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FORCE-BASED ATOMISTIC/CONTINUUM BLENDING FOR
MULTILATTICES

DEREK OLSON, XINGJIE LI, CHRISTOPH ORTNER, BRIAN VAN KOTEN

Abstract. We formulate the blended force-based quasicontinuum (BQCF) method for multilat-
tices and develop rigorous error estimates in terms of the approximation parameters: atomistic
region, blending region and continuum finite element mesh. Balancing the approximation parame-
ters yields a convergent atomistic/continuum multiscale method for multilattices with point defects,
including a rigorous convergence rate in terms of the computational cost. The analysis is illustrated
with numerical results for a Stone–Wales defect in graphene.

1. Introduction

A full twenty years has passed since the original proposal of the quasicontinuum method [36]
captivated the materials science community with the potential to model material phenomena
spanning vastly different length scales. The quasicontinuum (QC) method was among the first
of the so-called atomistic-to-continuum (AtC) coupling algorithms which sought to bridge the gap
between length scales from the nano to macroscale. A remarkable number of these AtC methods
have been proposed since (see e.g. [51, 31, 28] for a thorough discussion of many of these), and
recently a mathematical framework has begun to emerge to analyze and compare several of these
methods for defects in crystalline materials comprised of a Bravais lattice. Indeed, all three of
the blended force-based quasicontinuum method (BQCF), blended energy-based quasicontinuum
(BQCE), and blended ghost force correction (BGFC) methods have recently been analyzed in
the context of a single defect in a two or three dimensional Bravais lattice [25, 41] as has the
optimization-based AtC approach of [35]. Analyses in two and three dimensional Bravais lattices
also exist for the AtC method of [26], but this has not yet been extended to allow for defects.
Meanwhile, the methods [30, 46, 45] have been shown to be consistent (or free of ghost forces) for
pair potential interactions only.

In the present work, we resolve the long-standing challenge to develop a rigorous numerical
analysis for AtC methods in the context of multilattices, which allows for more than one atom to
be present in the unit cell of the crystal. This description includes important materials such as hcp
metals, diamond structures, and recently discovered 2D materials such as graphene and hexagonal
boron nitride.

Concretely, we generalise the formulation and analysis of the blended force-based quasicontinuum
(BQCF) method. Our main result is that, for a point defect in a homogeneous host crystal, the
BQCF method for multilattices exhibits the same rate of convergence as in the Bravais lattice
case. This is in sharp contrast with the blended energy-based quasicontinuum method for which
a reduced convergence rate is expected in the multilattice setting [41].

The present work represents the first analysis that has been undertaken that remains valid for an
AtC method which permits defects in a two or three dimensional multilattice. Even analyses of AtC
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methods for defect-free multilattices remain extremely sparse: the homogenized QC method [2, 1],
for example, only allows for dead load external forces while the cascading Cauchy–Born method
was rigorously analyzed only in one-dimensional multilattices for phase transforming materials [13].

As its name entails, the BQCF method is a force-based AtC method where a hybrid force
operator is constructed instead of a hybrid energy functional [14, 47, 48, 26, 7, 5]. The primary
advantage of force-based methods is that the forces can easily be defined in a way to avoid spurious
interface effects (ghost forces); that is, the defect-free perfect crystal is a bona fide equilibrium
configuration of the AtC force operator. The cost of defining the BQCF method and other force-
based methods to be free of ghost forces is that these force fields are no longer conservative,
which creates significant challenges in their numerical analysis [15, 27]. The blended force-based
methods, originally studied in [23, 7, 5, 26], seek to overcome this problem by a smooth blending
between atomistic and continuum forces over a region called the blending, overlap, or handshake
region. Similar force-based blending methods have also been applied to coupling peridynamics
with classical elasticity [43].

An alternative to the force-based paradigm is the energy-based paradigm where a global, hybrid
energy is defined which is some combination of atomistic and continuum energies. This encom-
passes the original quasicontinuum method and many other offshoots and ancestors [36, 52, 3, 16,
49, 12, 18, 8]. The peril of these methods is the aforementioned ghost forces, and it remains open
to construct a general, ghost-force free, energy-based AtC method for Bravais lattices in two or
three dimensions. As such we do not concern ourselves with an energy-based AtC method for
multilattices; however, see [41, 44] for promising directions.

1.1. Outline. We begin in Section 2 by formulating an atomistic model for a multilattice material
describing a single point defect embedded in an infinite homogeneous crystal. This is a canonical
extension of the framework adopted for Bravais lattices in [35, 25, 24, 17, 41].

In Section 3 we then formulate the BQCF method for this model and state our main results:
(1) existence of a solution to the multilattice BQCF method and (2) a sharp error estimate. We
also convert this error estimate to an estimate in terms of the computational complexity of the
BQCF method in Section 3.4 which in particular allows us to balance approximation parameters
to obtain a formulation optimised for the error / cost ratio. We present a numerical verification of
these rates by testing the method on a Stone–Wales defect in graphene. The complexity estimates
obtained for the BQCF method for point defects in multilattices match those estimates in [25] for
Bravais lattices.

Finally, Section 4 covers the technical details needed to prove our main result, Theorem 6. These
technical details can be seen as generalizations of the results of Bravais lattices, and the primary
new component is having to account for shifts between atoms in the same unit cell.

1.2. Notation. We introduce new notation throughout the paper required to carry out the anal-
ysis. For the convenience of the reader, we have listed many of these in Appendix B. Here, we
briefly establish several basic conventions we make throughout. We use d and n to denote the
dimensions of the domain and range respectively, calligraphic fonts (e.g. L,M) to denote lattices,
sans-serif fonts (e.g. F,G) for n× d matrices, the lower case Greek letters α, β, γ, δ, ι, χ are used as
subscripts denoting atomic species, and the lower case Greek letters ρ, τ, σ denote vectors (bond
directions) between lattice sites.

The symbol | · | is used to denote the `2 norm of a single vector in Rm, while ‖ · ‖ is used to
denote either an `p or Lp norm over a specified set. We use · for the dot product between two
vectors, ⊗ as the tensor product, and : as the inner product on tensors.
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Derivatives of functions f : Rd → Rn are denoted by ∇f : Rd → Rd×n and higher order
derivatives by ∇jf . Given F : X → Y where X and Y are Banach spaces, we denote Fréchet
or Gateaux derivatives by δjF , j indicating the order. We will most commonly interpret these
derivatives as (multi-)linear forms and use them when Y = R, in which case we will then write the
Gateaux derivatives as

〈δF (x), y〉, x, y ∈ X
〈δ2F (x)z, y〉, x, y, z ∈ X and so on for higher order derivatives.

We reserve D for specific finite difference operators (defined in (2.3) and (2.4)), and use BR to
denote the ball of radius R about the origin.

We use the modified Vinogradov notation x . y throughout the manuscript to mean there exists
a positive constant C such that x ≤ Cy. Where appropriate, we clarify what the constant C is
allowed to depend on; in particular if there is any dependence on approximation parameters then
it will always be made explicit.

2. Atomistic Model

2.1. Defect-free Multilattice. We consider an infinite Bravais lattice, or simply a lattice, L,
defined by

L := FZd, for some F ∈ Rd×d, det(F) = 1, and d ∈ {2, 3},
where the requirement det(F) = 1 is purely a notational convenience. From a physical standpoint
by taking symmetry into account, it can be shown that there are only 14 unique physical lattices
in 3D and five in 2D (see e.g. [51]); however, we consider the lattice to merely be a mathematical
framework. A multilattice is then obtained by associating a basis of S atoms to each lattice site,
and this is also referred to as a crystal when the Bravais lattice is interpreted as one of the unique
physical lattices.

For each site ξ ∈ L, these S atoms are located inside the unit cell of ξ at positions ξ + pref
α for

pref
α ∈ Rd and α = 0, . . . , S − 1. The multilattice is then defined by

M :=
S−1⋃
α=0

L+ pref
α .

We call each L + pref
α a sublattice; here the addition “+” means a translation of the lattice L by

the vector pref
α . Without loss of generality, we further assume pref

0 = 0 (one atom is always located
at a lattice site). Furthermore, we make the distinction between a lattice site, which we use to
refer to a site in the Bravais lattice, L, and an atom which is an element in the multilattice M.

Two simple examples of multilattices are shown in Figure 1 including the 2D hexagonal lattice
(e.g., graphene) for which

L = a0

(√
3
√

3/2
0 3/2

)
Z2, S = 2, p0 =

(
0
0

)
, p1 = a0

(√
3/2

1/2

)
, a0 =

√
2

33/4
. (2.1)

(The a0 =
√

2
33/4 prefactor is due to the normalisation det(F) = 1.)

For each species of atom, we define the deformation field yα(ξ) as the deformation of the atom
of species α at site ξ. We note that yα : L → Rn where the range dimension n ∈ {2, 3} may
be different than the domain dimension d to allow, e.g., for out of plane displacements in 2D.
However, we remark that our later assumptions on stability of the multilattice (Assumption 3)
will place a restriction on the out of plane behavior; for example bending, or rippling, cannot
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(a) 2D graphene: the dashed circles indicate
the interaction neighbourhoods of the highlighted
atoms.

(b) 3D rock salt: the interior cube represents a
possible choice of unit cell.

Figure 1. Examples of multilattice structures.

currently be incorporated into the analysis. We further discuss the issues involved in this in our
concluding discussion, Section 5. In the case of these out of plane displacements, we will use ξ ∈ R2

as both a vector in R2 and as the vector

(
ξ
0

)
∈ R3. (We remark that though we will not consider

dislocations, we could also consider n = 1 for an anti-plane screw dislocation model by fixing a
second coordinate to be constant in this framework.)

The set of all sublattice deformations is denoted by y := (yα)S−1
α=0 and displacements by u :=

(uα)s−1
α=0. Equivalently we can describe the kinematics of a multilattice by a pair (Y,p) where

Y : L → Rn is a deformation field and p0, . . . , pS−1 : L → Rn are shift fields. The two descriptions
are related by

Y (ξ) = y0(ξ), pα(ξ) = yα(ξ)− y0(ξ); and yα(ξ) = Y (ξ) + pα(ξ),

and analogous expressions hold for displacements as well.
We now turn to a description of the energy. We will make the fundamental modeling assumption

that the total potential energy of the system can be written as a sum of site potentials—that is,

Êa
hom(y) :=

∑
ξ∈L

V̂ (Dy(ξ)), (2.2)

where the various new symbols introduced are specified in the following. We also note that this
assumption is not restrictive as almost any reasonable classical potential such as an n-body po-
tential, pair functional, or bond-order potential may be written in this form. The main restriction
is that long-range Coulomb interaction is excluded.
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We use Dy(ξ) to denote the collection of finite differences (relative atom positions) needed to
compute the energy at site ξ. More precisely, we specify a finite set of triples

R ⊂ L× {0, 1, . . . , S − 1} × {0, 1, . . . , S − 1} \
S−1⋃
α=0

{(0αα)},

and use

D(ραβ)y(ξ) := yβ(ξ + ρ)− yα(ξ) (2.3)

to denote the relative positions of species β at site ξ + ρ and species α at site ξ. The collection of
finite differences, or finite difference stencils, Dy, is then defined by

Dy(ξ) :=
(
D(ραβ)y(ξ)

)
(ραβ)∈R . (2.4)

In terms of (Y,p), this this notation becomes

D(ραβ)(Y,p) := Y (ξ + ρ)− Y (ξ) + pβ(ξ + ρ)− pα(ξ) and D(Y,p) :=
(
D(ραβ)(Y,p))(ραβ)∈R.

For future reference we remark that we can write

D(ραβ)y = Dρyβ(ξ) + pβ(ξ)− pα(ξ),

where Dρf(ξ) := f(ξ + ρ)− f(ξ). Moreover, we define the set of lattice vectors in R as

R1 := {ρ ∈ L : ∃(ραβ) ∈ R}.

The site potential is then a function V̂ : (Rn)R → R∪{+∞}, where +∞ allows for singularities
in the potential (though we will later assume certain smoothness of the potential for convenience
of the analysis).

Since the homogeneous reference configuration, yref , defined by

yref
α (ξ) := ξ + pref

α , (2.5)

for constant pref
α ∈ Rn yields infinite energy, (due to an infinite sum over constant values of the

site potential in the reference configuration), we thus will consider an energy difference functional
defined on displacements from the reference state instead of (2.2). For a displacement u ≡ (U,p)
from the reference state yref let

V (Du(ξ)) = V̂ (D(yref + u)(ξ)),

and then the associated energy difference functional is defined by

Ea
hom(u) :=

∑
ξ∈L

V (Du(ξ))− V (0). (2.6)

where V (0) is a constant which will not affect minimization or force computations, so for simplicity,
we assume without loss of generality that V (0) = 0. In Theorem 2 below, we recall a result of [34]
that characterizes for which displacements, u, Ea

hom(u) is well-defined.
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A convenient notation for derivatives of V is the following: if (ραβ), (τγδ) ∈ R and g =
(g(ραβ))(ραβ)∈R ∈ (Rn)R, we set

[V,(ραβ)(g)]i :=
∂V (g)

∂gi(ραβ)

, i = 1, . . . , n,

V,(ραβ)(g) :=
∂V (g)

∂g(ραβ)

,

[V,(ραβ)(τγδ)(g)]ij :=
∂2V (g)

∂gj(τγδ)∂g
i
(ραβ)

, i, j = 1, . . . , n,

V,(ραβ)(τγδ)(g) :=
∂2V (g)

∂g(τγδ)∂g(ραβ)

,

and note that this can be extended to derivatives of arbitrary order. Furthermore, we adopt the
convention that if (ραβ) /∈ R, then V,(ραβ) = 0.

The following standing assumptions on the interaction range and site potentials are made.

Assumption 1.

(V.1) The interaction range, R, satisfies

For each α ∈ {0, . . . , S − 1}, the set of vectors ρ such that (ραα) ∈ R spans Rd,

and (0αβ) ∈ R for all α 6= β ∈ {0, . . . , S − 1} .
(V.2) V is four times continuously differentiable with uniformly bounded derivatives and satisfies

V (0) = 0 (for simplicity of notation). Since V : (Rn)R → R, the statement that V has
uniformly bounded derivatives means there exists M such that for any multi-index γ with
|γ| ≤ 4, |∂γV | ≤M .

We remark that (V.1) may always be met by enlarging the interaction range, R. On the
other hand, (V.2) is made for simplicity of the analysis; it can be weakened to admit interatomic
potentials with typical singularities under collisions of atoms, but this would introduce several
additional technicalities in our analysis.

Next, we specify the function space over which Ea
hom(u) is defined, which can be achieved in

several equivalent ways. A convenient route is by first defining a continuous, piecewise linear
interpolant of an atomistic displacement. Let Ta be a simplicial decomposition of L obtained as
in [25]: first let T̂ := conv{0, e1, e2} (where conv represents the convex hull of a set) be the unit

triangle in 2D and T̂1, . . . , T̂6 six congruent tetrahedra in 3D that subdivide the unit cube (see
Figure 1 in [25] for an illustration in 3D) and then define

Ta =

{
{ξ + FT̂ , ξ − FT̂ : ξ ∈ L}, if d = 2,

{ξ + FT̂i : ξ ∈ L, i = 1, . . . , 6}, if d = 3.

We will often refer to this as the atomistic triangulation or fully refined triangulation. As noted
before, we may always enlarge the interaction range,R, so we may assume without loss of generality
that

if conv{ξ, ξ + ρ} is an edge of Ta, then there exist α, β such that (ραβ) ∈ R.
Given a discrete set of displacement values u : L → Rn, we then denote the continuous, piecewise

linear interpolant of u with respect to Ta by Iu ≡ ū. We will use both notations, Iu and ū,



FORCE-BASED ATOMISTIC/CONTINUUM BLENDING FOR MULTILATTICES 7

depending on which is notationally more convenient. Subsequently, we define the function space

U :=
{
u = (uα)S−1

α=0 : uα : L → Rn, ‖u‖a <∞
}
, where

‖u‖2
a :=

S−1∑
α=0

‖∇Iuα‖2
L2(Rd) +

∑
α 6=β

‖Iuα − Iuβ‖2
L2(Rd).

Clearly, ‖ · ‖a is not a norm on U since ‖u‖a = 0 only implies that each uα(ξ) is a constant
independent of α. However, ‖ · ‖a is a semi-norm on U and hence a true norm on the quotient
space

U := U/Rn :=
{
{(uα + C)S−1

α=0 : C ∈ Rn} : u ∈ U
}
.

Since the atomistic energy is invariant with respect to addition by constants, it is exactly this
quotient space which we utilize as our function space. We also note that u and (U,p) are two
equivalent descriptions for the displacements, and an equivalent norm on this space which will be
convenient in terms of the (U,p) description is

‖(U,p)‖a := ‖∇IU‖2
L2(Rd) +

S−1∑
α=1

‖Ipα‖2
L2(Rd).

A dense subspace of U that we will use as a test function space is U0 where

U0 := {u∈ U : supp(∇Iu0), and supp(Iuα − Iu0) are compact} ,
U0 := U0/Rn.

As proven in [34], this test space is dense in U .

Lemma 1. [34, Lemma A.1] The quotient space U0 is dense in U .

2.2. Point Defect. We now introduce a framework to embed a point defect in a homogeneous
multilattice. This problem has been heavily used in analyzing and comparing different AtC meth-
ods for simple lattices in [35, 25, 28, 41] as it allows for a range of non-trivial benchmark problems
and serves as a first step in analyzing more complicated scenarios such as interacting defects [21].
Point defects can be thought of as zero-dimensional defects representing a change to a single site
in the lattice. Common examples include vacancies, interstitials, substitutions, and in graphene,
the Stone–Wales defect which we use for our numerical verification.

Our first task is to define an analog of Ea
hom for point defects, which is well-defined on the function

space U . We accomplish this through a site-dependent site potential, Vξ, which must take into
account the defective structure of the lattice near the defect core, which we assume to be at or
near the origin. We then write the atomistic potential energy as

Ea(u) :=
∑
ξ∈L

Vξ(Du(ξ)). (2.7)

As in Assumption 1, we require certain smoothness of the site-dependent site potential in addi-
tion to homogeneity outside of a defect core.

Assumption 2.

(V.3) There exists Rdef > 0 such that Vξ ≡ V for all |ξ| ≥ Rdef .
(V.4) Each Vξ is four times continuously differentiable with uniformly bounded derivatives.
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We now recall from [34, Theorem 2.2] that Ea and Ea
hom are well-defined on U ; the main idea of

the proof is that both are defined on displacements having compact support, and by density of U0

in U , they may be uniquely extended by continuity to all of U .

Theorem 2. [34, Lemma 3.3] Assume the reference configuration yref with yref
α (ξ) = ξ + pref

α is
an equilibrium configuration of the defect free energy meaning that∑

ξ∈L

∑
(ραβ)∈R

V̂,(ραβ)(Dy
ref(ξ)) ·Dv(ξ) = 0, ∀v ∈ U0. (2.8)

Then Ea
hom(u) and Ea(u) may be uniquely extended to continuous functions on U which are C3

(three times continuously differentiable) on U .

Remark 1. The condition (2.8) that the reference configuration be an equilibrium is equivalent
to requiring the shifts are equilibrated within each cell. See [34, Lemma 9] for details. Such
reference configurations are thus straightforward to generate numerically. �

Since we will eventually be working with a finite domain on which there is no difference between
the original functionals and their extensions, we make no distinction between an energy and its
continuous extension.

We are now able to pose the defect equilibration problem which we wish to approximate with
the BQCF method, that is, to find u∞ ∈ U such that

u∞ ∈ arg min
u∈U
Ea(u), (2.9)

where arg min represents the set of local minima of a functional.
While Assumptions 1 and 2 can be readily weakened in various ways, the next assumption

concerning existence and stability of a defect configuration minimizing Ea is essential for our
analysis:

Assumption 3. (Strong Stability) There exists a solution, u∞, to (2.9) and a constant γa > 0
such that

〈δ2Ea(u∞)v,v〉 ≥ γa‖v‖2
a ∀v ∈ U0.

Proving Assumption 3 turns out to be notoriously difficult; indeed the only result of this kind
we are aware of is for a special case of a screw dislocation in a simple lattice [21, Remark 3.2] under
anti-plane deformation. Nevertheless, we expect it to hold for virtually all realistic defects and
realistic interatomic potentials. We also mention that it can be numerically checked a posteriori
once the defect configuration has been computed.

A useful consequence of Assumption 3 is the following regularity result, which is proven in [34]
and extends the analogous simple lattice result [17]. These decay rates will be an essential com-
ponent for converting the BQCF error estimates in terms of solution regularity that are presented
in Section 3 into complexity estimates that are numerically verified in Section 3.4.

Theorem 3. [34, Theorem 2.5] For ρ = ρ1 . . . ρk, the defect solution (U∞,p∞) satisfies

|DρU∞(ξ)| . (1 + |ξ|)1−d−k, for 1 ≤ k ≤ 3,

|Dρp∞α (ξ)| . (1 + |ξ|)−d−k, for 0 ≤ k ≤ 2, and all α = 0, . . . , S − 1.
(2.10)

The implied constant is allowed to depend on the interaction range through the maximum of |ρ| for
ρ ∈ R1, the site potential, and γa.
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These decay rates will be an essential component for converting the BQCF error estimates in
terms of solution regularity that are presented in Section 3 into complexity estimates that are
numerically verified in Section 3.4.

Since we will compare discrete atomistic configurations with continuous finite element functions,
it will be useful to reformulate Theorem 3 in terms of gradients of smooth interpolants, which we
define in the next lemma (see [25] for further details and the proof).

Lemma 4. Let u : L → Rn, then there exists a unique function Ĩu : Rd → Rn with Ĩu ∈ C2,1(Rd)
such that

(1) Ĩu is multiquintic in ξ + F(0, 1)d for each ξ ∈ L.
(2) Given any multiindex γ with |γ| ≤ 2, the interpolant satisfies ∂γ Ĩu(ξ) = Dnn

γ u(ξ) where
Dnn
γ are nearest-neighbor finite difference operators,

Dnn,0
i u(ξ) := u(ξ),

Dnn,1
i u(ξ) :=

1

2
(u(ξ + Fei)− u(ξ − Fei)) (ei is the ith standard basis vector),

Dnn,2
i u(ξ) := u(ξ + Fei)− 2u(ξ) + u(ξ − Fei),

Dnn
γ u(ξ) := D

nn,|γ1|
1 · · ·Dnn,|γd|

d u(ξ).

We will apply Ĩ to both displacements and shifts using the notation

Ĩ(U,p) = (ĨU, Ĩp) = (Ũ , p̃).

Then, combining Theorem 3 and Lemma (4) yields the following result.

Theorem 5. The defect solution (U∞,p∞) satisfies

|∇j ĨU∞(x)| . (1 + |x|)1−d−j, for j = 1, 2,

|∇j p̃∞α (x)| . (1 + |x|)−d−j, for j = 0, 1, 2, and all α = 0, . . . , S − 1,
(2.11)

where the implied constant is again allowed to depend on the interaction range, the site potential,
and γa.

3. BQCF Method Formulation and Main Results

Any AtC approximation of the defect problem (2.9) must include the following ingredients: the
atomistic and continuum domains, a coarsened finite element mesh in the continuum region, a
specification of the continuum model, and finally and most importantly a mechanism for coupling
the atomistic and continuum components.

We define the atomistic and continuum domains for the multilattice BQCF method by making
similar choices as in the BQCF method for Bravais lattices [25]. We first give an intuitive descrip-
tion of the domains involved, but will (re-)define them again below after introducing the blending
function. Choose a computational domain Ω ⊂ Rd to be a (large) polygonal domain containing
the origin (the defect). Fix a “defect core” region Ωcore such that, if Vξ 6≡ V , then ξ ∈ Ωcore.
Then take Ωa, the atomistic domain, to be a polygonal domain with Ωcore ⊂ Ωa ⊂ Ω, and set Ωc,
the continuum domain to be Ωc = Ω \ Ωcore. In blending methods, the atomistic and continuum
domains overlap in a blending region Ωb = Ωc ∩Ωa over which the atomistic and continuum forces
will be blended.
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Next, we define a finite element mesh Th over Ω with nodes Nh. For now we only require that
the finite element mesh is fully refined over Ωa, that is, if T ∩ Ωa 6= ∅, then T ∈ Th if and only if
T ∈ Ta, but we will state further assumptions in Section 3.1.

The continuum model we adopt is the Cauchy–Born model [11, 9, 36], a nonlinear hyperelastic
model, which is amenable to AtC couplings due to the definition of the strain energy density
function in terms of the atomistic potential V ,

WCB(G,p) := V
(

(Gρ+ pβ − pα)(ραβ)∈R

)
for G ∈ Rn×d and p ∈ (Rn)S,

without resorting to any constitutive laws. We note that G here is the deformation gradient of
lattice sites in a unit cell while p are the displacements of shift vectors; in contrast with typical
continuum treatments of multilattices, we maintain the shift vectors as degrees of freedom in the
Cauchy–Born model and do not minimize them out.

For W 1,∞ displacement fields, U , and L∞ shift fields, p, this leads to a Cauchy–Born energy
functional, formally (for now) defined by

Ec(U,p) :=

∫
Rd
WCB(∇U(x),p(x)) dx =

∫
Rd
V
(
∇(U,p)

)
dx

where

∇(U,p) :=
(
∇(ραβ)(U,p)

)
(ραβ)∈R :=

(
∇ρU + pβ − pα

)
(ραβ)∈R

is a continuum variant of the atomistic finite difference stencil

D(U,p)(x) =
(
D(ραβ)(U,p)(x)

)
(ραβ)∈R :=

(
DρU(x) + pβ(x+ ρ)− pα(x)

)
(ραβ)∈R.

The admissible finite element space we consider will be P1 finite elements for both the displace-
ments and the shifts subject to homogeneous boundary conditions. However, we will again consider
equivalence classes of finite element functions by taking a quotient space. Thus, we define

Uh :=
{
u ∈ C0(Ω) : u|T ∈ P1(T ), ∀T ∈ Th

}
,

Uh := Uh/Rn,

Uh,0 :=
{
u ∈ C0(Rd) : u|T ∈ P1(T ), ∀T ∈ Th, u = 0 on Rd \ Ω

}
,

Uh,0 := Uh,0/Rn,

Ph,0 :=
{
p = (p0, . . . , pS−1) : p0 = 0, and p1, . . . , pS−1 ∈

(
Uh,0

)S−1
}
.

These spaces are endowed with the norm

‖(U,p)‖2
ml := ‖∇U‖2

L2(Rd) +
S−1∑
α=0

‖pα‖2
L2(Rd) = ‖∇U‖2

L2(Rd) + ‖p‖2
L2(Rd),

where ‖p‖2
L2(Rd)

=
∑S−1

α=0 ‖pα‖2
L2(Rd)

is used for brevity. Along with the finite element space, we

also introduce the standard piecewise linear finite element interpolant, Ih, defined as usual through
Ihu(ν) = u(ν) for ν ∈ Nh.

The BQCF method is defined by blending forces on each degree of freedom, (ν, α) ∈ Nh ×
{0, . . . , S − 1}, where the forces are defined by a weighted average of atomistic and continuum
forces:

Fbqcf
ν,α (U,p) := (1− ϕ(ν))

∂Ea(U,p)

∂uα(ν)
+ ϕ(ν)

∂Ec(U,p)

∂uα(ν)
, (3.1)
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where the blending function, ϕ, satisfies ϕ ∈ C2,1(Rd) with ϕ = 0 in Ωcore and ϕ = 1 in Rd \ Ωa.
The BQCF method then seeks to solve Fbqcf

ν,α (U,p) = 0 for all ν /∈ ∂Ω. Equivalently, we can write
the force balance equations in weak form using the variational operator

〈Fbqcf(U,p), (W, r)〉
:=
∑
ν

∑
α

Fbqcf
ν,α (U,p) · (W + rα) (ν)

=
∑
ν

∑
α

(1− ϕ(ν))
∂Ea(U,p)

∂uα(ν)
· (W + rα) (ν) + ϕ(ν)

∂Ec(U,p)

∂uα(ν)
· (W + rα) (ν)

= 〈δEa(U,p), ((1− ϕ)W, (1− ϕ)r)〉
+ 〈δEc(U,p), (Ih(ϕW ), Ih(ϕr))〉, (3.2)

where the last equal sign comes from direct calculation. The BQCF approximation to the defect
optimization problem (2.9) is then to find (U,p) ∈ Uh,0 ×Ph,0 such that

〈Fbqcf(U,p), (W, r)〉 = 0, ∀(W, r) ∈ Uh,0 ×Ph,0. (3.3)

The variational formulation is preferred for the analysis while the force-based formulation (from
which the name BQCF is derived) is preferred for implementation. The pointwise formulation (3.1)
was essentially how the original BQCF method was proposed for Bravais lattices [6], and this
was analyzed in a finite-difference framework without defects for Bravais lattices in [26, 23]. The
variational formulation (3.2) was introduced in [25] for Bravais lattices, and its subsequent analysis
led to one of the first complete analyses of an AtC method capable of modeling defects.

3.1. Assumptions on the Approximation Parameters. We now summarise the precise tech-
nical requirements on the approximation parameters, ϕ,Ω,Ωa,Ωb,Ωc, Th, which will be analogous
to those in [25].

We begin by summarising basic assumptions on the blending function:

(1) ϕ ∈ C2,1 and 0 ≤ ϕ ≤ 1
(2) If Vξ 6≡ V , then ϕ(ξ) = 0. This means that ϕ vanishes near any defect, hence the pure

atomistic force is employed in those regions.
(3) There exists K > 0 such that ϕ(x) = 1 if |x| ≥ K. That is, ϕ is identically one far away

from the defect.

As the second step we specify the computational domain Ω and its corresponding partition Th.
First, we shall require that supp(1−ϕ) ⊂ Ω always holds. To state the required properties for Th,
we first precisely specify the sub-domains in terms of ϕ and Ω. Let

rcut := max{|ρ| : (ραβ) ∈ R}
be an interaction cut-off radius, let rcell be the radius of the smallest ball circumscribing the unit
cell of L, and define rbuff := max{rcut, rcell}. Then we set

Ωa := supp(1− ϕ) +B4rbuff
, Ωb := supp(∇ϕ) +B4rbuff

,

Ωc := supp(ϕ) ∩ Ω +B4rbuff
, Ωcore := Ω \ Ωc.

The size and shape regularity of the various subdomains are parameterized in terms of inner and
outer radii: for t ∈ {a, c, b, core}, we set

rt := sup
r
{r > 0 : Br ⊂ Ωt ∪ Ωcore}, Rt := inf

R
{R > 0 : Ωt ⊂ BR},
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Rb

Ro

ri

∂Ω
supp(∇ϕ)

Ωcore

(shaded area)

Figure 2. A diagram showing a selected number of domains and their inner and
outer radii.

where we recall the notation BR to denote the ball of radius R about the origin. The corresponding
outer and inner radii for the complete domain Ω are, respectively, denoted by Ro and ri:

ri := sup
r
{r > 0 : Br ⊂ Ω}, Ro := inf

R
{R > 0 : Ω ⊂ BR}.

Finally, we define an overlapping exterior domain,

Ωext := Rd \Bri/2,

which will be used to quantify the far-field error made by truncating to a finite computational
domain.

For the sake of completeness, we now restate a crucial condition on the finite element mesh:

(4) The finite element mesh is fully refined over Ωa, that is, if T ∩ Ωa 6= ∅, then T ∈ Th if and
only if T ∈ Ta.

To conclude this discussion we note that only the blending function ϕ and the finite element
mesh Th are free approximation parameters, while the subdomains and corresponding radii are
derived (in particular, Ω =

⋃ Th). In our analysis we will require bounds on the “shape regularity”
of ϕ, Th, and the domains defined above:

Assumption 4. In addition to (1)–(4) there exist constants CTh , Cϕ > 0, which shall be fixed
throughout, such that

‖∇jϕ‖L∞ ≤ CϕR
−j
a for j = 1, 2, 3, and max

T∈Th

σT
ρT
≤ CTh ,

where σT denotes the radius of the smallest ball circumscribing T and ρT the radius of the largest
ball contained in T . Defining the mesh size function

h(x) := max
T∈Th:
x∈T

σT ,



FORCE-BASED ATOMISTIC/CONTINUUM BLENDING FOR MULTILATTICES 13

there exists s ≥ 1 such that the mesh satisfies the growth condition

|h(x)| ≤ CTh

( |x|
Ra

)s
, |x| ≥ Ra.

Moreover, there exists Co > 0 and a positive integer λ such that

Ro ≤ CoR
λ
core and

1

4
Ra ≤ Rcore ≤

3

4
Ra. (3.4)

While Cϕ will feature heavily in our analysis, the parameter CTh will only enter implicitly in
the form of constants in interpolation error estimates. The condition 1

4
Ra ≤ Rcore ≤ 3

4
Ra greatly

simplifies the analysis. It is likely this could be weakened by an extremely refined analysis as can
be done in one dimension [23], but the asymptotic estimates obtained would be unchanged with the
exception of an improved prefactor so we do not pursue this. Moreover, though one can generate
blending functions which satisfy these assumptions using splines, we point out that in practical
implementations one can relax the regularity requirements on the blending functions, and this has
provided no loss in performance in simulations carried out for lattices in [24].

3.2. Main Result. Our main result concerns the existence of a solution to (3.3) and an estimate
on the error committed.

Theorem 6. Suppose that Assumptions 1, 2, and 3 are valid. Then there exists R∗core such that,
for any approximation parameters satisfying Assumption 4 as well as Rcore ≥ R∗core, there exists a
solution (Ubqcf ,pbqcf) ∈ Uh,0 ×Ph,0 to the BQCF equations (3.3) that satisfies

‖∇IU∞−∇Ubqcf‖L2(Rd) + ‖Ip∞ − pbqcf‖L2(Rd) . γtr

(
‖h∇2ĨU∞‖L2(Ωc)

+ ‖h∇Ĩp∞‖L2(Ωc) + ‖∇ĨU∞‖L2(Ωext) + ‖Ĩp∞‖L2(Ωext)

)
,

(3.5)

where

γtr :=

{ √
1 + log(Ro/Ra), if d = 2,

1, if d = 3.

The implied constant, as well as R∗core, may depend on Cϕ and CTh, the interatomic potentials
V, Vξ, the maximum of |ρ| for ρ ∈ R1, and the stability constant, γa.

Remark 2. The quantity γtr arises from a trace inequality that is needed when estimating
interpolants on the atomistic mesh in terms of interpolants on the continuum mesh, c.f. [Lemma
4.6][25]. �

Section 4 is devoted to proving Theorem 6, but before we embark on this, we first demonstrate
how the error estimate can be combined with the regularity estimates of Theorem 5 to yield an
optimised BQCF scheme with balanced approximation parameters. This is followed by a numerical
test on a Stone–Wales defect in graphene, validating our theoretical convergence rates.

3.3. Optimal parameter choices. Once we restrict ourselves to a Cauchy–Born energy with P1

discretisation as the continuum model, the free parameters in the design of the BQCF method
are the domain, Ω; blending function, ϕ; and finite element mesh, Th in the sense that once these
are set according to Section 3.1, then the BQCF method (3.3) is fully formulated. Ideally, these
parameters should be chosen in an optimal way so as to obtain the most efficient method.
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The choice of blending function is, in the case of the BQCF method, arbitrary as long as
Assumption 4 is satisfied. There are many choices to make for the blending function which meet
these requirements, see e.g. [29].

The finite element mesh and hence the choice of Ω may, however, be optimized. The key to
choosing the finite element mesh and size of Ω lies in applying the decay results of Theorem 5 to
our error estimate (3.5), [28, 24, 29]. In obtaining our optimized parameters, we do not provide
rigorous proofs but instead use heuristic assumptions to arrive at approximate choices which can
then be rigorously analyzed numerically. To start, we assume that the mesh size function h(x) is
radial, i.e., h(x) ≡ h(|x|). Then, ignoring logarithmic factors in γtr and employing the estimate
|1 + r|−1 . r−1 for r ≥ 1, the error estimate (3.5) can be further estimated by

‖∇IU∞ −∇Ubqcf‖2
L2(Rd) + ‖Ip∞ − pbqcf‖2

L2(Rd)

.
∫ Rc

rcore

|h(r)|2r−3−d dr +

∫ ∞
1/2ri

r−1−d dr

Next, we note that from the definitions of Ωc,Ω, and ri, we have ri = Rc + 4rbuff so that we may
make the replacement ri ≈ Rc. Denoting the number of degrees of freedom by DoF (nodes in the
continuum finite element mesh times the number of species in the multilattice), we can then carry
out an optimization problem consisting of minimizing this error estimate subject to a fixed number
of degrees of freedom, DoF. This problem is exactly the same as for the Bravais lattice and is

min
h∈L2,Rc>0

∫ Rc

rcore

|h(r)|2r−3−d dr +

∫ ∞
1/2Rc

r−1−d dr.

This problem is solved in [32] where it is found that there are approximate minimisers of the

form h(r) =
(
r/Ra

) 1+d
1+d/2 . A simplified approximate solution can be obtained by first minimizing∫ Rc

rcore
|h(r)|2r−3−d dr with respect to h where the same expression for h will result, but instead of

also minimizing with respect to Rc, one can simply note that the error then becomes∫ Rc

rcore

|h(r)|2r−3−d dr +

∫ ∞
1/2Rc

r−1−d dr . r−d−2
core +R−dc . R−d−2

a +R−dc . (3.6)

In order to balance the sources of error, one should take Rc = R
2/d+1
a . Finally, by simply writing

the number of degrees of freedom as the sum of those in the atomistic and continuum regions, it
is possible to derive the result that #DoF ≈ Rd

a; further details can be found in [32, 33, 28, 25].
After making the estimation γtr ≤ (log DoF)1/2 [25] for d = 2, the main error estimate, (3.5),

currently written in terms of solution regularity, may now be replaced by an estimate of (3.6) in
terms of computational cost since #DoF ≈ Rd

a:

‖∇IU∞ −∇Ubqcf‖2
L2(Rd) + ‖Ip∞ − pbqcf‖2

L2(Rd)

.

{
(DoF)−1−2/d log DoF, d = 2,

(DoF)−1−2/d, d = 3,

(3.7)

which exactly matches the rate for the Bravais lattice case [25]. This is due to the fact that the
limiting factor in both error estimates is the P1 finite element approximation.

Remark 3. In the Bravais lattice analysis [25], the expression of Rc in terms of Ra is incorrect
which has led to an error in the expression for the error estimate in terms of the degrees of freedom.
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In that paper, a different mesh scaling is also used, but should the same mesh scaling be used, the
error estimates in terms of the degrees of freedom would be identical up to a constant prefactor. �

3.4. Numerical tests. In addition to providing a means to estimating the computational cost of
the BQCF method, the estimate (3.7) is also convenient to verify numerically. We have carried
this out for a Stone–Wales defect in graphene using both the BQCF method and a fully atomistic
method.

For the latter we simply minimize the full atomistic energy over displacements that are non-zero
only on the computational domain Ω (clamped boundary conditions). Using the methods discussed
in Section 4, it is not difficult to show that the solution, (UDir,pDir), to this atomistic Galerkin
method exists and satisfies the error estimate

‖∇IU∞ −∇UDir‖L2(Rd) + ‖Ip∞ − pDir‖L2(Rd) . (DoF)−1/2. (3.8)

We now set the model up for the Stone–Wales defect in graphene, recalling first the multilattice
parameter values given in Section 2. We choose a Stillinger-Weber [50] type interatomic potential
with a pair potential and bond angle potential component. The interaction range we consider is

R =
{

(ρ100), (ρ200), (−ρ100), (−ρ200), (ρ1 − ρ200), (ρ2 − ρ100),

(001), (010), (−ρ201), (ρ210), (−ρ101), (ρ110),

(ρ111), (ρ211), (−ρ111), (−ρ211), (ρ1 − ρ211), (ρ2 − ρ111)
}
,

which is depicted in Figure 1. In this notation, the site potential is given by

V̂ (Dy(ξ)) =
∑

(ραβ)∈R

1

2
φ(D(ραβ)y(ξ)) + ϑ(D(−ρ101)y(ξ), D(−ρ1−ρ201)y(ξ))

+ ϑ(D(−ρ101)y(ξ), D(−ρ201)y(ξ)) + ϑ(D(−ρ1−ρ201)y(ξ), D(−ρ201)y(ξ))

+ ϑ(D(ρ110)y(ξ), D(ρ1+ρ210)y(ξ)) + ϑ(D(ρ110)y(ξ), D(ρ210)y(ξ))

+ ϑ(D(ρ1+ρ210)y(ξ), D(ρ210)y(ξ)),

where φ(r) = r−12 − 2r−6 is a pair potential term and

ϑ(r1, r2) =
( r1 · r2

|r1| |r2|
+ 1/2

)2

is a three-body term that penalizes angles that differ from 2π
3

.
The Stone–Wales defect shown in Figure 3 is obtained by rotating the bond between the two

carbon atoms at the origin site by ninety degrees about the midpoint of this bond. One way of
incorporating this defect into our framework is to define a reference configuration (Y0, p1) where
Y0(ξ) = Fξ for all ξ 6= 0 with F and p1 given by the graphene parameters in (2.1). At the origin,
we set Y0(0) = Rot(0) and p1(0) = Rot(p1), where Rot represents the ninety degree rotation about

the midpoint of the segment conv{0, p1}. Then we set Vξ(D(U, p)(ξ)) = V̂ (D(Y0 + U, p1 + p)(ξ)).
We choose hexagonal domains for Ωcore,Ωa,Ω, etc., and use a blending function which approxi-

mately minimizes the L2 norm of ∇2ϕ on Ωb [29]. We select the inner width, rcore, of the hexagon
Ωcore to be from the range Ra = {8, 12, 16, 20, 24} with κ = 1/2, and then the remaining domains
are chosen as scaled hexagons satisfying the requirements of Section 3 and Theorem 6 (see Figure 10
in [24] for a representative illustration of this domain decomposition for a Bravais lattice). Finally,

our finite element mesh is graded radially with approximate mesh size h(r) =
(
r
Ra

)3/2
as described

earlier in this section with d = 2. The BQCF equations were solved by a preconditioned nonlinear
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(a) A perfect graphene sheet. (b) An unrelaxed Stone–Wales defect.

Figure 3. Examples of a perfect graphene sheet and a Stone–Wales defect. The
dotted lines in the right display indicate bonds that are broken during the rotation
of the highlighted atoms.

conjugate gradient algorithm with line-search based on force-orthogonality only (in BQCF there
is no energy functional for which descent can be imposed).

In Figure 4 we show the error in the displacement gradients and the single graphene shift vector
for the computed BQCF solution versus the number of degrees of freedom. Both match our
theoretical predictions from (3.7) and indeed demonstrate that the error estimates are sharp (up
to logarithms). We also show the error committed by the atomistic Galerkin method (which is
estimated in (3.8)), to demonstrate the practical gain achieved by the BQCF method.
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Figure 4. BQCF error plotted against degrees of freedom. We have also plot-
ted the “purely atomistic” error, denoted by ATM, which is the solution obtained
by truncating the infinite dimensional atomistic problem to a finite domain using
homogeneous Dirichlet boundary conditions.

4. Proofs

The remainder of this paper is devoted to proving our main result, Theorem 6. As in [25], the
abstract framework for the proof is provided by the inverse function theorem [28, 37, 20], which we
recall for reference and which is used to establish well-posedness of the nonlinear BQCF variational
equation in Theorem 6.

Theorem 7 (Inverse Function Theorem [37, 20]). Let X and Y be Banach spaces with
f : X → Y , f ∈ C1(U) with U ⊂ X an open set containing x0. Suppose that η > 0, σ > 0, and
L > 0 exist such that ‖f(x0)‖Y < η, δf(x0) is invertible with ‖δf(x0)−1‖L(Y,X) < σ, B2ησ(x0) ⊂ U ,
δf is Lipschitz continuous on B2ησ(x0) with Lipschitz constant L, and 2Lησ2 < 1. Then there
exists a C1 inverse function g : Bη(y0)→ B2ησ(x0) and thus an element x̄ ∈ X such that f(x̄) = 0
and

‖x0 − x̄‖X < 2ησ.

The nonlinear operator we consider is the variational BQCF operator FBQCF(U,p), and the
point about which we linearize is x0 = (Uh,ph) := Πh(U

∞,p∞) where Πh is a projection operator
defined in the following section. In Section 4.2 we prove a consistency estimate on the residual
FBQCF(Uh,ph):

sup
‖(W,r)‖ml=1

∣∣〈FBQCF(Uh,ph), (W, r)〉
∣∣ . ‖h∇2Ũ∞‖L2(Ωc) + ‖h∇p̃∞‖L2(Ωc)

+ ‖∇Ũ∞‖L2(Ωext) + ‖p̃∞‖L2(Ωext).
(4.1)
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The invertibility condition on the derivative of Fbqcf is proven as a coercivity condition in Sec-
tion 4.3 where we show that

〈δFBQCF(Uh,ph)(W, r), (W, r)〉 & ‖(W, r)‖2
ml, ∀(W, r) ∈ Uh,0 ×Ph,0, (4.2)

provided that the atomistic region is sufficiently large.
After we prove these two estimates, in Section 4.4 we combine them with a Lipschitz estimate

on δFbqcf and apply the inverse function theorem to prove Theorem 6.
Throughout this analysis, we continue to use the modified Vinogradov notation x . y, where

the implied constants are allowed to depend on the shape regularity constants CTh , Co (which are
defined in Assumption 4 and (3.4) ), the interatomic potentials (and their interaction range), and
the stability constant γa.

4.1. Cauchy–Born Modeling Error. In preparation for the consistency analysis in Section 4.2
we first establish several auxiliary results about the Cauchy–Born model.

A central technical tool in the analysis of AtC coupling methods is the ability to compare
discrete atomistic displacements which are the natural atomistic kinematic variables (recall that
the atomistic displacements are equivalent to atomistic site displacements plus atomistic shift
vectors), and continuous displacement and shift fields which capture the continuum kinematics. We
have already introduced several interpolants which serve this task: a micro-interpolant, I; a finite
element interpolant, Ih; and a smooth interpolant, Ĩ. We will also introduce a quasi-interpolant in
this section which will allow us to define an analytically convenient atomistic version of stress [40].

We use ζ̄(x) to denote the nodal basis function associated with the origin for the atomistic finite
element mesh Ta and ζ̄ξ(x) := ζ̄(x− ξ) to denote the nodal basis function at site ξ. We may then
write the micro-interpolant Iu = ū as

ū(x) =
∑
ξ∈L

u(ξ)ζ̄(x− ξ).

The quasi-interpolant of u is then defined by a convolution with ζ̄

u∗(x) := (ζ̄ ∗ ū)(x). (4.3)

It will later be important that this convolution operation is invertible and stable. This is a
consequence of [38, Lemma 5], which we state here for reference.

Lemma 8. [38, Lemma 5] For a given atomistic displacement, u, there exists a unique atomistic
displacement ú with the property that ζ̄ ∗ ¯́u(ξ) = u(ξ) for all ξ ∈ L.

One of the primary uses of the u∗ interpolant will be the development of an atomistic stress
function which can be compared to the continuum stress in the Cauchy–Born model [40]. The
first variation of the continuum model may be written in terms of a stress tensor,

〈δEc(U, q), (W, r)〉 =

∫
Rd

∑
(ραβ)

V,(ραβ)((∇τU + qδ − qγ)(τγδ)∈R) · (∇ρW + rβ − rα)

=

∫
Rd

∑
(ραβ)

V,(ραβ)(∇(U, q))⊗ ρ : ∇W +

∫
Rd

∑
(ραβ)

V,(ραβ)(∇(U, q))(τγδ)∈R) · (rβ − rα)

=

∫
Rd

∑
β

[Sc
d(U, q)(x)]β : ∇W +

∫
Rd

∑
α,β

[Sc
s(U, q)(x)]αβ(rβ − rα),

(4.4)
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where we defined

[Sc
d(U, q)(x)]β :=

∑
α,ρ:

(ραβ)∈R

V,(ραβ)(∇(U, q)(x))⊗ ρ,

[Sc
s(U, q)(x)]αβ :=

∑
ρ∈R1

V,(ραβ)(∇(U, q)(x)).

(4.5)

To compare the atomistic and continuum models, we now construct an analogous atomistic
stress tensor. Its definition will make it clear why we introduced the seemingly unnecessary sum
over β in the first group in (4.4). The basic idea is to extend the construction of [40]: the
argument ∇(U, q)(x) in (4.5) will be replaced by a local averaging of first order finite difference
approximations D(U, q)(ξ) for ξ near x.

Lemma 9. For (U, q) ∈ U , define the atomistic stress tensors

[ Sa
d(U, q)(x)]β :=

∑
α,ρ:

(ραβ)∈R

∑
ξ∈L

(
V,(ραβ)

(
D(U, q)(ξ)

)
⊗ ρ
)
ωρ(ξ − x),

[ Sa
s (U, q)(x)]αβ :=

∑
ρ∈R1

∑
ξ∈L

V,(ραβ)

(
D(U, q)(ξ)

)
ω0(ξ − x).

(4.6)

where ωρ(x) :=

∫ 1

0

ζ̄(x+ tρ)dt. (4.7)

Then 〈
δEa

hom(U, q), (W ∗, r∗)
〉

=

∫
Rd

{∑
β

[ Sa
d(U, q)]β :

(
∇W̄ +∇r̄β

)
+
∑
α,β

[ Sa
s (U, q)]αβ · (r̄β − r̄α)

}
dx.

(4.8)

where W ∗ and r∗ are defined through (4.3).

Proof. We start by computing the first variation of Ea
hom(U, q) with the test pair (W ∗, r∗):

〈δEa
hom(U, q), (W ∗, r∗)〉

=
∑
ξ∈L

∑
(ραβ)∈R

V,(ραβ)

(
D(U, q)(ξ)

)
·
(
DρW

∗(ξ) +Dρr
∗
β(ξ) + r∗β(ξ)− r∗α(ξ)

)
. (4.9)

Arguing as in [40, Eq. (2.4)] we obtain

DρW
∗(ξ) +Dρr

∗
β(ξ) =

∫
Rd
ωρ(ξ − x)

(
∇ρW̄ +∇ρr̄β

)
dx and (4.10)

r∗β(ξ)− r∗α(ξ) =

∫
Rd
ω0(ξ − x) (r̄β − r̄α) dx. (4.11)

Substituting (4.10) and (4.11) into (4.9) and recalling the definitions of the atomistic stress
tensors from (4.6) yields the stated claim. �
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We refer to the error between the continuum and atomistic stress functions as the Cauchy–Born
modeling error and quantify it in the next lemma; see [40] for an analogous result for Bravais
lattices.

Lemma 10. Assume that U ∈ C2,1(Rd;Rn) and pα ∈ C1,1(Rd,Rn) for each α. Fix x ∈ Rd and
set

rcut = max
ρ∈R1

|ρ|, νx := B2rcut(0).

1. If ∇U and p are constant in νx, then

[Sa
d(U,p)(x)]β = [Sc

d(U, q)(x)]β and [Sa
s (U,p)(x)]αβ = [Sc

s(U, q)(x)]αβ. (4.12)

2. In general, ∣∣[Sa
d(U, p)(x)]β − [Sc

d(U, p)(x)]β
∣∣ . ‖∇2U‖L∞(νx) + ‖∇q‖L∞(νx),∣∣[Sa

s (U, p)(x)]αβ − [Sc
s (U, p)(x)]αβ

∣∣ . ‖∇2U‖L∞(νx) + ‖∇q‖L∞(νx).

with the implied constant depending only on the interatomic potential V .

Proof. 1. The identity (4.12) is an immediate consequence of the definitions (4.5), (4.6) and of∑
ξ

ωρ(ξ − x) = 1.

2. We define an auxiliary homogeneous displacement (Uh, qh) with ∇Uh ≡ ∇U(x) and qh ≡
q(x). Then we have

[Sa
d(U, q)(x)]β − [Sc

d(U, q)(x)]β = [Sa
d(U, q)(x)]β − [Sa

d(Uh, qh)(x)]β.

Since we assumed that V is twice continuously differentiable, with globally bounded second
derivatives, we obtain∣∣[Sa

d(U, q)(x)]β − [Sc
d(U, q)](x)β

∣∣ =
∣∣[Sa

d(U, q)(x)]β − [Sa
d(Uh, qh)(x)]β

∣∣
=
∣∣∣ ∑

α,ρ:
(ραβ)∈R

∑
ξ∈L

([
V,(ραβ)

(
D(U, q)(ξ)

)
− V,(ραβ)

(
D(Uh, qh)(ξ)

)]
⊗ ρ
)
ωρ(ξ − x)

∣∣∣
.

∑
α,ρ:

(ραβ)∈R

∑
ξ∈L

∣∣D(U, q)(ξ)−D(Uh, qh)(ξ)
∣∣ωρ(ξ − x)

.
∥∥∇U −∇Uh‖L∞(νx) +

∥∥q − qh‖L∞(νx) + ‖∇2U‖L∞(νx) + ‖∇q‖L∞(νx)

. ‖∇2U‖L∞(νx) + ‖∇q‖L∞(νx),

where in obtaining the last two inequalities we have used a Taylor expansion of the finite differences
and the fact that ωρ(ξ − x) as defined in (4.7) vanishes off of νx. The proof for the comparison of
the “shift” stress tensors is nearly identical so is omitted. �

With this pointwise estimate, and using the fact that Ũ is piecewise polynomial, it is straight-
forward to deduce the following Cauchy–Born modeling error estimate over Ωc.

Corollary 11. For the atomistic and continuum stress tensors defined above,∥∥[Sa
d(Ũ∞, q̃∞)]β − [Sc

d(Ũ∞, q̃∞)]β
∥∥
L2(Ωc)

. ‖∇2Ũ∞‖L2(Ωc) + ‖∇q̃∞‖L2(Ωc),∥∥[Sa
s (Ũ∞, q̃∞)]αβ − [Sc

s(Ũ
∞, q̃∞)]αβ

∥∥
L2(Ωc)

. ‖∇2Ũ∞‖L2(Ωc) + ‖∇q̃∞‖L2(Ωc).
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Remark 4. The stress estimates for a multilattice are one order lower in terms of derivatives than
the corresponding Bravais lattice estimates. A refined analysis shows that this estimate cannot
be improved without an underlying point symmetry for the multilattice. When this symmetry
is present in multilattices, it is possible to define a symmetrized Cauchy–Born energy with an
improved estimate [22]. �

4.2. Consistency. Our first task in completing the residual estimate (4.1) is to define the pro-
jection from atomistic functions to finite element functions satisfying the Dirichlet boundary con-
ditions so we first truncate the solution to a finite domain. For that, let η be a smooth “bump
function” with support in B1(0) and equal to one on B3/4(0). Let AR be an “annular region”
containing the support of ∇(Iη(x/R)), i.e, AR := BR+2rbuff

(0) \ B3/4R−2rbuff
⊃ supp(∇(Iη(x/R)))

and define the truncation operator by

TRuα(x) = η(x/R)

(
Iuα −

1

|AR|

∫
AR

Iu0 dx

)
.

Further, let Sh be the Scott–Zhang quasi-interpolation operator [42] onto the finite element mesh
Th. We then define the projection operator by

Πhuα := Sh(Triuα), Πhu := {Πhuα}S−1
α=0 , (4.13)

Πhpα := Πh(uα − u0), Πhp := {Πhpα}S−1
α=0 , Πh(U,p) := (ΠhU,Πhp).

(Recall that ri is the radius of the largest ball inscribed in Ω.) Note that ∇Πhuα as well as

Πhuα − Πhuβ = Sh
[
η(x/ri)

(
Iuα − Iuβ

)]
have support contained in Ω. We also have the following approximation results.

Lemma 12. Take (U,p) = u ∈ U . Then

‖∇Ū −∇Πh,RU‖L2(Rd) + ‖p̄α − Πh,Rpα‖L2(Rd) . ‖h∇2Ũ∞‖L2(Ωc) + ‖h∇p̃∞‖L2(Ωc)

+ ‖∇Ũ‖L2(Ωext) + ‖p̃‖L2(Ωext),

‖∇Ũ −∇Πh,RU‖L2(Ωc) + ‖p̃α − Πh,Rpα‖L2(Ωc) . ‖h∇2Ũ∞‖L2(Ωc) + ‖h∇p̃∞‖L2(Ωc)

+ ‖∇Ũ‖L2(Ωext∩Ωc) + ‖p̃‖L2(Ωext∩Ωc).

The proof is very similar to the proof of Lemma 1 (with only additional estimates required
for the finite element interpolants) and therefore omitted. See also [35, Lemma 1.8] for similar
estimates, the main difference being the usage of the Scott–Zhang interpolant which allows for L2

interpolation bounds on H1 functions, see [10, 42].
We can now prove the bound (4.1).

Theorem 13 (BQCF Consistency). Define (Uh,ph) := Πh(U
∞,p∞) where (U∞,p∞) satisfies

Assumption 3. If Assumptions 1 and 2 are valid also and if the blending function, ϕ, and finite el-
ement mesh, Th, satisfy the requirements of Section 3, then the BQCF consistency error is bounded
by ∣∣〈Fbqcf(Uh,ph), (W, r)〉

∣∣ . γtr

(
‖h∇2Ũ‖L2(Ωc) + ‖h∇p̃α‖L2(Ωc) + ‖∇Ũ‖L2(Ωext)

+ ‖p̃‖L2(Ωext)

)
· ‖(W, r)‖ml, ∀(W, r) ∈ Uh,0 ×Ph,0,
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and γtr is a trace inequality constant (see Lemma 4.6 in [25]) given by

γtr =

{ √
1 + log(Ro/Ra), if d = 2,

1, if d = 3.

Before beginning the proof, we make some preliminary remarks. First, we observe that, since
the Scott–Zhang interpolation operator is a projection it follows that

D(ραβ)Uh(ξ) = D(ραβ)U
∞(ξ) for ξ ∈ La,

where La := L ∩ (supp(1 − ϕ) +R1). Furthermore, since δEa(U∞,p∞) = 0, the residual error in
the BQCF variational operator is equivalent to

〈Fbqcf(Uh,ph), (W, r)〉 − 〈δEa(U∞,p∞), (U, q)〉
= 〈δEa(U∞,p∞), (1− ϕ)(W, r)〉+ 〈δEc(Uh,ph),

(
Ih(ϕW ), Ih(ϕr)

)
〉

− 〈δEa(U∞,p∞), (U, q)〉,
(4.14)

where (W, r) ∈ Uh,0 × Ph,0 is an arbitrary given pair of test functions in the finite element test
function space, while (U, q) ∈ U × P is a test pair that we are free to choose. The obvious
candidate choice is (U, q) = (W, r) in which case we would have

〈Fbqcf(Uh,ph), (W, r)〉 − 〈δEa(U∞,p∞), (U, q)〉
= −〈δEa(U∞,p∞), (ϕ)(W, r)〉+ 〈δEc(Uh,ph),

(
Ih(ϕW ), Ih(ϕr)

)
〉.

The resulting residual error is concentrated only over Ωc due to ∇ϕ having support in Ωc. The
issue in estimating this quantity is that when we convert the atomistic residual into the atomistic-
stress format, the test function appears as a piecewise linear function with respect to the atomistic
mesh Ta, whereas the test function is piecewise linear with respect to the graded mesh Th in the
continuum portion. For this reason, we shall add correction terms to our previous candidate choice
(U, q) = (W, r) via

U = W + (Z∗ − ϕW ), qα = rα + (z∗α − ϕrα), α = 1, . . . , S − 1, (4.15)

where (Z, z) ∈ U × P will be chosen to satisfy certain approximation estimates as stated in
Lemma 14 below. The reason we use Z∗ and z∗α instead of merely Z and zα is that we shall
eventually make use of the atomistic stress representation from (4.8). The BQCF residual error
from (4.14) then becomes

〈Fbqcf(Uh,ph), (W, r)〉 − 〈δEa(U∞,p∞), (W + (Z∗ − ϕW ), r + (z∗ − ϕr))〉
= 〈δEc(Uh,ph),

(
Ih(ϕW ), Ih(ϕr)

)
〉 − 〈δEa(U∞,p∞), (Z∗, z∗)〉

(4.16)
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Moreover, since we are blending by site and using P1 elements for the shifts, we may use the same
form for Z and z as obtained in the simple lattice case [25] for both displacements and shifts.

Lemma 14. Suppose W ∈ Uh,0 and r ∈ Ph,0. Then for f ∈ W 1,2
loc (Rd) and for Zh, Z, zhα, zα as

defined above, ∫
Ωc

f(Z̄ − Zh)dx . ‖∇f‖L2(Ωc) · ‖∇Zh‖L2(Ωc), (4.17)∫
Ωc

f · (zhα − z̄α) dx . ‖∇f‖L2(Ωc) · ‖zhα‖L2(Ωc) (4.18)

‖Zh − Z̄‖L2(Ωc) . ‖∇Zh‖L2(Ωc), (4.19)

‖zhα − z̄α‖L2(Ωc) . ‖zhα‖L2(Ωc), (4.20)

‖∇Zh‖L2(Ωc) . γtr‖∇W‖L2(Ωc), (4.21)

‖zhα‖L2(Ωc) . ‖rα‖L2(Ωc). (4.22)

Proof. We begin by letting ωξ := supp(ζ̄(x − ξ)) and C := {ξ ∈ L : ωξ ⊂ Ωc}. Then we observe
that Zh and Z̄ are constant on any patch ωξ with ξ /∈ C, and furthermore Zh = Z̄. Intuitively,
this should hold because if ξ /∈ C, then either ξ is near the defect core where ϕ = 0 and hence
Zh = 0 and Z̄ = 0; or ξ is near the exterior to the boundary of Ω where Zh is constant. For
this to rigorously hold, we need to recall the buffer, B4buff , in the definition of Ωc which then
makes proving the statement possible. Moreover, Zh = Z̄ on any patch ωξ with ξ /∈ C due to the

normalization factor in the definition of Z. For f ∈ W 1,2
loc (Rd) we then have∫

Ωc

f(Z̄ − Zh)dx =
∑
ξ∈L

∫
ωξ∩Ωc

f(x)
(
Z(ξ)− Zh(x)

)
ζ̄(x− ξ)dx

=
∑
ξ∈L:
ωξ⊂Ωc

∫
ωξ

f(x)
(
Z(ξ)− Zh(x)

)
ζ̄(x− ξ)dx since Zh = Z is constant for ξ /∈ C

=
∑
ξ∈C

∫
ωξ

(
f(x)−−

∫
ωξ

f

)(
Z(ξ)− Zh(x)

)
ζ̄(x− ξ)dx

≤
∑
ξ∈C

∥∥∥∥f −−∫
ωξ

f

∥∥∥∥
L2(ωξ)

‖Z(ξ)− Zh‖L2(ωξ)

.
∑
ξ∈C

‖∇f‖L2(ωξ)‖∇Zh‖L2(ωξ)

. ‖∇f‖L2(Ωc)‖∇Zh‖L2(Ωc).

(4.23)

This proves (4.17). Proving (4.18) is analogous:∫
Ωc

f · (zhα − z̄α) dx . ‖∇f‖L2(Ωc) · ‖∇zhα‖L2(Ωc). ‖∇f‖L2(Ωc) · ‖zhα‖L2(Ωc),

where in obtaining the final inequality we have used that for T ∈ Ta,

‖∇zh‖L2(T ) . hT‖zh‖L2(T ) . ‖zh‖L2(T ).
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For these choices, we also have the following norm estimates (4.19) and (4.20):

‖Zh − Z̄‖L2(Ωc) . ‖∇Zh‖L2(Ωc),

‖zhα − z̄α‖L2(Ωc) . ‖zhα‖L2(Ωc).

To obtain the first of these, we simply take f = Z̄ − Zh in (4.17) yielding

‖Zh − Z̄‖2
L2(Ωc) . ‖∇Zh −∇Z̄‖L2(Ωc) · ‖∇Zh‖L2(Ωc) . ‖∇Zh‖2

L2(Ωc) + ‖∇Z̄‖2
L2(Ωc)

. ‖∇Zh‖2
L2(Ωc) + ‖∇Z‖2

L2(Ωc) . ‖∇Zh‖2
L2(Ωc) + ‖∇Zh‖2

L2(Ωc),

where we have applied Young’s inequality to deduce the estimate

‖∇Z‖2
L2(Ωc) = ‖∇Z‖2

L2(Rd) =
∥∥∥(ζ̄ ∗ ∇Zh)∫

ζ̄dx

∥∥∥2

L2(Rd)
≤ ‖∇Zh‖2

L2(Rd)‖ζ̄‖2
L1(Rd) . ‖∇Zh‖2

L2(Ωc).

For the second of these, we simply have

‖zhα − z̄α‖L2(Ωc) ≤ ‖zhα‖L2(Ωc) + ‖z̄α‖L2(Ωc) . ‖zhα‖L2(Ωc) + ‖zα‖L2(Ωc)

. ‖zhα‖L2(Ωc) + ‖zhα‖L2(Ωc),

where we have again used Young’s inequality for convolutions. Next, upon recalling the definition

γtr =

{ √
1 + log(Ro/Ra), if d = 2,

1, if d = 3,

we have (4.21) and (4.22):

‖∇Zh‖L2(Ωc) . γtr‖∇W‖L2(Ωc),

‖zhα‖L2(Ωc) . ‖rα‖L2(Ωc).

The first of these is a consequence of [25, Lemma 7]. The second is a result of 0 ≤ ϕ ≤ 1:

‖zhα‖L2(Ωc) = ‖Ih(ϕrα)‖L2(Ωc) ≤ ‖Ih(rα)‖L2(Ωc) = ‖rα‖L2(Ωc).

�

We are now ready to prove Theorem 13.

Proof of Theorem 13. Since Ĩu interpolates u at ξ ∈ L, we may replace discrete U∞ with contin-
uous ĨU = Ũ∞ in (4.16) which leaves us with estimating

〈Fbqcf(Uh,ph), (W, r)〉 = 〈Fbqcf(Uh,ph), (W, r)〉 − 〈δEa(U∞,p∞), (U, q)〉
= 〈δEc(Uh,ph),

(
Ih(ϕW ), Ih(ϕr)

)
〉 − 〈δEa(Ũ∞, p̃∞), (Z∗, z∗)〉.

(4.24)

Recalling that Zh := Ih(ϕW ), zh := Ih(ϕr), and the atomistic and continuum stress represen-
tations of (4.6) and (4.5), we split this into three terms using simple algebraic manipulations
as

〈δEc(Uh,ph),
(
Ih(ϕW ), Ih(ϕr)

)
〉 − 〈δEa(Ũ∞, p̃∞), (Z∗, z∗)〉〉

≤
∣∣∣∣ ∫

Rd

∑
β

[
[Sc

d(Uh,ph)]β : ∇Zh − [Sa
d(Ũ∞, p̃∞)]β : ∇Z̄

]∣∣∣∣+

∣∣∣∣ ∫
Rd

∑
α,β

[Sc
s(Uh,ph)]αβ · (zhα − zhβ)

−
∑
α,β

[Sa
s (Ũ∞, p̃∞)]αβ · (z̄α − z̄β)

∣∣∣∣+

∣∣∣∣ ∫
Rd

∑
β

[Sa
d(Ũ∞, p̃∞)]β : ∇z̄β

∣∣∣∣
=: T 1

d + Ts + T 2
d .
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Next, we analyze these terms separately.
Term T 1

d : The T 1
d term is identical to the simple lattice case after accounting for the addi-

tional approximation of the shifts. Following the ideas from the simple lattice case [25], we break
down T 1

d into three additional terms as in Section 6.4.1 of [25] (the difference being we do not
consider a quadrature error), and apply the estimates of stress differences from Corollary 11 and
the approximating estimates from Lemma 12 and (4.21). This produces

T 1
d .

∣∣∣∣ ∫
Rd

∑
β

{
[Sc

d(Uh,ph)]β − [Sc
d(Ũ∞, p̃∞)]β

}
: ∇Zh dx

∣∣∣∣
+

∣∣∣∣ ∫
Rd

[Sc
d(Ũ∞, p̃∞)]β

}
: (∇Zh −∇Z̄) dx

∣∣∣∣
+

∣∣∣∣ ∫
Rd

∑
β

{
[Sc

d(Ũ∞, p̃∞)]β − [Sa
d(Ũ∞, p̃∞)]β

}
: ∇Z̄ dx

∣∣∣∣
. γtr

(
‖h∇2Ũ∞‖L2(Ωc) + ‖h∇p̃∞‖L2(Ωc)

+ ‖∇Ũ∞‖L2(Ωext) + ‖p̃‖L2(Ωext)

)
· ‖∇W‖L2(Rd).

Term Ts: For the shift term Ts, we have

Ts .

∣∣∣∣ ∫
Rd

∑
α,β

[Sc
s(Uh,ph)]αβ · (zhα − zhβ)−

∑
α,β

[Sc
s(Ũ

∞, p̃∞)]αβ · (zhα − zhβ)

∣∣∣∣
+

∣∣∣∣ ∫
Rd

∑
α,β

[Sc
s(Ũ

∞, p̃∞)]αβ · (zhα − zhβ − (z̄α − z̄β))

∣∣∣∣
+

∣∣∣∣ ∫
Rd

∑
α,β

[Sc
s(Ũ

∞, p̃∞)]αβ · (z̄α − z̄β)−
∑
α,β

[Sa
s (Ũ∞, p̃∞)]αβ · (z̄α − z̄β)

∣∣∣∣
=: Ts,1 + Ts,2 + Ts,3.

Using Lipschitz continuity of δV (in the definition of Sc
s) and the fact that zh is supported in

Ωc followed by an application of the test function estimate (4.22), we obtain

|Ts,1| .
(
‖∇ΠhU −∇Ũ‖L2(Ωc) + ‖Πhp− p̃‖L2(Ωc)

)
‖zh‖L2(Rd)

.
(
‖∇ΠhU −∇Ũ‖L2(Ωc) + ‖Πhp− p̃‖L2(Ωc)

)
‖r‖L2(Rd)

Using the stress estimate, Corollary 11, followed by the application of the test function norm
estimates (4.20) and (4.22), we get

|Ts,3| .
(
‖∇2Ũ‖L2(Ωc) + ‖∇p̃‖L2(Ωc)

)
‖z̄‖L2(Rd)

.
(
‖∇2Ũ‖L2(Ωc) + ‖∇p̃‖L2(Ωc)

)
‖r‖L2(Rd).

Finally, to treat zh − z̄ inside Ts,2, we use (4.18) of Lemma 14 with f = [Sc
s(Ũ

∞, p̃∞)]αβ followed
by an application of (4.22), the chain rule, and (4.5):

|Ts,2| .
∥∥∇(Sc

s

(
Ũ∞, p̃∞

))∥∥
L2(Ωc)

‖zh‖L2(Rd)

. ‖∇Sc
s

(
Ũ∞, p̃∞

)
· ∇
(
∇Ũ∞ + p̃∞

)
‖L2(Ωc)‖r‖L2(Rd).
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Combining our estimates for Ts,1, Ts,2, and Ts,3 and appealing to Lemma 12 to estimate Ts,1 along
with the crude estimate h & 1 gives

|Ts| .
(
‖h∇2Ũ∞‖L2(Ωc) + ‖h∇p̃∞‖L2(Ωc)

+ ‖∇Ũ∞‖L2(Ωext) + ‖p̃‖L2(Ωext)

)
‖r‖L2(Rd).

Term T 2
d : Finally, to estimate T 2

d we split it into

|T 2
d | =

∣∣∣∣ ∫
Rd

∑
β

[Sa
d(Ũ∞, p̃∞)]β : ∇z̄β

∣∣∣∣
.

∣∣∣∣ ∫
Rd

∑
β

(
Sc

d(Ũ∞, p̃∞)]β − [Sa
d(Ũ∞, p̃∞)]β

)
: ∇z̄β

∣∣∣∣
+

∣∣∣∣ ∫
Rd

∑
β

[Sc
d(Ũ∞, p̃∞)]β : ∇z̄β

∣∣∣∣
=: T 2

d,1 + T 2
d,2.

To estimate T 2
d,1, we note that it is similar to T 1

d in that ∇ρzβ is zero off Ωc (which is due to the
support of the blending function and the definition of Ωc; see the proof of Lemma 14 for further
explanation) so we utilize the stress estimate in Corollary 11 along with the bound

‖∇z̄β‖ . ‖z̄β‖ . ‖rβ‖
which follows from

‖z̄β‖ . ‖zhβ‖L2(Ωc) by (4.20)

. ‖rβ‖L2(Ωc) by (4.22).

This produces

T 2
d,1 .

(
‖∇2Ũ∞‖L2(Ωc) + ‖∇p̃∞‖L2(Ωc)

)
‖∇z̄‖L2(Rd)

.
(
‖∇2Ũ∞‖L2(Ωc) + ‖∇p̃∞‖L2(Ωc)

)
‖r‖L2(Rd).

Meanwhile, we may integrate T 2
d,2 by parts and use the aforementioned fact that ‖z̄β‖ . ‖rβ‖ to

obtain

T 2
d,2 .

∑
β

∥∥∥div
(

[Sc
d(Ũ∞, p̃∞)]β

)∥∥∥
L2(Ωc)

‖r‖L2(Rd).

Applying the chain rule to div
(

[Sc
d(Ũ∞, p̃∞)]β

)
(just like for Ts,2), we get

|T 2
d | . T 2

d,1 + T 2
d,2 .

(
‖∇2Ũ∞‖L2(Ωc) + ‖∇p̃∞‖L2(Ωc)

)
‖r‖L2(Rd)

.
(
‖h∇2Ũ∞‖L2(Ωc) + ‖h∇p̃∞‖L2(Ωc)

)
‖r‖L2(Rd).

Combining our estimates for T 1
d , Ts, and T 2

d yields the stated result. �
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4.3. Stability. The second key ingredient in our proof of Theorem 6 is the stability estimate (4.2);
this in turn implies a bound on the inverse of the linearised BQCF operator, which we will use in
a quantitative version of the inverse function theorem to establish existence of the solution to our
BQCF equations. Conceptually, the proof of stability is similar to that of the simple lattice case
presented in [25].

Theorem 15 (Stability of BQCF). Suppose that Assumptions 1, 2, and 3 hold. There exists
a critical size, R∗core, of the atomistic region such that, for all shape regular meshes and blending
functions meeting the requirements of Section 3 and Rcore ≥ R∗core,

γa

2
‖(W, r)‖2

ml ≤ 〈δFbqcf(Πh(U
∞,p∞))(W, r), (W, r)〉, ∀ (W, r) ∈ Uh,0 ×Ph,0.

As an intermediate step we also prove stability of the reference state.

Theorem 16 (Stability of BQCF at Reference State). Suppose that Assumptions 1, 2, and 3
hold. There exists a critical size R∗core of the atomistic region such that, for all meshes having
shape regularity constant bounded below by CTh and blending functions meeting the requirements of
Section 3 and Rcore ≥ R∗core,

3

4
γa‖(W, r)‖2

ml ≤ 〈δFbqcf
hom (0)(W, r), (W, r)〉, ∀ (W, r) ∈ Uh,0 ×Ph,0.

Before we present the proofs of these results in Sections 4.5 and 4.6 we apply them to complete
the proof of our main result, Theorem 6.

4.4. Proof of the main result.

Proof of Theorem 6. We apply the inverse function theorem, Theorem 7, to the BQCF variational
operator Fbqcf at the linearization point Πh(U

∞,p∞). The parameters η and σ defined in Theo-
rem 7 are

η := γtr

(
‖h∇2Ũ‖L2(Ωc) + ‖h∇p̃‖L2(Ωc) + ‖∇Ũ‖L2(Ωext)

+ ‖p̃‖L2(Ωext)

)
· ‖(W, r)‖ml, ∀(W, r) ∈ Uh,0 ×Ph,0,

which is the consistency error from Theorem (13), and

σ−1 :=
γa

2
,

which is the coercivity constant from Theorem (15) that exists so long as Rcore ≥ R∗core, where R∗core

is furnished by Theorem (15). (The requirement Rcore ≥ R∗core means the domain decomposition
procedure meets the requirements stated in Theorem 6.) The Lipschitz estimate on δFbqcf is
a direct result of the assumptions made on the site potential in Assumption 1. Applying the
inverse function theorem with these parameters gives existence of (Ubqcf ,pbqcf) and the stated
error estimate, (3.5), follows from the inverse function theorem and the approximation lemma,
Lemma 12. �

The remainder of the paper is devoted to proving Theorems 15 and 16.
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4.5. Stability of BQCF at defect-free reference state. We first prove Theorem 16, that is,
coercivity of the homogeneous BQCF operator,

〈δFbqcf
hom (0)(W, r), (W, r)〉 = 〈δ2Ea

hom(0)((1− ϕ)W, (1− ϕ)r), (W, r)〉
+ 〈δ2Ec(0)(Ih(ϕW ), Ih(ϕr)), (W, r)〉.

That is, we want to show that there exists γbqcf independent of the approximation parameters such
that, for sufficiently large Rcore,

0 < γbqcf‖(W, r)‖2
ml ≤ 〈δFbqcf

hom (0)(W, r), (W, r)〉. (4.25)

The proof via contradiction is involved; hence we first outline and motivate the procedure and
then give a number of technical results required to prove the theorem at the end of this section.
The main idea is that the linearized BQCF operator consists of an atomistic second variation
and a continuum second variation. Each of these can be individually shown to be coercive so
intuitively, we would expect this linearized operator to be coercive for any test pair (W, r) with
support concentrated near the origin (in which case the blending function is zero) and for (W, r)
with support concentrated far from the origin (in which case the blending function would be one).
Thus, we expect the only possible instabilities to occur with test pairs having some support over the
blending region. Since there is no defect in the homogeneous case, any such instability should also
occur for any geometric setup, i.e., we can consider the BQCF method for a sequence of growing
atomistic domain sizes and should still have an unstable mode. Thus we shall consider such a
sequence and then rescale this sequence so that the atomistic region in each case is contained in
a ball of fixed radius about the origin and such that these unstable modes converge (in a sense to
be made precise momentarily) to some continuum limit. We then consider evaluating the suitably
rescaled linearized BQCF operator on this sequence and show using the aforementioned stability of
the atomistic and continuum components and convergence of the test pairs (W, r) that this leads to
a contradiction. One of the main technical difficulties encountered here is that due to blending by
forces, the individual atomistic/continuum components and hence the linearized BQCF operator
is not a symmetric bilinear form. Thus we must take some care in converting the force-based
formulation to a form suitable to using the existing coercivity estimates on the atomistic and
continuum Hessians.

The negation of (4.25) is: “for all atomistic region sizes Ra, there exists a blending function ϕ
and a mesh Th compatible with the assumptions of Section 3.1 (and in particular Assumption 4),
as well as a test pair, (W, r) with norm scaled to one, such that

3

4
γa > 〈δFbqcf

hom (0)(W, r), (W, r)〉.” (4.26)

Thus, for contradiction, suppose that there exists a sequence Ra,n → ∞ with associated meshes
Th,n, blending functions ϕn, finite element spaces Un

h,0×Pn
h,0, and test pairs (Wn, rn) ∈ Un

h,0×Pn
h,0

with norm one such that

3

4
γa >

∑
ξ∈L

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) : D(ραβ)((1− ϕn)Wn, (1− ϕn)rn) : D(ραβ)(Wn, rn)

+

∫
Rd

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) : ∇(ραβ)(Ih(ϕn(Wn, rn))) : ∇(ραβ)(Wn, rn) dx,

(4.27)

where we have omitted the argument, 0, in V,(ραβ)(τγδ)(0) and where Ih is now the piecewise linear
interpolant on Th,n.
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We now rescale space in (4.26) and derive a continuum scaling limit, from which we will be able
to obtain a contradiction. To that end, let εn = 1/Ra,n, and define the set of scaled parameters

ξ̂n = εnξ

x̂n = εnx

r̂n(x̂n) = ε−d/2n rn(x̂n/εn)

Ŵn(x̂n) = ε1−d/2n Wn(x̂n/εn)

ϕ̂n(x̂n) = ϕn(x̂n/εn).

(4.28)

In terms of these rescaled quantities, we define ∇̂ := ε−1
n ∇x = ∇x̂n (when the subscript n is clear

we use ∇̂) and then have

‖∇x̂nŴn‖2
L2(Rd) = ‖∇xWn‖2

L2(Rd), ‖εn∇x̂n r̂n‖2
L2(Rd) = ‖∇xrn‖2

L2(Rd),

‖r̂αn‖2
L2(Rd) = ‖rαn‖2

L2(Rd),

and the rescaled BQCF operator is

〈δFbqcf
hom,n(0)(Ŵn, r̂n), (Ŵn, r̂n)〉 :=

εdn
∑
ξ̂∈εnL

C : Dn((1− ϕ̂n)(Ŵn, r̂n)) : Dn(Ŵn, r̂n)(ξ̂)

+

∫
Rd

C : ∇̂(Ih,n(ϕ̂n(Ŵn, r̂n))) : ∇̂(Ŵn, r̂n) dx̂n,

(4.29)

where Ih,n is the piecewise linear interpolant on εnTh,n and

Dn(Ŵ , r̂) :=
(
D(ραβ),n(Ŵ , r̂)

)
(ραβ)∈R,

D(ραβ),n(Ŵ , r̂)(ξ̂) :=
Ŵ (ξ̂ + εnρ) + εnr̂

β
n(ξ̂ + εnρ)− Ŵ (ξ̂)− εnr̂αn(ξ̂)

εn
.

The rescaling of the shifts r̂αn is one order lower than the rescaling of displacements, which is due
to the fact that shifts are already discrete gradients.

We also define an interpolant onto the scaled lattice εnL by In, a projection operator from the
scaled lattice to finite element spaces Un

h,0×Pn
h,0 on Th,n by Πh,n := Sh,nTri,n , and the scaled finite

element basis function

ζ̄n(x) := ε−dn ζ̄(x/εn).

Since ∇̂Ŵn is bounded in L2 and since each r̂αn is also bounded (both having norm less than

one), we may extract weakly convergent subsequences. Furthermore, εn∇̂r̂αn is also bounded in L2

so we may take it to be weakly convergent as well. By replacing the original sequences with these
weakly convergent subsequences (for notational convenience), we have ∇̂Ŵn ⇀ ∇̂Ŵ0, r̂αn ⇀ r̂α0 ,

and εn∇̂r̂αn ⇀ R̂α
0 in L2(Rd) for some functions Ŵ0, r̂

α
0 , and R̂α

0 for each α. However, since r̂αn is

bounded in L2 and εnr̂
α
n → 0 in L2, R̂α

0 = 0.

Next, we choose explicit equivalence representatives for Ŵn; namely, we choose Ŵn such that∫
B1(0)

Ŵn = 0. For this choice, we have ‖Ŵn‖L2(B1(0)) . ‖∇̂Ŵn‖L2(B1(0)), and as H1 is compactly

embedded in L2, there exists a strongly convergent subsequence, which we again denote by Ŵn,
such that Ŵn → Ŵ0 strongly in L2(B1(0)).
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We also note here that Ŵn ⇀ Ŵ0 in the space

Ḣ1(Rd,Rn) :=
{
f ∈ H1

loc(Rd,Rn)/Rn : ‖∇f‖L2(Rd) <∞
}
,

and so Ŵ0 ∈ Ḣ1(Rd,Rn) as well [39].

The purpose of these subsequences is to use the pairs (Ŵn, r̂n) to test with δFbqcf
hom,n(0). However,

as these test pairs only consist of weakly convergent sequences and since the inner product of two
weakly convergent sequences is not necessarily convergent, we further split Ŵn and r̂n into the
sum of a strongly convergent sequence and a sequence weakly convergent to zero.

This splitting is accomplished by setting

X̂n := Πh,n(ηjn ∗ Ŵ0), ŝαn := Πh,n(ηjn ∗ r̂α0 ), (4.30)

where η is a standard mollifier, ηj(x) = j−dη(x/j), and jn → 0 sufficiently slowly to ensure that

the sequences X̂n and ŝαn are strongly convergent to, respectively, Ŵ0 and r̂α0 . We will impose
several further properties on the sequence jn in Lemma 17 below, but for the remainder of the
present section, we make the following conventions for notational convenience.

Remark 5. To simplify and lessen the notations hereafter, we drop the hat notation on the
sequences Xn, Zn, sn, tn as well as on their derivatives, and so forth. �

Further, we define

ψn := 1− ϕn, and V,(ραβ)(τγδ) := V,(ραβ)(τγδ)

(
0
)
,

and use the notation

V,(ραβ)(τγδ)

(
·
)

: v : w := w>
[
V,(ραβ)(τγδ)

(
·
)]
v ∀v, w ∈ Rn,

C : D(W, q) : D(Z, r) :=
∑

(ραβ)∈R

∑
(τγδ)∈R

V,(ραβ)(τγδ) : D(ραβ)(W, q) : D(τγδ)(Z, r),

C : ∇(W, q) : ∇(Z, r) :=
∑

(ραβ)∈R

∑
(τγδ)∈R

V,(ραβ)(τγδ) : (∇(W, q)) : (∇(Z, r)),

where the argument of V,(ραβ)(τγδ)(·) is omitted if evaluated at the reference state.

Lemma 17. There exists ψ0 ∈ C1 is such that ψn → ψ0 in C1(B1(0)). Furthermore, there
exists a sequence jn → 0 such that the sequences defined by Xn, sn in (4.30) and Zn := Wn −Xn

and tαn := rαn − sαn satisfy the following convergence properties, where → and ⇀ denote respectively
strong and weak L2(Rd) convergence.

∇Wn ⇀ ∇W0, rαn ⇀ rα0 , εn∇rαn ⇀ 0, ∇Xn → ∇W0, sαn → rα0 ,

εn∇sαn → 0, ∇Zn ⇀ 0, tαn ⇀ 0, εn∇tαn ⇀ 0,

Wn → W0 in L2(B1(0)), Xn → W0 in L2(B1(0)), Zn → 0 in L2(B1(0))

(4.31)
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Moreover, let I denote the identity and upon defining the quantities

Rdef
n (x):= Rdef

n (ψn) (x) =

εdn
∑
ξ∈εnL

∑
(ραβ)
(τγδ)

V,(ραβ)(τγδ)(0)D(τγδ),n(ψn(Xn, sn))⊗ ρ

εn

∫ εn

0

ζn(ξ + tρ− x) dt,

Rshift
n (x):= Rshift

n (ψn) (x) =

εdn
∑
ξ∈εnL

∑
(ραβ)
(τγδ)

V,(ραβ)(τγδ)(0)D(τγδ),n(ψnXn, ψnsn)ζ̄n(ξ − x),

Sdef
n (x):= Rdef

n (I) (x), Sshift
n (x):= Rshift

n (I) (x)

Sinner
n (x) :=

εdn
∑
ξ∈εnL

∑
(ραβ)
(τγδ)

V,(ραβ)(τγδ) : D(ραβ),n(ψnXn, ψnsn) : D(τγδ),n(Xn, sn),

the sequence jn may further be chosen so that

Sdef
n (x)→

∑
(ραβ)
(τγδ)

V(ραβ)(τγδ)(0)∇(τγδ)(W0, s0),

Sshift
n (x)→

∑
(ραβ)
(τγδ)

V(ραβ)(τγδ)(0)∇(τγδ)(W0, s0),

Rdef
n (x)→

∑
(ραβ)
(τγδ)

V,(ραβ)(τγδ)(0)∇(τγδ)(ψ0W0, ψ0s0), (4.32)

Rshift
n (x)→

∑
(ραβ)
(τγδ)

V,(ραβ)(τγδ)(0)∇(τγδ)(ψ0W0, ψ0s0),

Sinner
n (x)→

∫
Rd

∑
(ραβ)
(τγδ)

V,(ραβ)(τγδ) :
(
∇(ραβ)(ψ0(W0, s0))

)
:
(
∇(τγδ)(W0, s0)

)
dx,

with convergence being in L2(Rd).

Proof. The key fact in proving this result is that jn may be chosen to tend to zero sufficiently
slowly such that any one of these properties holds individually, and by appropriately selecting
subsequences using a diagonalization argument, they may be chosen so that all hold simultaneously.
The full proof is given in the Appendix. �



32 DEREK OLSON, XINGJIE LI, CHRISTOPH ORTNER, BRIAN VAN KOTEN

We now state a convergence result for “cross-terms” appearing in δFbqcf
hom,n(0) involving products

of strongly and weakly convergent (to zero) sequences. The proof is given in the appendix.

Lemma 18. With Zn, Xn, tn, and sn as defined in Lemma 17,

εd
∑
ξ∈εnL

C : Dn(ψnZn, ψntn) : Dn(Xn, sn)→ 0, and (4.33)

εd
∑
ξ∈εnL

C : Dn(ψnXn, ψnsn) : Dn(Zn, tn)→ 0. (4.34)

The next lemma manipulates the product of two weakly convergent sequences. The idea is that
we may shift the blending function function ψn = 1−ϕn in a way to use coercivity of the atomistic
and continuum Hessians. The proof is again given in the appendix.

Lemma 19. Let Zn, Xn, tn, sn, θn =
√
ψn, and θ0 =

√
ψ0 be as defined above in Lemma 17.

Then

lim
n→∞

εdn
∑
ξ∈εnL

C : Dn(θ2
nZn, θ

2
ntn) : Dn(Zn, tn)

= lim
n→∞

εdn
∑
ξ∈εnL

C : Dn(θnZn, θntn) : Dn(θnZn, θntn).

We are now positioned to prove Theorem 16.

Proof of Theorem 16, Stability of BQCF at Reference State. We use the scaling (4.29) and substi-
tute (from Lemma 17) the quantities Wn = Zn+Xn, rαn = tαn+sαn, ψn = 1−ϕn, and θn =

√
1− ϕn.

We divide the proof into three steps: (1) we derive an expression for the atomistic portion of

δFbqcf
hom,n(0) in the lim inf as n → ∞, (2) we derive an expression for the continuum component

of δFbqcf
hom,n(0), and (3) we combine the results and use stability of the individual atomistic and

continuum components to derive a contradiction.

Step 1: The first variation, δFbqcf
hom,n(0), computed in (4.29) is a sum of an atomistic and continuum

component. The discrete, atomistic contribution is〈
δ2Ea

hom,n(0)(1− ϕn)(Wn, rn), (Wn, rn)〉
= εdn

∑
ξ∈εnL

C : Dn(θ2
nWn, θ

2
nrn) : Dn(Wn, rn)

= εdn
∑
ξ∈εnL

C : Dn(θ2
nZn + θ2

nXn, θ
2
ntn + θ2

nsn) : Dn(Zn +Xn, tn + sn)

= εdn
∑
ξ∈εnL

C :
[
Dn(θ2

nZn, θ
2
ntn) : Dn(Zn, tn) +Dn(θ2

nZn, θ
2
ntn) : Dn(Xn, sn)

+ Dn(θ2
nXn, θ

2
nsn) : Dn(Zn, tn) +Dn(θ2

nXn, θ
2
nsn) : Dn(Xn, sn)

]
. (4.35)

This final expression consists of four different pairings of the form Dn(·, ·) : Dn(·, ·); upon taking
lim inf as n → ∞, we use Lemma 19 on the first pairing, Lemma 18 on the second and third
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pairings, and the final convergence property of Sinner
n (x) from Lemma 17 on the fourth pairing to

arrive at the following expression for the atomistic contribution:

lim inf
n→∞

〈
δ2Ea

hom,n(0)(1− ϕ)(Wn, rn), (Wn, rn)〉

= lim inf
n→∞

εdn
∑
ξ∈εnL

C : Dn(θnZn, θntn) : Dn(θnZn, θntn)

+

∫
Rd

C : ∇(θ2
0W0, θ

2
0r0) : ∇(W0, r0) dx.

(4.36)

Step 2: Meanwhile, the continuum component of δFbqcf
hom,n(0) from (4.29) is〈

δ2Ec(0)Ih,n(ϕnWn, ϕnrn), (Wn, rn)
〉

=

∫
Rd

C : ∇
(
Ih,n(ϕnWn), Ih,n(ϕnrn)

)
: ∇(Wn, rn) dx.

(4.37)

Using standard P1-nodal interpolation error estimates and the fact that each ∇ϕn has support
on B1, it is straightforward to prove that (c.f. Lemma 21)

lim
n→∞

‖∇Ih,n(ϕnWn)−∇(ϕnWn)‖L2(Rd) = 0,

lim
n→∞

‖Ih,n(ϕnr
α
n)− (ϕnr

α
n)‖L2(Rd) = 0.

(4.38)

Thus, taking the lim inf of (4.37) and applying (4.38) we obtain

lim inf
n→∞

〈
δ2Ec(0)Ih,n(ϕWn, ϕrn), (Wn, rn)

〉
= lim inf

n→∞

∫
Rd

C : ∇(ϕnWn, ϕnrn) : ∇(Wn, rn) dx.

(4.39)
Substituting the decomposition (Wn, rn) := (Zn +Xn, tn + sn) into (4.39) yields

lim inf
n→∞

〈
δ2Ec(0)Ih,n(ϕWn, ϕrn), (Wn, rn)

〉
= lim inf

n→∞

∫
Rd

[
C : ∇(ϕnZn, ϕntn) : ∇(Zn, tn) + C : ∇(ϕnZn, ϕntn) : ∇(Xn, sn)

+ C : ∇(ϕnXn, ϕnsn) : ∇(Zn, tn) + C : ∇(ϕnXn, ϕnsn) : ∇(Xn, sn)
]
dx.

(4.40)

This final expression again gives four pairings just as in step one but now of the form∇(·, ·) : ∇(·, ·).
The first pairing we momentarily leave alone, the second and third pairings both converge to zero
by virtue of strong convergence of ∇Xn, sn and weak convergence of ∇Zn, tn to 0 from Lemma 17,
and the final pairing converges to ∇(ϕ0W0, ϕ0r0) : ∇(W0, r0) again as a result of the strong
convergence properties of ∇Xn, sn from Lemma 17. These facts simplify (4.40) to

lim inf
n→∞

〈
δ2Ec(0)Ih,n(ϕWn, ϕrn), (Wn, rn)

〉
= lim inf

n→∞

∫
Rd

[
C : ∇(ϕnZn, ϕntn) : ∇(Zn, tn)

+ C : ∇(ϕ0W0, ϕ0r0) : ∇(W0, r0)
]
dx.

(4.41)

As in the atomistic case, our goal is again to think of ϕn as a square, ϕn :=
√
ϕn

2 and to shift one
factor of

√
ϕn to each component of the duality pairing. Using an argument very similar to that
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in the proof of Lemma 19 (which we therefore omit) we obtain

lim inf
n→∞

∫
Rd

C : ∇(ϕnZn, ϕntn) : ∇(Zn, tn)

= lim inf
n→∞

∫
Rd

C : ∇(
√
ϕnZn,

√
ϕntn) : ∇(

√
ϕnZn,

√
ϕntn).

Inserting the last result into (4.41), we obtain

lim inf
n→∞

〈
δ2Ec(0)Ih,n(ϕWn, ϕrn), (Wn, rn)

〉
(4.42)

= lim inf
n→∞

∫
Rd

[
C : ∇(

√
ϕnZn,

√
ϕntn) : ∇(

√
ϕnZn,

√
ϕntn) + C : ∇(ϕ0W0, ϕ0r0) : ∇(W0, r0)

]
dx.

Step 3: Upon adding the atomistic components from (4.36) to the continuum contributions (4.42)

and recalling that θ2
0 = 1− ϕ0, we have the following expression for δFbqcf

hom,n(0):

lim inf
n→∞

〈δFbqcf
hom,n(0)(Wn, rn), (Wn, rn)〉

= lim inf
n→∞

∫
Rd

[
C : ∇(

√
ϕnZn,

√
ϕntn) : ∇(

√
ϕnZn,

√
ϕntn) + C : ∇(W0, r0) : ∇(W0, r0)

]
dx

+ lim inf
n→∞

εdn
∑
ξ∈εnL

C : Dn(
√

1− ϕnZn,
√

1− ϕntn) : Dn(
√

1− ϕnZn,
√

1− ϕntn)

(4.43)

Next, using stability of the homogeneous atomistic model in this scaling,

〈δ2Ea
hom,n(0)(Wn, rn), (Wn, rn)〉 ≥ γa‖(Wn, rn)‖2

a,

(which can easily be proven (c.f. [34, 17]) due to Assumption 3) and the fact that atomistic stability
implies Cauchy–Born Stability [34, Theorem 3.6], that is,

〈δ2Ec(0)(Wn, rn), (Wn, rn)〉 ≥ γa‖(W, r)‖2
ml,

we hence have from (4.43) that

lim inf
n→∞

〈δFbqcf
hom,n(0)(Wn, rn), (Wn, rn) (4.44)

= lim inf
n→∞

[
〈δ2Ec(

√
ϕnZn,

√
ϕntn), (

√
ϕnZn,

√
ϕntn)〉+ 〈δ2Ec(W0, r0), (W0, r0)〉

+ 〈δ2Ea
hom,n(

√
1− ϕnZn,

√
1− ϕntn), (

√
1− ϕnZn,

√
1− ϕntn)〉

]
≥ lim inf

n→∞
γa

[
‖∇(
√
ϕnZn)‖2

L2(Rd) + ‖√ϕntn‖2
L2(Rd) + ‖∇W0‖2

L2(Rd) + ‖r0‖2
L2(Rd)

+ ‖∇In(
√

1− ϕnZn)‖2
L2(Rd) + ‖In(

√
1− ϕntn)‖2

L2(Rd)

]
.

Similar to (4.38) (c.f. Lemma 21), standard nodal interpolation error estimates imply that

lim
n→∞

‖∇In(
√

1− ϕnZn)−∇(
√

1− ϕnZn)‖L2(Rd) =0, and

lim
n→∞

‖In(
√

1− ϕntn)− (
√

1− ϕntn)‖L2(Rd) =0.
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Thus, (4.44) becomes

lim inf
n→∞

〈δFbqcf
hom,n(0)(Wn, rn), (Wn, rn)

≥ lim inf
n→∞

γa

[
‖∇(
√
ϕnZn)‖2

L2(Rd) + ‖√ϕntn‖2
L2(Rd) + ‖∇W0‖2

L2(Rd) + ‖r0‖2
L2(Rd)

+ ‖∇(
√

1− ϕnZn)‖2
L2(Rd) + ‖

√
1− ϕntn‖2

L2(Rd)

]
= lim inf

n→∞
γa

[
‖∇(
√
ϕnZn)‖2

L2(Rd) + ‖∇(
√

1− ϕnZn)‖2
L2(Rd) + ‖tn‖2

L2(Rd)

+ ‖∇W0‖2
L2(Rd) + ‖r0‖2

L2(Rd)

]
.

(4.45)

Next observe

‖∇(
√
ϕnZn)‖2

L2(Rd) + ‖∇(
√

1− ϕnZn)‖2
L2(Rd)

=

∫ [
|∇(
√
ϕn)⊗ Zn +

√
ϕn∇Zn|2 + |∇(

√
1− ϕn)⊗ Zn +

√
1− ϕn∇Zn|2

]
dx

=

∫ [
2∇(
√
ϕn)⊗ Zn :

√
ϕn∇Zn + |∇(

√
ϕn)⊗ Zn|2 + ϕn|∇Zn|2

]
dx

+

∫ [
2∇(

√
1− ϕn)⊗ Zn :

√
1− ϕn∇Zn + |∇(

√
1− ϕn)⊗ Zn|2 + (1− ϕn)|∇Zn|2

]
dx.

(4.46)

Since Zn converges strongly to zero in L2(supp(∇(
√

1− ϕn))) by Lemma 17 (supp(∇(
√

1− ϕn)) ⊂
B1(0)), it follows from (4.46) that

lim inf
n→∞

‖∇(
√
ϕnZn)‖2

L2(Rd) + ‖∇(
√

1− ϕnZn)‖2
L2(Rd) = lim inf

n→∞
‖∇Zn‖2

L2(Rd). (4.47)

Substituting (4.47) into (4.45) produces

lim inf
n→∞

〈δFbqcf
hom,n(0)(Wn, rn), (Wn, rn)〉

≥ lim inf
n→∞

γa

[
‖∇Zn‖2

L2(Rd) + ‖tn‖2
L2(Rd) + ‖∇W0‖2

L2(Rd) + ‖r0‖2
L2(Rd)

]
≥ lim inf

n→∞
γa

[
‖∇Zn‖2

L2(Rd) + ‖tn‖2
L2(Rd) + ‖∇Xn‖2

L2(Rd) + ‖sn‖2
L2(Rd)

]
= lim inf

n→∞
γa

[
‖∇Wn‖2

L2(Rd) + ‖rn‖2
L2(Rd)

]
= γa,

(4.48)

which contradicts our assumption in (4.27). �

4.6. Reference Stability Implies Defect Stability. Having established stability of the ho-
mogeneous BQCF operator we obtain stability of δFbqcf(Πh,n(U∞,p∞)), i.e. Theorem 15, as a
relatively straightforward consequence. Before entering into the proof we remark that we now
no longer employ the rescalings of Section 4.5. The basic idea of the proof is that the linearized
homogeneous BQCF operator and linearized BQCF operator agree for any (W, r) which is zero
in a large enough neighborhood about the origin. Thus, to prove stability of the true linearized
BQCF operator, we again consider the possibility of a sequence, (Wn, rn), of unstable modes whose
support is contained in larger and larger balls about the origin. We will then split each (Wn, rn)
into components concentrated near the origin (where we can use atomistic stability) and correction
terms supported far from the origin where we use stability of the linearized homogeneous operator.
As before, the main difficulty is converting the atomistic component of the BQCF operator to a
form where we may utilize atomistic coercivity.
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Proof of Theorem 15. We prove this result by contradiction as well. Therefore suppose, as in the
proof of Theorem 16, that there exists Ra,n →∞ with associated meshes Th,n, blending functions
ϕn, and test pairs (Wn, rn) ∈ Un

h,0 ×Pn
h,0 with norm scaled to one, such that

γa

2
>
∑
ξ∈L

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ)(DUn) : D(ραβ)((1− ϕ̂n)Ŵn, (1− ϕ̂n)r̂n) : D(ραβ)(Ŵn, r̂n)

+

∫
Rd

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ)(∇Un) : ∇ραβ(Ih,n(ϕ̂n(Ŵn, r̂n))) : ∇ραβ(Ŵn, r̂n) dx

=: 〈δFbqcf
n (Un)(Wn, rn), (Wn, rn)〉,

(4.49)

where, for notational simplicity we have defined Un := Πh,n(U∞,p∞) and redefined δFbqcf
n from

the previous section without a scaling by ε.
Upon extracting a subsequence, we may assume without loss of generality that ∇Wn ⇀ ∇W0

for W0 ∈ Ḣ1 and rn ⇀ r0 ∈ L2. For each Ra,n, Wn and rn are piecewise linear with respect to
the mesh Ta on Ωa,n. Hence the convergence is strong on any finite collection of elements on Ta

since weak convergence implies strong convergence on finite dimensional spaces. It also follows
from the full refinement of the mesh assumption on Ωa,n that W0 and r0 are also piecewise linear
with respect to Ta.

Having established these basic facts, we will yet again split (Wn, rn) into the sum of a strongly
convergent sequence and weakly convergent sequence as in [25, Theorem 4.9]. For each n, we take
ηn(x) to be a smooth bump function satisfying ηn(x) = 1 on B1/2rcore,n(0) and ηn(x) has support
contained in Brcore,n(0). Similar to the definition of Πh, we then set

An := Brcore,n \B(1/2)rcore,n +B2rbuff

and

Xn := In(ηnW0)− In(ηn)−
∫
An

W0 dx, Zn := Wn −Xn, sn := In(ηnr0), tn := rn − sn. (4.50)

Similar to Lemma 12, we have, with these definitions,

∇Xn → ∇W0, and ∇Zn ⇀ 0 in L2(Rd)

and

sn → r0, and tn ⇀ 0 in L2(Rd).

Then we note that the norm defined by

‖(U,p)‖2
a1

:=
∑
ξ∈L

|D(U,p)(ξ)|2, where |D(U,p)(ξ)|2 :=
∑

(ραβ)∈R

|D(ραβ)(U,p)(ξ)|2.

is equivalent to the ‖ ·‖a norm on U by [34, Lemma 2.1]. Thus, since we are dealing with functions
which are P1 with respect to Ta on a growing atomistic region, then the continuous convergence
results for ∇Xn,∇Zn, sn, and tn imply corresponding discrete convergence results:

D(Xn, sn)→ D(W0, r0) and D(Zn, tn) ⇀ 0 in `2(L). (4.51)
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With this decomposition, we now substitute the test pair (Wn, rn) = (Xn+Zn, sn+tn) from (4.50)
into

〈δFbqcf
n (Un)(Xn + Zn, sn + tn), (Xn + Zn, sn + tn)〉

= 〈δFbqcf
n (Un)(Xn, sn), (Xn, sn)〉+ 〈δFbqcf

n (Un)(Xn, sn), (Zn, tn)〉
+ 〈δFbqcf

n (Un)(Zn, tn), (Xn, sn)〉+ 〈δFbqcf
n (Un)(Zn, tn), (Zn, tn)〉.

(4.52)

Also recall the definition of δFbqcf
n , which is

〈δFbqcf
n (Un)(Wn, rn), (Wn, rn)〉

= 〈δ2Ea(Un)
(
(1− ϕn)(Wn, rn)

)
, (Wn, rn)〉

+ 〈δ2Ec(Un)
(
ϕn(Wn, rn)

)
, (Wn, rn)〉.

Since D(Xn, sn) each have support where ϕn = 0 and Πh,n(Un) = (Un) there, we can rewrite the
first three terms of (4.52) without the blending function as

〈δFbqcf
n (Un)(Xn + Zn, sn + tn), (Xn + Zn, sn + tn)〉

= 〈δ2Ea(Un)(Xn, sn), (Xn, sn)〉+ 〈δ2Ea(Un)(Xn, sn), (Zn, tn)〉
+ 〈δ2Ea(Un)(Zn, tn), (Xn, sn)〉+ 〈δFbqcf

n (Un)(Zn, tn), (Zn, tn)〉.
(4.53)

Moreover, D(Zn, tn) has support only where Vξ ≡ V and so from the convergence properties (4.51),
it follows that 〈δ2Ea(Un)(Xn, sn), (Zn, tn)〉 and 〈δ2Ea(Un)(Zn, tn), (Xn, sn)〉 both go to zero as
n→∞.

For the first term in (4.53), using the atomistic stability assumption, Assumption 3, we obtain

〈δ2Ea(Un)(Xn, sn), (Xn, sn)〉 ≥ γa‖(Xn, sn)‖2
ml. (4.54)

Thus, taking the lim inf as n→∞ in (4.53) yields

lim inf
n→∞

〈δFbqcf
n (Un)(Xn + Zn, sn + tn), (Xn + Zn, sn + tn)〉

≥ lim inf
n→∞

γa‖(Xn, sn)‖2
ml + lim inf

n→∞
〈δFbqcf

n (Un)(Zn, tn), (Zn, tn)〉
(4.55)

Thus, we are only left to treat 〈δFbqcf
n (Un)(Zn, tn), (Zn, tn)〉, the far-field contribution, as defined

in (4.50). The strategy here is that far from the defect core we may replace δFbqcf
n (Un) with

δFbqcf
hom,n(0) and then apply Theorem 16. Thus, we first estimate,

〈δFbqcf
n (Un)(Zn, tn), (Zn, tn)〉

= 〈δFbqcf
hom,n(Un)(Zn, tn), (Zn, tn)〉

= 〈δFbqcf
hom,n(0)(Zn, tn), (Zn, tn)〉+

〈[
δFbqcf

hom,n(Un)− δFbqcf
hom,n(0)

]
(Zn, tn), (Zn, tn)

〉
≥ 3

4
γa‖(Zn, tn)‖2

ml +
〈[
δFbqcf

hom,n(Un)− δFbqcf
hom,n(0)

]
(Zn, tn), (Zn, tn)

〉
.

(4.56)

where we applied Theorem 16 in the final step. (Note that there is a slight notational discrepancy

in that our Fbqcf
hom,n is indexed by n here while there is no index in Theorem 16. However, we may

still use this theorem since Rcore,n →∞ so we may assume Rcore,n ≥ R∗core in the statement of that
theorem.)
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Next, we estimate the remaining group in (4.56),〈[
δFbqcf

hom,n(Un)− δFbqcf
hom,n(0)

]
(Zn, tn), (Zn, tn)

〉
≤
∣∣〈[δ2Ea

hom(Un)− δ2Ea
hom(0)

]
(1− ϕn)(Zn, tn), (Zn, tn)〉

∣∣
+
∣∣〈[δ2Ec(Un)− δ2Ec(0)

]
Ih,n(ϕn(Zn, tn)), (Zn, tn)

〉∣∣
≤

∑
(ραβ)(τγδ)

‖V,(ραβ)(τγδ)(DUn)− V,(ραβ)(τγδ)(0)‖`∞(supp(D(Zn,tn))

· ‖D(ραβ)((1− ϕn)(Zn, tn))‖`2(Rd)‖D(τγδ)(Zn, tn)‖`2(Rd)

+
∑

(ραβ)(τγδ)

‖V,(ραβ)(τγδ)

(
∇Un)− V,(ραβ)(τγδ)(0)‖L∞(supp(∇(Zn,tn))

· ‖∇(ραβ)((1− ϕn)(Zn, tn))‖L2(Rd)‖∇(τγδ)(Zn, tn)‖L2(Rd).

From Lemma 12 and the decay rates from Theorem 5 we have

‖V,(ραβ)(τγδ)(DUn)− V,(ραβ)(τγδ)(0)‖`∞(supp(D(Zn,tn)) → 0, and

‖V,(ραβ)(τγδ)(∇Un)− V,(ραβ)(τγδ)(0)‖L∞(supp(∇(Zn,tn)) → 0.
(4.57)

Consequently, 〈[
δFbqcf

hom,n(Un)− δFbqcf
hom,n(0)

]
(Zn, tn), (Zn, tn)

〉
→ 0,

and from (4.56),

lim inf
n→∞

〈δFbqcf
n (Un)(Zn, tn), (Zn, tn)〉 ≥ 3

4
γa‖(Zn, tn)‖2

ml. (4.58)

Combining (4.55) and (4.58), we can therefore conclude that

lim inf
n→∞

〈δFbqcf
n (Πh,n(Un))(Xn + Zn, sn + tn), (Xn + Zn, sn + tn)〉

≥ lim inf
n→∞

[
γa‖(Xn, sn)‖2

ml +
3

4
γa‖(Zn, tn)‖2

ml

]
(4.59)

≥ lim inf
n→∞

3

4
γa

[
‖∇Xn‖2

L2(Rd) + ‖sn‖2
L2(Rd) + ‖∇Zn‖2

L2(Rd) + ‖tn‖2
L2(Rd)

]
.

Notice that we have

‖∇Wn‖2
L2(Rd) = 〈∇Wn,∇Wn〉 = 〈∇(Xn + Zn),∇(Xn + Zn)〉

= ‖∇Xn‖2
L2(Rd) + 2〈∇Xn,∇Zn〉+ ‖∇Zn‖2

L2(Rd),

so we get

‖∇Xn‖2
L2(Rd) + ‖∇Zn‖2

L2(Rd) = ‖∇Wn‖2
L2(Rd) − 2〈∇Xn,∇Zn〉.

Applying the same treatments to ‖rn‖2, we have from (4.59) that

lim inf
n→∞

〈δFbqcf
n (Πh,n(Un))(Xn + Zn, sn + tn), (Xn + Zn, sn + tn)〉

≥ lim inf
n→∞

3

4
γa

[
‖∇Wn‖2

L2(Rd) − 2(∇Zn,∇Xn)L2(Rd) +
∑
α

‖rαn‖2
L2(Rd)

−
∑
α

2(sαn, t
α
n)L2(Rd)

]
≥ lim inf

n→∞

3γa

4

[
‖∇Wn‖2

L2(Rd) +
∑
‖rαn‖2

L2(Rd)

]
=

3

4
γa,
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which is a contradiction to (4.49). In attaining the last equality, we have used (·, ·)L2 to denote
the L2 inner product, and we have again used the fact that the inner product of the strongly
convergent sequence ∇Xn and weakly convergent sequence ∇Zn (c.f. Lemma 17) converges to
zero and similarly for the inner product of the strongly convergent sn and weakly convergent
tn. �

5. Discussion

We presented the first complete error analysis of an atomistic-to-continuum coupling method
for multilattices capable of incorporating defects in the analysis. Our results for the blended force-
based quasicontinuum method extend the existing results for Bravais lattices [25], with the striking
conclusion that the convergence rates in the simple and multi-lattice cases coincide for the optimal
mesh coarsening. Our computational results for a Stone-Wales defect in graphene confirm our
theoretical predictions.

We have concerned ourselves here with the case of point defects, though we see no conceptually
challenging obstacles to include dislocations in the analysis so long as there is an analogous decay
result to Theorem 3. However, as previously mentioned, we are still limited in our ability to model
physical effects such as bending or rippling in two-dimensional materials such as graphene due
to several factors. First, our assumption concerning stability of the multilattice, Assumption 3
uses a norm, ‖∇IU‖L2 + ‖Ip‖L2 , which does not take any bending energy into account and so
we do not guarantee our lattice is stable in this situation. We could have of course formulated
a different assumption using a discrete variant of ‖∇2U3‖ (where U3 represents the out of plane
displacement), but it is a very challenging question to extend the BQCF method and its analysis to
such a situation. The next issue that must be answered is what continuum model to use since the
Cauchy–Born model used herein is not adequate to model such effects. Possible alternatives would
be to use higher-order Cauchy–Born rules [19, 53] which rely on higher-order strain gradients, or
the so-called exponential Cauchy–Born rule [4]. In either of these cases, to use a similar analysis
to what we have presented, one would have to establish new stress estimates akin to Corollary 11
as well ensuring that the continuum model chosen is stable provided the atomistic model is. We
are also confronted with the problem of choosing a finite element space capable of approximating
H2 functions, which likewise challenges the analysis as well as the implementation.

Finally, we remark that extensions to charged defects in ionic crystals, which represent a wide
class of important multilattice crystals, represent yet another difficult challenge, largely due to the
long-range nature of the interatomic forces.

Appendix A. Proofs of Convergence Lemmas

The following elementary lemma will be used to construct the “diagonal” sequence alluded to
when we first introduced Lemma 17.

Lemma 20. Let {Lαm}∞m=1 be a sequence of functions from H1(Rd) × (L2(Rd))S → V α for V α

a Banach space where α ranges in some finite index set S. Let (v0, s0) ∈ H1(Rd) × (L2(Rd))S

with η the standard mollifier (ηj(x) = j−dη(x/j)), vj := ηj ∗ v0, sj := ηj ∗ s0, j > 0, and fα :
(H1, (L2)S) → V α continuous. Further assume that for each fixed j > 0, Lαm(vj, sj) → fα(vj, sj)
in V α as m→∞ for each α. Then there exists a sequence jn → 0 such that

Lαn(vjn , sjn)→ fα(v0, s0) for each α.

Moreover, the sequence jn may be taken to satisfy jn ≥ 1/
√
Ra,n where Ra,n is taken from (4.28)
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Proof. Fix α and j > 0 and note that Lαm(vj, sj) → fα(vj, sj) as m → ∞. Thus we may choose
nα0 (j) large enough such that for n ≥ nα0 (j)

‖Lαn(vj, sj)− fα(vj, sj)‖V α ≤ j. (A.1)

Since α belongs to a finite set S, we may define n0(j) = maxα n
α
0 (j). Now define jn by

jn = max{1, 1/
√
Ra,1} for n = 1, . . . , n0(1/2)− 1,

jn = max{1/2, 1/
√
Ra,2} for n = n0(1/2), . . . , n0(1/3)− 1,

jn = max{1/m, 1/
√
Ra,m} for n = n0(1/m), . . . , n0(1/(m+ 1))− 1.

For n ≥ n0(1), we obtain from (A.1) that

‖Lαn(vjn , sjn)− fα(vjn , sjn)‖V α ≤ jn → 0. (A.2)

By continuity of fα, fα(vjn , sjn)→ fα(v0, s0), and so (A.2) implies the desired result. �

Remark 6. In the above proof, we made the requirement jn ≥ 1/
√
Ra,n so that 1/Ra,n = εn ≤ j2

n,
where εn is used in the scaling (4.28). This ensures that

‖εn∇(ηjn ∗ ŝ0)‖L2(Rd) = εn‖(∇ηjn) ∗ ŝ0‖L2(Rd)

≤ εn‖(∇ηjn)‖L1(Rd)‖ŝ0‖L2(Rd) by Young’s Inequality

= εn · 1/jn‖∇η‖L1(Rd)‖ŝ0‖L2(Rd)

≤ jn‖∇η‖L1(Rd)‖ŝ0‖L2(Rd) → 0.

�
The collection of operators and continuous functions that we apply this lemma to are the ones

enumerated in Lemma 17, which may now prove.

Proof of Lemma 17. We begin by noting that the properties of (4.31) are clear from the definitions
of Wn, Xn, Zn, rn, sn, tn provided that we can show ∇Xn → ∇W0 and sn → r0. Moreover, we can
immediately note that with ψm = 1−ϕm, ∇ψm and ∇2ψm are uniformly bounded on the compact
set supp(ψm) ⊂ εmBRa,m(0) = B1(0) by the assumptions on the blending function in Assumption 4
and the definition of εn. Thus, by Arzela-Ascoli and by replacing the original sequence by a
subsequence if necessary, we may assume ψm → ψ0 in C1 for some ψ0 ∈ C1(B1(0)).
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We now set about proving ∇Xn → ∇W0 and sn → r0 and the remaining properties in
Lemma (17). To that end, define

L1
m := Πh,m, f 1(W, s) = (W, s),

L2
m(W, s) := εdm

∑
ξ∈εmL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) : D(τγδ),m(W, s)⊗ ρ

εm

∫ εm

0

ζ̄m(ξ + tρ− x),

f 2(W, s) :=
∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) : ∇(τγδ)(W (x), s(x))⊗ ρ,

L3
m(W, s) := εdm

∑
ξ∈εmL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) : (D(τγδ),m(W, s))ζ̄m(ξ − x),

f 3(W, s) :=
∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) : ∇(τγδ)(W (x), s(x)),

L4
m(W, s) := εdm

∑
ξ∈εmL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) : D(τγδ),m(ψmW,ψms)⊗ ρ

εm

∫ εm

0

ζ̄m(ξ + tρ− x),

f 4(W, s) :=
∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) : ∇(τγδ)(ψ0W (x), ψ0s(x))⊗ ρ,

L5
m(W, s) := εdm

∑
ξ∈εmL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) : (D(τγδ),m(ψmW,ψms))ζ̄m(ξ − x),

f 5(W, s) :=
∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) : ∇(τγδ)(ψ0W (x), ψ0s(x)),

L6
m(W, s) := εdm

∑
ξ∈εmL

∑
(ραβ)

∑
τγδ

V,(ραβ)(τγδ) : D(ραβ),m(ψmW,ψms) : Dτγδ,m(W, s),

f 6(W, s) :=

∫
Rd

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) :
(
∇ρ(ψ0W ) + ψ0(sβ − sα)

)
:
(
∇τW + sδ − sγ

)
dx.

If we can show that each of these satisfies the hypothesis of Lemma 20, then we may apply the
conclusion of that lemma to deduce Lemmma 17. We focus primarily on L4 and f 4 and briefly
touch on the other cases at the end.
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We fix j and set W := vj and s := sj and set µm(x) := 1
εm

∫ εm
0

ζ̄m(x + tρ) dt. Then note that

µm(ξ − x) = 0 unless |x− ξ| . εm|ρ|. Hence

lim
m→∞

L2
m(W, s)(x)

= lim
m→∞

εdm
∑
ξ∈εmL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) : D(τγδ),m(ψmW (ξ), ψms(ξ))⊗ ρµm(ξ − x)

= lim
m→∞

εdm
∑
ξ∈εmL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) :
[
D(τγδ),m(ψmW (ξ), ψms(ξ))−∇(τγδ)(ψmW (x), ψms(x))

+∇(τγδ)(ψmW (x), ψms(x))
]
⊗ ρµm(ξ − x)

= lim
m→∞

εdm
∑
ξ∈εmL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) :
[
D(τγδ),m(ψmW (ξ), ψms(ξ))

− ∇(τγδ)(ψmW (x), ψms(x))
]
⊗ ρµm(ξ − x)

+ lim
m→∞

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ,m) : ∇(τγδ)(ψmW (x), ψms(x))⊗ ρεdm
∑
ξ∈εmL

µm(ξ − x)

= lim
m→∞

εdm
∑
ξ∈εmL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) :
[
D(τγδ),m(ψmW (ξ), ψms(ξ))

− ∇(τγδ)(ψmW (x), ψms(x))
]
⊗ ρµm(ξ − x)

+
∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ,m) : ∇(τγδ)(ψ0W (x), ψ0s(x))⊗ ρ,

since εdm
∑

ξ∈εmL µm(ξ − x) = 1 and since ψm → ψ0 in C1. For the first limit above, we note that

µm(ξ − x) = 0 unless |x− ξ| . εm|ρ| implies[
D(τγδ),m(ψmW (ξ), ψms(ξ))−∇(τγδ)(ψmW (x), ψms(x))

]
= O(εm)

Thus

lim
m→∞

εdm
∑
ξ∈εmL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) :
[
D(τγδ),m(ψmW (ξ), ψms(ξ))

− ∇(τγδ)(ψmW (x), ψms(x))
]
⊗ ρµm(ξ − x)

= lim
m→∞

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) : [O(εm)]⊗ ρεdm
∑
ξ∈εmL

µm(ξ − x)

= lim
m→∞

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) : [O(εm)]⊗ ρ = 0.

We have thus shown that

lim
m→∞

L4
m(W, s) =

∑
(ραβ)

∑
(τγδ)

V(ραβ)(τγδ) : ∇(τγδ)(ψ0W (x), ψ0s(x))⊗ ρ = f 4(W, s).

The proof for L5 proceeds in exactly the same manner, and the proofs for L2 and L3 are likewise
very similar with the exception that ψm is no longer present.



FORCE-BASED ATOMISTIC/CONTINUUM BLENDING FOR MULTILATTICES 43

For L6, using a Taylor expansion and the fact that ∇2ψm is uniformly bounded in m by As-
sumption 4,

Dτ,mψm(ξ) = Dτ,mψm(ξ)−∇τψm(ξ) +∇τψm(ξ)

= O(εm) +∇τψm(ξ)→ ∇τψ0(ξ).

Furthermore, since W and s are smooth, Dτ,mW converges to ∇τW in L2 and `2 on compact
subsets, and the same holds for Dτ,msβ converging to ∇τsβ. Consequently,

D(τγδ),m(ψmW,ψms)→ ∇(τγδ)(ψ0W,ψ0s) in L2 and `2 on bounded sets.

Convergence of L6(W, s) to f 6(W, s) now follows from this and convergence of the quadrature rule

lim
m→∞

εdm
∑
ξ∈εmL

∑
(ραβ)

∑
τγδ

V,(ραβ)(τγδ) : ∇(ραβ),m(ψ0W,ψ0s) : ∇τγδ,m(W, s),

to ∫
B1(0)

∑
(ραβ)

∑
τγδ

V,(ραβ)(τγδ) : ∇(ραβ),m(ψ0W,ψ0s) : ∇τγδ,m(W, s) dx.

Lastly, we note that L1(W, s) → f 1(W, s) as a result of first approximating (W, s) by smooth
functions having support contained in Bε−γm

(0) for some 0 < γ < 1 and then using standard inter-
polation estimates for smooth functions along with the mesh growth assumption of Assumption 4.
Specifically, let Wm, sm ∈ C∞0 such that ∇Wm → ∇W,∇2Wm → ∇2W , sm → s, and ∇sm → ∇s
in L2 where ∇Wm and sm have support in Bε−γm

(0). Then

‖Πh,m(W, s)− (W, s)‖ml ≤ ‖Πh,m(W, s)− Πh,m(Wm, sm)‖ml + ‖Πh,m(Wm, sm)− (Wm, sm)‖ml

+ ‖(Wm, sm)− (W, s)‖ml

. ‖(W, s)− (Wm, sm)‖ml + ‖Πh,m(Wm, sm)− (Wm, sm)‖ml,
(A.3)

after using stability of Πh,m with respect to the ml norm. By our choice of (Wm, sm), it follows
that

‖(W, s)− (Wm, sm)‖ml → 0. (A.4)

Using the definition of the ml norm and standard interpolation estimates, we also possess

‖Πh,m(Wm, sm)− (Wm, sm)‖ml . ‖hm∇2Wm‖L2(Rd) + ‖hm∇sm‖L2(Rd). (A.5)

Since, ∇Wm and sm have support in Bε−γm
(0) and since we have the mesh growth |hm(x)| .

εm(εm|x/εm|)s from our choice of scaling and Assumption 4, it follows that |hm(x)| . ε1−sγm on
Bε−γm

(0). It then follows from (A.5) that

‖Πh,m(Wm, sm)− (Wm, sm)‖ml . ε1−sγm ‖∇2Wm‖L2(Rd) + ε1−sγm ‖∇sm‖L2(Rd) → 0, (A.6)

for appropriately chosen γ. Applying the results (A.4) and (A.6) to (A.3) then produces

‖Πh,m(W, s)− (W, s)‖ml → 0,

as desired.
Then as a consequence of Lemma 20 applied to each of these operators, we obtain a sequence

jn → 0 which satisfies the desired convergence results of (17). �
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Proof of Lemma 18. To prove the first convergence result (4.33), we note by Lemma 8, there exists

Yn = ´(ψnZn) such that ψnZn(ξ) =
(
ζ̄n ∗ Ȳn

)
(ξ) =:

(
Y ∗n
)
(ξ) for all ξ ∈ εnL, and similarly there

exists bn = ´(ψntn) such that ψntn(ξ) =
(
ζ̄n ∗ b̄n

)
(ξ) :=

(
b∗n
)
(ξ). We further note that from the

proof of [25, Lemma 4.10, Step 3] and the fact that ∇(ψnZn) ⇀ 0, we also have ∇Ȳn ⇀ 0. To
show that b̄αn ⇀ 0, observe for a smooth function µ with compact support that

lim
n→∞

∫
b̄αn · µ = lim

n→∞

∫
b̄αn · (ζ̄n ∗ µ) + lim

n→∞

∫
b̄αn · (µ− ζ̄n ∗ µ)

= lim
n→∞

∫
(b̄αn ∗ ζ̄n) · µ = lim

n→∞

∫
tαn
(
ψnµ

)
.

From Lemma 17, we have ψn → ψ0 in L2 (since these functions are compactly supported), and this
latter expression is then an inner product of a weakly convergent sequence (tαn ⇀ 0) and strongly
convergent sequence which therefore converges to zero.

Having established that ∇Ȳn, b̄αn ⇀ 0, we can use the functions Sdef
n (x) and Sshift

n (x) from
Lemma 17 to write

εd
∑
ξ∈εnL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) : D(ραβ),n(ψnZn, ψntn) : D(τγδ),n(Xn, sn)

=

∫
Sdef
n (x) : (∇Ȳn + εn∇b̄βn) +

∫
Sshift
n (x) : (b̄βn − b̄αn)→ 0,

using the strong convergence of Sdef
n (x) and Sshift

n (x) from Lemma 17 and the weak convergence:
∇Ȳn, b̄αn ⇀ 0.

The second convergence result (4.34) is proven in nearly an identical manner by choosing Yn = Źn

and bn = t́n such that Zn = ζ̄n ∗ ¯́
Zn and tn = ζ̄n ∗ ¯́tn and using the convergence results for Rdef

n (x)
and Rshift

n (x) from Lemma 17. �

Proof of Lemma 19. Observe

lim
n→∞

εdn
∑
ξ∈εnL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) : D(ραβ),n(θ2
nZn, θ

2
ntn) : D(τγδ),n(Zn, tn),

= lim
n→∞

εdn
∑
ξ∈εnL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) :
(
Dρ,n(θ2

nZn) + εnDρ,n(θ2
nt
β
n)− θ2

n(tαn − tβn)
)

: (Dτ,n(Zn)+

εnDτ,n(tδn)− (tγn − tδn)
)

= lim
n→∞

εdn
∑
ξ∈εnL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) : Dρ,n(θ2
nZn) : Dτ,n(Zn)

+ lim
n→∞

εdn
∑
ξ∈εnL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) : Dρ,n(θ2
nZn) :

(
εnDτ,n(tδn)− (tγn − tδn)

)
+ lim

n→∞
εdn
∑
ξ∈εnL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) : (Tρ,n(θ2
nt
β
n)− θ2

nt
α
n) : Dτ,n(Zn)

+ lim
n→∞

εdn
∑
ξ∈εnL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) : (Tρ,n(θ2
nt
β
n)− θ2

nt
α
n) : (εnDτ,n(tδn)− (tγn − tδn)).

(A.7)

This gives four terms to manipulate, which we label in order as An1 , A
n
2 , A

n
3 , and An4 . The first of

these is, after using the product rule for finite differences (and the associated notation Tρ,nf(ξ) =
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f(ξ + εnρ)),

lim
n→∞

An1

= lim
n→∞

εdn
∑
ξ∈εnL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) :
{
θnZnDρ,n(θn) : Dτ,n(Zn) + Tρ,n(θn)Dρ,n(θnZn) : Dτ,n(Zn)

}
.

(A.8)

Recall that Zn → 0 in L2 on B1(0) ⊃ supp(θn) and hence also in `2 due to being piecewise linear.
Therefore, continuing the limit in (A.8),

lim
n→∞

An1

= lim
n→∞

εdn
∑
ξ∈εnL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) :
{
Tρ,n(θn)Dρ,n(θnZn) : Dτ,n(Zn)

+ Dρ,n(θnZn) : Dτ,n(θn)Zn
}

= lim
n→∞

εdn
∑
ξ∈εnL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) :
{
Dρ,n(θnZn) : (Tρ,n(θn)− Tτ,n(θn))Dτ,n(Zn)

+ Dρ,n(θnZn) : Tτ,n(θn)Dτ,n(Zn) +Dρ,n(θnZn) : Dτ,n(θn)Zn
}

= lim
n→∞

εdn
∑
ξ∈εnL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) :
{
Dρ,n(θnZn) : Dτ,n(θnZn)

}
,

(A.9)

where in arriving at the last line we used the fact that (Tρ,n(θn) − Tτ,n(θn)) → 0 in L∞ and H1

boundedness of Zn.
By replacing Zn with εnt

δ
n, we have may write the second of the terms in (A.7) as

lim
n→∞

An2

= lim
n→∞

εdn
∑
ξ∈εnL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) :
{
Dρ,n(θnZn) : Dτ,n(εnθnt

δ
n) +Dρ,n(θ2

nZn) : (tδn − tγn)
}

= lim
n→∞

εdn
∑
ξ∈εnL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) :
{
Dρ,n(θnZn) : Dτ,n(εnθnt

δ
n)

+ (Dρ,n(θn)(θnZn) + Tρ,n(θn)Dρ,n(θnZn)) : (tδn − tγn)
}

= lim
n→∞

εdn
∑
ξ∈εnL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) :
{
Dρ,n(θnZn) : Dτ,n(εnθnt

δ
n)

+Dρ,n(θnZn) : (Tρ,n(θn)− θn + θn)(tδn − tγn)
}

= lim
n→∞

εdn
∑
ξ∈εnL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) :
{
Dρ,n(θnZn) :

(
Dτ,n(εnθnt

δ
n) + θn(tδn − tγn)

)}
.

(A.10)
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The third term from (A.7) is, after using the previously established convergence properties of
Zn, tn and θn,

lim
n→∞

An3

= lim
n→∞

εdn
∑
ξ∈εnL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) : (Tρ,n(θ2
nt
β
n)− θ2

nt
α
n) : Dτ,n(Zn)

= lim
n→∞

εdn
∑
ξ∈εnL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) : ((Tρ,n(θn)− θn)Tρ,n(θnt
β
n) + θnTρ,n(θnt

β
n)− θ2

nt
α
n) : Dτ,n(Zn)

= lim
n→∞

εdn
∑
ξ∈εnL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) :
{

(Tρ,n(θnt
β
n)− θntαn) : θnDτ,n(Zn)

}
= lim

n→∞
εdn
∑
ξ∈εnL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) :
{

(Tρ,n(θnt
β
n)− θntαn) :

(
Tτ,n(θn)Dτ,n(Zn) +Dτ,n(θn)(Zn)

)}
= lim

n→∞
εdn
∑
ξ∈εnL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) :
{

(Tρ,n(θnt
β
n)− θntαn) : Dτ,n(θnZn)

}
(A.11)

After again using the convergence properties of θn, it is then straightforward to show

lim
n→∞

An4

= lim
n→∞

εdn
∑
ξ∈εnL

∑
(ραβ)

∑
(τγδ)

V,(ραβ)(τγδ) : (Tρ,n(θnt
β
n)− θntαn) : (Tτ,n(θnt

δ
n)− θntγn). (A.12)

The equations (A.9), (A.10), (A.11), and (A.12) applied to (A.7) give the conclusion of the Lemma.
�

Lemma 21. Let Wn, rn, and ϕn be defined as in the proof of Theorem 16 with Ih,n the P1

interpolant onto Th,n. Then

‖∇Ih,n(ϕnWn)−∇(ϕnWn)‖L2(Rd) → 0,

‖Ih,n(ϕnr
α
n)− (ϕnr

α
n)‖L2(Rd) → 0.

(A.13)

Proof. Let T be any element of Tn and IT the linear interpolant onto this triangle. Then

‖∇IT (ϕnWn)−∇(ϕnWn)‖L2(T ) . hT‖∇2(ϕnWn)‖L2(T )

. hT‖∇2ϕn ⊗Wn‖L2(T ) + hT‖∇ϕn ⊗∇Wn‖L2(T )

. hT‖Wn‖L2(T ) + hT‖∇Wn‖L2(T ).

(A.14)

We recall that ∇ϕn has support on B1(0) due to our choice of scaling and that
∫
B1(0)

Wn dx = 0

due to our choice of equivalence class representative. Because of this and the estimate (A.14), it
then follows that

‖∇IT (ϕnWn)−∇(ϕnWn)‖L2(Rd) . hT‖Wn‖L2(B1(0)) + hT‖∇Wn‖L2(B1(0))

. hT‖∇Wn‖L2(B1(0)),

by the Poincaré inequality. Since hT = O(εn) on L2(B1(0)) due to the full mesh refinement
assumption, we obtain the first result.
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For the second one, the argument is the similar except that we have h2
T , we need not use the

Poincaré inequality, and we do not immediately have that ∇r is bounded. However, we note that

h2
T‖∇rαn‖L2(T ) . h2

T |T |1/2‖∇rαn‖L∞(T )

. hT |T |1/2‖rαn‖L∞(T ) . hT‖rαn‖L2(T ),

which could be used to obtain the result for rαn . �

Appendix B. Notation

This section summarizes notation used in the manuscript.

• L — a Bravais lattice
• M — a multilattice
• S = {0, . . . , S − 1} — the index set of atomic species
• ξ — an element of L or εL for ε > 0.
• α, β, γ, δ, ι, χ — indexes denoting atomic species
• ρ, τ, σ ∈ L — vectors between lattice sites
• R — an interaction range whose elements are triples of the form (ραβ) ∈ L × S × S
• R1 := {ρ ∈ L : ∃(ραβ) ∈ R} — projection of R onto lattice direction
• rcut := max{|ρ| : (ραβ) ∈ R} — a finite cut-off distance
• rcell — the radius of the smallest ball inscribing the unit cell of L
• rbuff := max{rcut, rcell}
• u =

(
uα
)S−1

α=0
— vector of displacements of all species of atoms

• (U,p) — displacement/shift description defined by U = u0 and pα = uα − u0

• yref and pref — the reference deformation and shifts
• D(ραβ)u(ξ) = uβ(ξ + ρ)− uα(ξ), D(ραβ)(U,p) = U(ξ + ρ)− U(ξ) + pβ(ξ + ρ)− pα(ξ)

• Du(ξ) =
(
D(ραβ)u(ξ)

)
(ραβ)∈R, D(U,p)(ξ) =

(
D(ραβ)(U,p)(ξ)

)
(ραβ)∈R

• V̂ξ(Dy(ξ)) and Vξ(Du) — site potentials defined on deformations and displacements, re-
spectively
• Ea(u) and Ea

hom(u) — energy difference functionals for defective and defect free lattice.
• Ta — atomistic scale finite element mesh of triangles in 2D and tetrahedra in 3D
• ζ̄(x), ζ̄ξ(x) = ζ̄(x − ξ) — nodal basis function of Ta associated with the origin and ξ

respectively
• ωρ(x) :=

∫ 1

0
ζ̄(x+ tρ)dt — an auxiliary function

• Iuα, IU, Ipα or ūα, Ū , p̄α — a piecewise linear interpolant with respect to Ta

• Ĩuα, ĨU, Ĩpα or ũα, Ũ , p̃α — a C2,1 interpolant with respect to Ta

• u∗(x) := (ζ̄ ∗ ū)(x) — quasi-interpolant of u defined through convolution
• | · | — meaning depends on context: | · | is `2 norm of a vector, matrix, higher order tensor,

or finite difference stencil. |T | is area or volume of element T in a finite element partition,
|γ| is the order of a multiindex.
• ‖ · ‖`2(A) — `2 norm over a set A. If f : A → Rd is a vector-valued function, ‖f‖`2(A) =

(
∑

α∈A |f(α)|2)1/2.

• ‖ · ‖a — norm on admissible displacements defined by ‖u‖2
a :=

∑S−1
α=0 ‖∇Iuα‖2

L2(Rd)
+∑

α 6=β ‖Iuα − Iuβ‖2
L2(Rd)

.

• U —space of admissible displacements defined by

U :=
{
u = (uα)S−1

α=0 : uα : L → Rn, ‖u‖a <∞
}
/Rn
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• U0 —space of test displacements defined by

{(U,p) : supp(∇IU), p0 ≡ 0, and supp(Ipα) are compact} /Rn

• Ω — a finite polygonal domain
• ϕ —the blending function
• Ωa := supp(1− ϕ) +B2rbuff

— the atomistic domain
• Ωb := supp(∇ϕ) +B2rbuff

— the blending region
• Ωc := supp(ϕ) ∩ Ω +B2rbuff

— the continuum region
• Ωcore := Ω \ Ωc — the defect core region
• Th — the (coarse) finite element mesh on Ω
• h(x) := maxT :x∈T Diam(T ) — the mesh size function
• Rt := infR{R > 0 : Ωt ⊂ BR(0)} — an exterior measure of a domain Ωt

• rt := supr{r > 0 : Br(0) ⊂ Ωt} — an interior measure of a domain Ωt

• Ro := infR{R > 0 : Ω ⊂ BR(0)} — an exterior measurement of Ω
• ri := supr{r > 0 : Br(0) ⊂ Ω} — an interior measurement of Ω
• Ωext := Rd \Bri/2(0) — exterior of Ω
• Ih— the standard piecewise linear nodal interpolant on Th
• Sh — the Scott-Zhang quasi-interpolant on Th.
• WCB(U,p) — Cauchy–Born strain energy density function
• Ec(U,p) — Cauchy–Born energy functional
• Uh := {u ∈ C0(Ω) : u|T ∈ P1(T ), ∀T ∈ Th} — a finite element space
• Uh := Uh/Rn space of admissible finite element displacements
• Uh,0 :=

{
u ∈ C0(Rd) : u|T ∈ P1(T ), ∀T ∈ Th, u = 0 on Rd \ Ω

}
— finite element space

satisfying homogeneous boundary conditions
• Uh,0 := Uh,0/Rn — finite element quotient space
• Ph,0 := {0} × (Uh,0)S−1 — finite element space for shifts

• ‖(U,p)‖2
ml := ‖∇U‖2

L2(Rd)
+
∑S−1

α=0 ‖pα‖2
L2(Rd)

= ‖∇U‖2
L2(Rd)

+ ‖p‖2
L2(Rd)

— norm on finite

element spaces
• ‖p‖Lp :=

∑S−1
α=0 ‖pα‖Lp , ‖∇p‖Lp :=

∑S−1
α=0 ‖∇pα‖Lp

• η(x) — a smooth bump function or standard mollifying function depending on the context

• TRuα(x) = η(x/R)

(
Iuα − 1

|AR|

∫
AR

Iu0 dx

)
— a truncation operator

• Πhuα := Sh(Triuα) — an projection operator from discrete displacements to finite element
displacements
• Πhpα := Πh(uα − u0) —- a projection operator on shifts
• [Sc

d(U, q)(x)]β and [Sc
s(U, q)(x)]αβ— continuum stress function associated with displace-

ments and shifts
• [ Sa

d(U, q)(x)]β and [ Sa
s (U, q)(x)]αβ —atomistic stress function associated with displacements

and shifts
• V,(ραβ)(τγδ)

(
·
)

: v : w := w>
[
V,(ραβ)(τγδ)

(
·
)]
v ∀v, w ∈ Rn

• C : D(W, q) : D(Z, r) :=
∑

(ραβ)∈R
∑

(τγδ)∈R V,(ραβ)(τγδ) : D(ραβ)(W, q) : D(τγδ)(Z, r)

• C : ∇(W, q) : ∇(Z, r) :=
∑

(ραβ)∈R
∑

(τγδ)∈R V,(ραβ)(τγδ) : (∇ρW +qβ−qα) : (∇τZ+rβ−rα)
• ϕn — a sequence of blending functions
• ψn := 1− ϕn
• θn :=

√
ψn

• Br, Br(x) — Ball of radius r about the origin or ball of radius r about x.



FORCE-BASED ATOMISTIC/CONTINUUM BLENDING FOR MULTILATTICES 49

• supp(f) — support of a function f .
• Diam(U) — diameter of the set U measured with the Euclidean norm.
• (Rn)R — direct product of vectors with |R| terms.
• > — transpose of a matrix.
• ⊗ — tensor product.
• ∇j — jth derivative of a function defined on Rd.
• ∂γ — multiindex notation for derivatives.
• Lp(U) — Standard Lebesgue spaces.
• W k,p(U) — Standard Sobolev spaces.

• W k,p
loc (U) =

{
f : U → Rd : f ∈ W k,p(V )∀V ⊂⊂ U

}
.

• Hk(U) = W k,2(U), H1
0 (U) =

{
f ∈ Hk(U) : Trace(f) = 0 on ∂U

}
.

• Ck — space of k times continuously differentiable functions
• −
∫
U
f dx — average value of f over U .
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