurement, using it only for vessel detection and/or to obtain an initial estimation of the widths.

The latter methods are of greater interest to this work, since the method to develop in this M.Sc.

dissertation can take advantage of a segmentation algorithm previously developed in the C-BER

research group.



Chapter 3

Method for retinal vessel width
estimation

3.1 Method overview

The proposed method for retinal vessel width estimation follows a model fitting-based approach.

It includes several profile preprocessing steps before model fitting, and uses ensembles of bagged

regression trees to estimate the vessel diameters from the best-fit model parameters. As referred

in chapter 2, the method presented in this work includes some steps adapted from the algorithms

of Bankhead et al. (2012) and Lupascu et al. (2013). An overview of the different phases involved

in the algorithm is shown in Fig. 3.1. First, vessels are segmented from the eye fundus image,

resulting in a binary vessel image. Then, vessel centerlines are obtained through thinning. After-

wards, junctions are removed, leading to the extraction of vessel segments. These vessel segments

are then smoothed through spline approximation and, for each segment point, the intensity profile

normal to the segment at that point is extracted. After this, the approximate length of the profiles

is determined and the profiles are smoothed. Afterwards, model fitting is performed, being the

parametric model fitted to the observed intensity profiles. The parameters of the best-fit model are

determined and used for the estimation of the vessel width through regression.

3.2 Vessel segmentation

The first step of the algorithm consists in obtaining an initial segmentation of the vasculature. The

main purpose of this step is the detection of the retinal vessels for posterior centerline detection.

In this work we apply a vessel segmentation algorithm previously developed in the C-BER group:

the method proposed by Mendonça and Campilho (2006), adapted for the segmentation of high

resolution images (Mendonça et al. (2014)). This method combines centerline detection and re-

gion growing for the segmentation of retinal blood vessels. Roughly, the method has three major

phases: 1) preprocessing: a) the image intensity is normalized by subtraction of the estimated

background; b) thin vessels are enhanced by applying four directional line filters; the highest filter

25
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Figure 3.1: Method overview. First, vessels are segmented from the retinal image, followed by
vessel centerline detection. Then, junctions are removed, resulting in vessel segments that are
afterwards smoothed. Intensity profiles are extracted perpendicularly to the vessel, the length of
the profiles is determined and the profiles are cut. Then, model fitting is performed on smoothed
profiles. Based on the best-fit model parameters, vessel width is determined through regression.

response is selected and added to the normalized image; 2) vessel centerline location: a) the out-

puts of a set of four directional difference of offset Gaussian (DoOG) filters are processed to detect

centerline candidates; segments are validated based on their intensity and length; b) region grow-

ing is applied to the candidate points, connecting them into segments; c) centerline segments are

validated based on their intensity and length; 3) vessel segmentation: a) multi-scale morpholog-

ical vessel enhancement is performed by using a modified top-hat transform with variable-sized

structuring elements; b) multi-scale morphological vessel reconstruction is used for generating

binary vessel maps at four scales; c) region growing is applied for vessel filling (SPs are the cen-

terline pixels); in each step, the output image of the previous iteration is used as seed; the process

is successively applied to the four scales. Fig. 3.2 shows an example of the application of the

segmentation algorithm to an eye fundus image from the REVIEW dataset.
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(a) Initial image from REVIEW dataset
(CLRIS001) (cropped in width).

(b) Segmented image, by application of the al-
gorithm described in Mendonça et al. (2014).

original image

(c) Region selected from 3.2a.

vessels - segmentation

(d) Region selected from 3.2b.

(e) Vessel centerlines obtained through thinning
of 3.2d.

(f) Thinned vessels on the original vessel image.
Black: vessel contours; white: centerlines.

Figure 3.2: Example of the application of the vessel segmentation and thinning algorithms.
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3.3 Vessel centerline detection

Vessel centerlines are detected from the binary vessel image. For this purpose, the skeletonization

of the binary image is performed. The skeleton represents the structural connectivity of the objects

in the image with one-pixel width. In this work we use a thinning technique to obtain the skeleton

of the vessels (Lam et al. (1992)). In Fig. 3.2 an example of application of the thinning algorithm

to a binary image with the vasculature is shown.

3.4 Vessel segment extraction (junctions removal)

After vessel centerline detection, bifurcation and crossover points are excluded, since they would

require special treatment. Bifurcation points are characterized by having 3 connected neighbors

(3.3b) whereas crossover points have 4 or more neighbors (3.3c), considering a 8-connection

scheme. As so, in order to exclude these points from the vessel centerline image, pixels with

three or more neighbors are removed. The removal of these points divides the vessel centerlines

into individual vessel segments. These segments correspond to a pixel-thin group of connected

pixels limited by two end points, i.e., by pixels with a single neighbour. An example of removal

of vessel junctions in a retinal image is shown in Fig. 3.4.

(a) Single vessel point
with 2 neighbors.

(b) Bifurcation vessel
point (3 neighbors).

(c) Crossover vessel point
with 4 neighbors.

Figure 3.3: Examples of vessel point configurations (regions selected from Fig. 3.2f).

The obtained segments are then refined by removing short spurs that may have resulted from

the thinning process. Similarly to Bankhead et al. (2012), all terminal segments, i.e., that contain

end points, shorter than 10 pixels are removed. These structures usually result from irregularities

on the vessel segmentation and thus are not of interest. Longer structures are kept because they

may correspond to short vessel segments.

3.5 Vessel intensity profile extraction

Once vessel segments are found, intensity profiles are determined perpendicularly to the vessel

centerlines. For a given vessel segment, at each center point, the intensity values along the normal

to the centerline at that point are obtained. In order to do this, we use a process similar to the one

presented in Bankhead et al. (2012). First, for each object, i.e., segment, in the image resulting
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(a) Thinned vessels obtained for a region of the
CLRIS001 image (REVIEW).

(b) Vessel segments, after junction removal from
3.4a.

(c) Vessel segments of 3.4b, labeled with differ-
ent colors.

(d) Vessel segments of 3.4c after spline approx-
imation.

Figure 3.4: Example of removal of junctions from a thinned vessel image and vessel segment
smoothing through spline fitting. Colors are used to better distinguish between vessel segments.

from the junction removal algorithm, the pixels are ordered starting from an end pixel to the other.

This is done to obtain an ordered sequence of segment pixels to which the spline approximation

will be applied to smooth the vessel segments.

3.5.1 Vessel segment smoothing

The extraction of the intensity profiles requires knowledge of the vessel orientation. A simple

approach would be to compute the derivatives at the pixel-discrete vessel segments. However, this

process may retrieve inaccurate results because very abrupt changes can occur between one pixel

and its neighbor if the segment is not properly smoothed. In this work, spline fitting is applied to

each segment to smooth the vessel and avoid this problem, as in Bankhead et al. (2012).

Splines are piecewise-polynomial real functions, and are one of the most successful approx-

imating functions for practical applications (Rice (1969)). Consider a spline defined in an in-

terval [a,b], composed of n subintervals. For each of the n intervals the spline is defined by a

polynomial function. The highest order, k, of all the polynomials (one per interval) determines

the order of the spline. Furthermore, consider the points x0, x1, ..., xn, such that x0 = a, xn = b

and x0 < x1 < ... < xn. Then, a spline function of degree k with knots x0, x1, ..., xn, Sk, is a function
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that: 1) is a polynomial of degree ≤ k in each interval [xi−1,xi]; 2) has continuous derivatives of

all orders up to k−1 on [a,b]. For instance, a cubic spline, S3(x) is defined by:

S3(x) =


a1 +b1 + c1x2 +d1x3, x ∈ [x0,x1]

a2 +b2 + c2x2 +d2x3, x ∈ [x1,x2]

...

an +bn + cnx2 +dnx3, x ∈ [xn−1,xn]

(3.1)

S3(x) is continuous, and has continuous first and second derivatives. The main requirement in

this spline approximation is to correctly choose the polynomials in order to originate a sufficiently

smooth spline. By adjusting the space of the intervals, i.e., the number of polynomial pieces, one

can control the degree of smoothness in detriment of the ability to fit complex shapes.

In this work, least-squares cubic spline approximation is performed. Lee’s centripetal scheme

is used for parametrization (Lee (1989)). This approach uses the accumulated square root of the

chord length. In this case, the chord length is defined as the euclidean distance between two

consecutive segment pixels, thus having as value 1 or
√

2. Consider a vessel segment that has N

points. The coordinates of the point j given by p( j) = (c( j),r( j)), with r( j) and c( j) denoting

the row and the column coordinates of the point, respectively. A spline is approximated to each of

the coordinates, c and r, separately. The spline approximation problem consists in minimizing

N

∑
j=1
|S3c(x( j))− c( j)|2 (3.2)

to obtain the first spline, S3c , that smooths the column coordinates of the segment, and

N

∑
j=1
|S3r(x( j))− r( j)|2 (3.3)

to obtain the second spline, S3r , that smooths the row coordinates of the segment. As referred, x is

found using the centripetal parametrization scheme:

x( j) =
j

∑
i=1

√
‖p(i+1)− p(i)‖2 (3.4)

We determine the number of polynomial pieces of the spline based on the length of the segment

in the image, i.e., ∑
N
i=1 ‖p(i+1)− p(i)‖2. The number of pieces is obtained by dividing the length

of the segment by 20 pixels. This 20 pixel spacing was found to retrieve an acceptable smoothing

for the tested images, which was assessed by visual inspection of the results. In Fig. 3.4 one can

see the effect of the spline fitting on the vessel centerlines. An example of a full image with the

corresponding smoothed vessel segments is shown in Fig. 3.5.

Once the splines are fitted to the vessel segments, the new smoothed segment points are re-

trieved and the first derivatives of the splines at these points are computed. These points’ coor-

dinates correspond to the values of S3c and S3r at the integer values of the spline domain. From
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the direction of the vessel at a given point, the normal at that vessel point can be determined. The

normal has a slope of −1/m, where m is the slope of the tangent to the vessel.
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Figure 3.5: Smoothed vessel segments obtained for CLRIS001 image (REVIEW dataset). Seg-
ments are numbered and overlapped with the green channel of the original RGB image. Colors are
used to help distinguish the segments (note that different segments may be represented in the same
color). White marks along some vessel edges represent ground truth points marked by observers.

3.5.2 Profile extraction

Finally, the intensity profiles along the normals to the segments are determined (Fig. 3.6b). The

green channel of the RGB image is used, since it is known to present higher contrast between ves-

sel structures and the background. The intensities along the normal to the vessel are obtained with

1 pixel spacing and by applying bilinear interpolation of the intensities at non-integer locations.

The length of the profiles for a given image is determined based on the binary mask containing

the segmented vessels. The method used guarantees that this length is larger than the largest

vessel present in the image: 1) the minimum distance between each vessel segment point and the

vessel contour is computed; the preliminary diameter at each point is considered to be 2× the
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computed distance; 2) the preliminary profile length for a given image is computed as being 3×
the maximum of the computed diameters for that image. This ensures that a good margin is kept,

being the profile length for an image large enough to fully contain the largest vessel in that image

as well as possibly useful background information. Fig. 3.6c shows a surface constituted by the

1D profiles extracted from the segment of Fig. 3.6b, stacked together in parallel to each other,

aligned by their center points. In Fig. 3.6d the top view of the surface is shown, along with the

ground truth marked by the observers. This image is a straightened vessel image, where the all the

profiles of the segment lay horizontally.

3.5.3 Determination of profile lengths

After determining the intensity profiles for each vessel center point, the profile lengths of each

segment are more accurately determined. This is important since unnecessary information should

not be included in the profiles when model fitting is performed. Note that a profile may include

more than one vessel. Consequently, there is the need to identify the region containing only the

vessel of interest. For that, we use a method based on peak search on the profiles, that is described

bellow. A method based on the same main principles has been described in Lupascu et al. (2013).

3.5.3.1 Preparation of the profiles

The profile length determination algorithm is applied on the mean of the vessel profiles along

11 adjacent sections, 5 for each side of the profile in study. This is performed since the aver-

aged profiles offer less noise than the individual one. Further, the mean profile is smoothed using

Savitzky-Golay filtering (Savitzky and Golay (1964), Orfanidis (1996)). This filter minimizes the

least-squares error by fitting a polynomial to the noisy data and allows to increase the signal-to-

noise ratio without excessively distorting the signal. The amount of smoothing is controled by the

polynomial order and filter size. The polynomial order is determined based on the initial diameter

estimation (see subsection 3.5.2): the larger the profile, the lower the order, the higher the amount

of smoothing. This ensures that images with larger vessels have their profiles more smoothed than

images with thinner vessels, thus guaranteeing that the information of thinner vessels is main-

tained. Then, the minima and maxima in the smoothed mean profile are detected. A profile point

is considered a local extreme if it is smaller or larger than its two neighboring points.

3.5.3.2 Search for CLR regions

After smoothing, a search for the vessel region contained in the profile is performed. However,

a simple search for a typical vessel region, i.e., defined by the positions of two maxima adjacent

to a minimum, does not account for the possible existence of CLR, resulting in wrong detections

on vessels with this characteristic. The profile of a vessel with CLR can be characterized as a

region containing a maximum with one adjacent minimum and maximum on each side, as shown

in Fig. 3.7a. A search for CLR regions in the smoothed profile is performed. First, the CLR

center, corresponding to a maximum in the center region of the vessel, is detected. Assuming that
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(a) Segments from CLRIS001 (REVIEW) (region
of Fig. 3.5); white marks: ground truth.

(b) Profile directions obtained for the segment
in 3.6a; white marks:ground truth.
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(c) Intensity profiles for all points in the segment
in 3.6b, stacked in parallel to each other.
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(d) Top view of the surface from 3.6c; black marks:
ground truth.
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(e) Smoothed intensity profiles of the segment
in 3.6b, using anisotropic Gaussian filtering.
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(f) Top view of the surface from 3.6e; black marks:
ground truth.

Figure 3.6: Example of vessel intensity profile determination and smoothing of the extracted pro-
files. Colors in the plots are representative of the intensity values: warmer colors represent higher
intensity whilst cooler colors represent lower intensity.
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Figure 3.7: Typical shape of a vessel with CLR and examples of cases where the conditions
imposed for CLR detection are violated. The arrows indicate the locations of the peaks that would
define the CLR region, if one of the conditions had not been violated.



3.5 Vessel intensity profile extraction 35

all vessel maxima are always lower than background maxima, one can simply detect the maximum

with lowest intensity, and consider its position to be the CLR center. However, other vessels may

be present in the profile (see Fig. 3.7b), possibly leading to a wrong maximum detection. To avoid

this, the maximum closest to the center of the profile is detected, and chosen instead of the lowest

profile maximum if it is not too far from the profile center and it is close in value to the lowest

maximum.

Then, the two adjacent minima to the CLR center are detected, one to the left and one to

the right of that maximum (Fig. 3.7a). Finally, the two adjacent maxima are detected, one to the

right of the right minimum and one to the left of the left maxima. These maxima positions are

considered the limits of the vessel. A set of conditions is established to avoid the recognition of

false CLR regions. First, the locations of the two minima should have a minimum distance. This

prevents misclassifications as CLR if the peaks are too close. (Fig. 3.7c). The depths of the two

bumps of the CLR should not differ too much, in order to avoid large intensity differences between

the two sides of the CLR (Fig. 3.7d). Then, the distances between the vessel center and the two

maxima should not differ more than a established value (Fig. 3.7e). Besides, the maxima should

not be too far from the vessel center. If only one of the maxima is too far away from the center,

what happens in the other side of the vessel is replicated, symmetrically to the vessel center. These

conditions avoid a big asymmetry between the two sides of the CLR. Additionally, the elevation of

the CLR center should not surpass the limits of the vessel (Fig. 3.7f). If no such region containing

the vessel center is found, the algorithm proceeds by searching for non-CLR vessels. Otherwise,

the length of the profile is computed as follows: pro flength = 2×mean(|xmaxL− xmaxC|, |xmaxR−
xmaxC|), where xmaxL and xmaxR correspond to the positions of the maxima that limit the vessel

region and xmaxC to the position of the central minimum (see Fig. 3.7a). The parameters used in

these rules were obtained by experimentation, having achieved good results in the tested images.

3.5.3.3 Search for non-CLR regions

If no CLR vessel is found, the process restarts, this time seeking for vessel regions without CLR.

The minimum closest to the vessel center and the adjacent maximum on each side are searched.

These maxima locations correspond to the limits of the profile. The found peaks are analysed to

verify the validity of the limits. If there is no maximum to the left or to the right of the minimum,

what occurs in the the other side is replicated. The two maxima must not be too close to the vessel

center: if only one of the maxima is too close to the center, what happens in the opposite side is

replicated; if both are too close, an iterative search for other maxima to the left and to the right

of the vessel is performed until suitable maxima are found. If the above conditions are met, the

length of the profile is computed as follows: pro flength = 2×mean(|xmaxL−xminC|, |xmaxR−xminC|),
where xminC, xmaxR and xmaxL represent the positions of the central minimum, right maximum and

left maximum, respectively. Otherwise, the profile length is considered to be equal to the initial

profile length.

In Fig. 3.8 examples of difficult cases in which the algorithm succeeds and others in which

it fails are shown. For example, in Fig. 3.8a and 3.8b, the established conditions allowed to not
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wrongly detect a CLR. However, in 3.8d and 3.8e the conditions were not restrict enough and so

a CLR was detected in a non-CLR vessel. Fig. 3.8c shows a case where the conditions led to the

replication of the right side of the vessel since the left limit was too far away from the center.

Fig. 3.8f is an example of a common problem, that is the lack of peaks near the vessel limits. This

leads to an overestimation of the profile length.

Note that, despite the cases where the profile length is overestimated, the length actually con-

sidered in the next steps is the median of the profiles for a given segment, and not the individual

profile lengths. This means that the final length is less affected by the overestimation. Further, the

overestimation, although not desirable, is preferable to the underestimation, which would lead to

the loss of vessel profile information. Before model fitting, the profiles are cut, symmetrically rela-

tively to the centerline, to the determined profile length for that segment, i.e., all profiles belonging

to the a given segment have the same length.
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Figure 3.8: Examples of profile length determination results. Top row: successful cases; bottom
row: non-successful cases, for which the conditions were not restrict enough. Curve: smoothed
mean intensity profile; triangular marks: detected maxima; square marks: detected minima; or-
ange vertical lines: detected vessel limits; yellow vertical line: center of the vessel profile.

3.5.4 Profile smoothing

The obtained vessel profiles can be quite noisy, depending on the image quality, existence of

pathologies, etc. To overcome this a smoothing filter is applied to the profiles in order to reduce

that noise. The smoothing is applied to the image with the segment profiles stacked together in
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parallel to each other. A colormapped version of this straightened image is shown in Fig. 3.6d. In

this image, the vessel center points are all aligned vertically in the center column, being that the

profiles are horizontal, one per row. As in Bankhead et al. (2012), the filter applied in this work

is the anisotropic Gaussian filter, as it has different standard deviations along the two dimensions.

The anisotropic Gaussian function can be written as follows:

g(x,y) = h× e
− (x−µx)2

2σx2 −
(y−µy)2

2σy2 (3.5)

where x is the coordinate along the vessel cross-section, y the coordinate along the perpendicular

direction, h the height of the Gaussian, µx and µy are the center locations of the Gaussian along x

and y, respectively, and σx and σy are the spreads of the Gaussian along x and y, respectively.

This is of special interest for this application, since the straightened image has the profiles

oriented horizontally, being possible to apply different degrees of smoothing in the direction of

the profiles and in the direction of the vessel, perpendicularly to the vessel cross-section profiles.

This is performed by adjusting σx and σy. Since there is interest in reducing noise but not exces-

sively blurry the edges of the vessels, a larger amount of smoothing is applied on the direction of

the vessel than in the direction of the profiles. The values used are computed as function of the

estimated profile length for the segment, so that vessels with larger diameters are more smoothed

than thinner vessels (Bankhead et al. (2012)). In our work, σx =
√

0.1× pro f _lengthsegment and

σy =
√

1.5× pro f _lengthsegment are used, where pro f _lengthsegment is the median of the individ-

ual profile lengths belonging to that segment, computed as described in subsection 3.5.3. These

values showed to retrieve good results for the tested images, smoothing the vessels without blur-

ring too much the edges. In 3.6 one can see the effect of the anisotropic Gaussian smoothing filter

on a vessel segment.

3.6 Model fitting

The vessel intensity profiles are then approximated by a model by finding the model parameters

that lead to the best adjustment between the model curve and the observed profile. These param-

eters will then be used to estimate the vessel widths. In this work, different models are tested, as

it is described in the current section. Further, fitting is tested for both 1D profiles and stacks of

adjacent 1D profiles, shortly named as 2D profiles.

3.6.1 Model for vessel profile fitting

Only models with CLR-fitting capability are tested in this work. The Hermite model is one of

them, due to its good performance on previous works (Lupascu et al. (2013)). Two other models

are proposed, based on a Difference-of-Gaussians model.
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3.6.1.1 Hermite model (6 parameters)

The first is an adapted Hermite model with 6 parameters presented in Lupascu et al. (2013). This

model is defined, in 1D, as:

h(x) = t +h× (1+β × ((x−µ−δ )2−1))× 1√
2π×σ2

× e−(
x−µ√
2×σ

)2
(3.6)

where x is the coordinate along the vessel cross-section, t is the maximum of the function, h is the

height of the Gaussian, µ the location of the center, σ the standard deviation of the Gaussian, β is

an adaptive parameter controlling the depth of the concavity of the CLR and δ is a parameter that

controls the asymmetry of the model.

The same model, in 2D, is defined as:

h(x,y) = t +h× (1+β × ((x−µ−δ )2−1))× 1√
2π×σ2

× e−(
x−µ√
2×σ

)2
(3.7)

where y is the coordinate along the perpendicular direction and the other parameters mean the

same as in Eq. 3.6. The 2D model can be seen as a stack of 1D models along the y axis direction

and, consequently, the expression is independent of y. Another way to express the model, by

separating its terms, is as follows:

h(x,y) = t +h× 1√
2π×σ2

× e−(
x−µ√
2×σ

)2
−h×β × 1√

2π×σ2
× e−(

x−µ√
2×σ

)2
+

+h×β × (x−µ−δ )2× 1√
2π×σ2

× e−(
x−µ√
2×σ

)2
(3.8)

where the first term is the main Gaussian, that models the overall vessel shape, the second term is

the second Gaussian, that is subtracted to the first Gaussian and models the CLR, and the last is

a Gaussian multiplied by a parabola, displaced in x, which controls the model asymmetry. Note

that all the Gaussians have the same center and spread. The Gaussian which modulates the CLR

has an independent amplitude. However, the third Gaussian, which is multiplied by the parabola,

is also multiplied by the amplitude parameter of the CLR Gaussian. The effect of the values of the

model parameters in the model shape is shown in Fig. 3.9.

One of the problems of this model is the fact that the second Gaussian (CLR) has the same

spread as the the main Gaussian and as the third one. In real vessel profiles this is not necessarily

true and often the spread of the second Gaussian is smaller than the spread of the main Gaussian

(see Fig.2.4b). Further, the fact that the two last Gaussian are multiplied by the same parameter

leads to restrictions in the fitting: if the CLR Gaussian has larger amplitude, the third Gaussian

amplitude will also be affected. An example of the fitting result to a vessel profile using the

Hermite model is shown in Fig. 3.12a and 3.12b. Although the model fits well simpler profiles,

vessels with CLR are often worse fitted by this model, as it is the case in the figure.

As referred, one can fit a 1D model or a 2D one. One advantage of fitting a 2D model is the

robustness in the presence of noisy data, introducing some smoothing in the fitting. In this case,

instead of fitting a 1D model to a 1D cross-sectional profile of the vessel, we fit a 2D model to a
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2D cross-sectional region of the vessel composed by multiple neighboring 1D profiles. Note that

it is identical to use a 2D model and fit it to the 2D stack of profiles or to consider the points of

all the neighboring profiles in the same plane and fit the 1D model, since the equation of the 2D

model is independent of y. In this work we do the latter, as seen in Fig. 3.12.
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(a) Initial profile (t=1, h=−0.588,
β=0.2, µ=10, δ=0.2, σ=2.5).
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Figure 3.9: Examples of 1D curves of the Hermite model, as defined in Eq. 3.6. A profile length
of 20 pixels was set to the vessel. In each plot a parameter is varied at a time, with the remaining
parameters fixed, in order to evaluate the influence of that parameter in the overall model shape.

3.6.1.2 Modified DoG model with 7 parameters (DoG-L7)

A new model consisting in a modified Difference-of-Gaussians (DoG) model is proposed. Al-

though the common DoG model takes into account the CLR, it does not allow asymmetry between

the vessel edges. This assymmetry is in fact present in some vessel profiles, which can lead to a

poor fitting. This new model takes an adapted DoG (constrained in some parameters) and mul-

tiplies it by a line, in order to achieve the desired asymmetry in the vessel edges. This model is

define as:

m1(x,y) = (t +h1× e
−( x−µ√

2×σ1
)2

−h2× e
−( x−µ√

2×σ2
)2

)× (λ × (x−µ)+ t) (3.9)

where x is the coordinate along the vessel cross-section, t is the maximum of the function, h1

is the height of the first (main) Gaussian, µ the location of the center, σ1 the spread of the first

Gaussian, h2 the height of the second Gaussian, σ2 the spread of the second (CLR) Gaussian and λ
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is the slope of the multiplying line. As can be seen, the means of the two Gaussians are the same,

centering the light reflex in the center of vessel. The effect of the values of the model parameters

in the overall shape of the curve is shown in Fig. 3.10. An example of the fitting result to a vessel

profile using the DoG-L7 model is shown in Fig. 3.12c and 3.12d.

3.6.1.3 Modified DoG model with 8 parameters (DoG-L8)

Although the modified DoG model from Eq. 3.9 behaves fairly well on the tested profiles, it does

not allow to control in a good extent the asymmetry in the CLR. This means that in cases such as

the one shown in Fig. 3.12 the central part of the vessel is not very well fitted by the model. To

overcome this, another parameter is added to this model. In this work we chose to allow the CLR

Gaussian to have a different mean from the main Gaussian.

m2(x,y) = (t +h1× e
−( x−µ1√

2×σ1
)2

−h2× e
−( x−µ2√

2×σ2
)2

)× (λ × (x−µ1)+ t) (3.10)

where µ1 the center (mean) of the first Gaussian, µ2 the height of the second Gaussian and the

other parameters have the same meaning as in Eq. 3.9.

This new parameter allows the displacement of the CLR Gaussian relatively to the main one,

being able to model the desired asymmetry. The influence of this new parameter in the shape of the

model is shown in Fig. 3.11. In Fig. 3.12e and 3.12f one can see the result of the fitting a profile

using the DoG-L8 model. It is visible that the central region is now being very appropriately

adjusted by the model curve.

3.6.1.4 Parameter ranges and initialization

Before fitting, values for parameter initialization and parameter ranges should be defined. For the

Hermite model, the same parameter ranges and initialization of Lupascu et al. (2013) are used:

• t ∈ [0, 1], tinit=max(mean_pro f s);

• h ∈ [−0.588, 0], hinit=−(max(mean_pro f s)−min(mean_pro f s));

• β ∈ [−1, 1], βinit=0;

• µ ∈ [0, pro f _length], µinit=center_pro f ;

• δ ∈ [−2, 2], δinit=0.2;

• σ ∈ [1, 15], σinit=pro f _length/std(mean_pro f s),

where mean_pro f s is the mean of the adjacent profiles used in the 2D fitting, center_pro f is the

estimated center of the profile and pro f _length is the estimated length of the profile.

Regarding the proposed models, the optimum range of values for each parameter is defined

based on the known relationship between some of the parameters and the common vessel profiles.

To confirm that the ranges were broad enough, the observation of a large number of vessel intensity
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(a) Initial profile (t=0.5, h1=−0.5, µ =10, σ1=3,
h2=−0.33, σ2=1, λ=0.02).
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Figure 3.10: Examples of curves of the modified DoG model with 7 parameters (DoG-L7), as
defined in Eq. 3.9 but in 1D. A profile length of 20 pixels was set to the vessel. In each plot a
parameter is varied (inside a established range) at a time, with the remaining parameters fixed, in
order to evaluate the influence of that parameter in the overall model shape.
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Figure 3.11: Example of curves of the modified DoG model of 8 parameters (DoG-L8), as defined
in Eq. 3.10 but in 1D. The plot shows the effect of the variation of the µ2 parameter. The remaining
parameters are fixed: t=0.5, h1=−0.5, µ1 =10, σ1=3, h2=−0.33, σ2=1, λ=0.02. The effect of the
variation of the other parameters can be seen in Fig. 3.10.

profiles was performed. The chosen parameter ranges and initialization for the modified DoG

model with 7 parameters are the following:

• t ∈ [0, 1], tinit=max(mean_pro f s);

• h1 ∈ [−1, 0], h1init =−(max(mean_pro f s)−min(mean_pro f s));

• µ ∈ [0, pro f _length], µinit=center_pro f ;

• h2 ∈ [−1/1.5, 0], h2init =−1/3;

• σ1 ∈ [1, pro f _length/4], σ1init =(1+pro f _length/4)/2;

• σ2 ∈ [1, pro f _length/8], σ2init =σ1init /3;

• λ ∈ [−1/pro f _length, 1/pro f _length], λinit=0,

where mean_pro f s is the mean of the adjacent profiles used in the 2D fitting, center_pro f is the

estimated center of the profile and pro f _length is the estimated length of the profile. For the 8

parameter model, the parameter ranges are the same as for the other DoG model, and the additional

parameter, µ2, has the same range and initialization as µ .

3.6.2 Model parameter optimization

In order to find the parameters of the best-fit model to the vessel profiles, one can solve a non-

linear least squares problem. The solution consists in the set of parameters that minimize the sum

of the squared differences, defined as:

s(β) =
m

∑
i=1

[yi− f (xi,β)]
2 (3.11)

where (xi,yi) are empirical data pairs, m is the number of points, f (x,β) is the model curve and β

are parameters of the model curve.
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(a) Fitting of the original data from 11 adjacent pro-
files using the Hermite model (6 parameters) from
Eq. 3.7.
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(b) Fitting of the smoothed data from 11 adjacent
profiles using the Hermite model (6 parameters)
from Eq. 3.7.
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(c) Fitting of the original data from 11 adjacent pro-
files using the DoG-L7 model from Eq. 3.9.
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(d) Fitting of the smoothed data from 11 adjacent
profiles using the DoG-L7 model from Eq. 3.9.
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(e) Fitting of the original data from 11 adjacent pro-
files using the DoG-L8 model from Eq. 3.10.
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(f) Fitting of the smoothed data from 11 adjacent
profiles using the DoG-L8 model from Eq. 3.10.

Figure 3.12: Examples of fittings of the three referred models to a vessel profile from CLRIS002
image (REVIEW), using the parameter ranges and initialization referred in subsubsection 3.6.1.4.
Both profile fitting with and without profile smoothing are shown. Black dots: profile data points;
orange curve: fitted curve through Trust-Region-Reflective method (see subsection 3.6.2); vertical
yellow line: center of the profile; vertical purple lines: ground truth edge positions.
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There are several algorithms to solve the least squares problem (see subsection 2.1.4). Ex-

amples of methods commonly used for this purpose are the Gauss-Newton, Levenberg-Marquardt

(LM) and the Trust-Region-Reflective (TRR). Although other algorithms would be suitable to find

the best-fit model to the profile points, such as the LM algorithm, the method used in this work to

find the parameter values is the Trust-Region-Reflective (Coleman et al. (1999)). One of the main

reasons for the choice is that region algorithms are robust, reliable and have very strong conver-

gence (Yuan (2000)). They have good performance, retrieving accurate results and being suitable

for solving difficult nonlinear problems more efficiently than other algorithms.

The TRR approach is based on the notion that, for minimizing a function s(β), i.e., searching

for βi+1 that has a smaller function value than the current estimation, βi, s can be approximated

by a simpler quadratic function, q in the neighborhood N of βi. The neighborhood N is the trust

region. Both βi and βi+1 must be inside it. The trust-region subproblem consists in finding the

step, ui, that solves

min(qi(u)), u ∈ N (3.12)

βi is updated to βi+1 =βi+u only if s(βi+1)< s(βi). Otherwise, βi is not updated, and the trust

region is shrunk. The quadratic function is approximated by its Taylor expansion, typically its first

two terms, around βi (Moré and Sorensen (1983)):

qi(u) = g
T u+

1
2
uT Hu (3.13)

where g is the gradient of s evaluated at βi andH is the Hessian matrix of s at βi. The way used to

solve Eq. 3.13 in an efficient manner was to restrict N to a 2D subspace M (Branch et al. (1999)).

In this work, M is considered to be the linear space spanned by m1 and m2, where m1 is the vector

with the direction of the gradient of s at βi, i.e., g, and m2 is either an approximate Gauss-Newton

direction, found by solving

H · m2 =−g (3.14)

or a direction of negative curvature, verifying

mT
2 ·H · m2 < 0 (3.15)

The determination of M using this process aims to induce fast local convergence (through the New-

ton step, Eq. 3.14) and global convergence (through the steepest descent direction, Eq. 3.15) (Cole-

man et al. (1999)).

3.7 Width estimation

Once the best-fit model to the vessel profile is found, the relationship between its parameters and

the vessel width is determined. This relation can be found using supervised methods for regression.

One example is Support Vector Machine Regression (Vapnik (1995)). Neural Networks can also be

applied in regression, being Generalized Regression Neural Network commonly used for function
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approximation (Specht (1991)). Decision trees and ensembles of trees are also commonly used

methods for regression. These trees have several advantages over other existing models. First, they

do not require special prior assumptions on the data distribution (Ikonomovska (2012)). Second,

they are less dependent on their parameter values than other methods, not requiring as much tuning

of parameters, as it is the case of the support vector machines, for instance. Further, no heavy

computation and long training are required. As importantly, a decision tree can be seen as a set of

rules describing the relations between the input variables and the target variable. They are easily

interpretable, contrarily to other methods, as it is the case of neural networks. However, these trees

may overfit data. This motivates the use of ensembles, which increase the predictive power of the

regression trees and reduce variance.

In this work we use a supervised learning method consisting of an ensemble of bagged deci-

sion trees in order to estimate the width from the parameters of the best-fit surface. Besides the

attractive features of the method, it has proven to retrieve good results for this particular applica-

tion (Lupascu et al. (2013)). This classifier learns the mapping from a point in the nD parameter

space to the vessel width, where n is the number of parameters of the model. The training set has

the values of the n parameters of the best-fit model with the correspondent ground truth diameters.

3.7.1 Ensembles of bagged regression trees

A regression tree (Breiman et al. (1984)) is a decision tree where the target variable takes con-

tinuous values, typically real values. It is used to approximate real-valued functions, instead of

being used for classification, as is the case of classification trees. Regression trees have a single

numerical output and can have multiple input variables. The most common trees are the binary

regression trees. The process of building this tree is based on binary recursive partitioning. This

consists in the iterative partition of the sample space into smaller and smaller groups, i.e., branches

or splits (Fig. 3.13). Initially, all training data samples belong to the same partition. Then, the data

is placed into the first two branches by answering a binary question. From all possible splits, the

algorithm selects the one that minimizes the sum of the squared deviations from the mean of the

two partitions. Note that there are alternatives to this greedy-search approach, but this is the most

common strategy. This rule is then applied to each of the new branches. Generally, at each step,

only one predictor, i.e., independent variable, is used. The process continues until a previously

defined stopping rule is verified, as, for example, the decrease in the error being less than a given

threshold or one of the nodes having less than a given number of points. The sum of the squared

errors for a tree T is given by

S = ∑
c∈ leaves(T )

∑
i∈ c

(yi−mc)
2 (3.16)

where yi are the response variable data points and mc =
1
nc

∑i∈ c yi is the value predicted at leaf c.

As referred, by minimizing S at each iteration, one finds the best split.
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Figure 3.13: Example of a regression tree structure. The main components are labelled. The
predictors, i.e., features, are x1, x2, etc., and the target variable is a. To train a regression tree, we
start at the root node, and ask questions about the predictors. The interior nodes make questions,
dictating the splits, and the branches between the nodes contain the answers. The terminal nodes
or leafs contain the output values attributed to a.

Ensemble methods allow to combine multiple weak regression trees, that together form a more

accurate and robust regression tree (Breiman (1996)). These methods create several regression

trees, by extracting different data points from the training set, and in the end combine their outputs.

The resulting strong regression tree has a reduced variance compared to the weak trees. One of the

most used ensemble methods is bagging, i.e., bootstrap aggregation (Fig. 3.14). This algorithm,

despite its simplicity, is very effective. It generates multiple training sets using random sampling

with replacement, i.e., generates many bootstrap replicas of the original dataset. Each of the

replicas is obtained by randomly selecting N observations from the N observations of the dataset,

with replacement. This process omits an average of 37% of the observations for each regression

tree ("out-of-bag" observations). A regression tree is found for each of the replicas. In the end, the

predictions for the new data are computed as the average of the responses of the individual tree

models, being the prediction at a point x, f̂bag(x) given by

f̂bag(x) =
1
B

B

∑
b=1

f̂b(x) (3.17)

where B represents the number of trees used in the ensemble and f̂b(x) is the prediction for x of

the bth tree.

Regression tree ensemble methods are very powerful, generally showing a better predictive

performance than a single regression tree. Additionally, in this work, each tree in the ensemble

can randomly select predictors, i.e., features, for the decision splits, a technique known to improve
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Figure 3.14: Bootstrap aggregation scheme. Multiple bootstrap replicas are drawn from the origi-
nal dataset. Considering this dataset has N samples, each of the replicas has N samples randomly
selected, with replacement. Each of the replicas will be used to train a regression tree. In the
end, the results of the individual trees are combined to obtain the prediction (for representation
purposes only two classes are considered, represented with different colors.)

the accuracy of the predictions. This method, known as random forests, was used by (Breiman

(2001)) along with bagging. It adds additional randomness to bagging, originating a method that’s

very robust against overfitting and is usually not very sensitive to the parameter values (Liaw and

Wiener (2002)). The generalization error of these forests converge to a limit when the number of

trees is large (Breiman (2001)).

Several parameters can be adjusted when training bags of trees with random feature selection.

In this work, the minimal leaf size is set to 5. This setting grows deep trees, being suitable for the

predictive power of a bagging ensemble. Nevertheless, a larger leaf size could generally be used

without sacrificing too much the predictive power of the trees and the ensemble. This could be

useful to reduce the computational cost of the training and prediction process. Another parameter

is the number of predictors selected at random for every decision split. In this work, the number

of predictors randomly selected at the splits is set to 1/3 of total number of predictors, as in Liaw

and Wiener (2002). The number of trees used in the ensemble is set to 100. Although ensembles

with more trees would still be suitable, the addition of more trees does not significantly influence

the error.
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3.8 Concluding remarks

The method for retinal vessel width estimation herein presented combines a model fitting-based

approach with vessel intensity profile preprocessing steps, and estimates the vessel diameters from

the best-fit-model parameters using ensembles of bagged regression trees with random feature se-

lection. The method includes a novel model based on Difference-of-Gaussians for vessel intensity

profile fitting, whilst applying some methodologies adapted from the algorithms of Bankhead et al.

(2012) and Lupascu et al. (2013).

First, vessels are segmented from the eye fundus image, resulting in a binary image with

the vasculature. This is performed using the algorithm of Mendonça et al. (2014). This step

detects the vessels where the diameter will be measured, being the main requirement the detection

of the majority of the vessels. Then, vessel centerlines are obtained through thinning, followed

by junction removal. This leads to the extraction of vessel segments, which will be processed

independently. These segments are smoothed using least-squares cubic spline approximation in

order to allow a more accurate determination of the vessel direction. Afterwards, for each point in

the segment, the cross-sectional vessel intensity profile, i.e, normal to the segment, at that point is

extracted. Then, the length of the profiles is determined based on peak detection and established

conditions to avoid wrong vessel region detection. Based on the determined profile lengths, the

profiles are cut in order to remove unnecessary information, and then smoothed using anisotropic

Gaussian filtering. The level of smoothing is dependent on the profile length.

Finally, model fitting is performed, being the parametric model fitted to the observed intensity

profiles. In this work, 2D model fitting is applied to the set of points retrieved from neighboring

vessel cross-sectional intensity profiles. This is performed since 2D approach is more robust than

the 1D one and introduces some smoothness in the fitting. Three models are tested: an Hermite

model with 6 parameters and two novel models, consisting in adapted DoG models, multiplied

by a line, that are able to model the asymmetry in the vessel edges (7 parameter model) and

also the asymmetry in the center of the vessel (8 parameter model). The best fit model parame-

ters are found by solving the non-linear least squares problem, using the Trust-Region-Reflective

algorithm, constrained by predetermined parameter initialization and parameter ranges. Once the

best-fit model is found, its parameters are used for determining the vessel width. This is performed

with a supervised learning method consisting in ensemble of bagged regression trees, combined

with random feature selection (random forests). These ensembles preserve the attractive proper-

ties of regression trees, such as fast training, little parameter tuning and easy interpretability of the

results, whilst reducing variance and overfitting, being very robust.



Chapter 4

Results of the width measurement
algorithms

The conceived methodologies described in the previous chapter are evaluated in a publicly avail-

able dataset of annotated images. The experimental methodology for evaluating our approach is

herein detailed. The results of our method as well as from other state-of-the-art algorithms are

presented, discussed and compared in this chapter.

4.1 Evaluation of the results

There are several publicly available datasets of retinal fundus images that contain the ground truth

for vessel segmentation, such as DRIVE (Niemeijer et al. (2004)) and STARE (Hoover et al.

(2000)). However, to the best of our knowledge, REVIEW (Al-Diri et al. (2008)) is the only one

dataset that contains vessel width measurements performed by three observers.

4.1.1 Publicly available retinal image dataset for width measurement evaluation

The REVIEW (Retinal Vessel Image set for Estimation of Widths) dataset (Al-Diri et al. (2008))

is the only publicly available dataset that includes retinal vessel width measurements. The dataset

is marked by three independent observers, using a specially designed tool for marking edge points

and extracting the vessel widths from the marked points. Note that only some randomly selected

vessel segments are marked. The dataset is composed by 4 image sets, for a total of 16 images

(color fundus photographs) with 193 vessel segments and 5066 cross-sectional blood vessel pro-

files. These sets have images presenting a variety of pathologies and artifacts. The ground truth

for the evaluation is considered to be the mean of the measurements of the three observers in the

majority of the works that evaluate width measurement algorithms.

HRIS - The high resolution image set This set contains images (60◦ FOV) with different grades

of diabetic retinopathy. The abnormalities that appear near vessels are one of the challenges for

diameter measurement. It contains 4 images (2438×3584 pixels) and 90 segments with 2368

49
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marked profiles. Before being used to evaluate algorithms, these images are usually sampled by a

factor of 4, being the vessel widths known to an accuracy of ±0.25 pixels.

VDIS - The vascular disease image set Contains images (50◦ FOV) of normal and diseased

retina, including diabetic and arteriosclerotic retinopathies. Due to its variety, diameter measure-

ment is challenging. It contains 8 noisy images (1024×1360 pixels), where 6 present diabetic

retinopathy, for a total of 79 segments and 2249 profiles.

CLIRS - The central light reflex image set It is composed by images (50◦ FOV) with early

atherosclerotic changes with an exaggerated vascular light reflex. It contains 2 images (1440×2160

pixels) with 21 segments and 285 cross-sections.

KPIS - The kick point image set This set is composed by 2 images (60◦ FOV), of size 288×119

and 170×192 pixels. The images have good quality, as they were retrieved from full retinal

2600×3330 pixel images, and contain 3 segments and 164 cross-sectional profiles that were taken

from clean, large and non tortuous vessel segments.

(a) CLRIS dataset (image CLRIS002). (b) HRIS dataset (image HRIS001).

(c) VDIS dataset (image VDIS005). (d) KPIS dataset (image KPIS001).

Figure 4.1: Retinal fundus images selected from the REVIEW dataset. Black marks represent the
ground truth edge points defining the vessel width (mean of the annotations from the 3 observers).
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Dubious markings on the images There are cases of ground truth marks that look dubious

since they are not close to the edges of the vessels. Fig. 4.2 shows examples of the cases we found

where the ground truth does not seem correct. These images show the marks, at different colors,

of the three observers. As shown in Fig. 4.2b, in some cases the marks of one of the observers are

displaced relatively to the other two, leading to a wrong ground truth since the mean of the three

does not return points on the edges. Besides, in one of the cases the marks of one observer are

not placed along the vessel at some points (Fig. 4.2a). However, to our knowledge, there are no

references regarding this problem in other works.

(a) HRIS001 (REVIEW). (b) VDIS006 (REVIEW).

Figure 4.2: Examples of dubious markings on images from the REVIEW dataset. The images
shown correspond to the regions of the original images where the erroneous markings were de-
tected. The marks represent the three observers’ annotations, distinguishable by color.

4.1.2 Evaluation metrics

For the current application, it is more relevant that the algorithms retrieve precise results, i.e.,

with a low standard deviation of the width errors, than accurate, i.e., low mean of the width er-

rors (Lowell et al. (2004)). Consistency between the measurements is more significant than abso-

lute diameter: any consistent bias can be compensated, whereas no compensation is possible for

fluctuating bias. Consequently, the standard deviation of the point-by-point differences between

the measured and the ground truth diameters should be used to evaluate the performance of the

algorithms. (Al-Diri et al. (2008)). This difference, at given vessel profile i, is given by

χi = ωi−ψi (4.1)

where ωi is the estimated width and ψi is the correspondent ground truth. The standard deviation

of the width differences is given by

σerror =

√
1
np

np

∑
i=1

(χi−µerror)2 (4.2)
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where µerror represents the mean of the width differences and is given by µerror =
1
np

∑
np
i=1 χi, being

np the number of vessel cross-sections, i.e., profiles, evaluated.

The success rate (SR) is commonly used as a measure of stability (Lupascu et al. (2013)). It

is usually defined as the ratio between the meaningful measurements returned by the algorithm

and the total number of measurements. Note that, dependently on the nature of the methods, the

works may slightly differ in their definition of SR. For instance, methods that measure the width

at a given center point (retrieved from the ground truth, for example), do not return meaningful

measurements only when their algorithms do not converge. Differently, methods such as the ones

from Al-Diri et al. (2009), Xu et al. (2011a) and Bankhead et al. (2012), perform vessel detection

and so, if a vessel is not detected, no measurements are performed and the SR is reduced. Several

authors also present the mean and the standard deviation of the width measurements.

In order to evaluate the performance of the algorithm, a correspondence has to be established

between each ground truth center point (i.e., center point of the marked edge points) and a point in

the detected centerline. Here, we associate each ground truth center point with the closest detected

center point, as long as they are within less than 5 pixels from each other and that no other ground

truth center point is closer to that detected point. This value is chosen since it is smaller than

most of the diameters on the dataset and ensures some margin to account for possible mislocation

of the detected center point. This leads to a unique match between ground truth and detected

center points, ensuring that each center point is only used once for measurement. In the work

of Bankhead et al. (2012) a similar scheme is used, but a larger tolerance is given when it comes

to the maximum distance between the two points (it has to be less than the true vessel diameter

at that point). As referred by the authors, this strict criteria of unique matching between a ground

truth and a detected point can lead to a decrease in the SR in cases where the ground truth points

have a distance of less than 1 pixel from each other.

4.1.2.1 Further evaluation of the algorithm’s performance

Results per range of diameters Other ways of evaluating the results can be of interest to fully

understand the behaviour of the algorithm. One of them is the analysis performance of the algo-

rithm for different ranges of diameters. Ideally, the behaviour should be independent of the real

vessel diameter, but some algorithms tend to retrieve worse results for a given range of diameters.

One simple way to initially assess the performance of the algorithm in terms of diameter ranges

is to compare the distributions of the measured and ground truth diameters. However, this only

allows a general idea of the results per diameter and does not retrieve information regarding the

error for each of the diameters.

Consequently, evaluation can be performed using Bland-Altman plots of the results, by plot-

ting the differences between the measured and the ground truth widths (χi) as a function of the

mean of those differences.

Goodness-of-fit Specifically for model fitting-based methods, there is interest in analysing the

goodness-of-fit of the model curves to the intensity cross-sectional profiles. This is true since the
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determination of the diameters is performed based solely on the model parameters. Consequently,

these should represent the profile as accurately as possible, without compromising the performance

of the regressor. Different metrics can be used, being the following the most common:

• sum of squares due to error (SSE): it is also called sum of square of residuals and represents

the deviation of the data points from the fitted curve. It is given by:

SSE =
n

∑
i=1

(yi− ŷi)
2 (4.3)

where n is the number of points in the profile, ŷi the predicted, i.e., the model, value at point

i and yi the observation value. A smaller value, i.e., closer to zero, means that the model has

a smaller random error, being more useful for prediction;

• R-square (R2): measures how well the fit explains the variation of the data, being given by:

R2 =
SSR
SST

= 1− SSE
SST

(4.4)

where SSR is the ratio of the sum of squares of the regression, SSR = ∑
n
i=1 (ŷi− ȳ)2, SST

is the total sum of squares, SST = ∑
n
i=1(yi− ȳ)2, verifying SST = SST +SSE, with ȳ being

the mean of the observations. It is also called the square of the correlation between the

observation and the predicted values. It ranges from 0 to 1, with higher values indicating that

the model accounts for a greater proportion of variance. Note that if the number of model

coefficients increases, the R-square increases without the fitting necessarily improving; to

avoid this, the number of degrees of freedom should be accounted for (adjusted R-square);

• adjusted R-square (R2
ad j): is based on the the R-square, resulting from an adjustment based

on the degrees of freedom. It is given by:

R2
ad j = 1− SSE(n−1)

SST (v)
(4.5)

where v is the number of residual degrees of freedom, v = n−m, with n being the number of

data points and m the number of fitting coefficients. This metric can have any value smaller

or equal to 1, being that values closer to 1 are indicative of a better fit.

• root mean squared error (RMSE): it is also called fit standard error, and is defined as:

RMSE =
√

MSE =

√
SSE

v
(4.6)

RMSE values closer to 0 indicate a fit more useful for prediction, as happens with the SSE.
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4.2 Experimental results

The results of the proposed method on REVIEW are herein presented and discussed. The models

presented in Chapter 3 are evaluated, both in terms of quality of the fitting and of the width

measurements obtained through regression. Different validation schemes are used to assess the

results. Results of the state-of-the-art algorithms are also reported and compared with our method.

4.2.1 Model fitting results

The goodness-of-fit is evaluated for the three tested models: DoG×line model with 7 parameters

(DoG-L7), DoG×line model with 8 parameters (DoG-L8) and the Hermite model with 6 parame-

ters. The results of the goodness-of-fit (gof) metrics for each dataset of REVIEW are in Table 4.1.

For each metric and dataset, it shows the mean of the metrics for all the profiles in that dataset. In

Fig. 4.3, examples of intensity profiles and their best-fit models are shown, along with the com-

puted gof metrics. As it can be seen, the DoG-L8 model consistently returns better gof metrics

than the other two models, followed by the DoG-L7. In fact, the 8 parameter model has always the

lowest SSE and RMSE and the highest R2 and R2
ad j, which suggests it is the model with smaller

random error and the one that better explains the variation of the data. This is specially notice-

able for the CLRIS dataset, where the DoG-L8 model shows the largest improvement relatively to

DoG-L7. This is expected since the new introduced parameter allows to model the asymmetry in

the CLR, which is frequent in the CLRIS images (see subsection 3.6.1). The Hermite model with

6 parameters is the worst fitting model, retrieving worse values for all the gof metrics. Again, this

is most prominent for the CLRIS dataset. As shown in subsection 3.6.1, the fitting of this model

(considering the referred parameter ranges) to the profiles of this dataset is relatively poor.
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(a) Hermite model fitting.
SSE = 0,0586; R2 = 0,9329;
R2

ad j = 0,9320; RMSE = 0,0128.
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(b) DoG-L7 model fitting.
SSE = 0,01524; R2 = 0,9825;
R2

ad j = 0,9822; RMSE = 0,0065.
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(c) DoG-L8 model fitting.
SSE = 0,0030; R2 = 0,9965;
R2

ad j = 0,9964; RMSE = 0,0029.

Figure 4.3: Example of fitting of the tested models to a vessel intensity profile, along with the
goodness-of-fit metrics. Black dots are the profile points and the orange curve the best-fit model.

4.2.2 Regression tree results

The results of the method proposed in this work are evaluated in four different ways:

1) k-fold cross-validation, with k=10, inside each dataset (CLRIS, HRIS, KPIS and VDIS);
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Table 4.1: Goodness-of-fit metrics obtained for the tested models: DoG-L7, DoG-L8 and Hermite
models. The results shown for each metric and for each dataset are the mean of the values from
all the profiles of that dataset. The best results for each dataset are highlighted.

Model Dataset SSE R2 R2
ad j RMSE

CLRIS 0,0072 0,9774 0,9769 0,0043
HRIS 0,0075 0,9733 0,9721 0,0062
KPIS 0,0055 0,9935 0,9932 0,0053

DoG-L7

VDIS 0,0072 0,9726 0,9718 0,0045
CLRIS 0,0053 0,9817 0,9813 0,0037
HRIS 0,0071 0,9750 0,9736 0,0060
KPIS 0,00500 0,9942 0,9940 0,0050

DoG-L8

VDIS 0,0064 0,9744 0,9735 0,0043
CLRIS 0,0412 0,9208 0,9197 0,0097
HRIS 0,0090 0,9694 0,9683 0,0069
KPIS 0,0110 0,9873 0,9870 0,0078

Hermite

VDIS 0,0114 0,9683 0,9675 0,0054

2) k-fold cross-validation, with k=10, in the whole REVIEW dataset;

3) leave-one-segment-out validation, inside each dataset;

4) leave-one-segment-out validation, in the whole REVIEW.

Table. 4.2 shows the results of the different tested models, for each of the datasets of REVIEW,

using each of the 4 evaluation schemes referred. The metrics presented in the table are the success

rate of the algorithm, the mean and standard deviation of the measurements and the mean and

standard deviation of the measurement errors. For comparison, results from the observers and

the ground truth values are also shown. One should note that the goal here is not to achieve zero

standard deviation of the errors, but instead to be close to the observers’ results. This means

that for datasets in which the observer’s measurements have larger variance, a larger variance is

expected from the measurement algorithms. The results of our method will be further detailed and

discussed in this subsection.

4.2.2.1 k-fold cross-validation results

In k-fold cross-validation, the original dataset is randomly partitioned in k subsets. At each time,

one of the subsets is used for testing and the remaining k−1 subsets for training. This is repeated

k times, so that each subset is used exactly one time for testing. This ensures that each profile enter

exactly once for testing. In this work we use 10 folds, similarly to Lupascu et al. (2013).

In the work from Lupascu et al. (2013), the authors perform cross-validation inside each

dataset. This means that for each of the 4 datasets in REVIEW, the cross-validation scheme is

applied, independently of the other datasets. However, we also perform cross-validation in the

whole REVIEW. This allows to assess the robustness of the regression method, evaluating if it is

able to return good results even when dealing with a large variety of images, both in terms of size,

resolution, contrast, presence of pathologies, etc.



56 Results of the width measurement algorithms

Table4.2:R
esultsoftheproposed

m
ethod

forretinalvesselw
idth

estim
ation,forthethreetested

m
odels:D

oG
×

linem
odelw

ith
7

param
eters(D

oG
-L7),

D
oG

×
line

m
odelw

ith
8

param
eters

(D
oG

-L8),and
H

erm
ite

m
odelw

ith
6

param
eters.

Foreach
ofthe

m
ethods,4

evaluation
schem

es
are

presented
(show

n
in

differentcolors):
cross-validation

inside
each

dataset(C
v_d)

and
in

the
w

hole
R

EV
IEW

(C
v_R

)
and

leave-one-segm
ent-outinside

each
dataset(Lso_d)

and
in

the
w

hole
R

EV
IEW

(Lso_R
).The

results
of

the
m

easurem
ents

from
the

three
observers

(O
1,O

2
and

O
3)

w
ho

m
arked

the
R

EV
IEW

database
are

also
show

n,as
w

ellas
the

ground
truth,i.e.,m

ean
ofthe

three
observations

(G
.T).R

esults
are

show
n

foreach
ofthe

datasets
ofR

EV
IEW

(C
LR

IS,H
R

IS,K
PIS

and
V

D
IS).In

term
s

ofevaluation
m

etrics,SR
stands

forSucess
R

ate,µ
m

eas and
σ

m
eas are

the
m

ean
and

standard
deviation

of
the

w
idth

m
easurem

ents,respectively,w
hereas

µ
error

and
σ

error
are

the
m

ean
and

standard
deviation

of
the

m
easurem

enterrors.
The

*
m

arksnextto
the

SR
valuesindicate

they
are

negatively
influenced

by
errorsfound

in
the

observers’m
arksofthatdataset.

C
LR

IS
H

R
IS

K
PIS

V
D

IS

M
ethod

SR

(%
)

µ
m

eas

(px)

σ
m

eas

(px)

µ
error

(px)

σ
error

(px)

SR

(%
)

µ
m

eas

(px)

σ
m

eas

(px)

µ
error

(px)

σ
error

(px)

SR

(%
)

µ
m

eas

(px)

σ
m

eas

(px)

µ
error

(px)

σ
error

(px)

SR

(%
)

µ
m

eas

(px)

σ
m

eas

(px)

µ
error

(px)

σ
error

(px)

O
1

100
13.19

4.01
-0.61

0.566
100

4.12
1.25

-0.23
0.288

100
7.97

0.47
0.45

0.233
100

8.50
2.54

-0.35
0.543

O
2

100
13.69

4.22
-0.11

0.698
100

4.35
1.35

0.002
0.256

100
7.60

0.42
0.08

0.213
100

8.91
2.69

0.06
0.621

O
3

100
14.52

4.26
0.72

0.566
100

4.58
1.26

0.23
0.285

100
7.00

0.52
-0.53

0.234
100

9.15
2.67

0.30
0.669

G
.T.

100
13.80

4.12
-

-
100

4.35
1.26

-
-

100
7.52

0.42
-

-
100

8.85
2.57

-
-

C
v_d

13.78
3.90

0.01
0.563

4.30
1.21

0.002
0.217

7.40
0.26

-0.001
0.298

8.78
2.45

0.007
0.690

C
v_R

13.61
3.92

-0.16
0.685

4.36
1.22

0.06
0.302

7.34
0.29

-0.06
0.299

8.75
2.53

-0.02
0.721

Lso_d
13.56

3.64
-0.20

1.236
4.30

1.10
-0.004

0.539
7.37

0.14
-0.03

0.384
8.69

2.25
-0.08

1.048
D

oG
-L7

Lso_R

97.5*

13.12
3.51

-0.64
1.156

98.4*

4.53
1.32

0.23
0.829

98.8

7.16
0.27

-0.24
0.365

99.7*

8.68
2.44

-0.09
1.092

C
v_d

13.78
3.93

0.01
0.592

4.31
1.19

0.002
0.248

7.41
0.23

0.005
0.304

8.79
2.39

0.016
0.780

C
v_R

13.43
3.90

-0.34
0.796

4.37
1.23

0.062
0.320

7.33
0.28

-0.08
0.327

8.78
2.49

0.008
0.840

Lso_d
13.63

3.68
-0.14

1.297
4.28

1.06
-0.03

0.598
7.39

0.15
-0.001

0.434
8.62

2.10
-0.155

1.234
D

oG
-L8

Lso_R

97.5*

12.64
3.29

-1.12
1.519

98.4*

4.49
1.35

0.19
0.901

98.8

7.12
0.26

-0.29
0.408

99.7*

8.66
2.36

-0.11
1.270

C
v_d

13.78
3.62

0.02
1.152

4.30
1.21

0.002
0.221

7.40
0.26

0.002
0.283

8.77
2.41

0.001
0.726

C
v_R

13.52
3.23

-0.24
1.391

4.38
1.22

0.07
0.287

7.33
0.27

-0.07
0.292

8.72
2.51

-0.05
0.785

Lso_d
13.70

3.24
-0.06

2.306
4.32

1.12
0.02

0.488
7.42

0.17
0.02

0.359
8.66

2.24
-0.11

1.099
H

erm
ite

Lso_R

97.5*

12.92
2.59

-0.85
2.752

98.4*

4.60
1.29

0.29
0.718

98.8

7.18
0.22

-0.22
0.384

99.7*

8.58
2.44

-0.19
1.139



4.2 Experimental results 57

The results of the proposed method using the 3 tested models, evaluated through 10-fold cross-

validation inside each dataset and in the whole REVIEW, are shown in Table. 4.2. Results show

to be close to the observers’ in terms of precision, as it is the goal. The standard deviation of

the errors, σerror is consistently higher for CLRIS and VDIS datasets comparing to the HRIS and

KPIS, which is coherent with the observers’ values. This is true across all the tested models,

and for both cross-validation schemes. It is known that CLRIS is a difficult dataset due to the

presence of accentuated CLR, and VDIS has a large variety of images, both normal and diseased,

representing a greater challenge for diameter measurement.

Further, one notices that σerror is generally slightly higher when performing cross-validation

in the whole REVIEW than inside each dataset. This effect is expected, since, despite the increase

on the training set size that occurs when all datasets are considered, the variability of vessels prop-

erties also increases, as referred above. For instance, the range of diameters when performing the

cross-validation in the whole REVIEW is larger than when each dataset is considered separately.

From the tested models, DoG-L7 shows better results. Although in the majority of the datasets

the results of the three models are relatively close, and close to the observers’, for the CLRIS

dataset the Hermite model behaves considerably worse, doubling σerror of the other models. As

referred in subsection 4.2.2, the fitting of the CLRIS profiles by this model is relatively poor,

which negatively affects the results. Although the DoG-L8 model fits slightly better the CLR

vessels (subsection 4.2.2), this improvement seems not to add much relevant information for re-

gression. As can be seen, σerror is similar for both DoG×line models in CLRIS, but for VDIS, for

instance, it is higher for the 8 parameter model. This suggests that the addition of the parameter

introduces extra information not relevant for the ensembles of bagged regression trees, which can

even constitute noise that hinders the regression.

Regarding the success rates (SR), the major reason for the less than 100% SR of proposed al-

gorithm is the fact that no association is found between the dubious ground truth points (Fig. 4.2)

and the detected center points, due to the misplacement of the ground truth and the strict asso-

ciation criteria (subsection 4.1.2). In the case of KPIS, where no dubious ground truth marks

were found, the profiles not measured correspond to junction regions. These junction points are

removed in the preprocessing phase of the algorithm. It appears that some junctions were not

avoided when marking the ground truth, probably due to the intersections with thin vessels that

were not accounted for. However, as our segmentation detects even the thinnest vessels, these

junctions are detected. Similar cases may occur in HRIS and VDIS datasets. Since our association

criteria leads to a unique match between ground truth and detected center points, no association

is performed at bifurcations and crossings. Despite this, considering the whole REVIEW, 99% of

the ground truth vessel profiles are measured by the algorithm.

In Fig, 4.4 the distributions of the diameters measured using the modified DoG model with

7 parameters are shown, along with the ground truth diameter distributions. Both results from

cross-validation inside each dataset and in the whole REVIEW are presented. It is clear that

the measured and ground truth diameters follow a similar distribution, being that CLRIS is the

dataset with the measurement distribution farther from the reference one. We see that the range
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(a) Diameter distribution using cross-validation inside each dataset (CLRIS, HRIS, KPIS and VDIS).
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(b) Diameter distribution using cross-validation inside the whole REVIEW.

Figure 4.4: Distribution of the ground truth and measured diameters, using the DoG-L7 model for
fitting and 10-fold cross-validation, both inside each dataset and in the whole REVIEW.
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of diameters present in the CLRIS and VDIS datasets are significantly larger than the ones from

HRIS and KPIS, being that KPIS has the narrowest diameter range. Further, CLRIS is practically

the only dataset that contains diameters largest than 15 pixels. HRIS also contains vessels with

very small diameters that poorly represented in other datasets. This helps corroborating the above

mentioned results, since the CLRIS and VDIS higher variance errors obtained through in-dataset

cross-validation may also be due to their broader diameter ranges. In Lupascu et al. (2013), the

authors suggest that two criteria should be met when constructing the datasets for the ensembles

of bagged regression trees: 1) there should be an approximately uniform diameter distribution in

the training set and 2) the range of widths in the training and testing sets should not be very wide.

Fig. 4.5 shows the correlation and the Bland-Altman plots of the ground truth and the measured

diameters from REVIEW, using the DoG-L7 model and cross-validation inside each dataset and

in the whole REVIEW. In the correlation plots, each measured profile is represented by a point

with coordinates (xp,yp), where xp is the ground truth diameter and yp the measured diameter. In

the BA plot, each point has coordinates (xp,yp− xp). By analysing the plots, one sees that there is

little dispersion of the points, indicating a small variance of the errors. As the points are close to

the y = x line, in the correlation plot, and to the y = 0, in the BA plot, a low measurement error is

verified. Consequently, the measurements are both precise and accurate. The standard deviation

of the errors for REVIEW is 0.51 pixels when the cross-validation is performed in each dataset,

and 0.56 pixels when it is performed in the whole REVIEW, being the mean error close to zero.

Further, the errors do not seem to depend on the range of diameters, since the points appear to be

distributed in a similar manner regardless of the true diameter.

4.2.2.2 Leave-one-segment-out validation results

The algorithm is also evaluated performing leave-one-segment-out validation. This consists in

leaving at each time one vessel segment for testing, and training in the remaining segments. The

procedure is repeated n times, where n is the number of segments in the dataset. We evaluate our

method inside each dataset, as well as in the whole REVIEW. This way of evaluating the results

ensures that similar neighboring profiles are not considered both in training and testing, which is

not secured by cross-validation scheme. It is known that neighboring profiles can be very similar.

Further, since 2D model fitting is performed, i.e., 11 neighboring profiles are considered, two

consecutive 2D profiles have 1D profiles in common.

The results of the proposed method using the 3 tested models and this evaluation scheme are

shown in table. 4.2. In general, the errors follow a tendency similar to the described for cross-

validation, being verified higher σerror for the CLRIS and VDIS datasets, for the three models and

for the two validations (in-dataset and in the whole REVIEW). Similarly to what happened for

cross-validation, DoG-L7 shows better or similar results to the ones from the other models, being

the biggest improvement verifier for CLRIS and when comparing with the Hermite model.

We see there is an increase of σerror when using this validation instead of cross-validation,

for all the datasets, which is expected. Removing an entire segment from the training set may

significantly reduce or eliminate the presence of similar profiles to the tested ones. This effect is
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(a) Bland-Altman plots using cross-validation inside each dataset (CLRIS, HRIS, KPIS and VDIS).
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(b) Bland-Altman plots using cross-validation inside the whole REVIEW.

Figure 4.5: Correlation and Bland-Altman plots of the ground truth and measured diameters, using
the DoG-L7 model for fitting and 10-fold cross-validation, inside each dataset and in the whole
REVIEW (in the xx axis of the Bland-Altman plot we show the ground truth diameters instead of
the mean between the ground truth and measured diameters).

most prominent for the CLRIS dataset. As known, CLRIS contains segments with strong CLR, and

has a very wide range of diameters. Further, it contains the majority of the vessels with diameters

>20 pixels (see Fig. 4.6). Additionally, it only contains 20 segments. Since the diameter range

is very wide, few segments are available for each diameter. Consequently, the removal of one

segment from the training set can largely affect the ensembles of bagged regression trees since it

is probably a representative segment. In Fig. 4.6 one sees that the measured diameter distribution

does not have any profile with >20 pixels.

Further, σerror does not vary in the same manner for the different datasets when comparing

both leave-one-segment-out validations. For instance, for HRIS, σerror is higher (for all three
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(a) Diameter distribution using leave-one-segment-out validation inside each dataset.
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(b) Diameter distribution using leave-one-segment-out validation inside the whole REVIEW.

Figure 4.6: Distribution of the ground truth and measured diameters, using the DoG-L7 model for
fitting and leave-one-segment-out validation, both inside each dataset and in the whole REVIEW.
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models) when performing the validation in the whole REVIEW, whereas for the other datasets the

differences are negligible. For the HRIS dataset, the diameter range is relatively narrow, and there

are 90 segments in total (Fig. 4.6). The fact that σerror increases significantly when validating in

the whole REVIEW is considered to be due to the introduction of noise by other datasets. Fig. 4.7

shows a vessel profile from HRIS, where the measured diameter was, for certain profiles, the

double of the real one, due to the similarity of the vessel profile with a profile of a vessel with

CLR, caused by the inclusion of a near vessel in the profile. This identification of CLR only

happened because of the presence of CLRIS in the training.

1

2
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B

(a) Segment from HRIS003 image (REVIEW).
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(c) Intensity profile from region B.

Figure 4.7: Example of a segment with poor width measurements due to a false CLR detection.
Image (a) shows an HRIS vessel segment (labelled as 1), that at a given point runs next to another
segment (labeled as 2); (b) shows the smoothed profiles extracted from region A; (c) shows the
smoothed profiles extracted from region B, where the presence of another vessel close to the main
vessel simulates the presence of CLR. Profiles as the one shown in (c) were wrongly measured by
our algorithm, when leave-one-segment-out validation is performed in the whole REVIEW, being
retrieved a diameter that is approximately two times the real diameter. (Black points in (b) and (c)
represent the intensity profiles, the orange curves are the best-fit models, the yellow vertical lines
are the centers of the profiles and the purple vertical lines represent the ground truth locations.
White marks in (a) represent the ground truth points.)

Nevertheless, one should note that, even when a segment is left out of the training procedure,

the obtained results are still very satisfactory, never surpassing approximately 1 pixel of σerror

(except for CLIRS, where σerror is of 1.236 pixels). Finally, µerror is considerably higher when

for the leave-one-segment-out validation in the whole REVIEW than for the other three validation

schemes. Despite this, they are still close to the values of the observers.
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An additional analysis is performed in order to assess the similarity between the segments

measured in each dataset, aiming to corroborate the results of the leave-one-segment-out validation

inside each dataset. If the similarity between segments in a dataset is low, it is expected that the

removal of a segment from the training set significantly affects the results. Obviously, this depends

also on the number of segments in the dataset. To assess the segment similarity, for each dataset,

the correlation between each pair of segments is computed. For that, the profile for a given segment

is taken as the mean of the profiles from that segment. For each segment pair, the two profiles are

aligned by their maximum value. Results are normalized by dividing by the maximum of the

autocorrelations of the two profiles. Results are shown in Table 4.3.

Table 4.3: Correlation between the segments of each dataset. µcorr and σcorrr are the mean and
standard deviation of the correlations of all pairs of segments, maxcorr is the maximum correlation
and #comb is the number of combinations of 2 segments found in the dataset.

Dataset µcorr σcorr maxcorr #comb

CLRIS 0.510 0.252 0.982 190

HRIS 0.612 0.217 0.996 3160

KPIS 0.804 0.103 0.960 15

VDIS 0.454 0.258 0.997 6670

HRIS is the dataset that shows higher correlation between its segments (higher µcorr and

smaller σcorr), which is coherent with the the evolution of σerror when a segment is left out of

the training, which is not very significant. CLRIS dataset shows one of the lowest correlations,

wich corroborates the big effect of the removal of a segment from the training set. Although

VDIS has lower correlation values, the largest number of segments (79 vs 20) justifies the smaller

increase in σerror when comparing to CLRIS.

Fig. 4.8 shows the correlation and the Bland-Altman plots of the ground truth and the measured

diameters from REVIEW, using the DoG-L7 model and leave-one-segment-out inside each dataset

and in the whole REVIEW. Although there is little dispersion of the points, indicating a small

variance of the errors, the dispersion is larger than that of cross-validation results. The standard

deviation of the errors for REVIEW is 0.84 pixels when the cross-validation is performed in each

dataset, and 0.99 pixels when it is performed in the whole REVIEW, being the mean error close

to zero. Similarly to the cross-validation results, the errors do not seem to depend on the range

of diameters, although a slight tendency to underestimate the widths for larger vessels can be

detected.

4.3 Comparison with the state-of-the-art results

Together with our DoG-L7-based method, Fig. 4.9a depicts the performance of some of the meth-

ods presented in Chapter 2 on the REVIEW dataset. The computed metrics are, in most of the
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(a) Bland-Altman plots using leave-one-segment-out validation inside each dataset (CLRIS, HRIS, KPIS
and VDIS).
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(b) Bland-Altman plots using leave-one-segment-out validation inside the whole REVIEW.

Figure 4.8: Correlation and Bland-Altman plots of the ground truth and measured diameters, using
the DoG-L7 model for fitting and leave-one-segment-out validation, inside each dataset and in the
whole REVIEW (in the xx axis of the Bland-Altman plot we show the ground truth diameters
instead of the mean between the ground truth and measured diameters).

cases, the referred in subsection 4.1.2. Note that the evaluation of the methods that are not com-

pared in the chart is not available in the literature. In Appendix A the results of Fig. 4.9a are

presented in a table-format, along with additional results of the proposed algorithm.

4.3.1 Model fitting-based methods

Earliest methods show, in general, poor results in comparison with the most recent ones. The

simple HHFW algorithm proposed by Brinchmann-Hansen and Heier (2009), although retrieving

relatively good precision, i.e., low standard deviation of the width differences, for some of the
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(b) Mean of the differences between the measured diameters and the corresponding ground truth diameters.

Figure 4.9: Performance of vessel width measurement methods on the REVIEW dataset, for each
of the four datasets: CLRIS, HRIS, KPIS and VDIS. The results of the three observers (O1, O2 and
O3) and the ground truth (mean of the three observations) are also shown. The methods compared
are that of Gregson et al. (1995), Brinchmann-Hansen and Heier (2009) (HHFW), Zhou et al.
(1994) (1D-G), Lowell et al. (2004) (2D-G), Al-Diri et al. (2009) (ESP), Yin et al. (2013), Xu
et al. (2011a) (Graphs), Trucco et al. (2013), Kumar et al. (2012) (ULDM), Lupascu et al. (2013),
Bankhead et al. (2012), Yin et al. (2014) and Vazquez et al. (2013), the last evaluated in four
types of images: green channel of the RGB color model (G), lightness from the Lab color space
(L), and two different gray transformations: light gray scale image (I) and darker image (J) and,
finally, the proposed method using the DoG-L7 model and evaluated both with cross-validation
and leave-one-segment-out inside each dataset, denoted by Cv_d and Lso_d, respectively. “x”
marks indicate that no values are available.
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datasets, sometimes shows a poor SR (for CLRIS dataset the SR is 0%). Results from the method

of Gregson et al. (1995) are significantly worse than that of HHFW when it comes to precision but

has a SR of 100%. The 1D-Gaussian fitting-based method proposed by Zhou et al. (1994) does

not improve (and sometimes worsens) the results of the two latter methods, although presenting

good SR. Particularly in the CLRIS dataset, the precision and accuracy are poor (reaching 4 and

−7.5 pixels, respectively). The 2D-Gaussian and DoG fitting of Lowell et al. (2004) shows in

general better results, except for CLRIS, where the standard deviation of the errors is the highest

from all the methods (6 pixels). This is not expected since the method considered the central light

reflex present in the vessels, by using a DoG model.

Although not present in Fig. 4.9a, Aliahmad et al. (2012) evaluated the method on CLRIS and

VDIS, but only on 580 randomly selected vessel cross-section and considering the first observer

measurements as the ground truth instead of the mean of the 3 observers. The proposed algorithm

shows the best results, in terms of precision and accuracy, when compared with the methods

of Chapman (2001) (sliding linear regression filter) and Gao et al. (2001) (1D-twin Gaussian

model fitting). The latter shows the worst performance. One advantage is the use of multiple

scaling factors to relate the model σ parameter and the vessel diameter, being a scaling factor

computed for each edge. This takes in account the possibility of different blurriness levels and

illumination at the edges. Contrarily, previous methods consider a single fixed scaling factor for

all images.

The method of Lupascu et al. (2013) shows a mean of the width differences very close to the

observers in all datasets, being close to 0 pixel (very good accuracy). The method shows con-

siderably higher accuracies and precisions than the majority of the methods, even comparing to

the method of Al-Diri et al. (2009), one of the leading contour-based algorithms. For the CLRIS

dataset this is specially noticeable, being the standard deviation of the errors considerably lower

than most of the methods. The correlation between the measurements and the ground truth was

also analysed, and showed that the measurements were slightly smaller for thin vessel and larger

for large vessels. By analysing the performance of the method on a partitioned VDIS dataset (di-

vided in subsets with widths with low inter-observer variability), the authors concluded that the

method behaved worse in the subsets with wider diameter range and with a non uniform diame-

ter distribution, giving varying results depending on the training set characteristics. However, if

criteria are met to avoid the referred situations, results should be consistent.

4.3.2 Contour-based methods

The ESP algorithm of Al-Diri et al. (2009) shows very good performance, returning results close

to the observers for all the datasets except for the CLRIS, due to the blurred edges and the vessel

CLR. The algorithm shows an high level performance on fine vessels (from 3 to 4 pixels). How-

ever, it may not detect the vessel width at a given point, i.e., it fails to converge (SR 6= 100%). It

may fail to identify overlapping or closely parallel vessels and in cases with a steep background

intensity gradient, obscuring one edge of the vessel. These limitations can be due to the need of

ESP to clearly identify two parallel edges.
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The graph-based approach of Xu et al. (2011a) is robust, retrieving small σerror on HRIS and

KPIS. For the remaining datasets, the standard deviation of the errors are more distant from the

observers. The correlation between the measurements and the ground truth in HRIS show that the

method provides smaller measurements for fine vessels and larger measurements for large vessels.

An advantage of the method is that the simultaneous two-boundary detection allows to detect both

boundaries even if one is noisy or has low contrast. The strong dependence of the results on

the initial segmentation is a limitation, as well as the presence of false positives or disconnected

vessels, sometimes leading to incorrect measurements.

The ULDM method of Kumar et al. (2012) shows a high success rate and low deviation from

the ground truth measurements. The authors also computed the cross-correlation between the ves-

sel widths predicted using ULDM, the manual measurements from each observer and the ground

truth, for each of the 4 datasets. The correlation between ULDM and the ground truth is similar to

that of the 3 manual measurements for all datasets, except for KPIS (slightly lower).

The method of Bankhead et al. (2012) presents very good precision, with one of the lowest

(most of the times the lowest) standard deviation of the errors. The most distinct improvement

is in the CLRIS dataset, which probably arises from the algorithm being able to deal with the

CLR. For VDIS, the results do not show much improvement, caused by the noisy nature of the

dataset. However, even in the worst case, the standard deviation of the errors is ≤ 1 pixel. The

major limitation of the method is that if the image contrast decreases the zero crossings may not

be found for all locations along the vessel.

The algorithm presented by Vazquez et al. (2013) was tested on images with four different

color-spaces (see subsection 2.2.1). In all datasets except CLRIS, σerror is small, being ≤ 1.2 pix-

els. SR are in general lower than that of the other methods. Generally, the measurements are little

dependent on the used color space. Limitations of the method are the treatment of images with

strong central light reflex, which can lead to the detection of two different vessels.

The method of Trucco et al. (2013) shows a performance comparable to that of sophisticated

algorithms, but has lower SR. For KPIS and CLRIS it is one of the best performing methods

(smaller σerror). As was the goal of this work, the method improved the accuracy of width estima-

tion taken directly from unprocessed binary vessel masks.

The algorithm of Yin et al. (2013) shows good performance, specially in the CLRIS dataset

and has a SR of 100%. However, the only metric provided is the mean of the measurements. The

measured and reference widths on the REVIEW dataset follow a similar distribution.

Yin et al. (2014) present consistent results for all images and a SR of 100%. The precision

is relatively good, but always ≥ 1pixel, being higher than that of the most successful methods,

specially for HRIS and KPIS. However, only 4 images of the REVIEW (HRIS001, CLRIS002,

VDIS006 and KPIS001) were used for evaluation, being the results not as representative as the

other methods.
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4.3.3 Comparison with the proposed method

The performance of our method is close and even outperforms the best-performing state-of-the-

art algorithms. The most robust state-of-the-art algorithms are the approaches from Al-Diri et al.

(2009), Bankhead et al. (2012) and Lupascu et al. (2013), being those that return consistently low

standard deviation of the errors for all 4 datasets. Although having common concepts with the last

two methods, our method shows, in general, better performance. The preprocessing steps are in-

spired in the work of Bankhead et al. (2012). The diameter measurement is conceptually similar to

the reported in Lupascu et al. (2013). Our method shows lower σerror than all these methods when

it is evaluated using cross-validation, both inside each dataset and in the whole REVIEW. Even

considering other validation schemes, our method is still among the top-performing approaches.

Considering a score defined as the mean of the standard deviation of the errors for all datasets,

our method presents scores of 0.442 pixels and 0.502 pixels when using cross-validation in each

dataset and in the whole REVIEW, respectively. The work of Bankhead et al. (2012) has the third

best score (0.628 pixels). When leave-one-segment-out is performed, our method is still among

the three best scored-works (see Appendix A).

Regarding the method of Lupascu et al. (2013), which is the closest to out proposal, the au-

thors evaluated results through cross-validation inside each dataset. Using the same evaluation

scheme, our method achieves almost an half of the σerror for the majority of the datasets. The

improvement of the results can be attributable to the use of a model that fits best the vessel pro-

files, specially those with CLR, and to the preparation of the profiles before model fitting using

several preprocessing steps that improved the subsequent steps. This is true since the results of our

method (see Table 4.2) but using the Hermite model with 6 parameters of Lupascu et al. (2013)

are still superior to those of that work for the majority of the datasets.

4.4 Concluding remarks

Three models are tested in this work: DoG-L7, DoG-L8 and 6 parameter-Hermite model. DoG-L8

is the model that returns better goodness-of-fit metrics, which is specially noticeable for CLRIS.

This is expected since the new parameter allows to model the asymmetry in the CLR. The Hermite

model with 6 parameters is the worst fitting model.

Four validation schemes are used to evaluate the results of our method in terms of width

measurement: 10-fold cross-validation inside each dataset and in the whole REVIEW, and leave-

one-segment-out validation inside each dataset and in the whole REVIEW. Results from cross-

validation are close to the observers’ in terms of precision, as it is the goal. The standard deviation

of the errors is consistently higher for the CLRIS and VDIS datasets comparing to the HRIS and

KPIS, which is expected since the first two are challenging datasets. Further, errors are generally

slightly higher when validating in the whole REVIEW than inside each dataset. This is due to the

introduction of a large variety of vessel properties when the whole REVIEW is considered. The

DoG-L7 model retrieves the best results, specially for CLRIS. For this dataset, the Hermite model
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returns the double of the standard deviation of the errors when compared to the first model. Al-

though DoG-L8 fits better the CLR vessels, this seems not to be much relevant for regression. The

correlation and the Bland-Altman plots of the ground truth and the measured diameters suggest

that the errors of the method do not depend on the range of the diameters. In general, the errors

evaluated using the leave-one-out scheme vary similarly to the cross-validation ones. Neverthe-

less, there is an increase of σerror when using this validation scheme, specially for CLRIS, since

removing an entire segment from the training set may significantly reduce and even eliminate

representative profiles.

From the analysis of the state-of-the-art results, the majority of the methods tend to under-

estimate the widths (mean of the measurement errors ≤ 0). The best results, considering both

accuracy and precision, usually occur for the HRIS and KPIS datasets. Some of the methods, as

the earlier methods and that of Vazquez et al. (2013), see their performance reduced in CLRIS

dataset, namely in terms of precision and success rate. Generally, the most recent methods (from

2009 onwards) have more promising results, showing higher precision and accuracy. Some of

the methods distinguish themselves from the others by showing good consistence among all the

datasets, low errors and high success rates. Results of the model fitting-based method of Lupascu

et al. (2013) show almost always the best standard deviation of the measurement errors (and a

close to zero mean of the measurement errors). In turn, the algorithm proposed by Bankhead et al.

(2012), which is a contour-based method, presents high SR (always between 99% and 100%)

and very low standard deviation of the errors, even lower than that of Lupascu et al. (2013). For

these reasons, these works seem to be the most promising. However, methods such as the ESP

from Al-Diri et al. (2009) also present very good results and should not be dismissed.

The performance of the method proposed in this work is similar or better than the best-

performing state-of-the-art algorithms. The most robust state-of-the-art algorithms are the ones

from Al-Diri et al. (2009), Bankhead et al. (2012) and Lupascu et al. (2013). Our method shows

the lowest σerror when cross-validation is performed, both inside each dataset and in the whole RE-

VIEW. Even with other validation schemes, our results are among the best found in the literature.

Our method almost halves the σerror reported by Lupascu et al. (2013). The model introduced in

this work uses a model that fits better to the vessel profiles, specially the ones with CLR. Further,

it uses several preprocessing steps, inspired in Bankhead et al. (2012), that improve the vessel

profiles before the model fitting is performed.
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Chapter 5

Conclusions and Future work

Retinal blood vessels are very useful for non-invasive diagnosis of diseases that affect the systemic

vasculature, since they are the only part of the vasculature that is directly observable. These vessels

can be assessed using eye fundus color images. Retinal vessel width changes are related with

several major diseases, such as diabetes, hypertension and atherosclerosis. Automatic methods are

needed for objective and precise determination of vessel widths, since the manual measurement

would be tiresome and prone to errors. The development of these methods is demanding, due

to the great variability in image resolution and appearance of the vessels. Although automatic

methods with good performance have been proposed, most of them have limitations, such as

poor performance in lower resolution images, on thinner vessels or susceptibility to artifacts and

pathologies.

The method herein presented combines model fitting with several preprocessing steps, and

estimates the widths based on the best-fit-model parameters using ensembles of bagged regression

trees with random feature selection. It uses a novel parametric model based on a Difference-of-

Gaussians (DoG) model, modified through a multiplying line with varying inclination which is

able to describe profile asymmetry. Additionally, it applies some methodologies adapted from

other top-performing state-of-the-art algorithms. The algorithm starts by segmenting the vessels

from the eye fundus image. Afterwards, vessel centerlines are detected through skeletonization of

the vasculature. Then, individual segments are extracted through junction removal. Segments are

then smoothed by spline approximation and the cross-sectional intensity profiles at the segment

points are extracted. The length of the profiles is then determined and used for profile cut and

smoothing. Parametric model fitting is applied to the intensity profiles. Based on best-fit model

parameters the vessel width is determined through regression.

The algorithm is evaluated on REVIEW, the only publicly available dataset that contains width

measurement annotations. This dataset is composed of 4 subdatasets with very different charac-

teristics (resolution, presence of pathologies, vessel appearance, etc.). The tested models are two

modified DoG models, newly introducted in this work, DoG-L7 and DoG-L8, that deal with the

asymmetry of the profiles, and an Hermite model with 6 parameters. To evaluate the results, 10-

fold cross-validation and leave-one-segment-out validation are performed, both inside each dataset
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and in the whole REVIEW. Cross-validation results are close in precision to that of the observers,

being the errors consistently higher for the most challenging datasets (CLRIS and VDIS) than for

the easier ones. The performance is slightly worse when validating in the whole REVIEW, which

can be due to the presence of a greater variety of vessel properties in comparison to each individual

dataset. The best results are obtained with the DoG-L7 model, specially for CLRIS, for which it

shows twice the performance of the Hermite model. Although the 8 parameter model provides a

better profile fitting, specially for the CLRIS dataset, it does not improve the regression ensembles

performance. Further, the performance of the method does not seem to depend on the true diam-

eters. Generally, leave-one-segment-out validation results vary similarly to the cross-validation

ones. Nevertheless, the performance is worse comparing to cross-validation, specially for CLRIS,

since removing a segment from the training set eliminates representative profiles.

The method presented in this M.Sc. dissertation often shows better results than the top-

performing state-of-the art algorithms. It has consistently the higher precision (lowest standard

deviation of the errors) when cross-validation is performed. When a segment is left out, our re-

sults are still among the best found in the literature. Our method practically halves the σerror

reported by Lupascu et al. (2013). The novel DoG-L7 and DoG-L8 models fit best the vessel pro-

files, specially the most challenging ones, such as the ones with CLR. Results are further improved

due to the use of several preprocessing steps before model fitting.

Despite all this, there is still room for improvement and adaptations. The algorithm was de-

signed independently of any framework. However, one of the thought applications for the method

is the integration in a system for AVR computation, for instance (Dashtbozorg (2015)). Depending

on the type of application, it could be of interest to adapt the width measurement algorithm to be

autonomous from the vessel centerlines. In a framework where segmentation is not performed, a

method that does not depend on the centerlines may be preferable. With this adaptation the vessel

width could be measured at given point (placed inside the vessel). The algorithm would detect

the vessel center point that is closer to that point, and measure the width at that specific center

point. However, additional steps would be required to determine the vessel direction at the tar-

get point and detect its centerline neighbors so that the stack of 1D neighboring profiles could be

constructed.

Further, considering the nature of the method used for width estimation, which relies on su-

pervised learning, the definition of the training dataset is a key factor. However, the REVIEW

dataset, as well as its subdatasets, does not contain an uniform distribution of the diameters. This

is not desirable and can influence the ensembles’ performance, being that a more balanced dataset

would be of much more interest. For that, observers should mark the majority of the vessels in

the image instead of specific segments, and the dataset should contain more images. The increase

in the quality of the training set is expected to improve the results and, perhaps more importantly,

increase their representativity and reliability.

Moreover, despite the method’s good performance, additional efforts in optimizing certain

steps of the algorithm would probably improve the results. For instance, the determination of the

profile lengths prior to model fitting could be further refined, since it tends to overestimate the
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results. Although not critical, a better initial width estimation could improve the model fitting.

This could start by a better adjustment of the parameters of the smoothing filter applied before

peak detection, so that subtle peaks on the vessel edges are not missed. Again, although the

parameter choice is not very determinant to the ensembles of trees’ performance, the influence of

the parameters, such as the number of trees and the number of predictors selected at random at

each split, could be further assessed. Additionally, other regression methods could be tested for

results comparison, such as Support Vector Machine or Neural Networks for regression.

Our retinal vessel width measurement method has a performance that is close or outperforms

the top-performing state-of-the-art methods. The method shows to retrieve precise results, close

to that of the observers, as was the goal. This shows the robustness of our method and its great

potential to be used directly for measurement of retinal vessel widths and/or to be integrated in a

framework for retinal vascular assessment.
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Appendix A

Results of the algorithms

Table A.1: Standard deviation of the width errors, i.e., point-by-point differences between the
ground truth and the width measurements (pixels). Cv_d, Cv_R, Lso_d and Lso_R stand for
cross-validation in the dataset, cross-validation in the whole REVIEW, leave-one-segment-out
validation in the dataset and leave-one-segment-out in the whole REVIEW, respectively. The
score corresponds to the mean of the values of all datasets. The three best scores at highlighted.

Method HRIS VDIS CLRIS KPIS Score
O1 0.288 0.543 0.567 0.233 0.408
O2 0.256 0.621 0.698 0.213 0.447
O3 0.285 0.669 0.566 0.234 0.439

Gregson 1.479 1.494 2.841 0.602 1.604
HHFW 0.926 0.879 - 0.389 -

Zhou (1D-G) 0.896 2.110 4.137 0.399 1.886
Lowell (2D-G) 0.703 1.328 6.019 0.337 2.097
Al-Diri (ESP) 0.420 0.766 1.469 0.328 0.746

Yin, Y. - - - - -
Xu (Graphs) 0.567 1.43 1.78 0.67 1.112

Trucco 0.760 1.381 1.229 0.319 0.922
Kumar (ULDM) 0.79 1.18 1.79 0.60 1.090

Lupascu 0.438 1.073 1.154 0.318 0.746
Bankhead 0.32 0.95 0.95 0.29 0.628

Yin, X. 1.11 1.55 1.49 1.32 1.368
Vazquez- G 0.85 1.11 2.17 0.76 1.223
Vazquez- L 0.88 1.08 4.26 0.74 1.740
Vazquez- J 0.80 1.19 2.30 0.73 1.255
Vazquez- I 0.96 1.12 2.51 0.75 1.335

Proposed, DoG-L7 (Cv_d) 0.217 0.690 0.563 0.298 0.442
Proposed, DoG-L7 (Cv_R) 0.302 0.721 0.685 0.299 0.502
Proposed, DoG-L7 (Lso_d) 0.539 1.048 1.236 0.384 0.802

Proposed, DoG-L7 (Lso_R) 0.829 1.092 1.156 0.365 0.860
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Table A.2: Mean of the width errors, i.e., point-by-point differences between the ground truth
and the obtained width measurements (pixels). Cv_d, Cv_R, Lso_d and Lso_R stand for cross-
validation in the dataset, cross-validation in the whole REVIEW, leave-one-segment-out validation
in the dataset and leave-one-segment-out in the whole REVIEW, respectively.

Method HRIS VDIS CLRIS KPIS
O1 −0.23 −0.35 −0.61 0.45
O2 0.002 0.06 −0.11 0.08
O3 0.23 0.30 0.72 −0.53

Gregson 3.29 1.22 −1.0 −0.23
HHFW 0.62 −0.91 - −1.05

Zhou (1D-G) −0.54 −3.07 −7.5 −2.57
Lowell (2D-G) −0.17 −2.26 −6.8 −1.65
Al-Diri (ESP) 0.28 −0.05 −1.90 −0.96
Yin, Y. (2013) - - - -
Xu (Graphs) 0.21 −0.53 0.08 −1.14

Trucco −0.42 −0.79 −0.16 −1.32
Kumar (ULDM) 0.21 −0.64 −0.55 −0.50

Lupascu 0.004 0.015 0.006 0.015
Bankhead - - - -

Yin, X. (2014) - - - -
Vazquez- G −0.13 −0.95 0.83 −1.28
Vazquez- L −0.22 −1.29 1.20 −1.33
Vazquez- J 0.08 −0.84 1.52 −1.05
Vazquez- I −0.14 −1.17 1.27 −1.26

Proposed method, DoG-L7 (Cv_d) 0.002 0.007 0.01 −0.001

Proposed method, DoG-L7 (Cv_R) 0.06 −0.02 −0.16 −0.06

Proposed method, DoG-L7 (Lso_d) −0.004 −0.08 −0.20 −0.03

Proposed method, DoG-L7 (Lso_R) 0.23 −0.09 −0.64 −0.24
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Table A.3: Success rate (%).

Method HRIS VDIS CLRIS KPIS
O1 100 100 100 100
O2 100 100 100 100
O3 100 100 100 100

Gregson 100 100 100 100
HHFW 88.3 78.4 0 96.3

Zhou (1D-G) 99.6 99.9 98.6 100
Lowell (2D-G) 98.9 77.2 26.7 100
Al-Diri (ESP) 99.7 99.6 93.0 100

Yin, Y. 100 100 100 100
Xu (Graphs) 100 96.0 94.1 99.4

Trucco 95.7 92.1 90.2 93.9
Kumar (ULDM) 99.6 96.3 98.2 100

Lupascu 100 100 100 100
Bankhead 99.5 99.0 100 100

Yin, X. 100 100 100 100
Vazquez- G 78.89 78.70 91.58 100
Vazquez- L 81.71 69.68 74.39 100
Vazquez- J 73.86 57.80 80.35 100
Vazquez- I 83.36 74.34 75.79 100

Proposed method 98.4 99.7 97.5 98.8
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