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Abstract

Let p and q be positive integers with p/q ≥ 2. The “reconfiguration problem”
for circular colourings asks, given two (p, q)-colourings f and g of a graph G,
is it possible to transform f into g by changing the colour of one vertex at
a time such that every intermediate mapping is a (p, q)-colouring? We show
that this problem can be solved in polynomial time for 2 ≤ p/q < 4 and that
it is PSPACE-complete for p/q ≥ 4. This generalizes a known dichotomy
theorem for reconfiguring classical graph colourings. As an application of the
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1. Introduction

In recent years, a large body of research has emerged concerning so called
“reconfiguration” variants of combinatorial problems (see, e.g., the survey of
van den Heuvel [14] and the references therein, and well as [15, 16]). These
problems are typically of the following form: given two solutions to a fixed
combinatorial problem (e.g. two cliques of order k in a graph or two satisfying
assignments of a specific 3-SAT instance) is it possible to transform one of
these solutions into the other by applying a sequence of allowed modifications
such that every intermediate object is also a solution to the problem?

As a specific example, for a fixed integer k and a graph G, one may ask
the following: given two (proper) k-colourings f and g of G, is it possible
to transform f into g by changing the colour of one vertex at a time such
that every intermediate mapping is a k-colouring?3 In the affirmative we say
that f reconfigures to g. This problem is clearly solvable in polynomial time
for k ≤ 2. Rather surprisingly, Cereceda, van den Heuvel and Johnson [7]
proved that it is also solvable in polynomial time for k = 3 despite the fact
that determining if a graph admits a 3-colouring is NP-complete. On the
other hand, Bonsma and Cereceda [3] proved that, when k ≥ 4, the problem
is PSPACE-complete. (As pointed out in [6], a similar result was proved by
Jakob [17], but in his result the integer k is part of the input.) Combining
these two results yields the following dichotomy theorem:

Theorem 1 (Cereceda, van den Heuvel and Johnson [7]; Bonsma and Cere-
ceda [3]). The reconfiguration problem for k-colourings is solvable in polyno-
mial time for k ≤ 3 and is PSPACE-complete for k ≥ 4.

In this paper, we study the complexity of the reconfiguration problem for
circular colourings. Given a graph G and positive integers p and q with p/q ≥
2, a (circular) (p, q)-colouring of G is a mapping f : V (G)→ {0, . . . , p− 1}
such that

if uv ∈ E(G), then q ≤ |f(u)− f(v)| ≤ p− q. (1)

Clearly, a (p, 1)-colouring is nothing more than a p-colouring and so (p, q)-
colourings generalize classical graph colourings. Circular colourings were
introduced by Vince [22], and have been studied extensively; see the survey of
Zhu [25]. Analogous to that of classical graph colourings, the reconfiguration

3Throughout the paper, the term k-colouring will refer to a proper k-colouring.
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problem for circular colourings asks, given (p, q)-colourings f and g of G,
whether it is possible to reconfigure f into g by recolouring one vertex at a
time while maintaining (1) throughout.

Classical graph colourings and circular colourings are both special cases
of graph homomorphisms. Recall, a homomorphism from a graph G to a
graph H (also called an H-colouring of G) is a mapping f : V (G) → V (H)
such that f(u)f(v) ∈ E(H) whenever uv ∈ E(G). The notation f : G→ H
indicates that f is a homomorphism from G to H. In this language, a k-
colouring is simply a homomorphism to a complete graph on k vertices. A
(p, q)-colouring of G is equivalent to a homomorphism from G to the graph
Gp,q which has vertex set {0, . . . , p−1} and edge set {ij : q ≤ |i−j| ≤ p−q}.
The graph Gp,q is called a circular clique.

Remark 2. It is well known that Gp,q admits a homomorphism to Gp′,q′

if and only if p/q ≤ p′/q′ [22]. Therefore, since the composition of two
homomorphisms is a homomorphism, a graph G admits a (p, q)-colouring if
and only if it admits a (p′, q′)-colouring for all p′/q′ ≥ p/q.

Given two homomorphisms f, g : G → H, we say f reconfigures to g if
there a sequence (f = f0), f1, f2, . . . , (fn = g) of homomorphisms from G to
H such that fi and fi+1 differ on only one vertex. The sequence is referred
to as a reconfiguration sequence. Clearly the existence of a reconfiguration
sequence from f to g can be determined independently for each component
of G, so we may assume that G is connected. We define the general homo-
morphism reconfiguration problem as follows. Let H be a fixed graph.

H-Recolouring

Instance: A connected graph G, and two homomorphisms f, g : G→ H.

Question: Does f reconfigure to g?

When H = Kk or H = Gp,q we will call the problem k-Recolouring and
(p, q)-Recolouring respectively. Thus, Theorem 1 is a dichotomy theorem
for k-Recolouring. Our main result is a dichotomy theorem for (p, q)-
Recolouring:

Theorem 3. Let p, q be fixed positive integers with p/q ≥ 2. Then the (p, q)-
Recolouring problem is solvable in polynomial time for 2 ≤ p/q < 4 and
is PSPACE-complete for p/q ≥ 4.
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The complexity of H-Recolouring is only known for a handful of fam-
ilies of targets. Theorem 1 is a dichotomy theorem for the family of com-
plete graphs and Theorem 3 is a dichotomy theorem for the family of circular
cliques. Recently, Wrochna [24] (see also [23]) proved that H-Recolouring
is polynomial whenever H does not contain a 4-cycle. In contrast, one can
observe that Gp,q contains 4-cycles whenever p > 2q + 1 and so the polyno-
mial side of Theorem 3 does not follow directly from the result of Wrochna.
In a follow-up paper [5], we determine the complexity of H-Recolouring
for several additional classes of graphs including, for example, odd wheels.

The rest of the paper is outlined as follows. In Section 2, we provide
an explicit polynomial-time algorithm for deciding the (p, q)-Recolouring
problem when 2 ≤ p/q < 4. In Section 3, we show that, when p/q ≥
4, the reconfiguration problem for bp/qc-colourings can be reduced to the
reconfiguration problem for (p, q)-colourings, thereby completing the proof of
Theorem 3 (via Theorem 1). We close the paper by presenting an unpublished
argument of Wrochna which uses a result of [7] (on which our algorithm is
based) to show that graphs with no cycle of length 0 mod 3 are 3-colourable.
This result was originally proved by Chen and Saito [8]. We then generalize
Wrochna’s argument to show that graphs with chromatic number greater
than k must contain at least (k−1)!

2
distinct cycles of length 0 mod k and

conjecture a stronger bound.

2. The Polynomial Cases: 2 ≤ p/q < 4

We now extend the ideas of [7] to study the complexity of (p, q)-Recolouring
for 2 ≤ p/q < 4. Given two 3-colourings f and g of a graph G, the algorithm
in [7] consists of two phases. The first phase tests whether the so-called
“fixed vertices” (vertices that cannot be recoloured under any sequence of
recolourings) are assigned the same colours under f and g. If not, then we
know that f does not reconfigure to g and the algorithm terminates.

If the algorithm does not terminate at this point, then it enters the second
phase. In this phase, the algorithm obtains two edge labellings of G from
the vertex colourings f and g. The key property of these labellings is that,
given that the algorithm did not terminate after the first phase, one can
show that f reconfigures to g if and only if every cycle of G has the same
“weight” under both edge labellings. After a polynomial number of steps,
the algorithm either produces a reconfiguration sequence or discovers a cycle
with different weights under f and g. We follow a similar approach, but we
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begin by examining the edge relabelling problem which turns out to depend
only on cycle weights.

Remark 4. The work in [7] has been extended in [18] where the authors
find shortest paths between 3-colourings. In our work, we do not consider
shortest paths, but rather are simply concerned with testing the existence of
paths in polynomial time.

2.1. Edge Relabellings

Let f be a (p, q)-colouring of a graph G. Let
−→
G be an oriented graph

obtained by arbitrarily orienting each edge of G. (This orientation is required
to define the weighting of paths, cycles, and cuts below. Thus throughout

this section we will assume a graph G has an orientation
−→
G .) The edge-

labelling induced by f is defined as ϕf : E(G)→ {0, 1, . . . , p− 1} by ϕf (e) =
f(v)−f(u) mod p where e = −→uv. Let C be a cycle of G and arbitrarily choose
a direction of traversal. Let E+(C) be those edges of C whose orientation in
−→
G agrees with the direction of traversal (forward arcs) and E−(C) be those

edges of C whose orientation in
−→
G is reversed to the direction of traversal

(backward arcs). Define

ϕf (C) =
∑

e∈E+(C)

ϕf (e) +
∑

e∈E−(C)

(p− ϕf (e)). (2)

Note that the summation above is in Z, i.e. it is not reduced modulo p.
The following properties of ϕf are immediate from the fact that f is a (p, q)-
colouring and the sum ϕf (C) is a telescoping series in the values of f on
C.

P1 q ≤ ϕf (e) ≤ p− q for all edges e.

P2 ϕf (C) ≡ 0 (mod p) for all cycles C.

Given a graph G, an edge-labelling ψ : E(G) → {0, 1, . . . , p − 1} is a (p, q)-
labelling if it satisfies properties P1 and P2 above. Similar to the weighting
function for cycles in (2), we define a weighting for paths: ϕ(P ) is the sum
of ϕ(e) and p − ϕ(e) for forward and backward arcs e in P , respectively,
according to some chose direction of traversal on P .

We now introduce the reconfiguration process for edge-labellings. Let G

be a graph and
−→
G an orientation of G. For ∅ 6= X ( V (G), the edge cut
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∂(X) is the set of edges with one end in X and the other in X. Let ∂+(X)

(resp. ∂−(X)) be those edges oriented from X to X (resp. X to X) in
−→
G .

Given a (p, q)-labelling ϕ : E(G) → {0, 1, . . . , p − 1}, let α be an integer
1 ≤ α ≤ p− 1, where ϕ(e) ≥ q + α for e ∈ ∂+(X) and ϕ(e) ≤ p− q − α for
e ∈ ∂−(X). The labelling ϕ′ obtained from ϕ by relabelling on ∂(X) by α is
defined by:

ϕ′(e) =

{
ϕ(e)− α if e ∈ ∂+(X),
ϕ(e) + α if e ∈ ∂−(X)

This process is called an edge cut relabelling. Clearly if ϕ is a (p, q)-labelling,
then ϕ′ is as well. It is easy to verify that for any cycle C, ϕ(C) = ϕ′(C).

We remark an alternative relabelling definition is to simply require that if
ϕ is a (p, q)-labelling, then ϕ′ is as well (with no requirement that ϕ(e) ≥ q+α
for e ∈ ∂+(X) and ϕ(e) ≤ p− q − α for e ∈ ∂−(X)). In this case one would
naturally reduce ϕ′ modulo p after shifting by α. With this more general
definition the weight of a cycle can change after relabelling. For example,
consider a directed 4-cycle with p = 4 and q = 1. The constant labelling
of 1 on each edge is a (4, 1)-labelling. The weight of this cycle is 4 (when
traversed in the direction of the edges). Using α = 2, one can relabel to
obtain the constant labelling ϕ′(e) = 3 for all edges: simply add 2 to the first
and third edges, and −2 to the second and fourth edges. After reducing the
weights modulo 4, we see ϕ′(e) = 3 for all edges. The weight of the cycle is
now 12. Nonetheless, the two notions of relabelling are equivalent with the
assumption p/q < 4 and the natural restriction −p/2 ≤ α ≤ p/2. We will
use the first definition as it eases the analysis below.

Theorem 5. Let G be a connected graph and ϕ, ψ be two (p, q)-edge-labellings
of G. Then ϕ reconfigures to ψ through a sequence of edge cut relabellings if
and only if ϕ(C) = ψ(C) for all cycles C in G.

Proof. Relabelling on an edge cut does not change the weight of any cycles.
Thus, if ϕ reconfigures to ψ, then ϕ(C) = ψ(C) for all cycles C is a necessary
condition. To prove sufficiency, assume ϕ(C) = ψ(C) for each cycle C. We
may assume ϕ 6= ψ. Let −→wu be an arc such that ϕ(wu) < ψ(wu). (The
case where ϕ(wu) > ψ(wu) is analogous.) Let T be a spanning tree of G
rooted at u with all arcs directed away from u. For each v ∈ V (G) define
wt(v, ϕ) = ϕ(P ) where P is the (u, v) path in T , traversed from u to v.
Similarly define wt(v, ψ).

Let X = {v : wt(v, ϕ) ≤ wt(v, ψ)}. Thus, X = {v : wt(v, ϕ) > wt(v, ψ)}.
Clearly u ∈ X and it is easy to see w ∈ X. Suppose to the contrary w ∈ X.
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Then uw is not an edge of T and thus the uw path in T plus the edge wu is a
cycle C. Moreover this cycle must have ϕ(C) < ψ(C) when traversed with the
direction of the path P , contrary to our assumption. Hence ∅ 6= X ( V (G)
and ∂(X) is a well defined edge cut.

We claim that ∂+(X) must only contain arcs where ϕ(e) > ψ(e) and
arcs in ∂−(X) must have ϕ(e) < ψ(e). Suppose to the contrary there is an
edge e = −→xy, x ∈ X, y ∈ X such that ϕ(e) ≤ ψ(e). (The proof for arcs
in ∂−(X) analogous.) By construction there is a (u, x)-path P1 such that
ϕ(P1) ≤ ψ(P1). Thus P1+y is an (u, y)-path such that ϕ(P1+y) ≤ ψ(P1+y).
On the other hand, since y ∈ X, the path (u, y) path in T , say P2, has
the property that ϕ(P2) > ψ(P2). Hence, reverse of the path is a (y, u)-
path, PR

2 such that ϕ(PR
2 ) < ψ(PR

2 ). The concatenation of P1 + y and
PR
2 is a closed (u, u)-walk with less weight under ϕ than ψ. In particular,

it must contain a cycle C such that ϕ(C) 6= ψ(C), a contradiction. Let
α = mine∈∂(X){|ϕ(e) − ψ(e)|}. Relabel ∂(X) by α to obtain ϕ′. Now ϕ′

agrees with ψ on more edges than ϕ. The result follows.

Observe the second half of the proof of Theorem 5 shows that if there is a
cycle C with different weights under ϕ and ψ, then C is the fundamental cycle
in T + e where e ∈ ∂(X). The discovery of such a cycle through examining
fundamental cycles plays a key role in our polynomial time algorithm.

Corollary 6. Let G be a graph together with two (p, q)-edge-labellings ϕ and
ψ. Either ϕ reconfigures to ψ through a sequence of edge cut relabellings or
there is a cycle C for which ϕ(C) 6= ψ(C). Morever, in the latter case C may
be taken to be the fundamental cycle in T + e where T is a fixed spanning
tree of G, and e ∈ ∂(X) as defined in the proof of Theorem 5. Determining
which of the two cases (exclusively) holds can be determined in polynomial
time.

2.2. Vertex Recolouring

We now return to recolouring vertices. We have already observed that
given a (p, q)-colouring f of a graph, we can construct a (p, q)-edge labelling
ϕf . Conversely given ϕ, a (p, q)-edge labelling, using the ideas from the
proof of Theorem 5, we can generate a weight, wt(v, ϕ), for each vertex v.
Reducing these weights modulo p yields a (p, q)-colouring f where ϕ = ϕf .
The following proposition is immediate. Throughout this section addition
(for shifting colours) is done modulo p.
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Proposition 7. Given a connected graph G, an edge-labelling ψ : E(G) →
{0, 1, . . . , p − 1} is a (p, q)-labelling if and only if ψ = ϕf for some f :
G → Gp,q. Moreover, if ϕf = ϕg for f, g : G → Gp,q, then there exists
k ∈ {0, 1, . . . , p− 1} such that f(v) = g(v) + k for all v ∈ V (G).

To connect our work on edge cut relabellings back to vertex recolourings,
we must realize edge cut relabelling through vertex recolourings where we
recolour one vertex at a time. First, we observe that relabelling ϕ on ∂(X)
by α corresponds to the following vertex recolouring where we recolour an
entire set of vertices (simultaneously). Let f ′ be the colouring obtained from
f by:

f ′(v) =

{
f(v) + α if v ∈ X,
f(v) otherwise.

Then ϕf ′ is the edge-labelling obtained from ϕf by relabelling on ∂(X) by α.
We call this process recolouring the vertex set X by α. Provided ϕ(e) ≥ q+α
for all e ∈ ∂+(X) and ϕ(e) ≤ p− q − α for all e ∈ ∂−(X), the new colouring
f ′ is a proper (p, q)-colouring. The following corollary is immediate from
Proposition 7 and Theorem 5.

Corollary 8. Let f and g be two (p, q)-colourings of a graph G. Then there
is a sequence of colourings f, f1, f2, . . . , fn, each obtained from its predecessor
by a vertex set recolouring, where fn(v) = g(v)+k for all vertices v and some
constant k if and only if ϕf (C) = ϕg(C) for all cycles C in G.

To complete our algorithm, we need to determine when recolouring a
vertex set X by α can be realized by a sequence of single vertex recolourings.
We begin by proving that for p/q < 4, recolouring by α can always be
achieved through recolouring X by 1 (α times). Note this not the case when
p/q ≥ 4. For example, consider a (4, 1)-colouring of C4 where the vertices
are coloured 0, 1, 2, 3 (in their cyclic order). The vertex with colour 0 can be
recoloured to 2. However, the recolouring cannot be done by increasing the
colour by 1 (twice).

Given a pair a, b ∈ {0, . . . , p−1}, the interval [a, b] is defined to be the set
{a, a+ 1, . . . , b− 1, b} (where addition is modulo p). An important property
of Gp,q used in the proof below is that, when 2 ≤ p/q < 4, the common
neighbours of any two vertices form an interval. This fact, and its proof,
appear in [4]. (Roughly, if x and y are common neighbours in two non-
contiguous intervals, then the non-neighbours of x and the non-neighbours
of y are disjoint intervals. This requires p ≥ 2 + 2 · (2q − 1) or p/q ≥ 4.)
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Proposition 9. For 2 ≤ p/q < 4, let f, g be two (p, q)-colourings of a graph
G where g is obtained from f by recolouring the vertex set X by α. Then
there is a sequence of colourings (f = f0), f1, f2, . . . , (fα = g) where each
colouring is obtained from its predecessor by recolouring X by 1 (for the
entire sequence) or each is obtained from its predecessor by recolouring X by
−1 (for the entire sequence).

Proof. Let v ∈ X and vu be an edge. If u ∈ X, then (f(v)+1)(f(u)+1) and
(f(v)− 1)(f(u)− 1) are both edges of Gp,q. Consequently we can increment
the colour by 1 of each vertex in X, or decrement the colour by 1 of each
vertex in X, and maintain a proper (p, q)-colouring on X.

On the other hand, consider a neighbour u of v such that u 6∈ X. Note
f(u)f(v) and f(u)(f(v) + α) are both edges of Gp,q. If α = p/2, then f(u)
is distance at least q from both f(v) and f(v) + p/2 which implies p/2 ≥ 2q,
contrary to our assumption. If α < p/2 < 2q, then f(u) must belong to the
interval [f(v) + α, f(v)]. Thus f(u) is adjacent in Gp,q to every vertex of
[f(v), f(v) + α] and in particular to f(v) + 1. Note this argument depends
only on α < p/2. Hence the colouring f1 obtained from f by increasing the
colour of each vertex in X by 1 is a (p, q)-colouring of G.

A similar argument shows for α > p/2, the colouring f1 obtained from f
by decreasing the colour of each vertex in X by 1 is a (p, q)-colouring. The
result follows.

Given G, an orientation
−→
G , and an (p, q)-edge-labelling, say ϕ, let Dϕ be

the subdigraph of
−→
G induced by edges with label q or p− q. Without loss of

generality we may assumed Dϕ is oriented so that all edges have label q. (To
simplify notation we shall write Df instead of Dϕf

when the edge-labelling
ϕf comes from some vertex colouring f .) In the case p/q = 2, each edge will
be oriented both ways, thus we have a directed 2-cycle on each edge.

Lemma 10. Let f be a (p, q)-colouring of a graph G. Let f ′ be the (p, q)-
colouring obtained from f by recolouring some vertex set X by 1. Then f ′

can obtain from f by a sequence of recolourings of single vertices if and only
if induced subdigraph Df [X] contains no directed cycles.

Proof. Suppose Df [X] contains no directed cycles. We topologically sort the
vertices of X to obtain an ordering x1, x2, . . . , xt where e = −−→xixj ∈ E(Df [X])
implies i < j. For each i = t, t− 1, . . . , 1 increase f(xi) by 1.

On the other hand, suppose Df [X] contains a directed cycle. If one could
sequentially increase the colour of each vertex in X by 1, then there would
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be a first vertex ci in the cycle to have its colour changed. However, ci has
an out neighbour ci+1 (in Df [X]) meaning f(ci+1)− f(ci) = q. The resulting
colouring gives the edge cici+1 a weight of q − 1, i.e. the resulting colouring
is a not a proper (p, q)-colouring.

2.3. Polynomial Time Algorithm

We now describe the polynomial time algorithm for recolouring. We
present a proof of correctness for each step below. The algorithm itself is in
Figure 2.3.

Let f and g be two (p, q)-colourings of a graph G. As defined in [7],
vertices whose colours can never change under any sequence of recolourings
are called fixed. Following the ideas of [7] and using the results above, we
identify (the only) three obstructions preventing the recolouring of f to g:
fixed vertices, cycle weights, and weights of paths between fixed vertices.

The first step of the algorithm is to identify fixed vertices and verify
f(v) = g(v) for all fixed vertices.

Lemma 11. Let f be a (p, q)-colouring of a graph G where 2 ≤ p/q < 4.
Suppose v is a vertex in a strongly connected component of Df . Then the
colour of v cannot be changed under any sequence of recolourings.

Proof. Since v belongs to a strongly connected component of Df , v must
belong to a directed cycle in Df . By definition of Df , the predecessor and
successor of v on this cycle receive colours f(v)− q and f(v) + q respectively.
As noted above, and proved in [4], the common neighbours of two vertices
in Gp,q form an interval. As the colour of v must be a common neighbour of
f(v)− q and f(v) + q, the only choice for v is f(v). That is, the colour of v
cannot change until the colour of one its neighbours changes. However, this
is true for every vertex on the directed cycle. All the vertices in the strongly
connected component are fixed.

The strongly connected components of Df can be found in linear time;
hence, we can find the fixed vertices and verify equality of f and g on the
fixed vertices in linear time. (See, e.g., [1].)

In Step 2 (a) of the algorithm we construct a spanning tree T rooted a
vertex u, and construct the cut ∂(X) as in the proof of Theorem 5. Corol-
lary 6 shows if some cycle has different weight under ϕf and ϕg, then we will
discover a fundamental cycle in T + e for some edge e ∈ ∂(X).
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In Step 2 (b) we calculate the shift α that will increase the number of edges
upon which ϕf and ϕg agree. Proposition 9, Lemma 10, and Lemma 12 show
that the vertices of X or X can be recoloured 1 at a time, or there is a path
between fixed vertices certifying that f does not recolour to g. Specifically,
in the case we wish to increase the vertex set X by 1 and Df [X] contains a
directed cycle, we can achieve the same change to the edge labelling on ∂(X)
by decreasing X by 1 provided Df [X] does not contain a directed cycle. In
the event both subgraphs contain a directed cycle, we have an obstruction
to recolouring as described in the following lemma.

Lemma 12. Let G be a graph with two (p, q)-colourings f and g. Suppose
T is a spanning tree rooted at u. Let X = {v : wt(v, ϕf ) ≤ wt(v, ϕg)} (as
defined in Theorem 5). If Df [X] and Df [X] both contain a directed cycle,
then f does not recolour to g.

Proof. Let x belong to a directed cycle in X and y belong to a directed cycle
in X. Then there are paths in T from u to x, say P1, and from u to y, say
P2 such that ϕf (P1) ≤ ϕg(P1) and ϕf (P2) > ϕg(P2). Thus the reverse of P1

concatenated with P2 is an x, y-path such that ϕf (P
R
1 P2) > ϕg(P

R
1 P2). Since

the end points of this path belong to directed cycles in Df , their colours are
fixed. Let z be an internal vertex of the path. If z can be recoloured by α it
is easy to check the sum of the weight of the two path edges incident with z
does not change. (For example, if both edges are directed in the direction of
traversal of the path, one increases by α and the other decreases by α. The
analyses for the other possible orientations of the two edges are similar.)

In [7], fixed vertices are found by successively deleting sources and sinks
from Df . Thus vertices belonging to a directed cycle will be fixed, but also
vertices on a directed path between two directed cycles are also fixed. In our
work, we identify fixed vertices of the former type using strongly connected
components of Df and vertices of the latter type by the weight of paths
between strongly connected components (our third obstruction) as directed
paths in Df have the smallest possible weight over all edge labellings.

In Step 3 of the algorithm, we have recoloured vertices to obtain a colour-
ing fn such that ϕfn = ϕg. By Corollary 8, fn(v) = g(v)+k for some constant
k. If Df contains any directed cycles, then there are fixed vertices under f .
In Step 1 we have checked that f(v) = g(v) for fixed vertices, so we can
conclude k = 0 and fn = g. On the other hand, if k 6= 0, then there are no
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directed cycles in Df . Applying Proposition 9 with X = V (G) shows we can
recolour the vertices one at a time to reconfigure fn to g.

The following theorem is immediate from the algorithm.

Theorem 13. Let 2 ≤ p/q < 4. Suppose f and g are (p, q)-colourings of a

graph G,
−→
G is an orientation of G and ϕf , ϕg are the edge labellings of G

obtained from f and g. Then f recolours to g if and only if:

1. the same set of vertices are fixed under f and g and f(v) = g(v) for all
fixed vertices;

2. for each cycle C of G, ϕf (C) = ϕg(C); and

3. for each path P whose end points are fixed, ϕf (P ) = ϕg(P ).

Moreover, one can find a recolouring sequence from f to g or an obstruction
of the above type in polynomial time.

At each iteration of the algorithm we recolour O(|V (G)|) vertices and
increase Xe by at least one vertex. Once a vertex is in Xe it never leaves.
Thus we do O(|V (G)|) recolouring steps.

Corollary 14. Let 2 ≤ p/q < 4. Suppose f and g are (p, q)-colourings of
a graph G. If f recolours to g, then there is a reconfiguration sequence of
length O(|V (G)|2) which certifies this.

3. The PSPACE-complete Cases: p/q ≥ 4

3.1. Overview

As in the previous section, all addition and subtraction involving elements
of {0, . . . , p − 1} is viewed modulo p. We say that i, j ∈ {0, . . . , p − 1} are
compatible if they are adjacent in Gp,q. For notational convenience, let us
define k := bp/qc and r := p− kq.

Consider, for a moment, the case r = 0. If q = 1, then the complexity
is PSPACE-complete by Theorem 1. Otherwise, let γ : {0, . . . , k − 1} →
{0, . . . , p−1} be defined by γ(i) := qi and φ : {0, . . . , p−1} → {0, . . . , k−1}
be defined by φ(j) := bj/qc. It is not hard to see that γ is a homomorphism
from Kk to Gp,q and that φ is a homomorphism from Gp,q to Kk. Also,
given an instance (G, f, g) of the k-Recolouring problem, we have that
f reconfigures to g if and only if γf reconfigures to γg as (p, q)-colourings.
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The Recolouring Algorithm
Let 2 ≤ p/q < 4.

Input: A graph G and two (p, q)-colourings f, g.

Output: A recolouring sequence from f to g or an obstruction to recolour-
ing.

1. Find the strongly connected components of Df . For each vertex v
belonging to a nontrivial strongly connected component, verify f(v) =
g(v). If for some such v, f(v) 6= g(v), then answer NO, return a directed
cycle to which v belongs, and STOP.

2. Construct a spanning tree T rooted at a vertex u. Partition V (G) into
three sets: X`, Xe, Xs consisting of those vertices v whose (u, v)-path
in T has weight larger, equal, smaller under ϕf versus ϕg respectively.
Repeat until X` ∪Xs = ∅:

(a) If X` 6= ∅, then let X = Xe ∪ Xs and X = X`. (If X` = ∅
and Xs 6= ∅ apply an analogous process reversing their roles.)
For each e ∈ ∂+(X) (resp. ∂−(X)), verify ϕf (e) > ϕg(e) (resp.
ϕf (e) < ϕg(e)). If some edge fails this test, then answer NO,
return a cycle with different weights under ϕf and ϕg, and STOP.

(b) If Df [X] and Df [X] both contain nontrivial strongly connected
components, then answer NO, return a path P between two fixed
vertices with ϕf (P ) 6= ϕg(P ), and STOP.

(c) Let α = mine∈∂(X) |ϕf (e)− ϕg(e)|. Recolour the vertices of X (or
X) by 1 using a sequence of single vertex recolourings. Repeat
this recolouring by X (by 1) α times.

(d) Update the path weights in T and the sets X`, Xe, Xs.

3. At this point ϕf = ϕg. If f(u) = g(u), then answer YES, return the
sequence of recolourings, and STOP. Otherwise, we know G contains
no directed cycles and we can topologically sort V (G) : v1, v2, . . . vn.
Increase (or decrease) the colour of all the vertices by 1 in the order
vn to v1. Repeat this until f(u) = g(u). Answer YES, return the
recolouring sequence, and STOP.

Figure 1: The Recolouring Algorithm
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Therefore, the (p, q)-Recolouring problem is PSPACE-complete if p/q ≥
4 and r = 0. Thus while the proofs below work when r = 0, to avoid
trivialities we assume that r ≥ 1.

Given an instance (G, f, g) of the k-Recolouring problem, we will con-
struct an instance (G′, α, β) of the (p, q)-Recolouring problem in polyno-
mial time such that:

• |V (G′)| = O(|V (G)|+ |E(G)|) and

• f reconfigures to g if and only if α reconfigures to β.

It will follow from Theorem 1 that the reconfiguration problem for (p, q)-
colourings is PSPACE-complete, thereby completing the proof of Theo-
rem 3.

We give a brief outline of the ideas behind the construction before moving
into the finer details. The first step is to divide the set {0, . . . , p− 1} into k
intervals which we will, in some sense, treat as k separate colours. Define

S0 := [0, q + r − 1], and

Si := [iq + r, (i+ 1)q + r − 1] for 1 ≤ i ≤ k − 1.

It is clear that Si and Sj are disjoint for i 6= j and that
⋃k−1
i=0 Si = {0, . . . , p−

1}. Let γ : {0, . . . , k − 1} → {0, . . . , p − 1} be the function which maps i
to the left endpoint of Si for 0 ≤ i ≤ k − 1. For i 6= j, it is easily observed
that the left endpoint of Si is adjacent to the left endpoint of Sj in Gp,q.
Therefore, given any k-colouring f : V (G)→ {0, . . . , k−1}, the composition
γf is a (p, q)-colouring.

This observation guides part of our construction. The graph G′ will con-
tain G as an induced subgraph and the (p, q)-colourings α and β will be
defined so that their restrictions to G will be equal to γf and γg, respec-
tively. Now, if it is possible to reconfigure α to β in such a way that none
of the intermediate colourings map a pair of adjacent vertices of G to the
same set Si, then we immediately obtain a reconfiguration sequence taking
f to g. That is, to obtain a sequence of k-colourings taking f to g, one
could simply compose each (p, q)-colouring of the sequence with the function
ϕ : {0, . . . , p − 1} → {0, . . . , k − 1} which maps every vertex of Si to i for
0 ≤ i ≤ k− 1. Notice that, for i 6= 0, the set Si is an independent set in Gp,q

and therefore no adjacent pair is ever mapped to Si. Thus, all that we need
to worry about is that some of the intermediate colourings may map two
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adjacent vertices of G to S0. To remedy this, we will add some structures
(or “gadgets”) to G′ which will forbid adjacent vertices of G from mapping
to S0.

To this end, we start by adding a copy of Gp,q disjoint from G with vertex
set {y0, . . . , yp−1}, where yiyj is an edge whenever q ≤ |i − j| ≤ p − q. We
extend the (p, q)-colourings α and β to {y0, . . . , yp−1} by setting α(yi) =
β(yi) = i for all i. It is clear that each vertex yi is fixed in α and β and,
moreover, in any (p, q)-colouring which reconfigures to α or β.

Now, for each edge uv of G, we will add two forbidding paths Puv and Pvu
from u to v to G′ which are internally disjoint from V (G) ∪ {y0, . . . , yp−1}
and one another, as well as from every other such path. These paths re-
strict the colour pairs which can appear on u and v during a reconfiguration
process. We achieve this by assigning to each interval vertex of the path, a
list of allowed colours for that vertex, i.e. we use a list colouring. This is
accomplished by joining the internal vertices of the paths to specific subsets
of {y0, . . . , yp−1}. For example consider the case p = 18, q = 4 which we
explore below. Suppose we want a path vertex x to always be coloured with
an element of the list {4, 5, . . . , 11}. Then it suffices to join x to the vertices
{y15, y16, y17, y0}. As we will show, the colours in the lists forbids u and v
from mapping to S0. Also, once we describe our construction in detail, it
will be clear that the length of the forbidding paths depends only on p and
q, and so |V (G′)| = O (|V (G)|+ |E(G)|).

The difficulty now comes in proving that if f reconfigures to g, then α
reconfigures to β. Specifically, given a reconfiguration sequence (hi)

s
i=1 taking

f to g, we need that the lists assigned to the internal vertices of the forbidding
paths are flexible enough that we can use (hi)

s
i=1 to obtain a reconfiguration

sequence taking α to β. This will be proved using a moderate amount of case
analysis at the end of the section. Before moving on, we remark that the
general strategy of using some sort of forbidding paths in which the internal
vertices are confined to lists was also used by Bonsma and Cereceda [3] (in
a somewhat different manner) to prove that the reconfiguration problem for
k-colourings is PSPACE-complete for k ≥ 4.

3.2. Defining the Forbidding Paths

Let uv be an edge of G. We will now describe our construction of the
forbidding path Puv = uxuv0 x

uv
1 . . . xuvt v from u to v, including the definition of

the lists assigned to the internal vertices xuv0 , . . . , x
uv
t . As mentioned before,
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the construction of G′ also includes a path Pvu from v to u which is defined
similarly.

u

xuv0

xvut

v

xuvt

xvu0

. . .

. . .

Figure 2: Forbidding paths attached to each edge uv

First, the construction of the lists depends on the sequence q, 2q, 3q, . . . , r.
Define t to be the smallest positive integer such that (t + 1)q ≡ r (mod p).
Now, the lists for the internal vertices of Puv are intervals of Gp,q and are
defined as follows:

L (xuv0 ) = L (xuvt ) := [p− 1, 2q − 1],

L (xuvi ) := [iq, (i+ 2)q − 1] for 1 ≤ i ≤ t− 1.

As stated in the outline, in order to enforce these lists we add a copy of Gp,q

on vertex set {y0, . . . , yp−1} and join the vertices of Puv \ {u, v} to the ap-
propriate vertices of this set. Specifically, we join the vertices xuv0 and xuvt to
{yj : j ∈ [3q − 1, p− q − 1]} and join xuvi to {yj : j ∈ [(i+ 3)q − 1, (i− 1)q]}
for 1 ≤ i ≤ t− 1.

Figure 3 contains a useful tabular representation of the lists, and a specific
case (p, q) = (18, 4) is depicted in Figure 4. In both of these figures, the
colours are laid out so that below colour c in the table is the colour c + q.
This gives the following proposition.

Proposition 15. When colouring the path xuv0 , x
uv
1 , . . . , x

uv
t the colours used

(one per row) must be directly below or to the right of the preceding vertex,
and any such sequence of colours from the table gives a good colouring of
the path with the exception of L(xuvt−1) and L(xuvt ). In this case colours in
the interval [r − 2q, r − 1] of L(xuvt−1) are compatible with colours below and
to the right in the interval [p − 1, q + r] of L(xuvt ). Similarly, the interval
[−q−1, r−1] is compatible with colours below and to the right of [p−1, 2q−1].
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Proof. For 1 ≤ i ≤ t − 2 vertex xuvi receives a colour from the interval
[iq, (i+2)q−1] and xuvi+1 receives a colour from [(i+1)q, (i+3)q−1]. Observe
iq is compatible with all colours in the interval [(i + 1)q, (i − 1)q]. Since
p+ (i− 1)q ≥ (i+ 3)q− 1, we have iq is compatible with every colour on the
list for xuvi+1. The colour iq + 1 is compatible with [(i+ 1)q + 1, (i− 1)q + 1]
which include all colours below and to the right of iq + 1. Continuing one
sees that (i + 2)q − 1 is compatible with [(i + 3)q − 1, (i + 1)q − 1] which
includes only the last vertex of the list for xuvi+1. Thus the proposition holds
for 1 ≤ i ≤ t − 2. It is straightforward to verify the case i = 0 as well.
Consider now i = t − 1. The argument is similar; however, we need to
consider the two cases in the statement of the proposition. First for a colour
[r− 2q, r− 1], a colour in [p− 1, q+ r] is compatible if and only if it is below
and to the right. (Note the right hand end point q + r is compatible with
r − 2q if and only if p + r − 2q − q ≥ q + r or p ≥ 4q.) A similar statement
holds for [−q − 1, r − 1] and [p− 1, 2q − 1]. The result follows.

Finally the vertical bar in the table provides the following information: if
vertex u receives colour 0, then only colours to the right of the vertical bar
can be used to colour the path Puv.

Vertex Lists
xuv0 p− 1 0 . . . q − r − 1 . . . q − 1 q . . . 2q − 1
xuv1 q . . . 2q − r − 1 . . . 2q − 1 2q . . . 3q − 1
xuv2 2q . . . 3q − r − 1 . . . 3q − 1 3q . . . 4q − 1
...

...
...

...
xuvi iq . . . (i+ 1)q − r − 1 . . . (i+ 1)q − 1 (i+ 1)q . . . (i+ 2)q − 1
...

...
...

...
xuvt−1 r − 2q . . . −q − 1 . . . r − q − 1 r − q . . . r − 1
xuvt p− 1 . . . r − 1 r . . . q + r − 1 . . . 2q − 1

Figure 3: Assignment of lists to the internal vertices of the forbidding path.

Before moving on, let us check that the paths Puv and Pvu actually do
the job that they are meant to do; namely, that they forbid u and v from
both being mapped to S0.

Proposition 16. Let uv be an edge of G. If ψ is a (p, q)-colouring of Puv∪Pvu
such that the internal vertices of each path are coloured from their lists, then
ψ(u) and ψ(v) cannot both be contained in S0.
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Vertex Lists
xuv0 17 0 1 2 3 4 5 6 7
xuv1 4 5 6 7 8 9 10 11
xuv2 8 9 10 11 12 13 14 15
xuv3 12 13 14 15 16 17 0 1
xuv4 17 0 1 2 3 4 5 6 7

Figure 4: Assignment of lists to the internal vertices of the forbidding path for the (p, q) =
(18, 4) case.

Proof. Suppose to the contrary that ψ(u), ψ(v) ∈ S0. In Gp,q, the only edges
contained in S0 are between vertices in [0, r− 1] and vertices in [q, q+ r− 1].
So, without loss of generality, we can assume that

ψ(u) ∈ [0, r − 1] and ψ(v) ∈ [q, q + r − 1]. (3)

However, the fact that ψ(u) ∈ [0, r − 1] implies that ψ (xuv0 ) ∈ [q, 2q − 1]
(Note that r − 1 < q − 1 and thus (r − 1, p− 1) is not an edge of Gp,q.) By
our observations above, we see that only colours to the right of the vertical
line in Figure 3 can be used to colour Puv. In particular ψ (xuvt ) ∈ [r, 2q− 1].
This implies that ψ(v) 6∈ [q, q + r − 1], which contradicts (3) and completes
the proof.

3.3. Defining α and β on the Forbidding Paths

As we have already mentioned, α and β are defined in such a way that
their restrictions to G are equal to γf and γg, respectively, and α(yi) =
β(yi) = i for all i. Next, we will describe the way in which we extend α and
β to the vertices of the forbidding paths.

Recall that the vertices of G each receive a colour from {0, q + r, 2q +
r, . . . , (k − 1)q + r} under α. Given an edge uv of G, the internal vertices
of Puv are coloured as follows. If α(u) 6= 0 and α(v) 6= 0, then colour xuvi
with colour iq for i = 0, 1, 2, . . . , t− 1 and colour xuvt with 0. (These colours
correspond to the left hand column in Figure 3 for 1 ≤ i ≤ t− 1.) The path
P vu is similarly coloured so that α(xvui ) = iq and α(xvut ) = 0. In particular,
α(xuv0 ) = α(xvut ) = 0 for all v ∈ N(u). Note that (t− 1)q ≡ r − 2q (mod p)
which is compatible with 0. On the other hand, if α(u) = 0, then set α(xuvi ) =
(i+ 1)q for i = 0, 1, . . . , t. For Pvu, set α(xvui ) = iq for i = 0, 1, . . . , t− 1 and
α(xvut ) = q. Observe in this case, the internal vertices around u have colour
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q, i.e. α(xuv0 ) = α(xvut ) = q for all v ∈ N(u), and the internal vertices around
v have colour r or 0, i.e. α(xuvt ) = r and α(xvu0 ) = 0 for all v ∈ N(u).

We similarly extend β using g. A technical detail we will exploit below
is that in extending α and β the colour for xuvt belongs to {0, r, q}. These
colours are compatible with all colours above and to the left in the row for
xuvt−1 by Proposition 15. We call these colourings of Puv the standard path
colourings. At the start of each reconfiguration step we assume the paths
have a standard path colouring, and the end of each reconfiguration step
we ensure the paths have a standard path colouring. The standard path
colourings correspond to coloumns in Figure 3 with possible changes at xuvt .

By Proposition 16, given any sequence of (p, q)-colourings which recon-
figures α to β, we can compose each of these colourings with γ to obtain a
sequence of k-colourings taking f to g. This proves the following proposition.

Proposition 17. Suppose (G′, α, β) is an instance of (p, q)-Recolouring
obtained from (G, f, g), an instance of k-Recolouring, as described above.
If α reconfigures to β, then f reconfigures to g.

3.4. Recolouring G′

To complete the reduction we need to prove that if f reconfigures to g,
then α reconfigures to β. Let (hi)

s
i=1 be any reconfiguration sequence taking

f to g. We show that there is a sequence (ηi)
s
i=1 of (p, q)-colourings of G′

such that

• η1 = α and ηs = β,

• the restriction of ηi to G is γhi for 1 ≤ i ≤ s, and

• ηi reconfigures to ηi+1 for 1 ≤ i ≤ s− 1.

Clearly this will prove that α reconfigures to β and complete the proof of
Theorem 3.

Before tackling the general case we illustrate our method with the example
in Figure 5, in which (p, q) = (18, 4). In this case, the colourings ηi map V (G)
to the colours {0, 6, 10, 14}. Let 1 ≤ j ≤ s − 1 be fixed and suppose that
(ηi)

j
i=1 have been constructed to satisfy the conditions above; our goal is to

construct the colouring ηj+1 and a reconfiguration sequence taking ηj to ηj+1.
By definition, hj and hj+1 differ on at most one vertex, say u ∈ V (G).

Suppose, for example that hj(u) = 0 and hj+1(u) = 1; this requires us change
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the colour of u from 0 (its current colour under ηj) to 6 (its desired colour
under ηj+1) without changing the colour of any other vertex of G. We remark
that this is the most involved case, and corresponds to Case (c) in Lemma 18
below. The other cases use similar ideas but are more straightforward. For
each vertex v ∈ V (G) to which u is adjacent, v must receive a colour from
{2, 3} under hj to facilitate the recolouring of u, which implies that ηj(v) ∈
{10, 14}. Each step below is applied for each neighbour v of u, one by one,
before moving on to the subsequent step. The recoloured vertices at each
step are shown as white vertices in Figure 5 with the new colours indicated
in boldface.

(i) First, recolour xvu3 to 13 and xvu4 to 7. Then, recolour Puv by recolouring
xuv4 to 5, xuv3 to 1, xuv2 to 15, xuv1 to 11 and xuv0 to 7. At this point all
vertices of {xuv0 , xvut : v ∈ NG(u)} have colour 7.

(ii) Now, change the colour of u to 3 (temporarily).

(iii) Next, change the colour of xuv0 to 17 and xvut to 17. At this point all
vertices of {xuv0 , xvut : v ∈ NG(u)} have colour 17. Recolour u to 6.

(iv) Recolour the paths to the standard colourings: xuvi is coloured iq for
i = 0, 1, . . . , t− 1 and xuvt is coloured 0; xvut−1 is coloured 12 and xvut is
coloured 0.

We now describe the recolouring technique in general.

Lemma 18. Let h and h′ be k-colourings of G which differ on a unique
vertex u and let η be a (p, q)-colouring of G′ such that

• η is the standard path colouring for all paths Puv,

• η(yi) = i for all i, and

• the restriction of η to G is γh.

Then there exists a (p, q)-colouring η′ of G′ such that η′ is the standard path
colouring for all paths Puv, the restriction of η′ to G is γh′, and η reconfigures
to η′.

Proof. We provide a reconfiguration sequence which takes η to a colouring
η′ with the desired properties. The proof is divided into cases. In each case,
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u

xuv0

xvu4

xuv1

xvu3

xuv2

xvu2

xuv3

xvu1

xuv4

xvu0

v

0

4
8 12 16

2

104
12 8 4

0

ηj

0

7
11 15 1

5

107
13 8 4

0

(i)

3

7
11 15 1

5

107
13 8 4

0

(ii)

6

17
11 15 1

5

1017
13 8 4

0

(iii)

6

0
4 8 12

0

100
12 8 4

0

ηj+1

(iv)

Figure 5: Recolouring u from 0 to 6 in the (18, 4) case.

each of the reconfiguration steps is done for every neighbour v of u, one by
one, before moving on to the subsequent step.

As mentioned above, when extending α from V (G) to V (G′), the colour
for xuvt is selected from the interval [p−1, q+r]. In some cases below we may
assign xuvt a colour outside of this interval (but still on its list). However, the
assignment will be compatible with the current colour of xuvt−1 and at the end
of the case the colour of xuvt will be in [p− 1, q + r].

Let uv be an edge in G and assume the paths Puv and Pvu have standard
path colourings.

Case (a): η(u), η′(u) ∈ {q + r, 2q + r, . . . , (k − 1)q + r} In standard path
colourings η(xuv0 ), η(xvut ) ∈ {0, r} for each v ∈ N(u). The colour η′(u)
is compatible with both 0 and r, so we may change the colour of u to
η′(u). The paths still have standard path colourings.

Case (b): η(u) = 0, η′(u) ∈ {2q + r, 3q + r, . . . , (k − 1)q + r}

(i) By the definition of standard path colourings, η(xuv0 ) = η(xvut ) =
q. Change the colour of u to η′(u).

(ii) Recolour xvut to 0. The path Pvu now has a standard path colour-
ing.
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(iii) Recolour xuvi to iq for i = 0, 1, . . . , t − 1 and xuvt to 0. The path
Puv now has a standard path colouring.

Case (c): η(u) = 0, η′(u) = q + r

(i) We begin observing that h(u) = 0 and h′(u) = 1, which implies
that h(v) ∈ {2, . . . , k − 1}. Thus, η(v) ∈ {2q + r, 3q + r, . . . , (k −
1)q + r}. For i = t, . . . , 0, in order, recolour xuvi to (i+ 2)q − 1.

(ii) Change the colours of xvut−1 to −q − 1, and xvut to 2q − 1. These
colours are compatible with each other, and by Propsoition 15,
the colour of xvut−1 and xvut−2 are compatible as well.

(iii) At this point all vertices of {xuv0 , xvut : v ∈ NG(u)} have colour 2q−
1. Recolour u to q − 1 (temporarily). Note that this colour is
compatible with all neighbours v of u in G since η(v) ∈ {2q +
r, 3q + r, . . . , (k − 1)q + r}.

(iv) Recolour xuv0 to p− 1 and xvut to p− 1.

(v) At this point all vertices of {xuv0 , xvut : v ∈ NG(u)} are coloured
p− 1. Change the colour of u to q + r.

(vi) Recolour xvut−1 to r − 2q and xvut to 0. Recolour xuvi to iq for
i = 0, 1, . . . , t− 1 and xuvt to 0. The paths now have the standard
path colourings.

Case (d): η(u) ∈ {2q + r, 3q + r, . . . (k − 1)q + r}, η′(u) = 0

(i) Change the colour of xvut to q, and recolour xuvi to (i + 1)q for
i = t, t− 1, . . . , 0.

(ii) At this point all vertices of {xuv0 , xvut : v ∈ NG(u)} have colour q.
Now change the colour of u to 0.

(iii) The paths have standard path colourings.

Case (e): η(u) = q + r, η′(u) = 0

(i) Recolour xvut to p− 1 and xuv0 to p− 1.

(ii) At this point all vertices of {xuv0 , xvut : v ∈ NG(u)} have colour p−
1. Change the colour of u to q − 1 (temporarily). Note that
this colour is compatible with all neighbours v of u in G since
η(v) ∈ {2q + r, 3q + r, . . . , (k − 1)q + r}.
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(iii) Since η(v) ∈ {2q + r, 3q + r, . . . , (k − 1)q + r}, for i = t, . . . , 0 we
can recolour xuvi to (i+ 2)q − 1.

(iv) Change the colour of xvut−1 to −q − 1, xvut to 2q − 1 and u to 0.

(v) Finally, recolour xuvi to (i+ 1)q for i = 0, 1, . . . , t. Recolour xvut to
q, and xvut−1 to r−2q. The paths have the standard path colourings.

This completes the proof of the lemma, and of Theorem 3.

4. Cycles in Graphs of Large Chromatic Number

A result of Chen and Saito [8] says that graphs without cycles of length
divisible by three are 2-degenerate. In particular, it follows that such graphs
are 3-colourable. Recently, Wrochna discovered a short and elegant proof of
the 3-colourability result using ideas from [7]. He has decided not to publish
it himself, but has given us permission to include it here.

Theorem 19 (Chen and Saito [8]). If G contains no cycle of length 0 mod 3,
then G is 3-colourable.

Proof (Wrochna). Suppose that the statement is false and let G be a coun-
terexample for which |E(G)| is minimum. Define G′ := G− e where e = uv
is an edge of G. By hypothesis, G′ admits a 3-colouring, say f : V (G′) →
{0, 1, 2}. If f(u) 6= f(v), then we are done. So we assume, without loss of
generality, that f(u) = f(v) = 0.

Now, let g : V (G) → {0, 1, 2} be defined by g(x) = f(x) + 1 mod 3 for
all x ∈ V (G). It is clear that ϕf (C) = ϕg(C) for all cycles C in G′. Also,
since G′ has no cycles of length 0 mod 3, there are no directed cycles in Df

or Dg, and therefore no fixed vertices either. Thus, by Theorem 13, f can be
reconfigured to g. Let h be the first colouring of the reconfiguration sequence
such that h(u) 6= 0 or h(v) 6= 0. Since the reconfiguration sequence colours
only one vertex in each step, it is clear that h is a 3-colouring of G, which
completes the proof.

A closer look at the proof shows that it actually yields something slightly
stronger: If G contains an edge e such that G − e has no cycle of length
0 mod 3, then χ(G) ≤ 3. Using a similar strategy, we can generalize this to
k-colourings.

Theorem 20. If G contains an edge e such that G− e contains fewer than
(k−1)!

2
cycles of length 0 mod k, then χ(G) ≤ k.
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Proof. We proceed by induction on |E(G)|, where the case |E(G)| = 0 is
trivial. Let e = uv be an edge of G such that G′ := G − e contains fewer
than (k−1)!

2
cycles of length 0 mod k. Then, by the inductive hypothesis, G′

admits a k-colouring f : V (G′) → {0, . . . , k − 1}. If f(u) 6= f(v), then we
are done. So we assume, without loss of generality, that f(u) = f(v) = 0.

Let π be a permutation of {0, . . . , k − 1} with π(0) = 0. Let Ff,π be an
oriented spanning subgraph of G′ where Ff,π contains an arc −→xy if f(x) = π(i)
and f(y) = π(i + 1) for some i (addition is modulo k). Let Sf be the set of
vertices in G which can be reached by an oriented path in Ff,π starting at
u. Suppose that Ff,π[Sf ] does not contain a directed cycle. Then Ff,π[Sf ]
contains a sink x. Recolour x from say π(j) to π(j + 1), i.e. recolour x
to π(π−1(f(x)) + 1). This results in a proper k-colouring f ′ of G′ in which
Ff ′,π[Sf ′ ] = Ff,π[Sf ]− x. Repeating this procedure, one eventually reaches a
situation where either u or v is a sink and so the colour of either u or v is
changed; hence, there is a first k-colouring g where g(u) 6= g(v) and we are
done.

Therefore, Ff,π must contain a directed cycle for every permutation π
with π(0) = 0. Such a cycle must have vertex colours π(i), π(i + 1), π(i +
2), . . . , π(i − 1), π(i), and thus have length 0 mod k. On the other hand,
let C be a cycle of length 0 mod k in G′. The colours of C under f have
the following property: there is a vertex of colour 0, starting at that vertex
and traversing the cycle we see all k colours in the first k vertices, and each
successive block of k vertices is coloured with the same colours in the same
order. In other words, the first k vertices define a permutation π such that
π(0) = 0, and C is a directed cycle in Ff,π. Observe if we traverse C in the
opposite direction we obtain a second permutation π′ where C is directed in
Ff,π′ . Moreover if C is a directed cycle in Ff,σ with σ(0) = 0, then σ must be
π or π′. Since G′ has fewer than (k − 1)!/2 cycles of length 0 mod k, there
must be some permutation π such that Ff,π is acyclic. The result follows.

Corollary 21. If χ(G) > k, then G contains at least (k−1)!
2

cycles of length
0 mod k.

The complete graph of order k+1 has precisely (k+1)(k−1)!
2

cycles of length
0 mod k, and so Corollary 21 is within a factor k + 1 of being tight. We
wonder whether Kk+1 contains the fewest cycles of length 0 mod k among all
non-k-colourable graphs.
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Conjecture 22. If χ(G) > k, then G contains at least (k+1)(k−1)!
2

cycles of
length 0 mod k.

The case k = 3 may be particularly instructive: Is it true that every
graph G with χ(G) ≥ 4 contains at least 4 cycles of length 0 mod 3? If
Conjecture 22 turns out to be false, then it would still be interesting to
determine the minimum number of cycles of length 0 mod k in a graph of
chromatic number greater than k.

More generally, one could investigate the minimum number cycles of
length r mod k in a graph of chromatic number at least, say, f(r, k). With
regards to the existence of such cycles, Chen, Ma and Zang [9] proved that
any graph with chromatic number greater than k must contain a cycle of
length r mod k for r ∈ {0, . . . , k − 1} \ {2} and that any graph of chromatic
number greater than k+1 must also contain a cycle of length 2 mod k. Dean,
Lesniak and Saito [12] proved that if χ(G) ≥ 4, then G has a cycle of length
0 mod 4. Similar problems for induced cycles are very well studied but usu-
ally, in this setting, the function f also depends on the size of the largest
clique in G; see, e.g. [2, 11, 10, 13, 19, 20, 21].
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