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ABSTRACT     . 

Controlling uncertainties is a challenging aspect in design and manufacturing of 

microsystems. As microsystems are characterised by features in the micro domain, 

product development and manufacturing processes are applied at the boundaries of their 

operational areas. In combination with many disciplines (mechanical, electrical, software, 

chemical etc.) and little standardisation, it causes microsystems development to be more 

time and cost intensive than products in the macro domain. Development of microsystems 

benefits from a concurrent approach of product and production design. 

Uncertainties may be addressed by application of methods for systems 

engineering (engineering design). Systems engineering applies models for the analysis of 

projects, usually a linear set of gates that need to be closed successively as the project 

evolves. Over the last ten years, models with an iterative approach of design and testing, 

gained in popularity due to their more agile characteristic that performs better in fast 

changing markets. Microsystems development benefits from the linear approach that 

performs well for their structured project control, but because of the high market 

dynamics, agile methods will speed up the process, which results in faster market 

introduction, advances the product life cycle, and increases return on investments. 

Currently, there are no known systems engineering models that combine linear 

and iterative monitoring of projects to gain the best of both methods, especially not in 

combination with the capability of concurrently monitoring the development of product 

and production design. This thesis investigates how existing ways of system engineering 

can be combined to: (RQ1) enable iterative and linear modelling of microsystems 

development, and (RQ2) merge these qualities into a combined model to monitor the 

development process concurrently. The first problem is addressed by (RQ1): 

i. Modelling development progression by execution of iterative cycles that alternately 

perform functional system decomposition and functional gating; 

ii. This iterative model is elevated with the method of Axiomatic Design to enable 

concurrent system decomposition. Implementation of elements from the V-Modell 

XT enable functional gating to index the concurrent development process; 
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iii. The ‘Theory of Complexity’ of Axiomatic Design is applied to realise an intelligent, 

knowledge based, gating function to be used as a continuous maturity measure; 

The results show that linear and iterative models can be merged successfully. With some 

extensions, the Theory of Complexity of Axiomatic Design can indeed be used for 

continuous monitoring of product and process development. The thus-obtained maturity 

measure can be applied for the analysis of project decisions. This was successfully done 

for retrospective analysis of two cases. 

To merge the qualities of analyses ‘i to iii’ into a combined model to monitor the 

development process concurrently, three tools for application have been developed 

(RQ2):  

iv. The first is a method for visualisation of the intelligent gating function, based on 

analysis ‘iii’. The method applies a newly developed ‘Maturity Diagram’ that plots 

the Design Axioms as continuous parameters; 

v. The second is a method for assessment of reconfigurable manufacturing systems 

based on analysis ‘ii’. The method estimates the investigations needed to 

(re)configure a product specific manufacturing system; 

vi. The third is a tool for roadmapping and monitoring that combines outcomes of 

analyses ‘i, ii, and iii’. This model is called ‘Constituent Roadmap’ and it is based 

on: (a) an iterative approach, (b) concurrent decomposition, (c) the advanced gating 

function, and (d) knowledge application to the product and process design. 

The Constituent Roadmap was applied for the development of a ‘smart dust’ sensor 

system. It was found to structure knowledge development and application. This increases 

the chances to satisfy the functional requirements of the design. In parallel, it functions 

as a communications tool between designers and managers. 

Together, a reasonably complete picture has emerged how the design of 

microsystems and their production means can be modelled, and how uncertainties may 

be categorised so they can be addressed in the best order. 
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THESIS HIGHLIGHTS 

H.1 Motivation of the Research 

• Microsystems are products with features in the micrometre range, comprising 

different technologies, like mechanics, electronics, software, optics, chemistry, or 

biomedical technology. Micro systems are usually applied as sensors in cars, cell-

phones, and many household appliances or as actuators in beamers, switches, or 

photo cameras; 

• Microsystems are difficult to design and to manufacture. Small tolerances are 

needed to realise the small feature sizes, and production technologies are required 

to meet these tolerances. Therefore, product design and manufacturing are 

developed concurrently; 

• Time to market is an issue when developing microsystems. When delayed, 

customers may switch to competing resources. This not only leads to delayed 

break-even point for investments, but also to less market penetration and 

substantial loss of turnover; 

• To organise the product development- and industrialisation-processes, industry 

applies ‘system engineering’ models to model the development process. As such, 

product design and manufacturing are monitored in a concurrent fashion; 

• The system engineering models that are currently available, find their origin in the 

development of software systems. These models are not optimised for the 

microsystems and their manufacturing means; especially in the early phase of 

product design, reliable models for the development of microsystems are sparsely 

available; 

• In the development process of system engineering models for product 

development, there are generally two streams of thought: (i) so called ‘Linear’ 

models that describe and follow the development process as a sequence of stages 

to complete, and (ii) ‘Iterative’ models, that stimulate development in cycles to 

divide the development process in many small stages; 

• Microsystem development benefits of both models, as well the linear models to 

follow the project on a macro scale, as the iterative models that provide quick 
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feedback with the ability to regularly synchronise the product and manufacturing 

processes; 

• In this thesis, the combined models are developed, executed, and evaluated. This 

is done by defining the different dynamical characteristics of the microsystem 

development process, as well for iterative as linear models. 

H.2 Part 1: Modelling 

• The basic model that is applied in Chapter 3 of this thesis is called the ‘Micro 

System Development’ (µSD) Framework. This framework focuses on two 

important functionalities of the development process: (i) the process of 

‘Functional Decomposition’ to break-down difficult problems into small pieces 

of technology that each can be overseen, and (ii) the process of ‘Functional Gating’ 

to control and structure the development process on a macro scale by successively 

closing a number of gates that indicate development stadia of the project; 

• The second step that will be explained in Chapter 4, is to upgrade the µSD 

Framework with improved capability for decomposition and gating, to optimally 

support the concurrent development process of microsystems. This model is called 

the ‘Concurrent Micro System Development’ (CµSD) Framework. This upgraded 

framework applies the methodology of Axiomatic Design to implement full 

concurrency; 

• The third step is explained in Chapter 5 and continues in expanding the µSD 

Framework, however in this chapter, the gating function is implemented 

differently. For the µSD and the CµSD Framework, the gating functions are based 

on the extent to which decomposition is completed. In the model of chapter 5 this 

is implemented with a process that is called ‘Intelligent Gating’. Intelligent gating 

applies a measure of ‘Information in Design’ according to the method of Shannon 

as was developed for the communication theory. 
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H.3 Part 2: Applications of Risk Based, Concurrent Systems Engineering 

Models for Microsystem Development 

• In addition to these three models, the thesis also describes three applications that 

show how the models may be applied in practice. Chapter 6 explains how the 

progression in a microsystem development project may be plotted in a newly 

developed diagram; the ‘Axiomatic Maturity Diagram’. This diagram can not only 

be used to monitor the progression in the project, but also to recover from errors 

made in the project since it has the capability to analyse and visually reveal the 

project-errors; 

• Chapter 7 also applies the intelligent way of gating; however, the implementation 

is different. It presents a way to determine lead-time for development and 

remaining work that needs to be done to complete the project. The activities are 

weighted by an analysis based on axiomatic design as was developed for the 

CµSD framework in Chapter 4; 

• Finally, a combination of the system engineering models that were developed in 

this thesis are combined to an overall method for the development of 

microsystems in Chapter 8. The method is called ‘Constituent Roadmap of 

Product Design’ and it gathers the µSD framework, intelligent gating, and a new 

measure called the ‘Check Matrix’ that can be used to track the status of the 

development process. 

H.4 Research Results 

• A number of six case studies are executed throughout the thesis with the models 

that were developed. These cases showed the possibility to execute the 

development of microsystems iteratively, concurrently, and functionally gated. In 

this way, a combination is obtained between agile feedback on the development 

process, concurrent approach of product design and manufacturing means, and 

rigorous way follow the development process in a sequence of stages; 

• This thesis delivers a number of academic contributions. The µSD combines the 

capability of quick feedback from iterative methods and the rigidity of linear 

methods. The CµSD adds use-cases for ‘Iterative Concurrent Development’, and 
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the µSD with intelligent gating offers a totally new approach to Functional Gating. 

New and effective decomposition of ‘Information in design’ provides three kinds 

of information with typical characteristics that need all three need to be 

approached in a specific way and that can be visualised in the new axiomatic 

maturity diagram that also visually reveals errors in the project. Finally, the 

constituent roadmap of product design implements the ability to transparently 

track the knowledge of the designer using the check matrix. Combined, 

microsystem development may benefit from these models. 
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CHAPTER 1  

INTRODUCTION 

1.1 Scope of the Thesis 

Microsystems are devices with feature sizes in the micron range. Starting in the 

mid-eighties, elements of mechanical systems were realised on the surface of 

semiconductor wafers, using the equipment that was developed for semiconductor 

manufacturing. These electromechanical systems brought the mechanical discipline in a 

new realm with various names; MEMS in the US (Micro Electro-Mechanical Systems), 

Micromachines in Japan, and Micro Systems Technology in Europe (Heinig et al., 2014). 

Microsystems connect multiple disciplines e.g.: mechanical, electrical, software, optical, 

fluidic, chemical, and/or biomedical. With combined elements of semiconductors, 

watchmaking, printed circuit board assembly, and the fact that it transcends multiple 

disciplines, design and assembly of microsystems has a heterogeneous character. This 

heterogeneous integration is submitted to the basic nature of general production principles, 

but unfortunately it does not profit from a high level of standardisation (Onori, 2009). 

The result is that development of microsystems is considerably slower and more cost 

intensive than products on macro scale. Due to the general level of difficulty of micro 

fabrication & assembly, caused by high tolerances in the design, it introduces substantial 

risks for development and manufacturing (Van Brussel et al., 2000; Zhang et al., 2006b; 

Voelkel et al., 2012). To adjust the manufacturing means as much as possible to the 

tolerance hungry product design and vice versa, the development of products and 

manufacturing means is preferably executed in a concurrent way (Dimov et al., 2012; 
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Sohlenius, 1992). This thesis focusses on risk adjustment during the concurrent product 

design of microsystems and their production means, formulated as follows: 

RQ1:  

How do project uncertainties, during the development process of microsystems 

and their production means, evolve as the project progresses? 

RQ2: 

How can this knowledge be applied in a protocol to guide engineers effectively 

and concurrently through the development process of microsystems and their 

production means? 

1.2 Motivation for the Research 

Successful launch of new and unique products will lead to competitive advantage 

which is at the heart of a firm’s performance in competitive markets (Porter, 1985). 

However, prior to success, development of new products and their industrialisation means 

requires extensive investments and comes with undesirable risks. A failing product 

development process can bring a company to the brink of collapse. With such high stakes, 

risk mitigation is an important instrument during development of new products. 

A second industrial motivation for this research are the development dynamics in 

modern, quickly eroding markets. Due to global competition, the purchasing power of 

customers is increasing and puts pressure on lead times for product design and production 

engineering. High production efficiency and rapid response to changing customer 

demand are dominant conditions for enterprises to stay successful (Koren, 2006). The 

market for microsystems may be considered a quickly eroding market and requires tight 

scheduling of system development; being ‘first’ leads to better market penetration, 

increased margins on products, and as a result, to progressively higher return on 
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investments. If market introduction is delayed, remaining economic lifecycle is 

significantly reduced (Puik et al., 2002; Puik & Moergestel, 2010; Ceglarek, 2014). 

Figure 1.1 shows losses of late market introduction (Puik, 2009). 

 

Figure 1.1 Delayed market introduction reduces sales and duration 

of sales of products; total turnover will be substantially lower 

High pressure on lead times also has led to adjustments in production processes, 

production approach, and applied equipment. Manufacturing has become ‘agile’; 

manufacturing equipment and production locations have become modular and subject to 

evolve frequently and on short notice. This is the venue of ‘Reconfigurable 

Manufacturing Systems’ (RMS) (Gunasekaran, 2001; Puik & Moergestel, 2010; Koren, 

2006). RMS are a logical addition to ‘Dedicated Manufacturing Systems’ (DMS), and 

‘Flexible Manufacturing Systems’ (FMS). DMS are most traditional; they are applied for 

a long period of manufacturing without significant changes, even up to 30 years. FMS 

are computer numerically controlled systems. In FMS, the application of computerised 

control systems enables fast adaptions to a range of variations in production. The structure 

of the machine, however, was determined by the ‘mechanical system design’ and is not 

able to change (Koren et al., 1999). RMS fill the gap by adding a modular architecture in 
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both mechanical design and control system. The architecture enables agile change of 

machine structure by adding and removing parts of the system, and by changing the 

corresponding software programming (Strasser et al., 2005; Telgen et al., 2015; 

Moergestel et al., 2011; 2013). 

A third motivation is reported in an outlook study on the future of European 

assembly automation for microsystems. The European EUPASS project (Evolvable 

Ultra-Precision Assembly Systems) makes note of a difficult relation between ‘Product 

Development’ and ‘Manufacturing Engineering’ (Onori, 2009). This is primarily due to 

the fact that processes, being catered for application in the assembly systems, are 

insufficiently documented and structured. A typical approach for these markets is the 

application of ‘Design for Assembly’ that advocates the designers to incorporate 

knowledge of the assembly processes, to optimise their design, and as such enable an 

effective transition from the product design stage to production. Onori attributes this 

problem to communication flaws between the designers that apply the processes, and 

vendors/developers of process technology. The fact that these are different people at 

different locations introduces a non-conformity during the process of industrialisation. 

Fourthly, development of new products freezes a companies’ resources. 

Investments in new products and their manufacturing equipment precede potential 

earnings of the company. Invested resources are frozen till after market introduction when 

they are gradually regained; it rigidifies the company, especially in a fast-changing 

market. This effect opts for: (i) quicker market introduction, (ii) more efficient product 

development, and (iii) effective manufacturing engineering followed by pilot production 

and ramp-up to required production numbers (Moore, 2009). 
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Lastly, the areas that were selected for study were encountered as problems when 

the author was working for the high-tech start-up MA3Solutions that produced equipment 

for microsystem manufacturing. Due to lack of methods to understand and control 

projects, the company did not succeed in managing risks adequately. 

1.3 Research Objectives and Positioning of the Thesis 

This thesis focusses on the development and application of methods for ‘Systems 

Engineering’ (the term ‘Engineering Design’ is also applied in the US). Systems 

engineering is defined by Ramo as ‘the design of the whole as distinguished from the 

design of the parts’ (Booton & Ramo, 1984). The tools of the systems engineer are the 

human brain, a computer, and numerous techniques for analysis (mathematical or 

qualitative), to model concerned phenomena and their characteristics in detail. Every 

modern designer is in some extent a systems engineer and applies models to explain 

observed phenomena. In this thesis, systems engineering models are applied, developed, 

and improved with the goal to adjust development risks that may occur when developing 

and industrialising microsystems in a modern environment. 

1.3.1 Modelling Design Progression 

Problem: In an ideal situation, a systems engineering model, to determine progression of 

a microsystem-design during its development stages, would have the following 

characteristics: 

• The model quantifies remaining project risks integrally, with an option to 

investigate the source of the risk; 

• The model is able to follow the development process from the early explorative 

design stage to market introduction; 
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• It has the capability to concurrently model product development and development 

of production means; 

• It supports an agile approach by applying short iterative cycles. 

Current Situation: The impact of making decisions in the early life of product/production 

development is larger than the impact at the end of the development process. Figure 1.2 

shows how steeply the impact declines as a product matures. 

 

Figure 1.2 The availability of tools is low, just as 

it could lead to maximum impact 

Conversely, while there are many modelling tools to help engineers make good 

decisions about products late in the development process, there are few available early in 

the process, where they are needed the most (IMTR-Project-Team, 2000; Hsu & Liu, 

2000). The number of models that are applicable over the whole development span is 

limited. Nevertheless, some are universal in this sense, like the widely-applied Waterfall-

Model and the V-Model (and derivatives). These ‘Linear’ models apply a sequence of 

‘Gates’ that may be closed when all related targets for that gate are met. When properly 

applied, a gate that is closed will not be reopened again. For software development 

projects, which are typically characterised by an agile nature, project modelling tools are 
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usually ‘Iterative’. Iterative methods execute improvement cycles that are recursively 

addressing problems in the design. These methods allow swift reactions in unexpected 

situations, but do not benefit from the rigour of a solid structure.  

Table 1.1 Positioning the investigations for linear and iterative planning 

methods in relation to the current research status 

Issues Considered Addressed By Related Work 

Methods for project 

planning and risk 

adjusted modelling of 

design progression 

 

Linear planning based 

on Waterfall-Model and 

derivatives (PRINCE, 

PRINCE2) 

(Royce, 1970), (Boehm et al., 1976), (Daft & Lengel, 

1986), (Broy & Rausch, 2005), (Haskins, 2006), and 

(Office of Government Commerce, 2009)  

Linear planning based 

on V-Model and 

derivatives (W-model, 

Butterfly-Model, 

Advanced-V-Model, VM-

Model) 

(Boehm, 1979), (Rook, 1986), (Morton, 2001), (Mooz & 

Forsberg, 2001), (Sheffield, 2005), (Höhn et al., 2008), 

(Clark, 2009), (Friedrich et al., 2009), 

(Bundesministerium des Innern, 2009), (Mathur & 

Malik, 2010), (Lau et al., 2011), (Bajaj & Narang, 

2012), (Deuter, 2013), (McHugh et al., 2013) and 

(Sheffield et al., 2013)  

Linear, concurrent 

modelling based on 

Axiomatic Design 

(Suh et al., 1978), (Suh, 1990), (Albano & Suh, 1994), 

and (Suh, 2001) 

Iterative approaches 

based on PDCA, Iconic 

Model, Innovation 

planning 

(Shewhart, 1939), (Asimow, 1962), (Mesarovic, 1964), 

(Ertas & Jones, 1996), (Deming, 2000), (Kumar, 2003), 

(Kulak et al., 2005), and (Wiendahl et al., 2007) 

Based on iterative, agile 

methods for software 

development (Spiral 

Model, Rational Unified 

Process, Scrum) 

(Gould & Lewis, 1985; Boehm, 1988; Schwaber, 1997; 

Highsmith & Cockburn, 2001; Kroll & Kruchten, 2003; 

Pries & Quigley, 2010) 

Combination of linear 

and iterative planning 

For volatile requirements 

management 

(Anitha et al., 2013) 

Iterative functional 

decomposition and gating 

Proposed in this thesis 
(Chapter 3) 

Iterative concurrent 

decomposition and gating 

Proposed in this thesis 
(Chapter 4) 
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Multi-disciplinary projects, like microsystem development projects, will benefit from the 

rigour of linear models, but coincidently also from the agility of iterative methods. 

Combinations of both models are experimentally applied in industrial environments, but 

such applications are still scarce in scientific literature. Table 1.1 lists the investigations 

performed on these topics. 

Key Limitations: 

• Models that support the early phase of design (conceptual design) are only 

sparsely available; 

• Linear models could serve as a basis for microsystem development, but these 

methods lack an iterative approach to address the agile nature of microsystem 

development;  

• Iterative methods apply the agile approach well, but these methods are missing 

the rigour of linear models for monitoring overall project progression;  

• Linear and iterative models were in the past generally developed for software 

projects and as such they are not optimised for concurrent design. 

The first research objective aims to combine the strengths of the linear and the iterative 

models in order to objectively determine design progression during development of 

microsystems. The research objective for Chapters 3 and 4 of the thesis was defined as: 

First Research Objective: 

Combine the overall indexing quality of existing linear project planning models 

with the agility of existing iterative models. The resulting model enables agile 

and concurrent monitoring of project uncertainties for the development of 

microsystems and their production means. 
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The objective will be addressed by the introduction of a ‘Microsystem Development 

Framework’, further referred to as ‘µSD Framework’, that merges linear and iterative 

ways of product development for microsystems. The investigations for the µSD 

framework particularly focus on two aspects of the design process: (i) ‘Functional System 

Decomposition’ or break-down of the project in clear cuts, and (ii) ‘Functional Gating’ 

that determines the degree to which a project has progressed by assessment of the 

functional behaviour of the system. As the project progresses, decomposition evolves and 

gates are successively closed; elemental project decisions are frozen when underlying 

project issues (at lower hierarchical levels) are specified. Functional system 

decomposition and functional gating are central research topics in the thesis. 

 

Figure 1.3 Functional system decomposition and functional gating 

are elementary parts in the process of product design 

Figure 1.3 shows the global structure of the µSD framework that will be explained in 

detail in Chapter 3. Chapter 4 adds concurrent ways for these topics, called ‘Concurrent 

Decomposition’ and ‘Concurrent Gating’. With these concurrent ways for investigation, 

the µSD framework is upgraded to the ‘Concurrent Microsystem Development 

Framework’ (CµSD framework). 

Proof of 
Principle

Synthesis Realisation

Design 
Freeze

Testing

Functional 
System 

Decomposition 
Object

Product
Design 
Process

Functional 
Gating Object

  Iterative Feedback of Design Imperfections
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1.3.2 Understanding Complexity as Products Evolve 

The solutions for functional decomposition and functional gating will be enhanced 

with methods of ‘Axiomatic Design’ (AD) in Chapter 4. AD is a systems engineering 

methodology that applies mathematically substantiated methods using ‘Axioms’, 

‘Domains’, and ‘Design Relations’. It has the unique capability to model a product design 

and its process technology in a concurrent way. Secondly, it supports decomposition of 

the product design and process technology (concurrently). As the CµSD framework is 

based on AD, its monitoring function to measure project progression was built on 

satisfaction of the design axioms. In principle, there are only two axioms, the 

‘Independence Axiom’ and the ‘Information Axiom’. The Independence Axiom is 

typically satisfied before the Information Axiom. This means that a product design can 

have only three conclusively defined statuses: (i) no axioms satisfied, (ii) only the 

Independence Axiom satisfied, or (iii) both axioms satisfied. 

Problem: Ideally, project progression would be monitored with a continuous measure or 

at least more than a number of three stages. In Chapter 4, the resolving power of the CµSD 

framework was enhanced by merging elements of the V-Model, using the products’ state 

of decomposition as an extra measure for project progression; this divides both axioms in 

a number of four stages, bringing the total resolving power of the CµSD framework to a 

number of eight stages. The approach in Chapter 5 and 6 will go further; the question 

arises if decomposition of design is the best measure for functional gating for at least two 

reasons. At first, it is not unusual in practice that gates need to be reopened. The need for 

reopening of gates is found in the general principle of decomposition. Decomposition is 

applied to divide a project in clear cuts that can be well-understood, as the project as a 

whole is too complex to understand. This does not automatically mean that functional 
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parts that have been defined are fully understood right away. As the parts still need to be 

decomposed further in subparts, it is a matter of good faith that these subparts constitute 

no obstruction for the definite feasibility of the project. However, this cannot always be 

guaranteed because it is too laborious to apply detailed investigations on every subpart in 

advance. As a result, their nature can appear to be unwilling and persistent. To recover, it 

is necessary to revise the decomposition tree which requires gates to be reopened. The 

second reason why decomposition may not be the best measure to increase resolving 

power is that the principle of decomposition registers ‘what was accomplished in the 

project so far’ (successful decomposition and specification up to some level), while it is 

maybe more important to know ‘what problems are still to come’ and ‘what needs to be 

done to address them’. This would require a completely different approach for realisation 

of the gating function. Such a gating function would need to look ahead to the remainder 

of the project instead of looking back at the project achievements so far. 

Current Situation: Basically, all gating functions implemented in Waterfall- and V-

Models are based on progression of decomposition of the product design. the CµSD 

framework builds further on this principle by adding true concurrency in its approach. 

These methods rather look back on achievements than focus on remaining work to do. 

Table 1.2 shows background investigations performed for these topics. AD provides 

another perspective that was not applied by any of the methods so far; the relatively novel 

‘Theory of Complexity’ in AD, that is wrapped around a third ‘Complexity Axiom’, could 

be used as a continuous measure. The Complexity Axiom is not as much explored in 

literature as the Independence and Information Axioms. Unfortunately, the Complexity 

Axiom cannot be applied to address these problems without modifications. Possibilities 

are investigated in Chapter 5. 
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Key limitations: 

• Resolving power of a project progression model, based on decomposition of the 

design, does not provide contemplated resolving power since gates are regularly 

reopened; 

• Gates that need reopening indicate corrective actions in the process of project 

management and cause disruptions. It should be prevented. 

According to the Theory of Complexity, uncertainty in design is directly related to a lack 

of knowledge of the designer, and this uncertainty is the cause for project risks (Suh, 

2005a). As a result, presence of the right knowledge with the designer would lead to 

prompt identification of all project risks. 

 

 

 

Table 1.2 Positioning the investigations application of information in design as a 

measure for project progression in relation to the current research status 

Issues Considered Addressed By Related Work 

Reduce the 

uncertainties in the 

design through AD 

complexity analysis 

Information in Axiomatic 

Design 

(Hartley, 1928), (Shannon & Weaver, 1949), (Brillouin 

& Gottschalk, 1962), (Suh, 1990), (El-Haik & Yang, 

1999), (Suh, 2001), and  (El-Haik, 2011) 

Complexity in Axiomatic 

Design 

(Suh, 1999), (Suh, 2005b), (EI-Haik, 2005), 

(ElMaraghy et al., 2012), and (Efthymiou et al., 2012) 

Decomposition of 

complexity and information 

in design 

Proposed in this thesis 
(Chapter 5) 

Visualisation of complexity 

as continuous measure 

Proposed in this thesis 
(Chapter 6) 
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The second objective of this thesis is defined as: 

Second Research Objective: 

Apply elements of the Theory of Complexity in Axiomatic Design to enable 

knowledge based gating for project control, and to increase resolving power for 

monitoring project progression. 

As such, the investigations of Chapters 5 and 6 build further on the need for a reliable 

gating function. This method will be referred to as ‘Intelligent Gating’. Decomposition 

of complexity is based on ‘Information in design’ according to Shannon’s ‘Information 

Theory’ and will be executed in Chapter 5 (Shannon, 1948). Chapter 6 presents a method 

for visualisation of the decomposed information measures. 

1.3.3 Assessing Reconfiguration Schemes of RMS 

The models of Chapters 3 & 4 may be applied to model risks in the development 

process of microsystems and their manufacturing means. This enables objective 

determination of the project status and how it evolves. The CµSD framework, and its 

related models, support decision making procedures during project execution. 

Problem: However, the scope of the CµSD framework is limited to a single project. In 

practice, a factory is usually producing a portfolio of products that needs to be optimised. 

Strategic manufacturing decisions cannot be taken based on a single product/project; 

synergy with the rest of the factory influences the decision-making process. For these 

situations, the CµSD framework needs to be expanded with a method that compares 

options for known and new manufacturing solutions at the level of the factory floor, and 

as such anticipates further in the future. 
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Current Situation: So far, research on this topic has offered methods to compare different 

manufacturing principles (DMS, FMS, and RMS) (Zhang et al., 2006a) and also studies 

flexibility of FMS by development of optimised tooling (Hollstein et al., 2012). Also, 

investigations have been performed from the economic perspective (Kuzgunkaya & 

ElMaraghy, 2009; Amico et al., 2006). The advantages of RMS reside in the reuse of the 

modular building blocks or ‘Process Modules’ (Gutierrez, 1999; Grosser et al., 2000; Puik 

et al., 2002). Tailor made manufacturing systems can be largely composed of existing 

process modules that are chosen from the companies ‘Library’ of available modules 

according to a ‘Reconfiguration Scheme’. However, as technology evolves, the library 

needs to be expanded with new process modules that foresee in added functionality and 

enable more powerful reconfiguration schemes to be applied. 

Table 1.3 shows the positioning of assessment of manufacturing systems in relation to 

the state-of-the-art. 

Table 1.3 Positioning the investigations for assessment of reconfiguration 

schemes of this thesis in relation to the current research status 

Issues Considered Addressed By Related Work 

Assessment of 

manufacturing 

systems 

Comparison of dedicated, 

flexible, and reconfigurable 

manufacturing systems 

(Amico et al., 2006), (Kuzgunkaya & ElMaraghy, 

2009), (Zhang et al., 2006a), (Michaelis & 

Johannesson, 2012), and (Nassehi et al., 2012) 

Evaluating alternative 

designs for flexible 

manufacturing systems 

(Abdel-Malek & Wolf, 1991), (Abdel-Malek & Wolf, 

1994), (Lotfi, 1995), and (Yan et al., 2000), and 

(Hollstein et al., 2012) 

Adaptability of 

reconfigurable 

manufacturing systems 

(Abdi & Labib, 2003), (Spicer et al., 2007), (Abdi & 

Labib, 2007), (Farid & Mcfarlane, 2006), (Farid, 

2008), (Hasan et al., 2013), and (Farid, 2014) 

Evaluating alternative 

configurations for 

reconfigurable 

manufacturing systems 

Proposed in this thesis 
(Chapter 7) 
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Key Limitations: Developing new process modules is labour intensive and it should be 

part of the companies longer term development strategy. The decision to expand the 

library of process modules should be weighted at the manufacturing department level in 

close cooperation with the department that executes product planning e.g.; it may be 

preferred to invest in a new process module and expand the library of modules today, 

because the new process module will be important for future products and they are 

members of the same product family. The decision exceeds the scope of the actual project 

alone: 

• The process of reconfiguration of RMS influences the development of 

manufacturing resources (library of process modules). It has consequences for 

future application of RMS; 

• No specific tools were found to model this problem. The problem transcends the 

current (single) project and should escalate to an adequate level; 

• The alternatives should be compared quickly and effectively to enable comparison 

of many alternatives. 

The research objective for this topic was defined as: 

Third Research Objective: 

Develop a method for assessment of different RMS reconfiguration schemes, by 

expanding the CµSD framework, that enables optimal reconfiguration for the 

present and the near future. 

Assessment of reconfiguration schemes is investigated in Chapter 7 of the thesis. 
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1.3.4 Synthesis of a Generic Framework for Controlling Product Design  

The final contribution of the thesis is to combine achievements of expository 

results of the analyses in Chapters 3 to 5. The result aims for a generic framework to 

model design progression, and reduce uncertainties during concurrent development of 

microsystems.  

Problem: Such a general framework does not exist. It may be constituted by 

complementary models that together meet the exhaustive goal of monitoring the total 

product development process. The framework should inherit the method for 

implementation of iterative improvement cycles combined with some linear method for 

determination of the absolute status of the project. To achieve this, the gating function 

from the CµSD framework may be expanded with the method for intelligent gating and 

the capability to measure the knowledge of the designer as applied to the product design. 

The method should maintain its concurrency to address product and process design 

simultaneously, and have the ability to monitor the development in the explorative, 

conceptual, and robustness phases. 

Current Situation: There is a diverse availability of systems engineering methods that 

serve particular goals. These methods can be collectively applied to control the design 

process. Only few models have the capability to integrate these methods from a higher 

perspective and make the aggregate of the models prevail over the joint performance of 

the mutual models e.g., the V-Model, and also the more traditional Waterfall-Models have 

been reasonable successful in this sense, but many other models focus on specific project 

details. 
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Of the available models, only a limited selection addresses the explorative phase. 

Some of the models that do address the explorative phase, do not address the robustness 

phase. Only a number of three models were found that can be applied over the full 

development range (three phases, exploration, conceptualisation, and robustness). 

Even less models are based on testing the knowledge of the designer and if it is 

applied to the product design, and lastly, very few models have the capability to address 

product design and process engineering concurrently. No model was found that includes 

all these features. 

Key Limitations: 

• An integrated model should have the capability to track the knowledge of the 

designer and monitor if that knowledge is implemented well; 

• It should cover the total development process, from earliest design stage to total 

robustness; 

• It should have the capability to embed other existing models; 

• Many models do offer partial solutions for the concurrent product development of 

microsystems. Unfortunately, no complete and guiding framework that provides 

all capabilities is currently available to the designer. 

An inventory of methods that support modelling in the early design stage was 

made (Table 1.4). The framework in Chapter 8 will be based on the Theory of Complexity 

of AD and as such builds further on the method of intelligent gating. Based on the findings 

in this thesis, a modular model could be developed that addresses the shortcomings of 

existing models. 
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The final objective of this thesis was defined as: 

Fourth and Final Research Objective: 

Combine the best characteristics of all models available and preserve their 

strengths to form a new model that: preserves a risk adjusted approach, has 

good flexibility, and may be applied to concurrently develop microsystems and 

their RMS. The model is applicable in the early project stage and equally 

addresses managerial and technological issues. 

It is not tried in this thesis to gather all functionality into a single model. Many of 

the mentioned capabilities have already been included in one of the models as described 

in previous chapters (µSD framework, CµSD framework, method of intelligent gating). 

To prevent over-complication of a heavy integrated model that features all functionality, 

it has been chosen to develop a framework that is wrapped around these existing models. 

This new framework is called the ‘Constituent Roadmap’ because it connects to existing 

models that may be applied within its context. 

Table 1.4 Positioning the investigations for alternative models to monitor the 

complete product development process in relation to the current research status 

Issues 

Considered 

Addressed By Related Work 

Modelling the 

explorative 

development phase 

Development models that 

address the early design 

process 

(Deng et al., 2000), (Wang et al., 2002), (Tay & Gu, 

2002), (Ulrich & Eppinger, 2004), (Haskins, 2006), 

(Ayag, 2007), (Komoto & Tomiyama, 2012), and 

(Pahl & Beitz, 2013) 

Models, based on AD, that 

address the early design 

process 

(Li et al., 2010), (Tay & Gu, 2002), (Zhang & Chu, 

2010), (Chen et al., 2012), and (Benkamoun et al., 

2014) 

Model, based on AD’s Theory 

of Complexity, for knowledge 

based monitoring the overall 

design process 

Proposed in this thesis 
(Chapter 8) 
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1.4 Limitations and Assumptions 

This research has limitations in application. As investigations focus on 

microsystems in general, it covers a wide scope of technologies: mechanical, optical, 

chemical, biomedical systems etc. All these technologies have characteristics that may 

require a particular approach. This thesis will not provide a solution to all problems that 

can occur with all these technologies. Neither will it provide a solution to predict all errors 

during the development of all these technologies. However, to increase its coverage, the 

cases chosen to validate the models will be selected from different markets, e.g.: A cell 

phone lens-array, a geometrical measurement system for nanometre measurements, a 

pneumatic automotive switch, an inkjet print head, and a Nanowire hydrogen sensor for 

the Internet of Things. All cases serve a commercial goal. 

The complexity analysis in this thesis uses the complexity definition in AD as ‘a 

measure of uncertainty in understanding what it is we want to know or in achieving a 

functional requirement’ (Suh, 2005b).  This is just one of the going definitions of 

complexity in general, as there are many different ways to look at the concept of 

complexity (Gell-Mann & Lloyd, 1996; Suh, 1999; Wildemann, 2013). 

Also, some assumptions apply. In these investigations, it is assumed that ‘the 

designer’ is a person, or a group of persons, without personal or political motives or 

hidden agenda. It is assumed that the designer actually has the ability (capability, means, 

and sufficient time) to apply his knowledge to the problems he is investigating. 

Lastly, a part of this thesis deals with process technology that is applied in 

manufacturing systems. The process technology that is applied to produce products and 

systems is considered to be a part of the product itself. If manufacturing is mentioned in 

the thesis, it is principally about the process of configuration of a manufacturing system 
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(as an RMS). The exception is the case where new modular process modules need to be 

developed in Chapters 4 and 7. In these cases, the development of a new process module 

is seen as a product on itself. 

1.5 Thesis Outline 

 

Figure 1.4 Outline of the thesis 
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This thesis consists of two parts. The first part, containing Chapters 3, 4, and 5, 

focuses on ‘Models’ that analyse microsystem product development processes. The 

second part, containing Chapter 6, 7, and 8, focusses on ‘Applications’ based on the 

analyses of the first part. 

The outline of the thesis is shown in Figure 1.4. After Chapter 2 that focusses on 

background of models for microsystems and their manufacturing means, Chapter 3 

introduces the µSD framework, and focuses on functional system decomposition and 

functional gating. Chapter 4 builds further on the µSD framework and adds the concurrent 

development approach in the CµSD framework. Chapter 5 adds intelligent gating based 

on Axiomatic Design, and that output is visualised in Chapter 6. The method for 

assessment in Chapter 7 builds further on Chapter 4, and finally, the constituent roadmap 

of Chapter 8 builds on the input from all analysis chapters (3, 4, and 5). The discussion 

in Chapter 9 reflects on the overall results of the thesis and draws conclusions. 

Chapters 3 – 8 apply an equivalent structure that starts with ‘Analysis & Approach’ 

containing the problem statement, the current situation and its key limitations. This is 

followed by an exposition of the applied ‘Methodology’ of the investigations and how 

these address the key limitations. One or more ‘Industrial Cases’ are applied to 

demonstrate the methodology. Lastly, the ‘Discussion’ reflects on performance of the 

methodology. 
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CHAPTER 2  

BACKGROUND 

2.1 Background on Microsystems 

‘Cramming More Components onto Integrated Circuits’ was the title of the 

influential paper of Gordon Moore in 1965 (Moore, 2005) (IEEE reprint). Moore 

predicted that the number of components on a semiconductor substrate would double 

every 24 months. Moore also stated that the future of electronics would bring about a 

proliferation of electronics, pushing this science into many new areas such as home 

computers or at least home terminals, electronic wristwatches, and communications 

devices. The exponential growth of semiconductor electronics indeed has caused great 

changes in society and even Moore’s ambitious ideas have been exceeded; electronics 

and forthcoming software have connected the world to the internet. 

2.1.1 More than Moore, MEMS, Micromachines, and MST 

In the mid-eighties, elements of mechanical systems were realised on the surface 

of semiconductor chips, by using the equipment that was developed for semiconductor 

manufacturing. The operations are called ‘Bulk Micro Machining’ or ‘Surface 

Micromachining’, the former oriented on etching material away from the silicon wafer 

while the latter focuses on deposition of layers on the surface of the silicon wafer (Madou, 

2002). Despite the name suggests ‘machining’, both have little relation with traditional 

methods for mechanical machining of parts (Diem et al., 1995). By the end of the eighties, 

the micro machined electromechanical systems enabled mechanical engineering to make 

the next step in miniaturisation. The various movements, MEMS, Micromachines, and 

MST as referred to in the introduction of the thesis have their typical approach of the 
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technology but all contribute to general ‘Microsystems’. In the US it was called ‘MEMS’  

(Micro Electro Mechanical Systems) that remained close to semiconductor engineering 

having a strong relation with electronics, in Japan it was called ‘Micro-machines’ as it 

was characterised by having features in the micrometre range, and lastly ‘Micro Systems 

Technology’ in Europe, which typically used some electronic chip in combination with 

other elements giving it a more hybrid character (Heinig et al., 2014). In this thesis, all 

these systems are referred to as ‘Microsystems’ and their specific character is not only 

determined by the feature sizes within the devices, but also their characteristic to combine 

several disciplines e.g.: mechanical, optical, fluidic, biomedical, and software disciplines. 

Where Moore’s law has led to a virtual world of electronics and software 

(computers, communications devices, internet, etc.), microsystems connect this virtual 

world to the physical world; the virtual world is adapting to humans, instead of the other 

way around. Figure 2.1 shows successful microsystems. 

   

Figure 2.1 iPhone 4S gyroscope by STMicroelectronics (left) and, Digital 

Mirror Device for data projectors from Texas Instruments (middle and right) 

Microsystems may be grouped in two major categories; sensors and actuators 

(Zhang et al., 2005); both concerning data transmittal, the former bringing data from the 

physical world to the virtual world (the world of electronics and software), the latter 

bringing data from the virtual to the physical world. Sensors measure temperature, speed, 
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acceleration, presence, composition of gasses, etc., and transform these quantities into the 

field of electronics. Actuators bring electronic quantities back to our environment in the 

form of loudspeakers, displays, switches, light sources, etc., to basically address any 

quantity humans can sense. Semiconductor integration of sensors has been more 

successful than integration of actuators (Madou, 2011). The reason is that the small 

dynamics and corresponding energy levels of micro systems perfectly matches the 

dynamics for sampling small bits of the environment, however, actuation on macro level 

only makes sense if energy levels can be applied that correspond with the macro world. 

Figure 2.2 shows prototypes of micro actuators that were produced with state-of-the-art 

technology but did not meet this requirement. 

  

Figure 2.2 Micro actuators as produced by Sandia National Laboratory (2002) 

Commercial successes were lacking for these systems due to their limited capability to 

drive anything on a sensible scale. Still, the Digital Mirror Device of Figure 2.1 was 

successful because the energy levels for controlling the micro mirrors is in harmony with 

the on-chip energy levels.  
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2.1.2 Monolithic and Hybrid Microsystems 

In general, when the required energy levels to actuate the macro world divert too 

much from what is feasible on-chip, physically larger elements from neighbouring 

disciplines need to be integrated (e.g. mechanics, optics); this gives the micro systems a 

hybrid character. Hybrid systems are ‘Non-Monolithic’ which means they are not 

integrated on a single chip. Instead, they are composed of multiple elements to realise 

their primary function, and as a result, assembly actions are needed for integration (Kear, 

1992; Tichem & Tanase, 2008; Heinig et al., 2014). Where monolithic sensors for 

common quantities, such as temperature or acceleration, are addressing mass markets 

with production numbers up and beyond 109 annually, hybrid systems typically address 

many niche markets with production numbers in the mid volume area, in between 104-107 

products annually (Lang, 1999; Vigna, 2005). This thesis focusses on effective design 

and manufacturing of hybrid microsystems; hybrid microsystems consist of a monolithic 

part, typically a micro machined chip, usually called ‘Die’, and a non-monolithic part of 

some other physical discipline, that are brought together with assembly actions. The Dies 

in hybrid microsystems are based on semiconductor technology and may be expected to 

follow the relatively aggressive Moore’s law. However, the hybrid parts of these systems 

that are realised with more conventional production methods such as milling, grinding, 

moulding etc., will follow traditional dynamics of these technologies. Also the assembly 

of hybrid microsystems is not exempted from the basic nature of general production 

principles (Onori 2009). It does not profit from the high level of standardisation from 

semiconductor manufacturing and it makes development considerably slower and more 

cost intensive. Due to the general level of difficulty of micro fabrication & assembly, it 

introduces substantial risks for development and manufacturing of hybrid systems (Van 
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Brussel et al., 2000; Zhang et al., 2006b; 2005; Dimov et al., 2012; Voelkel et al., 2012; 

Onori, 2009). 

2.1.3 Concurrent Design of Microsystems 

An approach to modularise microsystems has been the most important driver to 

increase flexibility and deal with change in the highly dynamic markets accordingly. 

Gutierrez (Gutierrez, 1999) introduced a modular design framework based on 

standardised ‘Micro-Bricks’ to compose microsystems from standard building blocks. 

This design framework was expanded with a modular production framework that 

provides standardised process technology for the interfaces of the Micro-Bricks to enable 

integration on RMS (Puik et al., 2002; Puik & Moergestel, 2010). Another attempt was 

the German ‘Projekt 2000’ which endeavoured to merge production of microsystems 

closely with semiconductor equipment (Grosser et al., 2000). Standardised interfaces for 

manual as well as automated manufacturing stations enabled a volume upgrade scenario. 

A second German attempt for standardisation of microsystems was MatchX (Stock & 

Schünemann, 2002) wherein standard building blocks were stacked using a standardised 

bus for interconnection. All three attempts have two common factors: 

• All methods applied modular structures for product design and manufacturing to 

enable flexibility; 

• The design and the methods for integration were addressed concurrently. 

Concurrent approach is a central theme in development of microsystems. As 

manufacturing means are addressed at or beyond their maximum capability to produce 

with small tolerances, functionality of products and production yield of equipment may 

fail to deliver adequately. Therefore, it may be necessary to modify a product design to 
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be more tolerant for manufacturing accuracies. When a product is redesigned for 

manufacturing, its performance may be reduced, e.g. a sensor system may have limited 

accuracy or reduced efficiency, but as a trade-off its production process will become more 

tolerant, have a better manufacturing yield, and therefore it will be more cost effective. 

2.1.4 Manufacturing of Microsystems; Application of RMS 

There is no clear public roadmap such as Moore’s law available for micro 

assembly (Gutierrez, 1999; Brecker, 2005; Heeren et al., 2004). The variety of processes, 

mainly for hybrid assembly, leads to a diverse need of process technology. Some 

processes introduce little manufacturing risks because they were successfully applied 

(many times) before, but others will need specific improvements or total development. 

The potential of reusing existing manufacturing technology gives RMS an advantage in 

application. The reuse of standard building blocks draws little attention of the engineers 

so their focus may be shifted to the development of new building blocks. The initial 

advantage of RMS is not their reconfigurability, but the advantage that the system may 

be flexibly configured in the first place; every RMS starts as a configurable 

manufacturing system. The advantages of reconfiguration will prove their benefits further 

in time. Though many successful applications exist (Abdi & Labib, 2003; Koren et al., 

1999; Garbie, 2014), reconfiguration is not always applied, or not applied at the location 

of the customer. The main reason for this is that the complexity of RMS may be a barrier 

for actual reconfiguration (Puik & Moergestel, 2010; Semere et al., 2013). The 

documentation of RMS in industry leaves much to be desired (Onori, 2009). This means 

that the knowledge about its configuration and the applied process technology are not, or 

not fully, secured in documents and may fade after time. Especially when the original 

designers are no longer available, reconfiguration of these systems is risky; the new 
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engineers have no solid understanding of the equipment yet, and the operator, though a 

specialist on operating the equipment, has no knowledge of reconfiguration. There are 

substantial risks of malfunction, reduced yield, and non-operating equipment for a longer 

than forecasted time if changes are carried through to these moderately documented 

systems. The more complex the system has become, the larger the knowledge-gap will 

be, and the less probable that reconfiguration will take place in the field. In problematic 

cases, the RMS may be shipped back to the location where it was originally configured, 

usually the site of an equipment supplier. This reduces the problem of complex 

reconfigurations because more specialised resources and expertise are available at that 

location (even if it is an internal department). The drawback of this scenario is that 

production ceases during reconfiguration and the duration will be extended due to 

transportation and planning issues. Generally, RMS are of more value to a company if 

their complexity is kept low (Puik & Moergestel, 2010). 

2.2 Methods for Linear Project Planning 

2.2.1 Early Work on Design Science 

Early work on design science is mainly from German schools with Hansen dating 

back to the fifties as reported in the book ‘Konstruktionssystematik’ (Hansen, 1966) and 

the widely spread book of Pahl & Beitz (Pahl & Beitz, 2013) in the late sixties. This last 

work was well maintained with rewrites up to 2013. The ‘Theorie der Maschinensysteme’ 

is a design science framework presented in 1973 by Hubka (Hubka, 1973). This work 

introduces design assumptions (like axioms) and vector representation of domains. From 

here, the established theories were developed inter alia by Suh with the Axiomatic Design 
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methodology (Suh et al., 1978), but also e.g. Andreasen with the ‘Domain theory’ 

(Andreasen et al., 2014). 

2.2.2 The Waterfall Model 

In the sixties, the notion to monitor the course of the development process gained 

in support. With focus on the integral process more than the iterations, it made project 

control a linear process. Widely applied models in industry are the ‘Waterfall-Model’ and 

the ‘V-Model’. Royce, who was the first to report the Waterfall-Model (Royce, 1970) 

criticised the model in the same article blaming the lack of (old school) process iterations 

and testing. The Waterfall-Model also forms the basis for the process-model of the 

‘PRINCE’ method that was introduced in 1989 (PRojects IN Controlled Environments). 

PRINCE’2’, was a continued development to enable broader application than PRINCE 

that was mainly intended for ICT developments. PRINCE2 was developed in 1996 and is 

still maintained to date by the British semi-governmental organisation ‘Office of 

Government Commerce’ (Office of Government Commerce, 2009). The current 

implementation addresses project management in a broader context than a process-model 

by further adding ‘Management Principles’ and ‘Management Themes’. 

2.2.3 The V-Model 

The V-Model, also based on the Waterfall-Model, was originally introduced by 

Boehm (Boehm, 1979) and simultaneously developed further in Germany and the US in 

the second half of the eighties (Rook, 1986; Friedrich et al., 2009). In the 1991 

proceedings for the National Council on Systems Engineering (NCOSE); now INCOSE 

as of 1995, the V-Model was adopted in the US for modelling of mainly software systems. 

Though introduced as a life-cycle model, it is in fact a planning tool, comparable to the 



31 
      

PRINCE2-process-model. A specific feature is that it adds solid testing functionality at 

different hierarchically decomposed levels. There are three basic parts: ‘Specification & 

Decomposition’, ‘Realisation’, and ‘Integration & Testing’. The first and last parts are 

usually divided in three sequential hierarchical levels (Figure 2.3) but this can be 

expanded as required. 

 

Figure 2.3 The V-Model in its initial appearance 

Like all basic Waterfall-Models and PRINCE2, the V-Model suffers from the 

problem of ‘missing iterations’ (Christie, 2008). This is not as much a problem to 

accountants and project managers as it is for developers and testers. The most damaging 

aspect might be the effect that the V-Model effectively discourages user involvement in 

evaluating the design before arriving at the formal testing stages. By then it is too late to 

make significant changes to the design. It must be mentioned that the need for sufficient 

iterations was emphasised when Rook introduced the V-Model, but since the model does 

not specifically visualise it, unilateral application of the model has become the standard 

for most industrial applicants. Nevertheless, the V-Model, and in somewhat lesser extent 

the Waterfall-Model, today are popular systems engineering methods in industry since 

they meet needs for management. 
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2.2.4 The V-Modell XT 

Boehm was the first to introduce a V-Model for systems design (Boehm, 1979), 

though the name V-model was first introduced by Rook (Rook, 1986). In parallel, the 

German ministry of defence developed their V-Modell (German spelling). This was 

released for civilian use in 1991 and upgraded a number of times (V-Modell 92, V-Model 

97). Since it was poorly maintained after ‘97, a new initiative was started in 2004 to bring 

it back to state-of-the-art level as the V-Modell XT (Extreme Tailoring), making the 

earlier versions obsolete (Broy & Rausch, 2005). A number of improvements were 

implemented to enhance adaptability, scalability, changeability, growth potential, and to 

meet novel standards, but the most characteristic changes were broader applicability than 

just ICT projects and the extension of the V-Model to the entire system life cycle of a 

product. The V-Modell XT is till to date maintained by the German ‘Industrieanlagen-

Betriebsgesellschaft mbH’. 

The V-Modell XT has generally four hierarchical levels that may be adapted for 

specific situations. Analogue to the V-Model as introduced by Rook, the highest level is 

the level of project acquisition and the lowest level is the level of parts. The remarkable 

difference is the strict separation between the left- and the right-hand leg of the model. 

This is shown in Figure 2.4. The left-hand leg addresses ‘Specification and 

Decomposition’ and the right-hand leg ‘Integration and Test’. This is slightly different 

from Rook’s version of the V-Model where the lowest hierarchical level is integrated into 

a single stage for ‘Code and Unit Test’. 
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Figure 2.4 Structure of the V-Modell XT 

2.2.5 Drawbacks and Developments of the V-Model and its Derivatives 

One feature that is regularly questioned in the V-Model and V-Modell XT is the 

fact that these models discourage exploration and testing in the early stages of design 

(Christie, 2008; Liversidge, 2005). Early stages in this context means the left-hand side 

of the V. This problem partially arises from the lack of understanding of the model. Rook 

advises to regularly take the following two actions: (i) update the specifications, and (ii) 

revise decomposition (Rook, 1986). An issue is that the graphical presentation of the V-

Model does not indicate anything of these iterations, and testing indeed is delayed till the 

right-hand stages. Newer variants of the V-Model have addressed these issues like the W-

Model (Herzlich, 1993) and the butterfly model (Morton, 2001). These models implement 

a kind of recursive operative. Unfortunately, the implementation is incomplete and the 

models did not get much traction (iterations are limited to a single level of decomposition, 

concurrency is not supported). Though the V-model was presented over 30 years ago, 

discussion is still active and many variations of the model are still being developed 

(Anitha et al., 2013; McHugh et al., 2013; Höhn et al., 2008; Mathur & Malik, 2010). 
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significantly older than the linear or sequential project control methods that were 

developed in the early seventies and eighties. In the nineties, an overshoot of the linear 

approach seems to be compensated with a renewed focus of iterations in design to address 

weaknesses of the linear methods. This will be addressed in Section 2.3. 

2.2.6 Axiomatic Design 

Axiomatic Design (AD) declares ‘Axioms’ that cannot be proven nor derived 

from physical phenomena. A number of seven conceptual axioms were defined in 1978 

when the first paper about AD was presented (Suh et al., 1978). Two of those seven 

axioms stood the test of time and form the foundation of AD today, now known as the 

‘Independence Axiom’ and the ‘Information Axiom’. The Independence Axiom advises 

to ‘Maintain the independence of the functional requirements’, the Information Axiom 

recommends to ‘Minimise the information content of the design’. A product design will 

be a ‘Good Design’ if both axioms are satisfied. 

 

Figure 2.5 Axiomatic Domains and their hierarchical organisation 

AD demands clear formulation of design objectives through the establishment of 

‘Domains’ called: (i) ‘Customer Attributes’, (ii) ‘Functional Requirements’, (iii) ‘Design 

Parameters’, and (iv) ‘Process Variables’ (Figure 2.5). These domains are hierarchically 

organised and mathematically related by a process called ‘Mapping’. Mapping applies 
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‘Design Matrices’ that follow decomposition. AD is explained more in detail in Appendix 

B. 

2.2.7 Methods to Support Decomposition and Synthesis 

An iterative development cycle will require some form of analysis and synthesis 

that supports decomposition of the system. A number of methods have been applied in 

literature with some regularity. 

‘Quality Function Deployment’ (QFD) is a value-engineering tool that is usually 

applied for mapping customers’ wishes in relation to a product design. The method 

transforms user demands into design quality, in order to deploy the functions forming 

quality. Secondly, it deploys methods for achieving the design quality into subsystems 

and component parts to ultimately specify elements of the manufacturing process (Akao, 

2004). 

‘Structured Analysis Design Technique’ (SADT) was originally developed for 

software development but appeared to have a much broader application area (Ross, 1977). 

It was adopted by the U.S. Airforce as IDEF0, and for manufacturing purposes, SADT 

has been refined to focus on errors that tend to inherit through subsequent process steps. 

This method is called ‘Qualitative Modelling and Analysis of Processes’ (QMAP) 

(Bullema et al., 1999; Brands & Weert, 2000). Structured analysis methods, either SADT 

or QMAP, further referred to as SADT, can be applied when no hardware has been 

realised yet. This makes the method particularly suitable for the early stage of 

development. 

TRIZ, or the ‘theory of inventive problem solving’ (Teoriya Resheniya 

Izobretatelskikh Zadatch) is a Russian analysis and forecasting tool derived from the 
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study on patterns of invention in the global patent literature (Hua et al., 2006). The theory 

was developed on a foundation covering thousands of inventions across many 

technological fields. TRIZ defines generalisable patterns in the nature of inventive 

solutions and the distinguishing characteristics of the problems that these inventions have 

overcome. These solutions have been combined in an algorithmic approach to the 

invention of new systems and the refinement of existing ones. 

Decision Matrix Analysis, by application of the ‘Morphological Matrix’ or the 

‘Pugh Matrix’, are useful techniques for making informed decisions (Kroll, 2012; Hubka, 

1973). A condition is that there are multiple options from which can be chosen, and many 

different factors to take into account. Decision Matrix Analysis works by drawing up 

(usually) a two-dimensional table with the factors that need considering as columns and 

the options to satisfy them as rows. Then, the options are scored for each factor taken into 

account. Eventually, the scores are weighted by the relative importance, and finally the 

scores are added up to give an overall score for each option. The method may also be 

reversed to weigh risks in the design. These methods are known as risk-analysis-

techniques such as the widely-applied Failure Modes and Effect Analysis (FMEA). 

Decision Matrix Analyses are old methodologies and nowadays universally applied by 

most designers and in many ways. 

QFD and Morphological Analysis are mainly suitable for the decomposition 

during product development, while SADT is more suitable for decomposition of 

manufacturing systems since it addresses a sequence of occurrences. TRIZ could be 

applied for the syntheses of solutions. Since this research focusses on the close relation 

of product development and its RMS (Design for Manufacturing), a decomposition-
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method is selected that supports assembly and manufacturing. The most suitable tool is 

SADT due to its sequential nature and the capability to analyse the hierarchy of the system. 

2.2.8 Combinations of Systems Engineering Models 

Combinations of different systems engineering models have been made in 

literature as well. As such, the V-Model and AD have been combined before by Do & 

Suh (Do & Suh, 1999; 2000) where it was applied to object oriented programming. 

Comparable is the implementation of Fiege and Stelzer (Fiege & Stelzer, 2007) for 

service oriented ICT architectures. In both cases the development of software hierarchy 

is executed in the left-hand leg of the V-Model and the realisation of the object-oriented 

model in the right-hand leg. Intermediate stages are: definition of FRs, mapping to DPs, 

and Decomposition. In the right-hand leg this is respectively: the identification of classes, 

establishment of interfaces, and coding with the system architecture. A completed design 

matrix separates the left- and the right-hand leg and as such indicates the tip of the V. 

SADT and QFD were also applied before in relation to the V-Model and AD for 

modelling of manufacturing systems. Triki applies SADT and AD for the optimisation of 

an equipment occupation ratio (Triki et al., 2011). Kim combines AD and SADT for 

development of control software of manufacturing systems (Kim & Suh, 1991), and 

Buseif applies SADT for the design of FMS (Buseif & Elfeituri, 2006). Gonçalves-

Coelho et al. apply QFD and AD to analyse the voice of the customer in concurrent design 

(Gonçalves-Coelho et al., 2005). Puik et al. combined the V-Model with AD to define a 

method for indexing the development of Reconfigurable Manufacturing Systems (Puik et 

al., 2013a). Though applied for RMS, the method is generic and may also be applied to 

index the product design process. The application of AD is straightforward; the 
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Independence Axiom is applied for the left-hand leg of the V-Model and the Information 

Axiom is applied the right-hand leg. The tip of the V is reached when the Independence 

Axiom is Satisfied. For product designs, QFD can be applied for decomposition as QFD 

transforms user demands into functional requirements to deploy the functions forming 

quality (Akao, 2004). For decomposition of process technology QFD is replaced by 

SADT. 

2.3 Iterative Models for Project Control 

2.3.1 Early Methods for Iterative Development 

Shewhart described in 1939 the ‘PDCA cycle of continuous improvement’ based 

on the principles of empiricism as induced by Bacon in his 17th century work ‘Novum 

Organum’ (Shewhart, 1939; Bacon, 1620). The initial Plan-Do-Check-Act was advertised 

more broadly by Deming who replaced the stage ‘Check’ by ‘Study’ to emphasise that 

the analysis in this stage was to prevail over inspection (Deming, 2000). The method was 

optimised in the sixties by respectively Asimow and Mesarovic as the ‘Iconic model of 

the Design Process’ (Asimow, 1962; Mesarovic, 1964). The Iconic model introduces the 

cycle of Analysis, Synthesis, Evaluation, and Communication. This foundation forms the 

basis for modern iterative models for iterative project control up to date. 

2.3.2 Agile Methods for Project Management: Renewed Focus on Iterative 

Development 

After the development of the Waterfall-Model and its derivatives, methods for 

iterative development were regaining in popularity towards the end of the Millennium. 

This was driven by the need for a combination of structure and dynamics in the ICT world. 

Two schools of thought (Mooz & Forsberg, 2001) may be recognised: on one hand the 
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more conventional form as characterised by the application of the classic waterfall 

scheme (PRINCE2 and V-Model), and on the other hand, the more agile school named 

‘Agile Development’ that tries to overcome some of the drawbacks of the process 

oriented waterfall-based methods. Agile software development methodologies focus 

upon incremental design and hence a cyclic approach. The aim with these methods is to: 

(i) make the development process more responsive in changing environments, (ii) pursue 

functioning software over extensive documentation, (iii) centre individuals and their 

interactions rather than tools and processes, and (iv) value customer collaboration over 

customer contract negotiation. 

Of great influence are the ‘Spiral Model of Software Development’ by Boehm 

(Boehm, 1988), the ‘Engineering Design Process’ by Ertas & Jones (Ertas & Jones, 1996), 

HP’s ‘Product Development Process’, the ‘Scrum development method’ (Schwaber, 

1997), IBM’s ‘Rational Unified Process iteration cycle’ (Kroll & Kruchten, 2003), and 

Kumar’s ‘Innovation Planning’ (Kumar, 2003). Except for the last method, which is for 

optimisation of general services and design, all these methods were initially developed to 

streamline software developments but later on found their ways for broader application. 

Scrum may be considered the most valued form within the family of agile 

development methodologies. Scrum uses incremental development procedures with an 

objective to get working software into the hands of the stakeholders as quickly as possible. 

This way of working puts business value functions into stakeholder possession early on 

in the software development life cycle. The more traditional process oriented 

development methods cannot provide this agile capability; stakeholders typically would 

not have access to any software produced until far later in the process. This agile 

performance is provided in a straightforward procedure that enhances focus and 
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communication in an iterative process. Scrum starts with the business case just as one 

would do with process-oriented development. From this point, it diverges from linear 

development methods. The customer requirements are inventoried and refined in close 

cooperation with stakeholders and the project group (comparable to Mesarovic’s Iconic 

Analysis). The remaining requirements or ‘User Stories’ are kept in a list known as the 

‘Backlog’. Cycles or ‘Sprints’ are initiated from the backlog to address the customer 

requirements with the objective to produce operating solutions (comparable to Iconic 

Synthesis). The solutions should be fully functional, tested, and documented with the 

ability to be shipped as a finished product, though with limited functionality (Iconic 

Evaluation). Sprints may last from one week to a month and their progression is kept in 

a ‘Burn Down Chart’ to feed its status back to the team (Iconic Communication). A 

structure of usually brief meetings takes care of extra information exchange within the 

project team and leads to joint decisions that are supported by the customer as he regularly 

participates meetings. 

Scrum and related agile methods also suffer from drawbacks compared to the 

traditional methods. It may fail at the following aspects: (i) a drawback according to 

Highsmith & Cockburn (Highsmith & Cockburn, 2001) is the fact that an external client 

has to be actively involved in the project. The client has to be able and available to test 

the typical monthly releases and to suggest new or modified functionalities, (ii) by 

applying Scrum, the vision of the client highly influences development. Highsmith & 

Cockburn show that if the client does not have a clear sense of the product’s direction, 

the members of the development team will tend to behave in the same way, and the final 

product can be significantly different to what is expected. This makes the main strength 

of Scrum also one of the main weaknesses: client involvement in the development process, 
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and (iii) another potential weakness is the relatively low visibility over the project outside 

sprints. This makes it difficult to estimate how long a project will take or how much it 

will cost. In projects with external clients, where bidding is used to determine the 

contractor for projects, this can be a major drawback. 

2.3.3 Social Approach of Design 

Over the years, designers have moved closer to the users that apply their products 

(Sanders & Stappers, 2008). Parallel to the methods that are strongly relying on a 

technological basis, like the V-Model and AD, methods were developed to focus stronger 

on the social and interactive side of design. An approach gaining in interest is that of 

‘Participatory Design’ or ‘Co-Design’ that finds its way in the sixties (Sanders & Stappers, 

2008). The goal is to join forces with all stakeholders of a future design to define a product 

that will receive broader acceptation. It changes the role of the designer from ‘translator’ 

of the user’s wishes to ‘facilitator’ to stimulate creativity. This makes participative design 

suitable for the early design of new products. The early and explorative phase in 

participative design is also called the ‘Fuzzy Front End’ (Figure 2.6) due to its chaotic 

and unpredictable nature. 

 

Figure 2.6 The fuzzy front-end of product design 
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These methods acknowledge the elusiveness of the early development stages and study 

the complex processes, which contrasts with the more technological oriented approach in 

industry that aims to understand the complexity of the early development stages. Of the 

tension thus created both streams can benefit. 

Another more socially engaged method to approach design is ‘Design Thinking’ 

originally based on Simon’s reference work ‘The Sciences of the Artificial’ from 1969 

(Simon, 1996) (reprinted). Though initially applied for architecture and later as a process 

for problem solving in design, Design Thinking consists of a linear sequence of gated 

actions consisting of: (i) definition, (ii) creation of many options, (iii) refine promising 

results (eventually repeat step ii and iii), and (iv) select a winner and execute. Design 

Thinking is especially suitable in the early stage of the fuzzy front-end. It implements 

iterations and is initially highly diverging. 

2.4 Phases in the Design Process 

2.4.1 Models for Explorative & Conceptual Design Combined with Axiomatic 

Design 

Though there are not many generally applicable models for the explorative and 

conceptual design phases, a lot has been reported in literature. Though dated, a good 

overview of work till 2002 is given by Wang & Hu (Wang et al., 2002). More recent is 

the work of Ayag (Ayag, 2007) and the work of Li et al. (Li et al., 2010). After closer 

investigation, quite some conceptual design methods appear to have been presented over 

the last thirty years. These models can be classified into three categories based on focal 

points and tools used: (i) design models according to the design criterion of products, (ii) 

design models based on the design strategies of products, and (iii) design models adopting 



43 
      

artificial intelligence. As this investigation focusses on the first category, where the 

designer has the traditional role of being in charge of the design process, category (ii) and 

(iii) are not further investigated. 

More recent models of the first category include the work of Li et al. (Li et al., 

2010) where a method is presented based on AD with alternative domains. The conceptual 

design process is defined as an integrated system with five stages and four mappings and 

mathematical descriptions are applied as input for an expert system. A similar approach 

is applied by Tay & Gu (Tay & Gu, 2002). AD is applied to derive the hierarchical 

topology of the design from the functional and physical domains. The thus obtained 

primitives are inputted into a relational data model. The work of Chen et al. (Chen et al., 

2012) expands this method with a production framework. The method stays in the 

conceptual phase. Deng et al. (Deng et al., 2000) also have a similar approach as Tay & 

Gu. However, this work does not use the AD methodology but instead of this, a self-

defined framework called ‘Functional Design Model’ is applied. The architecture 

framework for manufacturing system design of Benkamoun et al. (Benkamoun et al., 

2014) also uses the axiomatic domains and the hierarchical structure. The framework 

applies IDEF0 to define relations between the domains. Knowledge about process and 

configuration is stored in the framework and can be reapplied when the system needs to 

be reconfigured. Zhang and Chu have developed an interesting approach for the design 

of product and maintenance by combining AD, QFD and FMEA (Zhang & Chu, 2010). 

Knowledge and applied-knowledge are combined in a single model that gives a complete 

overview of their relations to indicate if parts are missing. Unfortunately, the model is 

only applied during the conceptual design phase and would need to be expanded for 

product development and production. Ulrich & Eppinger have broken down the process 
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of concept development in seven stages (Ulrich & Eppinger, 2004). These stages are each 

again broken down in 4-7 steps, which provides an extensive amount of fairly simple 

steps to follow. However, this apparent simplification does not guarantee that this solves 

the complexity of the conceptual design stage. As reference, to check that the designer 

does not forget important issues, it can be useful. Komoto & Tomiyama (Komoto & 

Tomiyama, 2012) describe a product modelling framework called System Architecting 

CAD. SA-CAD tracks system decomposition, it models parameter relations, and 

performs consistency management of the parameters. An interesting aspect is that SA-

CAD could eventually store design knowledge used in system architecting independently 

from specific engineering disciplines such as physical contacts to constrain the topology 

of a set of entities. The work of Benkamoun, Ulrich & Eppinger, and Komoto is 

particularly valuable for this research since they all add the capability of actively securing 

the knowledge content in the model itself or in the periphery of the model. Zhang’s model 

does the same but additionally links this knowledge to the applied knowledge; the current 

appearance of the design itself, though it should be converted from the realm of 

maintenance to that of product design. 

2.4.2 Phases of the Design Process 

Many models divide the total product design process in two basic stages. The 

initial stage is the conceptual phase that ends with a proof of concept and the second stage 

is a product development stage that deals with realisation and test. The V-Model 

visualises this with its two legs; the left-hand leg handles conceptual design and the right-

hand leg handles integration and testing. Other conceptual design methods that follow the 

standard V-Model, e.g. Komoto & Tomiyama (Komoto & Tomiyama, 2012) do the same. 

In AD, the Independence Axiom focusses on conceptual design and the Information 
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Axiom focusses on robustness of the design. The standard work of Pahl & Beitz (Pahl & 

Beitz, 2013) divides the design process in four stages: ‘Definition’, ‘Conceptual’, 

‘Embodiment’, and ‘Carryout’. Note that the conceptual phase ends with a number of 

alternative options and the embodiment stage ends with proof of principle of the design, 

so basically the conceptual phase is split into two stages. 

Banathy describes in his theory ‘Dynamics of Divergence and Convergence’, 

shown in Figure 2.7, an iterative approach of diverging and converging cycles, 

respectively focusing on the ‘Image of the future system’ and the ‘Model of the future 

system’ (Banathy, 1996). 

 

Figure 2.7 The ‘Theory Dynamics of Divergence & Convergence’�
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design. As explained in Subsection 2.4.1, the approach of Ulrich & Eppinger is quite 

detailed. However, a more profound look learns that this approach also sets target 

specifications, analogue to Banathy’s image of the future system, and subsequently it 

reduces the number of alternatives to a final concept. This makes the approach on a par 

with Pahl & Beitz and Banathy. 
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PART 1: MODELLING . 
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CHAPTER 3  

CONCURRENT MICROSYSTEM DEVELOPMENT: FRAMEWORK 

AND RATIONALE* 

3.1 Introduction 

The current requirement of reducing lead-times, necessary for effective 

development of micro products and their manufacturing systems, is a challenge which 

requires a novel and innovative approach. The capabilities to take into consideration are 

engineering changes and testing (‘Verification and Validation’, V&V). Therefore, a 

central theme of the proposed methodology is to introduce and implement iterative 

feedback loops within a new product development framework. The proposed Micro 

System Development Framework is shown in Figure 3.1. 

                                                

 

 

 

 

* Parts of this chapter were published in: 

Puik, E. C. N., Telgen, D., Ceglarek, D., & Moergestel, L., van. (2013). Structured Analysis of Reconfigurable Manufacturing 

Systems. In A. Azevedo (Ed.). Presented at the 23th International Conference Flexible Automation and Intelligent Manufacturing 

FAIM2013, Porto, (Puik et al., 2013c). 

Puik, E. C. N., Telgen, D., Ceglarek, D., & Moergestel, L., van. (2013). Qualitative product/process modelling for reconfigurable 

manufacturing systems. 2013 IEEE International Symposium on Assembly and Manufacturing (ISAM) (pp. 214–218). IEEE., (Puik 

et al., 2013b). 

Puik, E. C. N., Telgen, D., & Moergestel, L., van. (2013). Structured Analysis of Reconfigurable Manufacturing Systems. 23rd 

International Conference on Flexible Automation and Intelligent Manufacturing (FAIM), (Puik et al., 2013c). 

Puik, E. C. N., Gielen, P., Telgen, D., Moergestel, L., van, & Ceglarek, D. (2014). A Generic Systems Engineering Method for 

Concurrent Development of Products and Manufacturing Equipment (Vol. 435, pp. 139–146). Berlin, Heidelberg: Springer Berlin 

Heidelberg, (Puik et al., 2014a). 
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The Proposed Micro System Development Framework (further referred to as µSD 

framework) adopts systems engineering models, initially created for large software 

development projects, and enhances them by creating a framework with capabilities to: 

(i) embed flexible and interchangeable functional ‘Objects’ (represented by blocks in 

Figure 3.1), and (ii) integrate them by using a novel procedure for assessment of quality 

using feedback control loops. 

 

Figure 3.1 The proposed Micro System Development Framework 

Chapter 3 presents the overall µSD framework with: (i) focus on implementation 

of the feedback control procedure, (ii) a modular structure in which the Objects functional 

system decomposition and functional gating that may be adapted to required capabilities 

of the method, and (iii) examples how state-of-the-art system engineering methods can 

be applied to provide solutions for the key Objects functional system decomposition and 

functional gating. Topic (i) will be explained by comparing the µSD framework with the 

traditional product development procedure when the V-Model is applied. Topic (ii) and 

(iii) will be explained by initial application of state-of-the art systems engineering 

approaches. To illustrate the modular capability of the Object functional system 

decomposition, ‘Structured Analysis Design Technique’ (SADT), and ‘Failure Modes 

and Effect Analysis’ (FMEA) are applied. To illustrate the modular capability of the 
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Object functional gating, ‘Qualitative Analysis’ (QA) is applied in two ways; initially 

with a unidirectional coding scheme followed by an enhanced approach using a bi-

directional coding scheme called ‘Maturity Grid-based Qualitative Analysis’. An 

overview of the approaches used and developed as part of the SD framework is shown in 

Table 3.1. 

Table 3.1 The concurrent microsystem development µSD  

framework – presentation outline 

Object 

Chapters 

Functional system decomposition Functional gating 

Chapter 3 Structured Analysis Design 

Technique (SADT) in combination 

with Failure Modes and Effect 

Analysis (FMEA) 

Three different methods: 

(i) Remaining uncertainties determined with 

FMEA 

(ii-a) Qualitative Analysis (QA) with 

unidirectional coding 

(ii-b) Qualitative Analysis using a Maturity Grid 

(MG) with a bi-directional coding scheme 

Chapter 4 Concurrent system decomposition 

based on Axiomatic Design 

Concurrent gating based on the completion of 

decomposed hierarchical levels (or tested 

levels) 

Chapter 5 Same as in Chapter 4 Intelligent gating based on Information in 

Design 
 

The presented µSD framework, with its capabilities for iterative and modularly 

implemented feedback loops, provides two necessary enablers (functional system 

decomposition and functional gating) that serve as a model for further enhancement into 

a concurrent microsystem development approach. Chapters 3, 4 and 5 present solutions 

for these enablers. 

This chapter is organised as follows: Section 3.2 analyses the current situation and 

defines the key limitations. Section 3.3 explains the methodology of the proposed µSD 

framework and shows the ways to embed the framework into project execution by 

application of the underlined µSD rationale (3.3.3 and 3.3.4). Section 3.4 illustrates the 



52 
 

methodology using three industrial case studies in which the µSD rationale is applied and 

tested. Section 3.5, discusses the findings and lessons learned. Finally, Section 3.6 draws 

conclusions. 

3.2 Analysis and Approach of Microsystem Development 

This section analyses the current industrial practice: (i) the problem definition is 

elaborated in Subsection 3.2.1, (ii) current industrial practices are inventoried in 

Subsection 3.2.2, and (iii) the key limitations are discussed in Subsection 3.2.3. 

3.2.1 Problem Definition 

The process of microsystem development currently encounters tremendous 

challenges due to rapid development of emerging new pieces of technology, which need 

to be integrated into a final microsystem product within shorter and shorter lead times. 

These challenges draw substantial resources during the process of microsystem 

development. It creates high pressure to keep up with the emerging new pieces of 

technology, leaving limited resources for the integration and V&V phases of the project. 

Therefore, microsystem development projects are organised to focus on having a mix of 

novel and reused pieces of technology, to carefully dose the amount of novel technology 

to match the development capability and ambition of the project. This scenario leads to 

integration of various product and process technologies being at various maturity levels 

(Technology Readiness Levels; TRL). This varying maturity of individual pieces of 

technology brings varying uncertainties, which need to be addressed during project 

execution. On one hand, development of novel technology needs to be accelerated in 

order to catch up their development lag compared to reused and mature technology. On 

the other hand, application of mature technology needs to be monitored for correct reuse. 
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This is one of the underlined causes that many microsystem development projects are 

research-intensive with strong need for having: (i) flexible and concurrent system 

decomposition to support plug-and-play of various technology objects, (ii) flexible and 

reliable functional gating of various system configurations at a broad spectrum of TRLs, 

(iii) short response times by iterative feedback (improvement) cycles between these 

objects, and (iv) a simple but clear information flow in the design process. The µSD 

framework needs to demonstrate capability and efficiency under these requirements. 

3.2.2 Current Industrial Practice 

Currently, a number of system engineering methods and process design models 

are used to improve the operational structure of projects, i.e.: to prevent relevant issues 

of being overlooked, and to assure that these issues are satisfactorily addressed. Examples 

of systems engineering methods that are generally used in industry include the Waterfall-

Model and the V-Model (Höhn et al., 2008; Deuter, 2013). 

Figure 3.2 shows the conceptual stages of the Waterfall-Model, these stages are 

basically the same as the stages in the left-hand leg of the V-Model. The bottom of Figure 

3.2 shows the schematic process flow through the conceptual phase; from proof of 

principle it implements an iterative process till proof of concept is reached. Not shown in 

the V-Model nor Waterfall-Model is that product design consists from a highly dynamic 

interaction of functional system decomposition, basically analysis in the functional 

domain, and the process of synthesis, shown in the lower half of Figure 3.2. 
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Figure 3.2 Top: functional system decomposition and gating in the 

Waterfall-Model and V-Model. Bottom: iterative representation 

of the development process for these models 

Where decomposition is a diverging process that breaks the project down in small 

overseeable pieces, synthesis is a converging process that merges functional bits to a 

coherent whole (Roozenburg & Eekels, 1995). When functional performance goals have 

been coherently defined, the gating process enables the next hierarchical level. In the 

process, the whole product design may as such be decomposed and coherently specified 

till proof of concept is reached. The cycle, that is much alike Mesarovic’s iconic model 

of the design process (as was explained in Chapter 2), has an iterative nature due to: (i) 

the highly dynamic interaction of decomposition and synthesis, and (ii) decomposition 

and gating functions are intermittently addressed. However, the iterations are either very 

dynamic, as is the case for option (i), or the iterations are very slow as is the case for 

option (ii) since the conceptual stage typically applies (only) a number of 4 gates. 

Waterfall- and V-Models provide the capability to include three important 

elements of the microsystem development process: (i) planning, (ii) control, and (iii) 
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structure. Planning and control are required capabilities for general project management 

(Burke, 2013). Structure is especially important in case of high-tech development projects 

that require additional time to develop core competences. Therefore, the focus during 

microsystems development is divided consciously between novel and reused parts of the 

design (Scott, 2001).  

3.2.3 Key Limitations 

The main shortcoming of the Waterfall-Model and the V-Model is their limitation 

in emphasising on functional verification during the development process; instead, these 

methods provide option for evaluation at the final and formal testing stages (further down 

in the Waterfall-Model, or right-hand leg of the V-Model). By then it is too late to make 

any significant changes to the design without substantial rework (Royce, 1970; Christie, 

2008). The problem strongly affects developers and testers during the microsystem 

development process. It has also been observed that initially this problem might not be 

known or noticed by project managers and/or finance officers; as it simplifies the 

execution of the microsystem development project to a linear process, omitting frequent 

feedback loops. This shortcoming of the Waterfall-Model and the V-Model in lacking to 

provide iterative and intermediate feedback during the development process, and instead 

postponing it to the final and formal testing stages, leads to the following drawbacks: 

• Lack of capabilities for intermediate assessment and testing of microsystem 

performance during the recursive process of functional decomposition and during 

the optimisation of the decomposed systems. Postponed testing leads to a time-

lag between the occurrence of design errors and their detection. This frequently 

leads to subsystems that are not well-defined and as such the errors escalate as the 
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design evolves, incurring unnecessary cost exponentially. The formal testing 

stages may be expected to reveal the error in a later stage, but even then, a 

relatively large part of the design needs to be redone; 

• Results of separate design cycles remain in isolation, as they do not provide 

options to link them to the overall microsystem performance. Thus, intermediate 

design results cannot be explicitly used in making consecutive development 

decisions. 

Another limitation is the fact that the Waterfall-Model and the V-Model, though they 

advocate decomposition and specification in the early stages, only provide rough 

guidelines on how decomposition and specification should be executed in the early stages. 

Without exhaustive decomposition, testing cannot be exhaustive either, as the 

decomposition tree of the design will act as a basis for testing during V&V. As a result: 

• Poor specification leads to an incomplete system decomposition tree and, as a 

result, to poor functional specifications that lead to incomplete testing schemes. 

Incomplete testing can lead to errors remaining undiscovered during the testing 

stages. Problems are expected to reveal themselves at a later moment in time when 

the product may be released; 

• As the Waterfall-Model and the V-Model were initially intended for software 

systems, they are not optimised for concurrent development of (physical) products 

and related manufacturing systems. Their capabilities are not scalable for the 

concurrent design of microsystems. This missing capability is developed and 

presented in Chapter 4. 
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3.3 Methodology for Implementation of the µSD Framework 

This section describes the proposed µSD framework with iterative feedback loop. 

The section is organised as follows: (i) description of the functional elements and the 

information flow through the framework in Subsection 3.3.1, (ii) how the µSD framework 

addresses the key limitations in Subsection 3.3.2, and (iii) how state-of-the-art methods 

will be embedded for functional system decomposition and functional gating in 

Subsections 3.3.3 and 3.3.4 (as was explained in Section 3.1, respectively applying 

FMEA and SADT for functional system decomposition and mono and bi-directional QA 

for functional gating). 

3.3.1 Explanation of the Objects in the µSD Framework 

The µSD framework was yet only briefly proposed in the introduction of this 

Chapter, though it was explained that the Objects functional system decomposition and 

functional gating are central themes of this thesis. 

 

Figure 3.3 Information flow in the µSD framework 

The µSD framework starts with a proof of principle, shown in Figure 3.3, which will 

develop into the targeted microsystem. Proof of principle forms the basis for the design 
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process that is composed from two Objects: functional system decomposition and 

‘Synthesis’. These objects are defined as follows: 

• Functional system decomposition is an activity of analysis that breaks a complex 

problem into smaller parts that can be overseen by the designer. As it concerns 

‘Functional’ decomposition, this analysis takes place in the functional domain, i.e., 

the performance of the design is considered for its functional behaviour (what 

should the system do) (Suh, 1990). As such, complete and matching functional 

requirements are needed to complete successive levels of decomposition; 

functional system decomposition cannot be performed without functional 

specification. Functional system decomposition will be illustrated with state-of-

the-art approaches in Subsection 3.3.3 and a new concurrent approach is 

demonstrated in Chapter 4; 

• Synthesis has the opposite characteristic of decomposition; instead of breaking 

down the complexity of the design problem, it integrates parts to form solutions 

for the design problems. Roozenburg and Eekels describe synthesis as ‘thinking 

up a provisional design’ (Roozenburg & Eekels, 1995). This implies that the 

integration does not take place in the functional domain (what does the system do) 

but instead in the physical domain (what does the system look like). Synthesis, as 

applied in this model, therefore causes a domain change, i.e., it realises functional 

goals and proposes a solution for realisation. Synthesis is not discussed in details 

as it is not the main focus and contribution of this thesis; however, the synthesis 

is extensively used in the presented industrial case studies. 

The product design process consists of rapid interactions of decomposition and synthesis 

causing diverging and converging activities, simultaneously weighing the various design 
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options for successful design. Successful design can be described as reaching a set of 

solutions which satisfy the pre-determined functional performance goals from the 

decomposed function-tree (Suh, 2001). As the design progresses, small uncertainties in 

the design will accumulate, as many successive design decisions, that are not absolutely 

certain, increase the probability that something will not exactly work out as expected. It 

is a role of the designer to determine the acceptable level of uncertainty in the design, and 

at that point the developments need to be stopped to mitigate these design performance 

uncertainties. At this point, the designer will want to test one or more intermediate 

solutions to eliminate or reduce the cumulative uncertainties as related to the functional 

performance goals (Figure 3.3). The proposed (intermediate) design solution is realised 

in the Object called ‘Realisation’ and then tested as part of the Object ‘Test’: 

• Realisation is the function of transforming a proposed intermediate or final design 

solution to a physical system, often called a prototype, that can be tested; 

• Test is a set of physical or computer experiments to determine the true functional 

performance of an intermediate or final product solution as predetermined by the 

functional performance goals (Figure 3.3). As such, test executes a reverse 

domain change as compared to design synthesis. It expresses physical action in 

terms of functional behaviour without imposing a value judgement. An overview 

on methods to perform testing was described by Maropoulos and Ceglarek 

(Maropoulos & Ceglarek, 2010). 

The process of evaluation of test results is conducted as part of the Object functional 

gating: 

• Functional gating provides a necessary link by closing the feedback loops 

between the Objects realisation & test and the Objects decomposition & synthesis, 
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which are executed iteratively in the development process. Feedback provided by 

functional gating is based on: (i) evaluation of test results or true functional 

performance by comparing them to the predetermined functional performance 

goals (Figure 3.3), followed by (ii) a supporting decision-making process to 

determine necessary steps for the next development cycle. This is done by 

assessing functional behaviour of the system based on two criteria: (ii-a) 

satisfaction of specified limits for targeted functional requirements at the current 

level of decomposition, and (ii-b) satisfaction of the decomposition level of the 

design (the increasing granularity level of hierarchical decomposition, 

successively decomposing final product, major and minor subassemblies, up to 

the individual parts). If criterion (ii-a) is satisfied, a gate is closed and the design 

advances to the next more granular level of decomposition (and start next 

development cycle). If criterion (ii-b) is satisfied, all levels of decomposition are 

completed, all functional performance goals are met, iterations stop, and the 

development process is completed (Design Freeze as shown in Figure 3.3). In all 

other situations, the development cycles continue with successive iterations. 

The comparison of true and intended functional performance that takes place at functional 

gating is essential in providing correct feedback (Figure 3.3). The expected functional 

performance goals are an output of functional system decomposition, represented as a 

functional model which will explain what the system is expected to do. The true 

functional performance that is an output of tested prototypes, provides understanding 

what the system actually does. 
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3.3.2 How the µSD Framework Addresses the Key Limitations  

As discussed in Section 3.2.3, the main shortcoming of the state-of-the-art 

approaches such as Waterfall-Model and V-Model is that they do not provide iterative 

and intermediate feedback about the status of the development process before the final 

and formal testing stage. This shortcoming is addressed in the proposed µSD framework 

as the framework allows the iterative approach which starts from the beginning of the 

project and it compares at every cycle the functional performance goals of the 

microsystem design with its true functional performance. This comparison provides early 

and iterative feedback on the following issues: 

• Where outcomes differ, actual understanding of the product design may be 

insufficient and can be increased by additional investigations. As such, 

understanding of the product design evolves; 

• Feedback is available on short notice and results of design cycles can be directly 

linked to overall microsystem performance. Development builds further on 

intermediate design results and the thus obtained knowledge can be applied for 

making consecutive development decisions; 

• When applying the µSD framework, the designer is challenged to apply functional 

system decomposition and derive the products functional requirements at various 

hierarchical levels. Comparison of true functional performance and functional 

performance goals, as is done by the Object functional gating, gives feedback to 

the designer to consciously elaborate on the way the microsystems are 

decomposed and the way the functional requirements are organised. As a result, 

the quality of the functional requirements, and their decomposition can be 

improved; 
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• The designer has the freedom to choose various methods to implement 

functionality for functional system decomposition and functional gating as long as 

these methods foresee in the basic functionalities for these two objects as 

described earlier. This makes the µSD framework generally modular and flexible 

for various approaches and implementations. 

3.3.3 µSD Rationale for Implementation of Functional System Decomposition 

Based on SADT and FMEA 

This subsection presents application and modular capability of functional system 

decomposition in the µSD framework by using state-of-the-art approaches of Structured 

Analysis Design Technique (SADT) and Failure Modes and Effect Analysis (FMEA). 

Similarly, Subsection 3.3.4 will present application and modular capability of functional 

gating in the µSD framework by using: (i) proposed in this thesis, Qualitative Analysis 

(QA) based on a unidirectional coding scheme (Saldaña, 2012), and (ii) proposed in this 

thesis, Maturity Grid (MG) based on a bidirectional coding scheme. Successively, the 

aforementioned µSD framework rationales will be illustrated by conducting 3 industrial 

case studies in Section 3.4. 

Figure 3.4. illustrates modular capability of the Object functional system 

decomposition by using two state-of-the-art approaches within the µSD Framework: (i) 

SADT as part of the ‘System Decomposition Kernel’; and, (ii) FMEA as part of the 

‘Problem Identification and Prioritisation’. 
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Figure 3.4 Modular application of the µSD framework. Illustration of two state-of-

the-art methods SADT & FMEA as part of functional system decomposition object 

The proposed µSD Framework can be applied with both systems engineering methods in 

the following way: 

• System decomposition kernel: The proposed µSD Framework can be used with 

various state-of-the-art system decomposition kernels, such as SADT as 

illustrated here. Typically, the start of a new µSD project comes with a large 

amount of uncertainties that need to be taken into consideration. As a result, a 

µSD project cannot simultaneously be overseen by the designer as a whole. 

Therefore, requirements and development work need to be conducted sequentially. 

To enable the sequential approach, the microsystem is broken down into smaller 

parts that can be overseen by the designer. As the product is decomposed 

hierarchically into sub-systems, it is of importance that the critical interactions are 

clearly understood. As such, the microsystem is decomposed level by level until 

there are preferably no interactions between the sub-systems of a given level. In 

general, ‘no interactions’ means that subsystems can be specified and developed 

concurrently in separate tasks and separate contexts. All functional requirements 
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are defined as system decomposition advances. After a while, a functional 

skeleton of the future product emerges. 

It is possible to start with more than a single alternative when decomposing the 

functionality of the envisioned product; it provides the opportunity to select the 

better option later on. 

Usually, four levels of decomposition are suitable to functionally describe the 

product as shown in Figure 3.5. 

             

Figure 3.5 System Decomposition Kernel Using SADT 

When applying SADT, a functional product flow or manufacturing process can be 

described in a layered structure. A top down decomposition in ‘Data-Diagrams’ 

is derived layer by layer (left-hand diagram of Figure 3.5). Basic functionalities 

are described using an ‘Activity-Model’ as shown in the right-hand diagram of 

Figure 3.5. The activity-model uses parameters to describe functionality of the 

particular function. Input parameters, can be ‘Functional’ or binding 

characteristics of a good product at start, or ‘Dysfunctional’ representing potential 

hazards or errors of the product before the particular process has even started. 

Conditional input parameters, like ‘Norms and Controls’ reflect boundary 
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conditions or ‘the demands’ of the process. Parameters that are related to the 

transformation mechanism, comprising of ‘Constants and Variables’, are 

representing process or equipment characteristics. All input parameters serve as 

determinants for the output parameters, again functional or dysfunctional. 

Appendix A describes the SADT in more detail; 

• Problem identification and prioritisation: The second step focuses on the 

approach for identification of most relevant problems. In this step, the method for 

FMEA is used for categorisation of the remaining uncertainties in the microsystem 

development project. At this point in the project, uncertainties arise as 

decomposition and requirement specification advance during the product 

development process (as was explained in Subsection 3.3.1). The uncertainties 

hinder the decomposition process, and at some point, they pile up which makes it 

difficult for the developer to have clear understanding of the project. It is no longer 

possible for the designer to understand the magnitude of uncertainties and their 

impact on the critical key characteristics (parameters) of the microsystem which 

is being developed. The uncertainties may lead to errors in the design and it is 

desired to address them. However, the consequences caused by the errors are 

depending on the initial uncertainty of: (i) the error happening, and (ii) the effect 

sorted by the particular error. Basic risk mitigation techniques may be applied to 

prevent potential consequences from happening, e.g.: (i) avoidance of risks by 

selecting a different design solution, (ii) Transfer of risks to another (external) 

party, more skilled in solving that particular problem, or (iii) graphical charting 

like Risk plotting, Pugh matrix, or Voting Methods (Garvey & Landsdowne, 

1998). In this thesis is chosen to apply the FMEA for prioritisation of project 
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uncertainties and their effects in order to plan one or more most suitable tests to 

address the uncertainties and their consequence, this is shown in Figure 3.6. 

 

Figure 3.6 Problem Identification & Prioritisation using FMEA 

followed by the Problem Selection process 

Application of the problem identification & prioritisation process is 

straightforward: (i) FMEA is applied to make a list of the uncertainties and 

respected effects, and (ii) that list is prioritised in order of project impact. The 

result is a prioritised list of project risks; 

• Problem Selection: The third step is to make a selection of the problems from the 

prioritised list that was produced by the FMEA and then resolve them as part of 

the iterative feedback loop within next development cycle (right-hand part of 

Figure 3.6). The method is flexible to select single or multiple options to address 

in the next improvement cycle, but interpretation in the Object functional gating 

should be corresponding. For example, if a single problem is selected for 

optimisation in the next improvement loop, a single solution will be assessed in 

the Object functional gating which provides opportunities to focus the main 

resources of the project on in-depth resolving of a single issue. However, with 

much smaller breadth, i.e., not addressing the other potential problems and their 

interactions with the selected problem which also need to be resolved. On the other 
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hand, in case of selecting multiple problems to be addressed concurrently, there is 

a good handle of breadth of the issues and their interactions; however, with given 

constant project resources strategy of addressing multiple problems might lead to 

shallow solution(s) for each individual problem. Typically, based on the author’s 

experience, the spread or breadth of uncertainties to be addressed seems as a good 

guideline to start determining how many problems needs to be simultaneously 

investigated before addressing in-depth the most important ones. The breadth in 

selection of the problems allows selecting the most important one; and the in-

depth strategy of the most significant ones provides the best resolution option for 

the selected problem(s). The in-depth analysis of the problem is conducted via (i) 

system decomposition kernel interaction with the synthesis object; and (ii) control 

via functional gating during iterative feedback loop development cycles.  

It is important to notice that the source of uncertainties during the microsystem 

development is often caused by varying TRL levels of the addressed problems and 

their solutions. Therefore, the TRL level can also be applied as an index not only 

to prioritise the multiple problems to be addressed, but also the need for in-depth 

analysis. 

3.3.4 µSD Rationale for Implementation of Functional Gating Based on 

Qualitative Analysis 

This subsection focuses on illustrating role and functioning of the Object 

functional gating within the µSD framework. Overall, functional gating as proposed here 

works as a sequential evaluator of the problem-solution, i.e., evaluates the following 

aspects of the problem-solution: (i) causes of the problem(s) selected within the Object 

functional system decomposition, (ii) maturity of the suggested solution by the Object 
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synthesis (e.g., the TRL level of the proposed technology to be used in the solution), and 

(iii) performance of the solution obtained within the Realisation and Testing. 

 

Figure 3.7 Implementation of functional gating. 

Functional gating is explained by applying two systems engineering methods that can be 

implemented as a gating function: (i) state-of-the art approach to Qualitative Analysis 

(QA), and (ii) proposed in this dissertation Maturity Grid (MG). The outline and rationale 

for functional gating is shown in Figure 3.7 and detailed explanation is provided below 

in Figure 3.8. The initial step ‘Assessment of Functional Performance’ compares the 

functional performance goals and the true functional performance. The second step 

‘Inventory Discrepancies’ drafts a list of the remaining problems in the product design 

and the impact of these problems. Depending of this outcome, the final step ‘Determine 

Hierarchical Impact Level’ is applied to decide if the current hierarchical design level 

may be advanced to the next more granular level of decomposition. 

• Assessment of Functional Performance: The first step is based on the process of 

QA. This first example describes QA with a unidirectional coding scheme. The 

principle of ‘coding’ in the principle of system engineering is not to be 

confounded with software coding, but refers to arrangement of development tasks 
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and problems in a systematic order for classification (Saldaña, 2012). Coding is 

applied to differentiate qualitatively between a set of attributes and/or parameters 

of the identified problems or solutions. A code can be a word or short phrase that 

symbolically assigns summative attributes for a situation to be assessed. The 

coding scheme applied for this case is: Cause known, Solution Known, Solution 

Tested, and Solution Successful. Figure 3.8 shows the three steps of the rationale 

for functional gating in more detail, the bottom rectangle representing Assessment 

of functional Performance. 

 

Figure 3.8 Implementation of functional gating 

within the Object functional gating  

The procedure starts with a comparison of the expected and true outcomes of the 

test object, which provides the discrepancies between the actual performance of 

the tested system and what was expected by the designer. The discrepancies are 

weighted against the coding scheme. If the first summative attribute is not met, 

indicating that that imperfection is of no importance, the discrepancy is weighted 

against the second summative attribute that has a lower gravity, followed by the 

third and fourth attribute. In this situation, if the cause of a discrepancy is not 
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known, the weighting process for that discrepancy stops and continues with the 

next discrepancy. If the cause indeed is known, the discrepancy is tested for a 

known solution, an imperfection that may be considered to have a lower gravity. 

This process continues till the actual gravity of the discrepancy is determined; 

• Inventory Discrepancies: The second step is to inventory the discrepancies as 

determined by the process of QA, this is shown in the middle rectangle of Figure 

3.8. In this principle, where a unidirectional coding scheme is applied, a basic 

histogram is prepared from the output of the QA. The histogram gathers the 

numbers of cases that coded attributes were rejected, providing a distribution of 

gravity of the observed discrepancies revealed by the test object. The acquired 

knowledge of the product design is brought back in the feedback loop to improve 

the process of functional system decomposition and requirement specification; 

• Determine Hierarchical Impact Level: The third and final step is to determine the 

actual decomposition level of the project to: (i) indicate up to what level the 

functional system decomposition has been completed, and (ii) index the absolute 

status of project to determine project progression. The current hierarchical level 

of decomposition can be closed when there are no discrepancies and the histogram 

inventoried by the inventory discrepancies object remains empty. 

In addition to QA with unidirectional coding, a second implementation shows analysis 

with bi-directional coding. Bi-directional coding is in literature also known as ‘Risk 

Plotting’ (Bullema et al., 1999). In a bi-directional coding scheme, two coding schemes 

are applied, independently from each other, to determine the risk of discrepancies 

between expected and true outcomes of the test object: (i) the primary coding scheme is 

applied to the level of understanding of the solution, and in this example, it is done by 
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applying the same scheme as for unidirectional coding above, and (ii) a secondary coding 

scheme is applied to estimate the impact if a problem is not solved. Together, these coding 

schemes provide a measure for risks, not only taking into account assessment of 

functional performance, but also inventory discrepancies. Figure 3.9 shows the 

implementation of bi-directional coding, applying a bi-directional coded diagram that will 

further be referred to as ‘Maturity Grid’ (MG). The primary coding scheme is plotted on 

the horizontal axis of the MG, and the secondary coding scheme is plotted on the vertical 

axis. 

 

Figure 3.9 Implementation of the Maturity Grid  

in the concept of functional gating 

The MG has the capability to concurrently visualise the understanding and the severity 

of the identified problems in design (represented by triangular marks in Figure 3.9). When 

concurrent problems are visualised, the MG provides information about: (i) position of 

the identified problems on the Maturity Grid, and (ii) the scattering of the identified 
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problems on the Maturity Grid. The position of the identified problems in the maturity 

Grid is used to enable the feedback-loop and trigger the action by the functional gating. 

On the other hand, the scattering of the identified problems on the Maturity Grid, provides 

feedback on design imperfections to be solved, and how to prioritise them. The feedback 

and prioritisation improves the developing strategy on how to accelerate the process of 

maturing the design. The MG is updated during each development cycle and thus it can 

provide an overview of the product maturity at any given time and provide almost 

continuous feedback on the product development process. 

The colours (or grey tones) in the grid show the interpretation of the severity of 

the problem (S) based on the product of the scores (-4, -3, -2, -1, 0) on the two axes. The 

colours are defined as follows: 16 =< S =< 9 were marked as red (dark grey); 8 =< S =< 

4 were marked as orange; 3 =< S =< 1 were marked as yellow; and (S = 0) were marked 

as green (light grey). When testing the use of the MG with designers, it was concluded 

that the MG can present clearer results for designers by using colours (or grey tones) to 

mark the severity of the identified problems. 

3.4 Three Industrial Case Studies to Illustrate and Test the µSD 

Framework with Functional System Decomposition and Functional 

Gating 

This section includes three industrial case studies, which are described in Table 

3.2. The selected three cases share the same rationale for functional system decomposition. 

However, each case study implements a different approach for functional gating, in order 

of illustration its effectiveness and capacity to handle increasing complexity. All case 

studies use a multidisciplinary approach in which: (i) the product, (ii) the assembly 
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process, and (iii) the assembly equipment are developed concurrently. The cases focus on 

the innovative aspects of development. 

Table 3.2 Applications of the µSD framework for the cases in successive sections 

Object 

Section 

Functional system decomposition Functional gating  

Subsection 3.4.1; 

Assembly of Cell 

Phone Lenses 

 

Structured Analysis Design Technique 

(SADT) in combination with Failure Modes 

and Effect Analysis (FMEA) as explained in 

Subsection 3.3.3 

Project flow is based on remaining 

uncertainties as selected by the 

FMEA 

Subsection 3.4.2; 

Assembly of 

Nanometre 

Measuring Probe 

Same method as above Qualitative Analysis (QA) based on 

a unidirectional coding scheme 

explained in Subsection 3.3.4 

Subsection 3.4.3; 

Assembly of an 

Automotive Actuator 

Same method as above Maturity Grid (MG) based on a bi-

directional coding scheme, also 

explained in Subsection 3.3.4 
 

3.4.1 Case Study 1: Cell Phone Lens Assembly Development Using the µSD 

Framework with Functional System Decomposition Based on SADT and 

FMEA Approaches 

Product: The lens-assembly aims to image environmental light to an optical sensor to 

enable the user of taking pictures. The lens parts consist of transparent and dark opaque 

parts to control the light rays through the lens-assembly. The diameter of the parts is 5-6 

mm and expected to decrease to 2 mm in future designs. It is required that a reduction of 

the parts’ diameters should be taken into consideration. The lens-parts need the capability 

to withstand temperature and humidity changes and shock within the operational 

specification of the cell phone device. 
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Figure 3.10 Two types of cell phone lens assemblies 

Process: The case focuses on the assembly and joining of the parts of the lens stack. To 

manufacture the small cell phone lens assemblies, 4 to 6 cylindrical plastic parts (lenses 

and diaphragms) need to be stacked on top of each other to form a ‘Lens-stack’ (Figure 

3.10). This case study introduces a new procedure to align the cylindrical parts. Instead 

of the state-of-the-art design that uses a small cylindrical housing called ‘Lens Barrel’ for 

alignment of the optical parts, the new design aligns optical parts by pressing parts into a 

‘V-groove’, and the lens barrel is no longer needed. This new alignment process is 

expected to have better accuracy and capability to be used for a considerable smaller 

diameter of the lens assembly. However, this process needs design modifications and new 

manufacturing solutions. The required modification has a disruptive character from the 

current manufacturing perspective for: (i) the new V-groove alignment principle, and (ii) 

the process of adhesive bonding of the parts. At first, the V-groove alignment is executed 

by constraining the stack of lenses by two bodies that apply a light clamping force along 

the optical axes of the lenses. Initially, the lenses are roughly pre-aligned, and as a next 

step they need to be aligned to their final position as can be seen in Figure 3.11. 
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Figure 3.11 Process P4 aligns the lens parts L1-L4 using two combinations of forces 

Secondly, the process of adhesive bonding is done by dispensing a low viscosity adhesive 

to the side of the lens-stack that adheres the microscopic gaps between the parts. 

Micrometre accuracies are achieved when the process is performed well, depending on 

geometry, surface condition, dust particles, and triboelectric charge of the parts. 

The assembly of lens-stacks was planned to be executed using a Reconfigurable 

Manufacturing System. The company uses a framework of reconfigurable, reusable, and 

modular process equipment for micro assembly, e.g., robotic manipulators, feeders, 

grippers, glue dispensers, and curing solutions. The reconfigurable manufacturing 

framework may be applied to compose a manufacturing system with a new layout from 

existing process modules. If needed, new process modules can be developed or improved. 

Functional system decomposition – system decomposition kernel: To structure the 

product development, functionality of: (i) product design, (ii) manufacturing processes, 

and (iii) assembly system were decomposed, (i) and (ii) using a standard decomposition 

tree as show in Figure 3.12, and (iii) since assembly is a sequential process, using SADT 

as shown in Figure 3.13. 
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Figure 3.12 Functional System Decomposition tree of product design (left)  

and manufacturing process (right) 

The functional decomposition trees are realised in interaction with synthesis of the 

product. Parallel to the decomposition process, the product is designed. As the design 

process evolves, the adhesive bonding process was developed concurrently. Sequential 

development of product design and process technology, for this system, is not an option 

as the parts of the lens-stack need optimisation for the adhesive bonding process. Changes 

in the design of the lens-stacks were carried through to enable the bonding process, e.g., 

sharp corners in the lens design were added to prevent the low viscosity glue from 

reaching and polluting the lens surface. 

 

Figure 3.13 Functional System Decomposition tree of  

manufacturing process using SADT 

Main FR
Provide Image on 

CCD Sensor

FR1
Guide Light Rays 
Correct to Sensor

FR2
Cut Off Stray 

Light

FR3
Withstand 

Environment

FR3.1
Withstand

Temperature

FR3.2
Withstand 
Humidity

FR3.3
Withstand
G-Force

FRproc1.1
Pick up 

Lens Part

FRproc1.2
Put Lens 
Part on 
Stack

FRproc1.3
Clamp 

Stack of 
Lens Parts

FRproc1.4
Align Stack 

of Lens 
Parts

FRproc2.1
Dispense 
Adhesive

FRproc2.2
Cure 

Adhesive

FRproc3.1
Unclamp 

Assy

FRproc3.2
Put Assy in 
Output Tray

FRproc1
Feed Lens Parts

FRproc2
Bond Lens Parts

FRproc3
Store Lens Stacks
in Output Section

Main FRproc
Assemble Lens Parts Hermetically



77 
      

Concurrently with the decomposition of the product design and adhesive bonding process, 

the layout for the RMS was determined and the assembly process was decomposed. 

Figure 3.13 shows the process flow (SADT Data Diagram). All processes were analysed 

in detail. In this chapter, the most critical process ‘FRproc1.4’: ’Align Stack of Lens Parts’ 

is emphasised. Process FRproc1.4 includes the new alignment procedure by application 

of the V-groove, and it was recognised as the process with the highest risk at the start of 

the development process. 

 

Figure 3.14 Application of the µSD framework for lens assembly development 

 

Functional System Decomposition
System Decomposition Kernel

Problem Identification & Prioritisation
- FRproc1.4-1 — Alignment not successful due to sticking parts
- FRproc1.4-2 — Flat spot in V-groove or stamping tool
- FRproc1.4-3 — Parts not well mated
- FRproc1.4-4 — Scratched optical parts
- FRproc1.4-5 — Pollution optical parts
- FRproc1.4-6 — Pollution V-Groove

FMEA of Identified Problems

FMEA Prioritised Problems

Problem Selection (to be addressed in following cycle)
- FRproc1.4-1 — Alignment not successful due to sticking parts
- FRproc1.4-3 — Parts not well mated

Realisation & Test
Realisation
- FRproc1.4-1 — Lens-Parts were produced with preliminary
  production tools
- FRproc1.4-3 — Laboratory test setup was made for manual
  assembly and alignment

Test
- FRproc1.4-1 — Geometrical test were performed to quantify
  mechanical alignment performance of the lens-stack
- FRproc1.4-3 — Optical tests were determined to quantify
  optical performance of lens-stack
- FRproc1.4-3 — Shock, Temperature & Humidity test were
  performed by customer

FRproc1.4
Align Stack of 

Lens Parts
Dysfunctional Input
Parts moved during clamping
Clamping force outside specs
Collapsed stack

Functional Output
Correctly mating and aligned
   parts in stack

Dysfunctional Output
Alignment not successful due to
  - due to sticking parts
  - Flat spot in V-Groove (stamper)
  - Parts not well mated
Damaged parts (scratching)
Pollution of parts or V-groove

Functional Input
Correctly mating parts in stack
Perpendicular force vector

Controls
Cleaning interval & procedure

Norms
Pollution of V-groove

Constants
Geometry of V-groove
Geometry & kinematics
   stamping tool
Surface condition parts

Variable Parameters
Stamping force or trajectory
Number of stamping actions
Lateral movement between stamping actions

Functional Gating
Assessment of Quality
- FRproc1.4-1— Low friction, low stick slip. Smooth alignment
  of lens-stack — minimal discrepancy
- FRproc1.4-3 —  Alignment successful. Lens stack
  assemblies perform significantly better than current
  standards — minimal discrepancy
Design Imperfections were coupled back to the designers

Inventory Discrepancies
- No significant discrepancies

Determine Hierarchical Impact Level
- Though the selected problems were addressed, not all
  problems were addressed yet. Therefore, the decomposition
  level was not considered to be completed yet.

Problem Chance impact Result Priority
FRproc1.4-1 25% 10 2,5 1
FRproc1.4-2 10% 6 0,6 4
FRproc1.4-3 20% 8 1,6 2
FRproc1.4-4 10% 8 0,8 3
FRproc1.4-5 10% 6 0,6 4
FRproc1.4-6 10% 6 0,6 4

Problem Chance impact Result Priority
FRproc1.4-1 25% 10 2,5 1
FRproc1.4-3 20% 8 1,6 2
FRproc1.4-4 10% 8 0,8 3
FRproc1.4-2 10% 6 0,6 4
FRproc1.4-5 10% 6 0,6 4
FRproc1.4-6 10% 6 0,6 4
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The input of FRproc1.4 is formed by a stack of lenses that have been placed in the V-

Groove with limited accuracy of the robotic manipulator. The output should be an aligned 

stack. Figure 3.14 shows the consecutive stages of functional system decomposition. The 

system decomposition kernel adds the SADT activity model (as explained in Figure 3.5). 

The steps of the µSD rationale were executed as follows: 

• Functional system decomposition – problem identification & prioritisation: The 

output of the SADT activity model delivers ‘Functional Output’; ‘what should go 

right’, and ‘Dysfunctional Output’; ‘what can go wrong’ (more details on the 

SADT activity model in Appendix A). The dysfunctional output forms the basis 

for the identification process of problems in the design, shown with problem 

definition FRproc1.4-1 to FRproc1.4-6 in Figure 3.14. The FMEA is applied to 

weigh the risks as defined by the SADT and then the list is prioritised; 

• Functional system decomposition – problem selection: finally, a selection is made 

by the engineers of what seems feasible to investigate in a single iteration. Two 

problems were selected for the first iteration cycle (FRproc1.4-1 and FRproc1.4-

3). The selection process concludes functional system decomposition for the initial 

cycle. 

The results of the Objects realisation and test are shown in the second column of Figure 

3.14. Lens parts were produced using preliminary production tools and assembled by a 

laboratory test tool in which parts were manually inserted but the alignment principle was 

automated using a robotic manipulator. The parts were then tested for geometrical 

accuracy, optical accuracy, and permanence for variations in temperature and humidity. 

Next, the steps for functional gating were applied as follows:  
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• Functional Gating – Assessment: Both problems FRproc1.4-1 and FRproc1.4-3 

were successfully addressed and provided a fully functional production process. 

Little discrepancies compared to the expectations were noticeable. The test was 

considered a success, design imperfections and lessons learned were coupled back 

to the designers; 

• Functional Gating – Inventory Discrepancies: Since no substantial discrepancies 

are noticeable, the histogram for this case is empty; 

• Functional Gating – Determine Hierarchical Impact Level: Though the selected 

problems were addressed well, not all initial problems were investigated. 

Therefore, the decomposition level was not considered to be completed yet. 

Two more iterative cycles were executed to complete the product and its process. These 

cycles, the second and third cycles, are shown in Figure 3.15. In the second improvement 

cycle, risk FRproc1.4.2 was addressed together with two next risks of the prioritised list; 

FRproc1.4.4 and FRproc1.4.5. The tests were still executed with a test setup and all three 

problems could be reduced and verified for functional performance (better gripper, 

cleaner environment, improved geometry of the stamping tool). In the third and final 

cycle, the RMS was actually configured. It was largely composed from standard process 

modules. The newly developed process module for alignment, FRproc1.4, was 

engineered but the mechanical core of the test setup was maintained. Due to the synergy, 

test setup and final system were functionally comparable and no perceptible functionality 

was lost. 
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Figure 3.15 Results of the second (column left) and third  

development cycle (column right) 

Functional System Decomposition
Problem Identification & Prioritisation
- FRproc1.4-1 — Alignment not successful due to sticking parts
- FRproc1.4-2 — Flat spot in V-groove or stamping tool
- FRproc1.4-3 — Parts not well mated
- FRproc1.4-4 — Scratched optical parts
- FRproc1.4-5 — Pollution optical parts
- FRproc1.4-6 — Pollution V-Groove

FMEA of Identified Problems

FMEA Prioritised Problems

Problem Selection (to be addressed in following cycle)
- FRproc1.4-4 — Scratched optical parts
- FRproc1.4-2 — Flat spot in V-groove or stamping tool
- FRproc1.4-5 — Pollution optical parts

Realisation & Test
Realisation
- FRproc1.4-4 — Apply optimised (hollow) gripper to increase
  pre-alignment of parts. This prevents gripper from touching
  optical surface of lenses
- FRproc1.4-2 — Circular shape of stamping tool 
- FRproc1.4-5 — Test in
  cleanroom environment

Test
- FRproc1.4-4 & 1.4.5 — 
  Produced lens-stacks
  were investigated for par-
  ticles under microscope
- FRproc1.4-2 — Parts
  were rotated to investi-
  gate tolerant angle for
  successful positioning

Functional Gating
Assessment of Quality
- FRproc1.4-4 & 1.4.5 —  No further damage & pollution
  detected — minimal discrepancy
- FRproc1.4-2; Large tolerance on position V-groove without
  consequences positioning accuracy lens parts — minimal
  discrepancy

Design Imperfections were coupled back to the designers

Inventory Discrepancies
- No significant discrepancies

Determine Hierarchical Impact Level
- Though the selected problems were addressed, not all
  problems were addressed yet. Therefore, the decomposition
  level was not considered to be completed yet.

Problem Chance impact Result Priority
FRproc1.4-1 5% 10 0,5 3
FRproc1.4-2 10% 6 0,6 2
FRproc1.4-3 5% 8 0,4 4
FRproc1.4-4 10% 8 0,8 1
FRproc1.4-5 10% 6 0,6 2
FRproc1.4-6 10% 6 0,6 2

Problem Chance impact Result Priority
FRproc1.4-4 10% 8 0,8 1
FRproc1.4-2 10% 6 0,6 2
FRproc1.4-5 10% 6 0,6 2
FRproc1.4-6 10% 6 0,6 2
FRproc1.4-1 5% 10 0,5 3
FRproc1.4-3 5% 8 0,4 4

Functional System Decomposition
Problem Identification & Prioritisation
- FRproc1.4-1 — Alignment not successful due to sticking parts
- FRproc1.4-2 — Flat spot in V-groove or stamping tool
- FRproc1.4-3 — Parts not well mated
- FRproc1.4-4 — Scratched optical parts
- FRproc1.4-5 — Pollution optical parts
- FRproc1.4-6 — Pollution V-Groove

FMEA of Identified Problems

FMEA Prioritised Problems

Problem Selection (to be addressed in following cycle)
- FRproc1.4-6 — Pollution V-Groove

Realisation & Test
Realisation
- FRproc1.4-6 — Extra
  suction of clean air to
  bottom of V-groove.
  Robotic manipulator for
  fully automated handling of
  parts and alignment of
  stack

Test
- FRproc1.4-6 — Produced lens-stacks were investigated for
  particles under microscope
- V-groove stays clean after test run of 500 pcs
- Improved pre-aligment, no scratching surfaces
- Good alignment. Parts mating well
- No problems with flat spot
- No particles found

Functional Gating
Assessment of Quality
- FRproc1.4.6 —  No particles detected — minimal
  discrepancy

Inventory Discrepancies
- No significant discrepancies

Determine Hierarchical Impact Level
- All problems were addressed. The decomposition level was
  considered to be completed. Since FRproc1.4 was
  completely operational, proof of concept for this process step
  was satisfied.

Problem Chance impact Result Priority
FRproc1.4-6 10% 6 0,6 1
FRproc1.4-1 5% 10 0,5 2
FRproc1.4-3 5% 8 0,4 3
FRproc1.4-5 5% 6 0,3 4
FRproc1.4-2 3% 6 0,18 5
FRproc1.4-4 1% 8 0,08 6

Problem Chance impact Result Priority
FRproc1.4-1 5% 10 0,5 2
FRproc1.4-2 3% 6 0,18 5
FRproc1.4-3 5% 8 0,4 3
FRproc1.4-4 1% 8 0,08 6
FRproc1.4-5 5% 6 0,3 4
FRproc1.4-6 10% 6 0,6 1
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3.4.2 Case Study 2: 3D Measuring Probe Assembly Development using the µSD 

Framework with Functional Gating Based on Unidirectional Qualitative 

Analysis 

3D Measuring Probes are made for geometrical measuring of high-tech products 

with high accuracy and small tolerances. The probes are applied in ‘Coordinate 

Measuring Machines’ to enable measuring in the Nanometre range. The heart of the probe 

consists of a micro-machined ‘Silicon Die’ that contains sensitive strain gauges to convert 

mechanical nanometre-displacements to electrical signals. The black, rectangular Si Die 

on the aluminium substrate (Figure 3.16)-left) is interfaced with the outside world using 

a flexible PCB connected by wire-bonding (Figure 3.16-right). 

 

Figure 3.16 3D probe for high-accuracy geometrical measurements 

When the product is designed and the project is at the ‘systems’-level of functional system 

decomposition, the engineers decide to produce a number of engineering prototypes to 

validate manufacturability of the device. The functional Process Design Requirements of 

the 3D measuring probe are decomposed using SADT which gives an overview of the 

assembly process of the device (Figure 3.17). The total manufacturing process consists 

of a number of seventeen stages that may be partially executed in parallel for the ‘Base’ 

of the probe and the ‘Stylus’ that are assembled in the final assembly stages. The last 

stage of the base-assembly process is monitored in this case. It executes the wire-bonding 

process. The µSD framework is applied for the development of the 3D measuring probe: 



82 
 

 

Figure 3.17 Functional System Decomposition tree of manufacturing  

process of measuring probe using SADT 

• Functional system decomposition: The µSD process starts with functional 

decomposition of Figure 3.17. The SADT analysis at data-level is expanded to the 

activity level in Figure 3.18; 

• Realisation & Test: A number of ten measuring probes were produced manually. 

The manufacturing process was closely monitored. The reliability of the wire 

bonding process appeared to have a low manufacturing yield and many wire-

bonds were failing to bond well; 

• Functional Gating: In the first cycle of the µSD process, the cause of malfunction 

(failing wire-bonds) was not understood (left column of Figure 3.18). A second 

problem with the pull-relief of the flex PCB was understood tough a solution was 

not yet present. The discrepancy histogram shows the two problems with cause 

not known and no solution known. The histogram is not empty and no advance in 

decomposition level was made. 
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Figure 3.18 Application of the µSD framework for the 3D measurement prob 

(source MA3Solutions BV) 

Functional System Decomposition
System Decomposition Kernel

Problem Identification & Prioritisation
- FRmp1.6-1 — Loose Wire Bonds
- FRmp1.6-2 — Parts come off due to insufficient adhesion
- FRmp1.6-3 — Short circuit/no contact

Due to the fact that the list of three items is oversee able, no 
prioritisation was applied; complete system was realise and full 
functionality of the wirebond process was tested

Realisation & Test
Realisation
A number of 10 proto-
types were manually
assembled. All parts
were fully conforming
specification. A manual
wire-bonder was
applied.

Test
- FRmp1.6-1 — Wire
  bonds appear to
  detach regularly.
  Welding of the bonds seems inadequate. No feasible
  explanation was found so far
- FRmp1.6-2 — No parts came off, adhesion was as expected
- FRmp1.6-3 — No short circuits. Resistance is within
  specification. The wire bonds that remain intact show no signs 
of short circuit
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Wire bonding 
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Functional Input
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Controls
Cleaning interval & procedure

Norms
Clean bond surfaces

Constants
Bond Wire
Geometry of pads and parts
Surface condition parts

Variable Parameters
Parameters of wire binding process

Functional Gating
Assessment of Quality
- FRmp1.6-1— NOK, FRmp1.6-2, and FRmp1.6-3 —  OK

A new problem that was not expected shows up; when the pull 
relief for the flexPCB is attached, the flex tends to delaminate 
completely. Investigation shows that strain is attached to the 
flexPCB when the pull relief is attached
All design Imperfections were coupled back to the designers

Inventory Discrepancies
- The discrepancies were gathered in the discrepancy
  histogram
- FRmp1.6-1 — No cause known
- FRmp3.2 (pull relief) — No solution known

Determine Hierarchical Impact Level
- Discrepancies in histogram, therefore no change of 
decomposition level

No cause
known

Solution not
implemented

No solution
known

Solution
not tested

2
1
0

Functional System Decomposition
System Decomposition Kernel

Problem Identification & Prioritisation
- FRmp1.6-1 — Loose Wire Bonds

A twofold strategy was applied:
1/ the product design was evaluated:
- The bond process of FlexPCB was specified more tightly
- Pull relief was redesigned to apply a ‘loose fold’
2/ An alternative design was elaborated in parallel:
- Eliminating the FlexPCB
- Substituting it by a thick film ceramic part that contains
  conducting tracks for the interconnection. This solution was
  applied before.

Realisation & Test
Realisation
Again a number of 10
prototypes were
assembled manually.

Dummy substrates and
Si-Dies can be applied
for a test with the new
interconnection

Test
1/ FRmp1.6-1 — Wire
  bonds still appear to
  detach regularly. The
  loose fold brings positive outcome; no FlexPCBs were
  detached further
2/ The alternative design provides full functionality. The 
FlexPCB is completely eliminated and the external connection 
is made with a connector on the ceramic substrate (picture)

Functional Gating
Assessment of Quality
- FRmp1.6-1— Still not working but the cause is found; the
  adhesive layer underneath the FlexPCB appears to absorb
  energy during the wire bond process. Therefore the bonds
  refrain from welding correctly.

All design Imperfections were again coupled back to the 
designers

Inventory Discrepancies of option 1
- FRmp1.6-1 — No solution known
- FRmp3.2 (pull relief) — Solution not implemented

Inventory Discrepancies of option 2
- No discrepancies; solution works as expected

Determine Hierarchical Impact Level
Option 1: Discrepancies in histogram, therefore no change of 
decomposition level

Option 2: No discrepancies in histogram, with this option the 
project may advance to the parts level

No cause
known

Solution not
implemented

No solution
known

Solution
not tested

2
1
0

No cause
known

Solution not
implemented

No solution
known

Solution
not tested

2
1
0
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The second iteration leads to the detection of the cause of the wire-bond problem; a 

problem with a flexible subsurface under the flexible PCB that absorbs too much bonding 

energy during the wire-bond process. Figure 3.18 shows the success of the alternative 

design option; the discrepancy histogram is empty indicating that the process is 

understood well. After stakeholder discussion, the decision was made for the second 

option. Functional gating was concluded by advancing the level of decomposition from 

‘system’-level to ‘parts’-level. From here the project was brought to proof of concept. 

 

Figure 3.19 Measuring probe after finalisation of the alternative design, detail of the 

wire-bonds, the wire-bond tool, and the reconfigured RMS (source MA3Solutions BV) 

The modified design of the measuring probe, and the completion of the RMS, are 

shown in Figure 3.19. 

3.4.3 Case Study 3: Automotive Piezo Actuator Assembly Development using the 

µSD Framework with Functional Gating based on the Proposed Maturity 

Grid  

The third case study follows the design optimisation of a piezo actuator for an 

automotive comfort system. The developments of the product itself, as well as the 

production means, were traced from earliest conception till completion of ramp-up. The 

case is described in more detail in Appendix A; ‘Supplementary Data; Design & 



85 
      

Implementation of Reconfigurable Production Equipment for an Automotive Piezo 

Actuator’. 

Definition of the Product: The actuator is applied for a multi-fold pneumatic switch. It 

consists of a piezo element that has to be electrically connected to a printed circuit board. 

The goal is to realise the connection with three small metal ‘Contact Springs’ as shown 

in Figure 3.20 (one contact spring is not visible because it is at the back of the product).  

 

Figure 3.20 Three contact springs are to be mounted to a piezo element 

The piezo elements have been functionally tested and will be supplied in a product 

specific tray. The metal contacts will be produced with a stamping process from a coated 

strip of material (lead-frame). During placement of the contact springs, an ultra-violet 

curing adhesive is applied over the three contact springs and the piezo to fixate the 

contacts in their position. After this, the products will be cut from the lead-frame. The 

estimated cycle-time of the whole assembly process is set to 10 seconds. The carbon paste 

will be cured in a thermal oven at the end of the assembly sequence. 

Piezo Strip

Contact
Springs

Piezo
Assembly
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Functional system decomposition:  The decomposed production flow is shown in Figure 

3.21 and it consists of a number of nine processes of which the first 2 x 2 processes are 

executed parallel. 

 

Figure 3.21 Description on the SADT data-level 

The FMEA is applied to inventory and prioritise the most difficult processes, this is 

shown in Figure 3.22. Three processes that are completely new, were identified to have 

the largest risk to potentially delay the project, these processes are (in order of priority): 

• FRaa1.2 Dispense carbon paste. This is the process of attaching the electrically 

conductive adhesive that connects the contact springs with the metallic electrodes 

of the piezo; 

• FRaa4.1 Cut access material. The process of cutting the excess material of the lead 

frame from the piezo assembly;  

• FRaa3.1 Place contact spring assembly. Placement of the assembly with three 

contact springs, separated from the lead frame but still attached to each other, on 

the piezo actuator. 

FRaa1.1
Feed Piezo

FRaa1.2
Dispense 
Carbon
Paste

FRaa2.1
Feed Lead 

Frame

FRaa2.2
Cut Contact 

Spring Assembly 
from Lead Frame

FRaa1
Prepare Piezo with Cabon Paste

FRaa4
Finalise Assembly

Main FRaa
Assemble Automotive Actuator

FRaa2
Prepare Contact Assembly

FRaa4.1
Cut Access 

Material

FRaa4.2
Store Part in 
Output Tray

FRaa3.3
Cure UV-

Adhesive for 
Fixation

FRaa3.2
Dispense UV-
Adhesive for 

Fixation

FRaa3.1
Place Contact 

Spring 
Assembly

FRaa3
Join Piezo and Contact Spring Assembly
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A Reconfigurable Manufacturing System (RMS) was configured with three process 

modules that could perform the prioritised processes. An initial test run was made with 

100 products. 

 

Figure 3.22 Application of the µSD Framework for an automotive actuator 

Functional Gating: After assessment, a number of ten problems were defined. The 

processes are listed in Figure 3.22. All feedback so far was coupled back to the engineers 

(product and process designers). Next, the problems were gathered in the Maturity Grid 

Given the number of problems to address, the project could not advance to the next stage. 

Functional System Decomposition
System Decomposition Kernel
- The SADT Activity models of processes FRaa1.2, FRaa3.1, & 
and FRaa4.1 are shown in appendix A

Problem Identification & Prioritisation
- FRaa1.2 Feed Piezo
- FRaa1.2 Dispense carbon paste
- FRaa2.1 Feed lead frame
- FRaa2.2 Cut contact spring assembly from Lead frame
- FRaa3.1 Place Contact Spring Assembly
- FRaa3.2 Dispense UV-adhesive for fixation
- FRaa3.3 Cure UV-adhesive for fixation
- FRaa4.1 Cut access material
- FRaa4.2 Store part in output tray

FMEA of Identified Processes

FMEA of Prioritised Processes

Most Problematic Processes (to be addressed in following 
cycle)
- FRaa1.2 Dispense carbon paste
- FRaa4.1 Cut access material
- FRaa3.1 Place Contact Spring Assembly

Realisation & Test
Realisation
An RMS was configured with processes FRaa1.2, FRaa4.1, & 
FRaa3.1. An test series of 100 products were produced

Test
Parts were inspected after manufacturing

Functional Gating
Assessment of Quality
Following problems were found: 
- FRaa1.2-1 Wrong amount of carbon paste
- FRaa1.2-2 Short circuit due to adhesive threads
- FRaa1.2-3 Polluted Piezo due to misplace carbon paste
- FRaa1.2-4 Inaccurate position of the carbon paste dots
- FRaa3.1-1 Position Piezo vs contact spring assembly NOK
- FRaa3.1-2 Placement accuracy of the contact spring
                    changes while handling
- FRaa3.1-3 Contact spring assembly bent due to handling
- FRaa4.1-1 De-bonding during cutting action
- FRaa4.1-2 Bending contacts due to cutting action
- FRaa4.1-3 Polluted contacts due to lubricant of the cutting
                    tool
All design Imperfections were coupled back to the designers

Inventory Discrepancies
The discrepancies were gathered in the Maturity Grid

Determine Hierarchical Impact Level
- Discrepancies in histogram, therefore no change of 
decomposition level

Problem Chance impact Result Priority 
FRaa1.2 25% 10 2,5 1
FRaa4.1 20% 10 2 2
FRaa3.1 20% 5 1 3
FRaa2.2 5% 5 0,25 4
FRaa3.2 5% 5 0,25 4
FRaa1.1 1% 3 0,03 5
FRaa2.1 1% 3 0,03 5
FRaa3.3 1% 3 0,03 5
FRaa4.2 1% 3 0,03 5

Problem Chance impact Result Priority 
FRaa1.1 1% 3 0,03 5
FRaa1.2 25% 10 2,5 1
FRaa2.1 1% 3 0,03 5
FRaa2.2 5% 5 0,25 4
FRaa3.1 20% 5 1 3
FRaa3.2 5% 5 0,25 4
FRaa3.3 1% 3 0,03 5
FRaa4.1 20% 10 2 2
FRaa4.2 1% 3 0,03 5
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Iterative improvement cycles were performed on a daily basis. Every 2 to 7 weeks, the 

risk inventory was completely updated and the status was plotted in the Maturity Grid. 

Figure 3.23 shows the progression of development during the course of the project. 

 

Figure 3.23 Plotting process risks in the Maturity Grid shows progression of maturity 

of the relation between product & production 

Pilot Production & Ramp-up: From the start of Pilot Production, the overall process yield 

was monitored (yield being defined as ‘successfully produced parts’ divided by ’produced 
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parts’). The first SADT analysis took place twelve weeks prior to start of pilot production. 

The process yield, showed with the black curve in Figure 3.24, took off quickly to over 

80% in eight weeks. The green (light-grey) area indicates the daily production of the 

actuator. 

 

Figure 3.24 Development of production yield as function of time 

The red (dark-grey) area represents the development of rejected parts. The four matrices 

represent the Maturity Grids from Figure 3.23, and the arrows point to the week number 

they were revised. Rejected parts showed, after a recognisable starting-gust, a decline due 

to increasing yield. After this, absolute numbers of rejected parts were again increasing 
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but the relative number decreases; during pilot production, the yield was steadily 

improving, mainly from week 4 on, when the production equipment reached full maturity 

according to the Maturity Grid. The bottom of Figure 3.24 plots the Maturity Grids with 

a cross at the gravitational centre to indicate the project progression and a circle to show 

the scattering of problems. 

3.5 Discussion 

The chapter proposes an iterative µSD framework that applies solutions for 

functional system decomposition and functional gating in a flexible framework. It is 

shown how it can be applied in three different ways to structure and monitor the product 

development process. In all three cases, the risks are gradually reduced till an acceptable 

level of satisfaction is reached. As executed in the example cases, the application of QA 

within the µSD rationale indicates progression of the absolute status of the design process, 

due to the process of plotting multiple results in a histogram or MG. As such it provides 

optimal feedback during functional gating. The shift of the gravitational centre of Figure 

3.24 is a measure for project progression. What stands out is that production was started 

too early since the manufacturing yield in the first 4 weeks of production stays under 

50%; many rejected parts are produced. In the next 4 weeks, the yield passes the value of 

80% and in another 16 weeks it exceeds 95%. This slow increase is due to the ascending 

robustness of the manufacturing process, realised by statistical optimisation of the many 

partial processes. As a general result, this way of monitoring project progression is 

considered to be successful. 
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3.5.1 Strengths of the µSD Framework 

The iterative µSD framework gives feedback on the product- or manufacturing-

process at an early stage of development. As such, it enables early optimisation of the 

product design, changes in parts flow, and equipment layout. At this stage, the moves of 

the organisation are still flexible due to the fact that no or little investments in production 

hardware yet have been made. Typically, as investments increase, the ‘compliance for 

change’ of the organisation decreases. The reason for this is twofold; on one hand the 

‘cost of change’ increases rapidly as the project evolves (Chokshi et al., 2008; Puik & 

Moergestel, 2010). On the other hand, reopening gates during the process of functional 

gating causes a psychological barrier leading to organisational resistance. Errors have to 

be explained in the organisation and time and efforts need to be spent to solve the 

problems; earlier investments apparently have not addressed the development risks 

adequately. For this reason, the µSD framework is preferably started as early as the initial 

conception of a system. Since estimation of uncertainties and coding can be applied on 

conceptual data before quantitative data becomes available, the methodology also works 

when knowledge about the final system is far from complete. As implemented, functional 

gating supports structured reasoning based on fragmented production concepts. This 

makes the µSD rationale useful in the early stages of development. 

The use of a risk analysis tool to visualise severity and nature of the remaining 

risks in the development process will give an overview of the relevant project risks and 

reveals the objective project status. This will spin-off with a broader scope than just the 

engineering level. Though the engineers profit by a complete description of the available 

options and the effects when actions are omitted, the management level will also be 

capable of estimating the cause and effect of project control options. This reduces the 
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differences in perception of managers and engineers in the estimates of needed effort to 

complete the work; less mutual explanation is required, better understanding between 

departments is obtained. 

If SADT is applied, as is done for all three cases, it supports good decomposition 

of behavioural issues of the applied processes. As a spin-off, it actively documents the 

production system as whole; standards, operator instructions, and parameters for setup 

and tuning will all be defined and documented from within the methodology, saving time 

in a later phase of the project. 

3.5.2 Weaknesses of the µSD Framework 

Though the industrialisation process of the three test cases, as described in this 

chapter, was considered successful, the question arises if this also would have been the 

case if another design logic had been applied. Processes of industrialisation for hybrid 

microsystems are diverse and involve large investments. This makes objective reference 

expensive and heterogeneous. 

Following functional system decomposition with the method of SADT, by 

describing and mapping the risks as shown, enforces decomposition to proceed in a 

methodological and systematic way. It leads to the revelation of many process artefacts, 

which enhances early discovery of problems in: the design, the production method, and 

the relation between product and processes. Unfortunately, this also has a downside; 

uncertainties and lack of knowledge about the exact process details could cause an 

overprotected attitude with (some of) the engineers. This over-consciousness could lead 

to over-engineering, making the process more complicated than strictly necessary for its 

application and thus increasing costs without meaning. 
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Application of risk analysis tools also has drawbacks. The output of the FMEA 

tends to be uncertain when the magnitude of risks may show erratic ups and downs in the 

early project stadium, and as a result prioritisation changes accordingly  (Werdich, 2011). 

QA has less sensitivity for these variations because the interpretation of well-chosen 

coding schemes converges. At the same time, the output result of QA will be dependent 

on the quality of its coding schemes, and the method of coding tends to increase 

psychological distance of researchers and their data; it could lead to oversimplification 

when drawing conclusions (Saldaña, 2012). As a result, functional gating loses some of 

its validity. 

3.5.3 Limitations of the µSD Framework 

The iterative µSD framework deals with the technological uncertainties of the 

project. It does not necessarily deal with project interactions from a managerial 

perspective. The managerial interactions have a more social kind of character. They may 

be less structured and therefore complex to control or to improve. The method would 

need changes to deal with the complexity of the early project acquisition process. For 

now, the method is likely to fall short. 

Though coding schemes can be adjusted for particular situations, interpretation of 

the same situation with a different coding scheme could lead to different conclusions. 

Therefore, changing a coding scheme does not increase confidence with the procedure 

and compromises objective reference based on experience. In this chapter, the coding 

schemes for the second case and the first dimension of the third case were maintained to 

enable straight comparison. The bottom line is that interpretation of the results of QA 

requires confidence with the applied coding scheme and therefore the method may be less 
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flexible than it initially appears. The same situation applies for the Maturity Grid, since 

it basically is a two-dimensional application of the same principle.  

The µSD framework, as described in this chapter, was tested on three cases that 

concerned high-tech microsystems with a high pressure on technological development 

and the lead-time available to get the work done. The method appears generic, but may 

need recalibration if applied to other markets that have other dynamics or different 

technological demand. 

All experiments thus far were carried out applying the SADT analysis. For product 

development, SADT can be replaced by the Morphological Matrix, Pugh Matrix, or by 

QFD. When products and processes are developed concurrently, this means that these 

methods should be applied simultaneously. 

3.5.4 Other Considerations 

In the µSD framework, three feedback processes work together, each with their 

own dynamics. This can be seen in Figure 3.1: (i) the process of design consisting of rapid 

interactions between functional system decomposition and synthesis, (ii) the iterative 

feedback that realises and compares true and targeted functionality, and (iii) the linear 

completion schedule of functional gating that progresses every time a gate closes. The 

design interactions may take place with cycles between minutes and weeks (depending 

on the hierarchical level), physical testing could take place on a scale of days to months, 

and the gating process typically advances on a monthly or quarterly basis. Functional 

gating has only influence on the latter which also is the steadiest process, but functional 

system decomposition is part of all three processes. 
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3.5.5 Opportunities for Further Improvement 

The requirements analysis that forms an important part of functional system 

decomposition was not yet optimised for the µSD framework. Expectations are that good 

requirements definition which: (i) follows decomposition, and (ii) addresses product 

design as well as manufacturing, will improve the capabilities for concurrent design of 

the µSD framework. One of the envisioned methods is the methodology of Axiomatic 

Design as developed and optimised at the Massachusetts Institute of Technology from 

the late seventies on (Suh, 1990). Axiomatic Design supports the structured 

decomposition of requirements in the functional, physical, and process domains. As such 

it can enable the µSD framework for concurrent development. 

3.6 Conclusions 

The µSD framework as proposed in this chapter may be considered successful. 

The solution forces functional system decomposition of the product design and the chosen 

manufacturing solution. Results from tested prototypes are available at an early stage. 

These results are compared with the expected results from the model of the product. And 

they arrive when the moves of the organisation are still flexible due to the fact that only 

little investments in hardware have been made. It will lead to improved flexibility to adapt 

to changes and it supports design for assembly. Functional gating was applied in three 

ways. FMEA will deliver a numerical update of the design progression every time the 

loop is completed in a way that is familiar to managers and engineers. Qualitative 

Analysis presents the quality of the design in a coded scheme. If the Maturity Grid is 

applied, it will visualise absolute status of the project and thus project progression. 

Researchers, engineers and managers may embrace a graphically oriented way of 
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presenting information. Being an intuitive way to communicate, barriers seem to fade, 

and better understanding in the organisation is attained. 
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CHAPTER 4  

‘CONCURRENT MICROSYSTEM DEVELOPMENT’ (CµSD) 

FRAMEWORK; ENHANCING THE µSD FRAMEWORK WITH 

RATIONALES FOR CONCURRENT SYSTEM DECOMPOSITION AND 

CONCURRENT GATING* 

4.1 Introduction 

The µSD framework that was introduced in Chapter 3 has proven to work for 

microsystems. A feature that really contributes to microsystem development could be 

further improved; the quality to concurrently address the product design and the required 

manufacturing technology. The concurrent approach will affect both functional system 

decomposition and functional gating. The former because decomposition would need 

integration of the manufacturing domain and the latter would need adjustment to enable 

concurrent assessment. Therefore, the Objects functional system decomposition and 

functional gating will be developed further as shown in Table 4.1. The Object 

‘Concurrent System Decomposition’, proposed in this chapter, enhances system 
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decomposition to a concurrent rationale. The same applies for the Object functional 

gating; it will be converted to a new Object ‘Concurrent Gating’ that supports the 

concurrent capability of concurrent system decomposition. The thus obtained method is 

called ‘Concurrent µSD’ (CµSD) framework and it is applied to a case for microsystem 

development. 

Table 4.1 Chapter 4 improves concurrency of the CµSD framework 

Object 
Chapters 

Functional system decomposition Functional gating 

Chapter 3 Structured Analysis Design 

Technique (SADT) in combination 

with Failure Modes and Effect 

Analysis (FMEA) 

Three different methods: 

(1) Remaining uncertainties based on the 

FMEA 

(2) Qualitative Analysis (QA) with 

unidirectional coding 

(3) Qualitative Analysis using a Maturity Grid 

(MG) with a bi-directional coding scheme 

Chapter 4 Concurrent system 

decomposition based on 

Axiomatic Design 

Concurrent gating based on the completion of 

decomposed hierarchical levels (or tested 

levels) 

Chapter 5 Same as in Chapter 4 Intelligent gating based on Information in 

Design 
 

The proposed CµSD framework also provides a rationale and guidelines on ways to 

embed it into project execution, which will be discussed as CµSD Rationale. Chapter 5 

of the thesis will contribute further to the CµSD framework with a more advanced solution 

for the gating function. In that chapter, concurrent system decomposition, is maintained 

as is. 

The chapter is organised as follows: Section 4.2 analyses the current situation and 

defines the key limitations. Section 4.3 explains the methodology of the CµSD framework 

and discusses the CµSD rationale. Section 4.4 illustrates the methodology using an 
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industrial case study in which the CµSD rationale is applied and tested. Section 4.5, 

discusses the findings and lessons learned. Finally, Section 4.6 draws conclusions. 

4.2 Analysis of the µSD Framework and Approach for improvement 

The way the feedback loop is implemented in the µSD framework, will remain 

unchanged in the CµSD framework. The problem definition that builds further on the 

problem statement of Chapter 3 will be analysed in Subsection 4.2.1. The current situation 

will be inventoried in Subsection 4.2.2, and key limitations will be defined in Subsection 

4.2.3. 

4.2.1 Problem Definition 

It is important for product designers to have knowledge of manufacturing 

technologies to oversee if their designs can or cannot be manufactured. The cost of 

manufacturing is largely determined by how solutions are implemented in the design by 

the designer e.g.: material use, manufacturing processes, and tolerances. Characteristic 

for microsystems are the small geometrical features that require higher accuracies for 

comparable shape-variation-tolerances. Small features have a dominant impact on 

manufacturing cost for microsystems because: (i) accurate equipment is more cost 

intensive than standard equipment, (ii) the number of rejected parts statistically grows 

when the limits of the manufacturing process are achieved, and (iii) small parts only 

require small amounts of material which reduces material costs, relatively emphasising 

the cost for manufacturing. The high impact of manufacturing actions on total product 

costs pleads for a concurrent approach in development. Concurrent development means 

that product and process technology (and eventual production means) are not developed 

sequentially but simultaneously. The parallel approach of products and processes enables 
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the product design to be adjusted to process technology and vice versa. In combination 

with an iterative design process, product features, that are difficult to manufacture, can 

be recognised and addressed on a short notice. Also, new opportunities for optimisation 

of the design may come available if process technology offers features that were not 

known to the designer. 

The systems engineering models that are widely applied for microsystem 

development in industry, like the Waterfall-Model and the V-Model do not address 

concurrent behaviour. Microsystem development will benefit from a method that 

combines the µSD framework with an intrinsically concurrent approach. 

A related problem is found with the process of functional gating. The concurrent 

way of working needs a concurrent gating function that assesses current state of design 

from the perspective of overall project progression; the measured progression should be 

based on advances of  the product design as well as the manufacturing processes, because 

both evolve concurrently during project execution. 

4.2.2 Current Situation 

The V-model does not support or implement concurrent design but on the other 

hand, the concurrent way of working is not excluded in the model. A closer look reveals 

that the way that the V-Model approaches the product design is actually not consistent 

during the successive stages; at the top of the left-hand leg, the V-Model starts with 

decomposition and specification of FRs that, as explained in Subsection 2.2.6, both are 

executed in the functional domain. However, as the project moves towards the right-hand 

leg, focus is on ‘realisation and testing’ that relates to the physical domain. During the 

testing stages, the focus shifts back to the functional domain because ‘Acceptance Tests’ 

are performed on functional requirements and as such take place in the functional domain. 
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Processes used for manufacturing are basically not applied in the V-Model. The reason is 

that the V-Model, finding its origin in software engineering, was not developed with 

manufacturing in mind. Due to the digital nature of software, reproduction of software is 

a digital and thus tolerant process that needs little specific attention. 

Subsection 3.3.4 explained the idea behind the gating function; decisions at the 

hierarchically higher decomposition levels need proper substantiation before moving to 

the next level. Once a gate is closed, all decisions are frozen and the project is assumed 

to never move back. Unfortunately, the process of gate-closing gives an indication of 

certainty that cannot be substantiated. Figure 4.1 shows the gates in the left-hand leg of 

the V-Modell XT (the complete overview of the V-Modell XT was shown in Figure 2.4). 

 

Figure 4.1 The gates of the left-hand leg in the V-Modell XT 

During development of the project, and thus descending in the V-Modell XT, designers 

apply their capabilities to foresee future obstacles as much as possible, but this does not 
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guarantee that the project will evolve as expected. For instance, if a project completes 

functional system decomposition at Product Level as shown in Figure 4.1, the Systems- 

and Parts Levels are not completely crystallised yet. This means that there is still 

uncertainty left in the remaining development process. As a result, there is no guarantee 

that these Systems and Parts Levels can be completed without obstacles when the gate at 

the Product Level is closed. The general idea behind the V-Modell XT is that there are 

many options to provide solutions for problems at lower levels, but there is no guarantee 

that all problems indeed can be solved. As a result, a chance remains that the project needs 

intervention at the (hierarchically higher) product level; closed gates need reopening, and 

previous choices are re-considered. This risk continues till the tip of the V is reached and 

‘Proof of Concept’ is verified by exhaustive understanding of the design (most right hand 

object in Figure 4.1). 

The bottom chart of Figure 4.1 plots the evolving chance that gates need reopening. 

Though the shape of the curve is cannot be completely substantiated without further 

investigation, it may be stated that: (i) the curve starts at a value lower than 1, (ii) it 

generally descends as knowledge of the designer increases, and (iii) it asymptotically goes 

to zero since theoretically there is always some remaining project risk left (as will be 

proven in Chapter 5). It shows that the project risk is not equal to zero and at least a small 

chance exists that gates need to be reopened. 

4.2.3 Key Limitations 

A critical limitation of the Waterfall- and V-Models is their shortcoming in 

addressing product development concurrently to the, functional, physical, and process 

domains. Instead, focus shifts between functional and physical domains, but in a 

successive manner, and not concurrently. This leads to the following drawbacks: 
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• The domains are not structurally addressed to: (i) guard functionality, (ii) guard 

the physical design, and (iii) guard process technology. Because of this, these 

domains will not be adjusted to each other; 

• It is difficult for unexperienced users to understand the way the domains change 

because it is not implemented transparently. 

Another limitation is that the Waterfall- and V-Model do not forcefully require analytic 

substantiation of functional system decomposition and functional gating. If 

decomposition is incomplete, or branches of the decomposition tree are not decoupled, 

there is no signalling function that monitors the quality of decomposition. Analogue, if 

cross domain adjustments of the design and required process technology fail, there is no 

guarantee that testing brings these shortcomings to the surface, simply because the 

process domain is not included in the model. It leads to the following drawbacks: 

• If decomposition is incomplete, testing will not take place for that particular 

functionality; 

• Even if decomposition is complete, testing may miss certain functionality because 

rigorous and exhaustive testing is laborious and costly. As a result, certain 

functionality is not evaluated and could fail in a later stage; 

• Neither Waterfall- nor V-Model address the process domain; all potential 

optimisations between the physical domain and the process domain remain unused. 

4.3 Methodology for Implementation of the CµSD Framework 

The CµSD framework maintains the iterative structure that was exposed in Chapter 3, 

however, the way functional system decomposition and functional gating are 
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implemented is upgraded to improve the capability to approach the design concurrently. 

Figure 4.2 shows the full layout of the CµSD framework as investigated in this chapter. 

 

Figure 4.2 CµSD framework 

The improvement is realised by the application of the methodology of Axiomatic Design 

(AD). Knowledge of AD is assumed; Appendix B provides necessary background 

information for reading this chapter if necessary. 
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rationale. 
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lined up with each other. Figure 4.3 shows how product planning, product design, and 

process design are positioned between the domains. 

 

Figure 4.3 Axiomatic domains and their relations 
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translated to FRs. The list of FRs is then evaluated with the customer who agrees to use 

the list as a general starting point of the project, or (ii) the customer joins the project and 

the FRs are developed as the project continues. The first option would be the option for 

the more traditionally managed projects like the Waterfall-Model and the V-Model, the 

second option is typically applied for the agile project management methods e.g., Scrum. 

For now, the traditional method is applied, later in the thesis the agile way will be 

integrated as well. 

To substantiate decomposition, the design relations of AD are applied to structure 

the completed part of the decomposition tree. Figure 4.4 shows how the design matrices 

[A] and [B] respectively represent product design and process design. 

 

Figure 4.4 Axiomatic domains and the design matrices 

A complete decoupled or uncoupled design matrix, per level of decomposition. The 

design relations, when applied correctly, provide the capability to make sure that DPs are 

satisfied by PVs, and thereafter, FRs are satisfied by DPs. The design relations may be 

decomposed conforming the functional system decomposition of the product and by 

stretching this over all three domains a true way of concurrent system decomposition is 

acquired. 
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4.3.2 CµSD Rationale for Implementation of Concurrent System Decomposition 

The decomposition kernel of the CµSD framework is shown more detailed in 

Figure 4.5. The proposed rationale applies the following steps: 

• The project starts with project brief, or any list of project-FRs. The FRs are 

decomposed in a ‘Zigzagging’ motion over the different domains, as is the typical 

procedure in AD (blue line in Figure 4.5, explained in detail in Appendix B.2). 

While doing this, the design relations are defined and the product and process 

design matrices are developed. As long as definition of the design relations is 

successful, this process is continued. However, when the procedure falters, 

because the definition of design relations is uncertain and this cannot be 

successfully analysed further, the decomposition process stops; 

 

Figure 4.5 The functional system decomposition object and the process 

of zigzagging across the domains of Axiomatic Design 
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• The second step is to plan an investigation that sorts out the particular uncertainty 

(or a number of uncertainties). The investigation should be safe-fail; whether the 

test produces a positive or a negative outcome, the outcome should be worth the 

investment; 

• Finally, the investigation will be executed by the Objects ‘Realisation’ and ‘Test’. 

The Object synthesis that was applied in the µSD framework is not explicitly 

named here, but it is still intrinsically embedded between the functional and 

physical domains of AD. The design output is represented by the DPs that are 

realised by the PVs. Therefore, the PVs are applied as enablers for realisation of 

the DPs. Via the Object test, the results are forwarded to the Object concurrent 

gating. 

4.3.3 Concurrent Gating 

Concurrent gating in the CµSD framework implemented as an enhanced version 

of gating in the V-Modell XT (Figure 4.6). It also applies AD as a basis whereby 

decomposition and gating work together. AD is applied to substantiate the gating stages 

as implemented in the V-Modell XT; It applies the Independence and Information 

Axioms and the hierarchical layers of the decomposition tree (Figure 4.6). It serves as a 

guideline to the designer to agree on preconditions that are clear and measurable. 
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Figure 4.6 Gating function of the V-Modell XT 

The Axioms are embedded in the gating function of the V-Modell XT as follows. The 
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defined decomposition tree, and (ii) all specifications known in detail. If the last gate of 

the left-hand leg is closed, the structure of the design should be completely known and 

understood. In terms of AD this means that the design relations are known, the design is 

uncoupled or decoupled, and the Independence Axiom is satisfied. The right-hand leg of 

the V-Modell XT assesses the quality of the design to see if the structure is robust. If 

testing is successfully completed, by passing the ‘Factory and Site Acceptance Tests’, the 

design may be considered fully robust. In terms of AD this means that both the 

Independence and the Information Axioms are satisfied. Not only the design relations are 

known, but they are also intrinsically and statistically robust. 
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Table 4.2 Overview of design phases of V-Modell XT, AD, and 

Dynamics of Divergence and Convergence 

Phase 

Models 

Exploration Conceptual Robustness 

V-Modell XT 

(Höhn et al., 2008) 

Project acquisition and 

definition 

Left-hand leg 

Decomposition and 

Specification 

Right-hand leg 

Realisation and Test 

Verification & Validation 

Axiomatic Design 

(Suh, 1990) 

Complexity Axiom may 

be used 

Satisfy Independence 

Axiom 

(Focus on Structure) 

Satisfy Information Axiom 

(Focus on Robustness) 

The Dynamics of 

Divergence and 

Convergence 

(Banathy, 1996) 

The Image of the Future 

System 

The Model of the Future 

System 

Not Applicable 

 

Banathy’s model shows the explorative phase and the conceptual phase. The V-Modell 

XT and AD shown the relative position of the conceptual and robustness phases within 

the whole development process. The explorative phase is not so well defined in the V-

Modell XT nor AD. Therefore, only the last two phases, conceptual and robustness, will 

be implemented for concurrent gating. 
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4.3.4 CµSD Rationale for Implementation of Concurrent Gating 

Figure 4.7 shows a close up of the way gating is executed and how AD is 

implemented. The upper row shows the implementation of gating in the V-Modell XT 

and the lower row shows the way this is expanded to AD. 

 

Figure 4.7 Overview of the eight index stages 

The gating stages of the V-Modell XT are substantiated by the definition of a measure 

that can be quantified using AD. The numbers count the number of stages till the end. 

The Independence Axiom is satisfied at stage 4 and the Information Axiom at stage 0. 

Hierarchy is applied in four steps to add more detail to each axiom. 
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The procedure of concurrent gating is as follows: 

• The first step is to compare the testing results with the functional reference of the 

model of the system. The last hierarchical level that was successfully addressed 

by the zigzagging process, determines the number of gates that may be closed. 

This is measured by: (i) successful decomposition, and (ii) successful definition 

of the design relations; 

• If possible, the next gate is closed; 

• After readjusting the number of closed gates, the feedback loop is closed and the 

decomposition/synthesis continues from where is was stranded. 

The procedure of zigzagging is applied downward in the first four stages till proof of 

principle is reached. In the second half of the concurrent gating, the direction of 

zigzagging is reversed from bottom to top. In these four stages, it characterises till what 

level the system is robust. This second way of zigzagging is referred to as reversed 

zigzagging. 

4.3.5 How the CµSD Framework Addresses the Key Limitations  

The CµSD framework, combined with elements of AD, addresses the 

aforementioned limitations by providing the following capabilities: (i) concurrency is 

structurally applied by implementation of the domains of AD, and (ii) decomposition is 

substantiated by structured application of the design rules of AD. The former provides 

the capabilities that: 

• All domains are addressed during every iteration; 

• The domains are addressed successively, starting with FRs and followed by DPs 

and PVs, but since this is repeated every iteration, domains are addressed in 
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parallel. As such, the domains are well adjusted to each other before the next level 

of decomposition (the next management level) starts; 

•  The implementation is transparent, which will be exposed in more detail in the 

next Subsection. 

Substantiation of decomposition and gating using AD takes care of: 

• These processes are now based on design relations. Design relations require the 

designer to understand the design; 

• The understanding that is required to define these relations, increases the certainty 

that all aspects of the design are recognised. Al recognised design relations need 

to pass testing successfully to close gates. 

4.4 Case Study: Development of an Inkjet Printing Head and 

Reconfigurable Manufacturing System 

The case concerns the development of a new inkjet printing system for industrial 

applications. The client has a long record on printing technologies but, due to 

technologically driven changes in his market, the intention is to address a new market 

segment. This is the market segment of ’Sign and Display’ printing. Sign and display 

printing is characterised by a large variety in printable materials e.g.: paper, polyester, 

foamboard, cardboard, and even wood. The client has identified what is needed to 

approach the market. A first analysis is shown in AD style in Figure 4.8 (the domains are 

represented in vertical direction). 
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Figure 4.8 Initial analysis of the baseline of the customer 

The project is ambitious; not only the market segment is new but also the proposed 

technology. Therefore, the goal is to find project partners that are willing to participate in 

the project, as well financially as with their technological expertise. Three partners and 

one customer were found: (i) a company that produces inkjet print heads, (ii) a 

mechatronics company aiming to build the printer engine, (iii) a control software 

company, and finally (iv) a launching customer willing to purchase a number of systems 

with reservation that a basic specification is realised. Figure 4.9 shows the project design 

with attributes CA1.1, CA1.2, and CA1.3 all outsourced to different partners. This case 

follows the project through its decomposition stages. To keep the case manageable in this 

paper, the focus is restricted to the accuracy of the inkjet print head (grey parts are not 

further decomposed). Figure 4.9 shows gates 7 to 4 of concurrent gating and the 

important design relations. Figure 4.10 shows gates 3 to 0 and explains how the design 

relations were validated by producing pilot series of products. 
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Figure 4.9 Concurrent System Decomposition and gates 7 to 4 of functional gating 
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The client organised many sessions with the targeted partners, initially 
1:1 and later as group. ‘LoI’s were signed by partners.
What the client learned:
- His ideas about a printer that adequately performs in the targeted 
market segment seemed realistic;
- Cost prognoses are within the initially estimated budget;
- Inkjet printing is very suitable for a large variety of printable materials 
due to the low interaction of the receiving materials;
- Partners and subcontractors were ‘tested’ for eagerness and 
capability (does the client dare to start this project with them);
- A joint vision what the product looks like.
What the partners learned:
- Do I trust this client, is he professional, what is his liquidity;
- What is my role in the project and are the interactions with the client 
and other parties oversee able;
- What does it bring me (turnover, knowledge, relations).

At the product level are CA1.1, CA1.2, & CA1.3 
accommodated with the three partners. 
Discussion arised about the interactions between 
the deliverables., e.g. imaging (position accuracy 
of the dots) is dependent of the engine and the 
engine is in its turn dependent of the control 
software. AD wss applied to chart this:

Since this is a decoupled matrix, agreements are 
made about the order of optimisation (Software, 
hardware, inkjet heads). These agreements are 
confirmed in the project contracts.
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Figure 4.10 Validating product and RMS by going through gates 3 to 0  

Varying the process windows was 
applied to make the project robust in 
stage 5. First, the DPs were varied within 
their tolerances and the effect on 
satisfaction of the FRs was studied. 
Example: during stage B, a test setup  
for bonding nozzle plates was 
developed. The quality of the bond 
proces could be consciously reduced 
and the effect on the FRs investigated. 
This gave the DP-FR tolerance relation. 
By producing small batches of 25 pcs, 
the tolerances on the production process 
could be evaluated which gives the 
relation between PV and DP and as such 
completes the reverse zigzagging 
process. Similar procedures were 
applied for all important processes.

One hierarchical step higher, at stage 6, 
the first production systems were 
integrated. This enabled increase of the 
batches for testing the system. batches 
of 10-12 products could be produced 
twice per hour. This did not only enable 
pilot production of print heads for testing 
the system, it also gave feedback about 
realised quality of the processes.

Test setup to  
verify the positi-

oning process for 
nozzle plate 

bonding was used 
to make a series 

of ink jet heads to 
get the statistical 

information about 
the process

     

After integration, 
the production 

numbers of the 
test series 

numbers were 
increased using 

the automated 
equipment for the 

final manufac-
turing process

The printing system was going to be 
integrated at the site of one of the 
partners. The production equipment 
for the inkjet print heads was gathered 
at a shared production facility on 
another location over 2000km away. 
After the site acceptance tests (SAT), 
all equipment was shipped to the 
respective locations for integration of 
the printing system or manufacturing 
of the inkjet print heads.

The communicative dynamics of stage 
D are of a different nature than that of 
stage B & C. The communication has 
changed from high certainty 
discussion to organisational with lots 
of little uncertainties.
The pressure for technological 
functionality remained high with the 
factory acceptance tests coming. With 
the FAT, all interactions were tested. 
Though some delays were caused, 
the many iterations during 
development had revealed many 
problems before they could escalate; it 
has prevented major disappointments.

Equipment  that 
was made by one 
of the contractors 

is shipped after 
the SAT to the 

shared production 
facility   

At the shared 
production facility 

all equipment is 
installed and 
tested again 
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4.5 Discussion 

The development case for an inkjet system for sign and display printing was 

considered to benefit from concurrent system decomposition and concurrent gating. The 

question arises what would have been the result if another method had been applied. 

Processes for industrialisation of microsystems are diverse and involve large investments. 

This makes objective reference expensive and heterogeneous. 

4.5.1 Strengths of the Method for Indexing the Development Process 

concurrent system decomposition successfully applies AD to enhance the CµSD 

framework. The use of design relations forces the designer to organise the product design 

and the required process technology, simultaneously combining the domains at the 

respective layers of decomposition. Zigzagging is applied to bring structure in this 

process; it ensures that requirements are tested in the most optimal order. The procedure 

continuously enables focus on the right layers and domains as the project evolves. New 

is the process of reversed zigzagging. It not only changes the direction of the zigzagging 

process from bottom to top but also reverses the order through the domains form CA-FR-

DP-PV to PV-DP-FR-CA.  

The application of AD supports concurrent gating for two reasons: (i) zigzagging 

applies the right order in which the tests are performed, and (ii) the design matrices 

provide the right criteria for testing as the design matrices force the designers to organise 

CAs, FRs, DPs, and PVs. 

4.5.2 Weaknesses of the Method for Indexing the Development Process 

The linearity of the CµSD framework, during the conceptual phase with this 

implementation of functional gating, may disappoint as much as it does in the V-Model. 



118 
 

It is because the designer is prioritising his work by the magnitude of the remaining risks; 

when a system is decomposed, the risk at any higher level is the aggregate of all risks at 

all lower levels. This means that when the last risk at the lowest level is reduced, all four 

gates may be closed straight after each other in succession. In practice, it seems less of a 

problem due to eased circumstances; uncertainties of many problems at a lower level may 

be estimated reliably without knowing them in detail yet. This is the case e.g.: (i) when a 

similar problem was solved in the past, (ii) when there is a variety of good solutions to 

address a particular problem, or (iii) commercial off the shelf parts are applied. Anyway, 

it is not realistic to suppose that the gating function is linear. 

4.5.3 Limitations of the Method for Indexing the Development Process 

It is still a point of discussion how rigid gating should be. The basic 

implementation of the Waterfall-Model dictates that the next stage should be started only 

when its preceding stage is reviewed and verified. This is one of the features that was 

criticised by Royce in his marked paper (Royce, 1970). It means that the scope of the 

designer is not far ahead to what’s coming. Not looking forward is like an ostrich burying 

its head in the sand, and in particular during the conceptual phase (gates 7 to 4), it gives 

risks free rein to surprise the designer. It is unwanted because it increases the chances that 

closed gates need reopening. It seems better to allow designers to look ahead but force 

their focus to the largest remaining problem of the project (better explain to the designer 

what should be prioritised than to tell him what not to do). 

Moving from one of the gates 3 to 0 backwards to the conceptual gates 7 to 4 is 

unwanted and should be prevented. In these cases, something has gone seriously wrong 

and work may be lost as the conceptual design will need reconsiderations. This problem 

increases with the hierarchical level of the project in which it takes place (from gate 3 to 
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4 if something is wrong with parts development, is less problematic than correcting a 

systems function that causes a fall-back from gate 2 to 5). Failing the FAT or SAT is 

usually disastrous; it will almost certainly lead to substantial actions for correction in the 

project and cause according delays. 

4.5.4 Opportunities for Further Improvement 

In the conceptual phase, boundaries are not stationary, but are influenced by 

internal and external occurrences. As a result, the project and its targets may change while 

it is under development. Together with the risk of non-linearity of concurrent gating, the 

gating function could use a further upgrade to make it more robust for these influences. 

The AD methodology was expanded with a ‘Theory of Complexity’ in 1999 (Suh, 1999; 

2005b). This theory of AD could provide a solution for gating of the conceptual phase. 

This will be investigated in the next chapter. 

4.6 Conclusions 

The CµSD framework combines some of the best features of the V-Modell XT 

and Axiomatic Design; it addresses a number of the shortcomings of the V-Model but 

also applies strengths of the V-Modell XT to the Axiomatic Design methodology. As 

such it tries to combine the best of both worlds. The principle of Reversed Zigzagging is 

introduced to structure the testing procedure of the project. The method was applied to an 

industrial case; the development of an inkjet printing system. Though the result was 

generally positive, it also revealed room for further optimisations. Mainly the linearity of 

the conceptual phases and its gate function may be improved. 
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CHAPTER 5  

APPLICATION OF INFORMATION AND COMPLEXITY IN 

AXIOMATIC DESIGN TO ENHANCE FUNCTIONAL GATING IN THE 

CµSD FRAMEWORK* 

5.1 Introduction 

The µSD framework, introduced in Chapter 3, was upgraded to the CµSD 

framework in Chapter 4 by adding functionality to support the concurrent nature of 

microsystem development. Both functional system decomposition and functional gating 

were enhanced using AD to determine project progression based on the capability of 

modelling the product and process design relations. 

In this chapter, concurrent gating will be further enhanced by implementation of 

a measure that is not only based on ‘what was achieved so far in the project’, like 

successful decomposition and specification efforts, but also looks ahead at the ‘remaining 

                                                

 

 

 

 

* Parts of this chapter were published in: 

Puik, E. C. N., & Ceglarek, D. (2014). A Review on Information in Design. Presented at the 8th International Conference on 

Axiomatic Design ICAD2014, Lisboa, (Puik & Ceglarek, 2014a). 

Puik, E. C. N., & Ceglarek, D. (2015). Axiomatic Product Design in Three Stages; A Constituent Roadmap that Visualises the Status 

of the Design Process by Tracking the Knowledge of the Designer, Presented at the ASME IMECE2015, Houston, (Puik & 

Ceglarek, 2015a). 

Puik, E. C. N., & Ceglarek, D. (2016). A Different Consideration on Information and Complexity in Axiomatic Design. In N. P. Suh 

& A. M. Farid (Eds.), Axiomatic Design in Large Systems: Complex Products, Buildings Manufacturing Systems (1st ed.), (Puik & 

Ceglarek, 2016). 
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uncertainties in the project’. The goal is to make the gating process weighted and 

knowledge based, compared to closing gates with the uncertainty of reopening them in a 

later stage. This is called ‘Intelligent Gating’ (Table 5.1). Intelligent gating is 

implemented by application of ‘Information in Design’, based on the information theory 

of Shannon and Weaver, the same theory that is applied for information in the Information 

Axiom. Unfortunately, the information theory cannot be applied without further notice. 

In the current definition, information is only related to robustness and not to the 

conceptual stage of design. Therefore, it is investigated if it can be adapted for application 

over the total breadth of the CµSD framework. 

Table 5.1 Chapter 5 adds intelligent gating to the CµSD framework 

Object 
Chapters 

Functional system decomposition Functional gating 

Chapter 3 Structured Analysis Design 

Technique (SADT) in combination 

with Failure Modes and Effect 

Analysis (FMEA) 

Three different methods: 

(1) Remaining uncertainties based on the 

FMEA 

(2) Qualitative Analysis (QA) with 

unidirectional coding 

(3) Qualitative Analysis using a Maturity 

Grid (MG) with a bi-directional coding 

scheme 

Chapter 4 Concurrent system decomposition 

based on Axiomatic Design 

Concurrent gating based on the completion 

of decomposed hierarchical levels (or 

tested levels) 

Chapter 5 Same as in Chapter 4 Intelligent gating based on Information in 

Design 
 

The chapter is organised as follows: Section 5.2 analyses how the mentioned 

theories can contribute to intelligent gating of the CµSD framework, and what the key 

issues are that prevent application. Section 5.3 will demonstrate that it indeed is possible 

to apply Information in Design as a measure for intelligent gating. Section 5.4 implements 

intelligent gating by decomposition of ‘Total Information’ of AD. Section 5.5 
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investigates how some specific elements of information could be addressed. Section 5.6, 

discusses the findings and lessons learned. Finally, Section 5.7 draws conclusions. 

5.2 Analysis & Approach 

5.2.1 Problem Statement 

Though functionality of the CµSD framework was significantly enhanced by a 

concurrent approach of decomposition and gating, concurrent gating still has a number 

of shortcomings. The method could suffer from non-linearity, as was explained in the 

discussion of the last chapter. This non-linearity causes gates 7 to 4 (Figure 4.7) to be 

closed quickly after each other when final zigzagging secures ‘proof of concept’. Ideally, 

the gating function would be linear and continuous. 

The principle of gating aims to define development stages in terms of its outputs, 

and the outputs of each stage represent the points along the development path. The current 

stage establishes the definition of the next one as a basis for further derived definitions 

(Rook, 1986). Therefore, if gates are reopened, the foundation of a larger set of derived 

stages is affected, and because of this, a lot of rework may be needed. However, an ideal 

gating method would register the consequences of such a change. These consequences 

could be inventoried and weighted against alternative options available to the designer. 

In this case, it would be possible to make an informed decision about reopening of a gate. 

This provides more flexibility in the decision-making process than simply restrict 

reopening of gates. 
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5.2.2 Current Situation 

The last chapter demonstrated how the axioms in AD could be applied for 

concurrent gating. In principle, there are only two axioms, the Independence Axiom and 

the Information Axiom, typically satisfied in that order. This means that there are only 

three clearly defined statuses to be recognised for the design: (i) no axioms satisfied, (ii) 

only the Independence Axiom satisfied, or (iii) both axioms satisfied. Though the 

conceptual and robustness phases can be gated by application of the axioms in AD 

(respective satisfaction of the Independence and Information Axioms), a number of three 

stages does not provide sufficient resolving power for a gating function that can be 

applied to measure project progression. Therefore, the state of decomposition of the 

product design, and derived design relations, were used in Chapter 4 to increase the 

resolving power up to a number of eight stages. The decomposition tree is a good means 

to investigate which systems and parts of the design are affected if gates are reopened, 

however if design fallacies need to be corrected, it does not indicate what the 

consequences are in terms of uncertainties and extra work. For instance, if a gated project 

decision requires new systems to be developed from scratch, which later appears cause a 

lot of project uncertainties, the designer’s initial focus will be on addressing the 

uncertainties. If gates could be interpreted softer, like a guideline instead of a binding 

instruction, the designer’s perception would be open for alternative options that may be 

better for the project as a whole, e.g.: an overseeable change of a gated project decision 

could provide the opportunity to apply more proven technology. In Rook’s influential 

paper, in which he proposes the V-Model, he mentions that exploration of the next stage 

is usually required before the current stage can be completed, and that new understandings 

may overrule old ones as the knowledge of the designer increases during the development 
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project. Unfortunately, in practice, managers tend to be reluctant in reopening gates 

(Anitha et al., 2013). 

5.2.3 Key Limitations 

The critical shortcomings of functional gating are: 

• Gating based on the level of decomposition is not very linear. Errors that are found 

in the later stages of design may need reconsideration at higher levels of 

decomposition. Closing gates may provide an unjustified sense of security; 

• Gating is not based on true uncertainties in design, but on the level of 

decomposition in design, that may be unverified; 

• Gates are often implemented with Boolean nature; this excludes many alternative 

solutions that could be integrally more efficient for the project. 

5.3 Methodology to Implement Intelligent Gating to the CµSD 

Framework 

As it is difficult to derive measures of uncertainty from the level of decomposition 

of design, another directive should be found that has better capability to determine the 

success rate of a microsystem development project. Ideally, it would allow for keeping 

gates open till alternatives can be explored by weighting the uncertainties of the options. 

As explained in the introduction, this way of gating is named intelligent gating. The word 

‘intelligent’ is used because the process of closing gates has an inversed relation to 

remaining uncertainties in the design. Though the axioms in AD in principle are suitable 

for such a gating process, as shown in Chapter 4, it does not provide the targeted 

continuous measure. Instead, the decoupling process of the design matrix seems to have 

a Boolean character; it is decoupled or not (uncoupled being a special state of decoupling). 
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However, as the targeted condition indeed is Boolean, the process of decoupling advances 

gradually from ‘many design relations coupled’ via ‘few design relations coupled’ to 

‘decoupled’. If the process of decoupling may be considered to have a continuous, 

analogue course it would enable continuous monitoring of development progression in 

the conceptual phase of design. However, it needs investigation if ‘the state of 

independence of the design’ may be considered as a continuous index. 

The solution, as proposed here, is based on ‘Information in Design’. Information 

in design is related to information in the communications theory as defined by Shannon 

(Shannon, 1948). An attempt to apply information in design, as a measure of 

independence of the design, was not made before. To do so, the definition of Information 

in AD needs to be extended. 

Subsection 5.3.1 brings existing kinds of information within AD together from 

literature. Subsection 5.3.2 demonstrates that ‘Useful Information in AD’ is responsible 

for satisfaction of the FRs. Subsection 5.3.3 demonstrates that information as a measure 

indeed can be applied to monitor the independence of the design. Finally, Subsection 

5.3.4 explains how the key limitations, as inventoried in the previous section can be 

addressed by this method. 

5.3.1 Current Status on Information in AD 

Information in AD is derived from the information theory using a measure of 

‘Boltzmann Entropy’ according to Shannon & Weaver (Shannon & Weaver, 1949; Suh, 

1990). In this definition, Information is related to chaos in the design; a well-structured 

and understood design contains little information, therefore a chaotic and poorly 

understood design will have a large information content. Information uses a logarithmic 

representation as introduced by Hartley to make information additive instead of 
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multiplicative (Hartley, 1928). According to the information theory, information is 

inversely related to the probability of success of a goal being met. In AD, the goal is met 

when DPs are causing FRs and constraints to be within tolerances.  

The total amount of information in a design is called ‘Total Information’. Total 

Information was split into two parts, ‘Useful’ and ‘Superfluous’ information (Suh, 1990). 

Useful information relates solely to the satisfaction of particular tasks. These tasks are 

specified in terms of the FRs and constraints. Superfluous information does not affect the 

relation between DPs and FRs. As information is additive due to the logarithmic function, 

the following breakdown of total information can be made (Figure 5.1). 

 

Figure 5.1 Breakdown of total information 

Every product design in progress will have an ‘Information Content’. The information 

content is a measure of the probability of success of achieving the specified FRs (Suh, 

1990). The probability of success is obtained by considering all FRs to be satisfied in 

their mapping to DPs. Then, the joint information content is determined by taking the 

sum of all individual ‘Informations’. The result gives the information content of the 

design. The Information Axiom dictates that the information content of a system should 

be minimised, and thus maximising the probability of FRs to be satisfied. This means for 

the information breakdown of Figure 5.1 that superfluous information is no information 

Total Information

Does it affect the relation
FR-DP-PV?

No                Yes

Useful
Information

Relevant for
functional behaviour

Superfluous
Information

Not relevant for
functional behaviour
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from the axiomatic perspective and may be ignored. On the other hand, useful information 

indeed must be properly eliminated from the design because elimination of useful 

information from the design is a prerequisite to satisfy all FRs. 

5.3.2 Elimination of Useful Information from a Design 

As elimination of useful information leads to satisfaction of FRs, the question is 

how this can be achieved. A first and most straightforward hypothesis would be to assume 

that useful information could be eliminated by satisfaction of the Information Axiom. 

Statement: Elimination of useful information cannot be guaranteed by satisfaction of the 

Information Axiom alone. 

Proof: According to good-AD-practice, the information content of a design can be 

calculated with (Suh, 1990) 

! = 	$%&
'(')*+	,-.&*
/%++%.	,-.&*

																																																																																																																																																							(5.1) 

and if it concerns multiple FRs, the different information contents should be summarised. 

Satisfaction of the Information Axiom can only take place if all system ranges are within 

the common ranges (Suh, 1990; ElMaraghy et al., 2012). However, this does not satisfy 

the Independence Axiom; the design needs to be independent too. With only addressing 

the Information Axiom, the design could therefore still be a coupled design, and some 

FRs may not be satisfied. If there are unsatisfied FRs, useful information is not completely 

eliminated; the statement is true. Elimination of information in design as addressed by 

the Information Axiom will cause a design to be robust by guaranteeing overlap between 

system and common ranges, but it does not guarantee independence of design. 
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This investigation leads to understanding that useful information cannot be 

eliminated by satisfaction of the Information Axiom alone. This implies that a certain part 

of useful information is addressed by the Independence Axiom and that this axiom indeed 

is related to information. The question arises what kind of information this is. 

In the books about AD (Suh, 1990; 2001; 2005b), the Independence Axiom was 

never associated with information according to Boltzmann entropy, neither was 

imaginary complexity. However, imaginary complexity was considered to have a 

stochastic nature for some problems (Suh, 1999; 2005b). Further, the book about 

complexity shows a number of examples that are clearly explaining how knowledge of 

the designer is related to the quality of design outcomes. One example is a case where the 

designer does not realise that the design is a good design with a decoupled matrix. The 

designer uses trial and error to test many different sequences of DPs to satisfy the FRs, 

needing to test n! sequences, thinking that the design is quite complex. This situation 

describes exactly the characteristic behaviour of Boltzmann entropy in a design. 

5.3.3 Information Related to the Independence Axiom 

The question is if the Independence Axiom is related to Boltzmann entropy and if 

this is the case, how it is embedded. 

Statement 2: The Independence Axiom is related to Boltzmann entropy. 

Proof statement 2: The information theory of Shannon and Weaver states that 

information is ‘related to the number of alternatives that remain possible to a physical 

system’ (Shannon & Weaver, 1949). The ‘number of alternatives’ indicates that the 

current design is not fully restricted within its delineated boundaries. Further, Weaver 

explains, ‘information does not relate to what the design is as much as what the design 
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could be’. In an incomplete design, many alternatives in which the design can manifest 

itself are still open. Only a certain amount of these alternatives lead to satisfaction of FRs. 

The other alternatives lead to unsatisfied FRs. For an ignorant designer, this process has 

a stochastic nature; it increases Boltzmann entropy and as a result also information in 

design. Therefore, not only a lack of robustness causes information in design, but also 

every lack of boundaries that are needed to restrict the system to operate correctly. 

Example 1: In a fully robust system, the Information Axiom is satisfied because the 

system ranges match the common ranges. If the designer lacks understanding of the 

design, and hereby the design matrix is coupled, he will be surprised of the inexplicable 

system behaviour when he tries to set up the system. To the designer, the system seems 

to operate randomly until he gains knowledge of the system. What first appeared random, 

shows to behave in a structured manner, but only after acquisition of the appropriate 

knowledge. 

Example 2: A designer overlooks a DP during the design process and as a result he 

assumes that the design matrix is decoupled conforming good-AD-practice. In a later 

stage this DP, that should have been properly ‘fixed’, appears to drift away from its initial 

value. The drifting DP may cause coupling of the design matrix and randomly deprives 

satisfaction of the FRs. 

Explanation: The statement claims that information is not solely restricted to the 

Information Axiom. Example 1 explains that the dissatisfaction of the Independence 

Axiom may introduce features with a stochastic nature and therefore it also deals with 

information in design. This information is related to missing structure of the design that 

is a requisite to make a design independent. Gell-Mann & Lloyd call this missing structure 
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a ‘lack of regularities in the system’. The lack of regularities increases entropy in the 

system and ‘the smaller the entropy, the less spread there will be among the entities that 

follow these regularities’ (Gell-Mann & Lloyd, 1996). A lack of regularities in the design 

will increase its chaotic behaviour and thus increase information. The definition of well-

chosen FRs, the process of selecting matching DPs, decoupling the relations between FRs 

and DPs, making sure that all DPs are relevant, and ensuring that all relevant DPs are 

known, are all regularities that contribute to a more predictable behaviour of the design 

and hence they eliminate information from the design. 

Example 1 and 2 can be clarified further by experiments that were described by 

Shannon and Brillouin (Shannon, 1948; Brillouin & Gottschalk, 1962). This experiment 

studies the transfer of a message in the English language over a telegraph line. The total 

character set exists of 26 characters of the alphabet and a space between words. Initially, 

the transfer per character is studied when no a priori knowledge of the English alphabet 

is present. The information content for all characters is the same and is calculated at 4.76 

bits. This number can be roughly confirmed when realising that five bits of information 

give a total of 25 = 32 combinations; so, a total of 27 combinations are expected to come 

just under five bits. For the second experiment, knowledge is made available that the a 

priori probability of occurrence of the characters in the English language is not equally 

distributed; e.g. the space and the character ‘E’ appear more frequently than others. 

Availability of this knowledge reduces the total information needed to transfer characters. 

Reconstruction of a corrupted message can be performed on a basis of statistical 

knowledge of the English character distribution instead of mere coincidence, thus 

increasing the chance on a successful outcome. The information per character indeed 

appears to be lower and is determined to be 4.03 bits. For the third experiment, the 
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knowledge of the English words and grammar is made available to the receiving end. 

This knowledge helps rejecting unsuccessfully reconstructed messages and in this way 

further increasing the chances on a successful reconstruction of the message. Depending 

on the situation, the actual amount of information is estimated to be between one and two 

bits. This example clarifies that every type of knowledge based condition, imposed on the 

possible freedom of choice, immediately results in a decrease of information. The same 

applies to the synthesis of a product design where every definition of an FR and its DP 

limits the possible variation of the behaviour of the system and thus reduces information 

or entropy in the design. Adding regularities in a design decreases information; it 

quantifies the extent to which an entity is taken to be regular, non-random, and hence 

predictable. For AD, this is not only limited to the Information Axiom since the 

description of rule-based features for the ‘Structure of the Design’ also adds-up to the 

predictability of the product design and therefore also reduces information. Finally, 

decoupling of the design matrix is a process that eliminates wrong outcomes in a 

structured manner. The remaining stochastic process has no other options than to operate 

within the remaining boundaries of the system. In a good design, all remaining boundaries 

lead to a successful outcome and thus satisfaction of FRs. 

5.3.4 How Intelligent Gating Addresses the Key Limitations  

Uncertainty in design can be expressed by information in design as a measure. 

This is as well the case for the Independence Axiom as the Information Axiom. 

Information in design is additive; the uncertainties of multiple issues in the design may 

be added to a score. This score represents the total amount of remaining uncertainties in 

the design. It can be applied to compare alternative solutions for design problems and 

selecting the ones that give the best chances to satisfy the FRs. The application of 
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information in design could address the key issues that were inventoried in Subsection 

5.2.3: 

• Due to the additive nature of information in design, it may be expected to be at 

least reasonably linear; 

• If functional gating can be based on information in design, it is also based on 

uncertainties in design; 

• Since information can have any value from 0+ to ¥, it can be applied as a 

continuous measure. 

In the next section, information is decomposed further to make it applicable for intelligent 

gating. 

5.4 Total Decomposition of Information 

This section decomposes information in AD according to the analysis of the 

former paragraph. Subsection 5.4.1 starts with useful information since this is the highest 

kind of information relevant for satisfaction of the FRs. It also defines a new kind of 

information that is related to the Independence Axiom and it renames the current 

definition of information in AD to prevent confusion. Subsection 5.4.2 completes the 

decomposition and defines two sub-kinds of information in design. Section 5.4.3 

summarises the expanded definition of information in design. 

5.4.1 Decomposition of Useful Information 

The reasoning that information is in principle related to both the Independence 

Axiom and the Information Axiom makes useful information the aggregate of these kinds 

of information conforming 
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!56789: = !;7:<=7>	=?	@AB?C	D + !;7:<=7>	=?	@AB?C	F																																																																																																																		(5. 2) 

where both kinds of information are the result of irregularities in the design; the 

Independence Axiom dealing with the structure of the design, and the Information Axiom 

dealing with robustness in the design. The information related to the Independence Axiom 

disappears when the design matrix is decoupled and the information related to the 

Information Axiom disappears when a design becomes robust. As a result, useful 

information measures the lack of total regularities and therefore the ‘Ignorance of the 

designer’; this is exactly according to the conclusion of Gell-Mann & Lloyd, which leads 

to the following equation 

!56789: = !HIJ76BKL7M																																																																																																																																																																	(5. 3) 

where IGNDesigner is the total ignorance of the designer under proviso that there was enough 

time to apply the designer’s knowledge to the design. As indicated in Equation (5.2), IRelated 

to Axiom 1 is a different kind of information as defined for the Information Axiom in AD. 

Consequently, a new definition is needed to differentiate these two kinds of information.  

Definition 1: The information caused by the irregularities in the structure of the design is 

called ‘Unorganised Information’ since it only exists when the design matrix has not yet 

been organised. Unorganised information is information that resides in the system 

because not all FRs, DPs and PVs are known and/or the design matrix is not uncoupled 

or decoupled. 

Definition 2: The information that is related to robustness of the design, which is 

traditionally indicated by the Information Axiom in AD, is further referred to as 

‘Axiomatic Information’ (IRelated to Axiom 2). 
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The breakdown of total information as shown in Figure 5.1 can be expanded by applying 

this definition and is shown in Figure 5.2. 

 

Figure 5.2 Expanded breakdown of total information 

Unorganised information is determined by organisation of FRs and DPs in the design 

matrix and their decoupling but it has no impact on the common range of the system, they 

are situated at the same hierarchical level. 

5.4.2 Decomposition of Unorganised Information 

If a design matrix is properly developed, hence, all FRs and DPs are known and 

decoupled, only axiomatic information is left in the system. Axiomatic information 

typically gives feedback to the designer about his lacking knowledge. If a system range 

does not satisfy the design range, the designer will notice that a particular FR is 

unsatisfied. The designer will also know what DPs are responsible for the problem 

because of his understanding of the design matrix. This is not the case for unorganised 

information; lacking knowledge does not automatically come to the surface and 

information may remain hidden. The first example of Subsection 5.3.3 shows a situation 
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in which the designer does know that he is missing knowledge to set up the system. In 

this case, a design shows inexplicable system behaviour to the designer, which warns the 

designer that he does not yet fully understand the design. The second example shows a 

different case. The designer misses a DP, but is not aware of this problem. His lacking 

knowledge is essential to prevent malfunction in the future, when changing circumstances 

that are not clear to the designer enable the DP to cause problems. Missing knowledge 

hinders the designer to make the right choices for the essential regularities in a design and 

therefore, unorganised information may manifest itself in at two different appearances; 

‘Unrecognised’ and ‘Recognised’. 

Definition 3: ‘Unrecognised Information’ is a part of unorganised information that is not 

recognised by the designer and therefore remains hidden in the system. It is addressed by 

finding the right FRs, DPs, and PVs. 

Definition 4: ‘Recognised Information’ is the part of unorganised information that is 

recognised by the designer but, as the knowledge to address the problem is lacking, it 

cannot yet be eliminated from the design. It is addressed by preparation of the design 

matrix and decoupling it. 

The next paragraph will give an overview of all kinds of information that are 

covered in this chapter. 

5.4.3 Overview of Information in Design 

This chapter has explained seven kinds of information. An overview of these 

different kinds of information are shown in Figure 5.3: 
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• Total information; the total information content of the design (full entropy of the 

design); 

• Superfluous information; information that does not affect the relation between 

FRs and DPs; 

• Useful information; the part of total information that affects the relation between 

FRs and DPs; 

• Axiomatic information; the part of useful information due to a discrepancy in 

design ranges and system ranges according to the original definition of 

information for the Information Axiom; 

• Unorganised information; a specific kind of useful information that is caused by 

insufficient relational regularities of the design (FRs and DPs). Unorganised 

information is related to the Independence Axiom; 

• Unrecognised information; a specific kind of unorganised information that is not 

recognised by the designer and therefore remains unaddressed; 

• Recognised information; a specific kind of unorganised information that is 

recognised by the designer but the knowledge to address the problem in an 

appropriate manner is lacking. 
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Figure 5.3 Final breakdown of total information 

Figure 5.3 completes the break-down of information in AD. A number of three kinds of 

information should be addressed to ensure a good design: 

• Unrecognised information should be addressed by completion of the design 

relations and decoupling as complete understanding of the design relations leaves 

no room for ignorance of the designer. Once unrecognised information is 

recognised, it instantly changes to recognised information; 

• Recognised information is known to the designer and should be addressed 

conforming good-AD-practice; 

• Axiomatic information is eliminated by matching the system and the design ranges. 
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5.5 Application of Information in Design for Intelligent Gating 

The former section has determined three kinds of information in design that 

together cover the whole development process. These kinds of information have a 

continuous character. The next step is to build an object for the CµSD framework that 

provides in project monitoring and implements intelligent gating in a way that is: (i) 

continuous, (ii) uncertainty based, (iii) linear, and (iv) concurrent. 

The application of information in design has impact on the way the project is 

monitored. This impact changes the way gating is implemented in the project. So far, 

gating was based on the status of the parts of the design that were decomposed and 

understood by the designer. The order in which the project was gated was determined by 

the hierarchy of the V-Modell XT; Project-Product-Systems-Parts. The portion of the 

project that was decomposed, and of which the design rules were known was used as the 

foundation for the actual project status. When information in design is applied, the order 

changes. Information is related to the portion of the project of the design that is not 

understood. This is because insufficient regularities were applied and because of that 

there are remaining uncertainties and thus information in the design. Instead of basing the 

gating process on ‘what the designer knows’, it will be based on ‘what the designer does 

not know’. The process of intelligent gating works the other way around compared to 

functional and concurrent gating that were used so far. In this process, there is an 

essential role for unrecognised information because it can have a large impact on the 

design process.  

Recognised information and axiomatic information are related to problems that 

are known to the designer; the designer is aware of these problems but they were ‘just’ 

not solved till now due to reasons of priority and available time. What should happen to 
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the design can be inventoried, prioritised, and subsequently addressed. However, 

unrecognised information is by definition not known to the designer (since it is 

unrecognised so far). As such, it cannot be addressed by the designer as well. The 

difficulty is that unrecognised information indeed is present in the design and should be 

addressed at some point. A second difficulty is that the impact on the design, when 

unrecognised information becomes clear to the designer, could principally not be 

overseen in advance. The impact may be large and the design may need big changes to 

address the problem. Unrecognised information is a designer’s nightmare; it will confront 

him at a surprising moment in time and may have impact on the structure of the design. 

Therefore, unrecognised information is best tracked down and addressed as soon as 

possible. 

5.5.1 How to Track Down and Address Unrecognised Information 

To investigate what can be done to find unrecognised information, the ‘Cynefin 

Framework’, is applied. The Cynefin framework is an analytical decision making 

framework that was developed by Snowden at IBM (Kurtz et al., 2003). 

 

Figure 5.4 The four contexts of the Cynefin framework 
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Cynefin relates to a ‘place of multiple belongings’. The Cynefin framework originated in 

the practice of knowledge management. Snowden calls it a ‘sense-making’ model where 

data precedes framework and patterns emerge from the data instead of the other way 

around. It consists of four contexts, basically fields of action, in which an organisation or 

system can be found, and a fifth space when the actual context is unknown (Figure 5.4). 

Knowledge is in the Cynefin framework the most important parameter to determine the 

context where an organisation, system, or problem is currently located. When knowledge 

is acquired, the context changes. Appendix D explains the contexts of the Cynefin 

framework for broader understanding. 

For unrecognised information, the ‘Complex Context’ of the Cynefin framework 

is of importance (Kurtz et al., 2003); it is the domain of complexity theories, which study 

how patterns emerge through the interaction of many entities. Emergent patterns can be 

perceived but not predicted; this phenomenon is named ‘Retrospective Coherence’. In the 

complex context, structured methods like many existing methods for systems engineering 

are ill prepared. Once a pattern has stabilised, it can be understood and even may appear 

logical, but there are many of such patterns. Since patterns are connected with each other, 

they may repeat for a while, but it is never sure if they continue to repeat, because the 

underlying sources of the patterns are not open to inspection. This context accurately 

describes the world of a designer that is developing new technology. 

The decision model in the complex context is to create ‘Probes’ to make the 

patterns or potential patterns more visible before taking action. The patterns are observed 

or ‘Sensed’ and responded to by: (i) stabilising desirable patterns, (ii) by destabilising 

those we do not want, and (iii) by seeding the complex context so that patterns we want 
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are more likely to emerge. This procedure is continued till more and more patterns are 

understood and can be connected to a larger whole. 

Creating probes to make patterns or potential patterns visible is exactly what is 

the basis of the CµSD framework; it comes down to performing safe-fail-testing to the 

design and as such understand the patterns. Connecting the patterns is what AD does, by 

combining separate design relations to design matrices, a broad understanding of the 

design is acquired. Basically, unrecognised information is only found in these ways: 

• Testing the design to: (i) study what is necessary to stimulate behaviour of 

functions as expected, (ii) study what is necessary for functions to stop acting up 

negatively, and (iii) study what is necessary to bring the design to a higher level; 

• Completing the models of product and processes to understand how it operates in 

detail. 

By application of these methods, unrecognised information, may be found though only 

complete understanding and a full set of regularities would guarantee this. 

Unrecognised information changes to recognised information when it is found and 

may then be addressed by applying the right design relations. 

5.5.2 Application of Information in Design for Intelligent Gating 

With the current knowledge, the outline for intelligent gating is defined: 

• Elimination of unrecognised information from the design has the priority over all 

other kinds of information; 

• When recognised information is eliminated too, the design is uncoupled or 

decoupled and the Independence Axiom is satisfied and proof of concept is 

accomplished; 
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• When axiomatic information is eliminated from the design the system may be 

considered robust; 

• The information related to the axioms, unorganised information for the 

Independence Axiom and axiomatic information for the Information Axiom may 

be considered to be continuous and may gradually be addressed till it is eliminated 

from the design; 

• All kinds of information are additive. As such the information in the product 

design may be added with the information in the process design. The aggregate 

information is a measure for the total project status. 

Table 5.2 shows when and how these kinds of information are addressed during the 

product development process. 

Table 5.2 Overview in which phase unrecognised, recognised, and 

axiomatic information in design should be addressed 

Phase 
Information 

Exploration Conceptual Robustness 

Unrecognised 

Information 

Find as much 

unrecognised information 

as possible 

Find FRs, DPs, and PVs 

Do everything to make 

sure no unrecognised 

information is left 

Stay alert for things that 

are not understood 

Recognised 

Information 

Start addressing 

elementary problems and 

new design artefacts first 

Address all remaining 

recognised information by 

decoupling the design 

Guard decoupling 

Axiomatic Information No need for action Inventory key tolerances  Make all design relations 

statistically robust by 

addressing all axiomatic 

information 
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5.6 Discussion 

Feasibility for applying information in design for intelligent gating required 

investigations in the information theory which underlies AD. Based on the definitions of 

Shannon & Weaver, Brillouin, and Gell-Mann & Lloyd, the statement that the 

Independence Axiom deals with information may be considered to be true. It leads to a 

new definition of information within AD. Accepting the definition means that useful 

information is the basis for AD since it covers every aspect that is needed to satisfy the 

FRs. But it also means that both the Independence Axiom and the Information Axiom are 

addressing information in design. However, both axioms address different kinds of 

regularities and therefore deal with different kinds of information; regularities in the 

product design, that deal with conceptual design issues, are different from the regularities 

that deal with robustness. 

5.6.1 Strengths of this Approach 

The analysis of information in design proves that information is indeed related to 

the Independence Axiom. The satisfaction of the Independence Axiom is basically a 

discrete process as it will be decoupled step by step, and there are only a limited number 

of design relations. However, the information theory may be applied for its foundation, 

which makes satisfaction of the Independence Axiom in principle a continuous process. 

As such, it can be used as a continuous measure to follow the project progression as it 

evolves. The related kind of information is defined as unorganised information, because 

it relates to the project stadium in which the design matrices are not yet organised. 

Due to the additive nature, the amounts of information that are caused by project 

uncertainties can be added to form a total information content of the overall design. It 

may be expected to be at least reasonably linear. As such, it can be applied for intelligent 
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gating; which in this case is based on uncertainties in the design. It approaches the design 

process the other way around; gating is not based on what was accomplished so far in the 

project, but it is based on the difficulties that can be foreseen in the remainder of the 

project. It is not said that this approach prevails over the other, but it might help to focus 

on unrecognised information more effectively; as this is the most important kind of 

information to address, there is room for enhancement in ways to address it. 

5.6.2 Weaknesses of this Approach 

Basically, the intelligent gating object is not implemented yet, but instead of this, 

a framework was developed. Gating should rigidify potential change of decisions that are 

considered well-founded and that qualify as boundaries for the remaining branches in the 

decomposition tree. The question is how the gating function should be addressed in 

intelligent gating. One option is to keep gates open if branches have many uncertainties, 

as changes are more likely to take place for these cases. Another way is to indeed apply 

gating but, while doing this, distribute as much freedom for design to branches with large 

uncertainties and less freedom for branches that are relatively certain. In any case, the 

focus is forward to the remaining development process, and as such focuses on what is to 

come, instead of what seems accomplished. 

As implemented now, the gating process has only three stages indicating that 

respectively exploration, conceptualisation, and robustness are completed. In between 

these stages, the continuous measure of information in design may be applied. However, 

manual determination of all uncertainties in the design, and calculating their information 

contents to summarise them, would be quite laborious and was not tested yet. Better ways 

to determine the information content of the design should be developed. 
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5.6.3 Other Considerations 

Generally, the gating function can be approached in two ways: (i) the designer is 

focussed on what so far was well organised in the design (what is good and does not need 

to be changed) or, (ii) the designer is focussing forward (what are the remaining risks to 

address). With the decomposition of information in design, as introduced in this chapter, 

both are supported by AD. The former is addressed by the zigzagging process, and the 

latter is addressed by inventorying remaining information in design. Both methods have 

particular advantages and disadvantages. In the first situation, the designer gets a good 

indication what was accomplished so far in the project, however, if gates need reopening 

the project is likely to be set back in time. In the second situation, the designer has an 

indication of the remaining problems till the end of the project, which is convenient for 

planning project resources, but how can the information in design be determined if the 

project contains many new technological artefacts that might contain unrecognised 

information. Ideally, a combination of both is applied, in which traditional gating secures 

decisions that have been made, but where substantial risks may be foreseen and 

adequately addressed or avoided. 

Another consideration is the choice for hard or soft gating. Hard gating defines 

clear strategies for development of the next stages but could lead to less optimal project 

choices since the project rigidifies due to the inflexible decisions. Only a single 

hierarchical level is under investigation which provides a good overview of the project 

(though it may be unsubstantiated confidence). Soft gating is flexible and keeps options 

open to take the best possible solutions. However, project control is complicated because 

there is less uncertainty about the project course and, as a complication, the designers risk 

losing focus on specific tasks to complete. Moreover, it is difficult to oversee more than 
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a few hierarchical levels. As such elementary advantages of the process of decomposition, 

in order to gain overview and focus, are easily lost. 

5.6.4 Opportunities for Further Improvement 

Find an intelligent implementation for intelligent gating, as explained in the 

former subsection. 

To increase adoption in more industrial areas, the method could benefit from a 

low threshold and efficient user interface e.g.; the method would benefit from a way to 

visualise project progression and especially what may be expected of the remainder of 

the project. 

5.7 Conclusions 

This chapter showed a framework for intelligent gating to enhance the CµSD 

framework. Intelligent gating does not investigate what was accomplished in the project, 

but instead it looks forward into the future by evaluating the remaining project risks. A 

measure of uncertainty for the many artefacts that are still to be addressed form the input 

for the gating process. It is based on the information theory of Shannon that also forms 

the basis for information in Axiomatic Design. Information in design is additive and as 

such it can be applied to determine the overall risk of the project. 

The chapter has developed the framework for intelligent gating. Some aspects 

remain open e.g., if intelligent gating should be combined with elements of concurrent 

gating to get the best of both worlds. Also, if the gating process should be implemented 

‘hard’ (Boolean) or ‘soft’ (flexible but not as clear) is an issue for further investigation. 
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PART 2: APPLICATIONS OF RISK BASED, 

CONCURRENT SYSTEMS ENGINEERING MODELS FOR 

MICROSYSTEM DEVELOPMENT 
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CHAPTER 6  

APPLICATION OF INFORMATION IN DESIGN TO VISUALLY 

MONITOR THE MICROSYSTEM DEVELOPMENT PROCESSES AND 

INCREASE UNDERSTANDING AS IT PROGRESSES* 

6.1 Introduction 

This chapter builds further on Chapter 5. It applies the measure that is based on 

information in design to realise an ‘Axiomatic Maturity Diagram’ that can be applied to 

visualise the project. The capabilities of the Axiomatic Maturity Diagram are to: (i) 

monitor project progression to follow the targeted strategy, (ii), find and analyse errors in 

the design process, and (iii) plan and execute effective recovery from errors. 

The chapter is organised as follows. Section 6.2 defines the problem statement, 

inventories the current situation in the field, and evaluates the key limitations. Section 6.3 

presents a methodology to visualise the project based on information in design. Two cases, 

that are described in Appendix E, are evaluated in Section 6.4. Finally, Section 6.5 

discusses the results and Section 6.6 draws conclusions. 

                                                

 

 

 

 

* Parts of this chapter were published in: 

Puik, E. C. N., & Ceglarek, D. (2014). A Theory of Maturity. Presented at the 8th International Conference on Axiomatic Design 

ICAD2014, Lisboa, (Puik & Ceglarek, 2014b). 

Puik, E. C. N., & Ceglarek, D. (2015). The Quality of a Design Will Not Exceed the Knowledge of Its Designer; an Analysis Based 

on Axiomatic Information and the Cynefin Framework. Procedia CIRP, 34, 19–24, (Puik & Ceglarek, 2015b). 
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6.2 Analysis & Approach 

As modern development processes are complex and comprehensive, the general 

goal of manager and designer is to build understanding of (their part of) the project. 

Uncertainties in the design lead to uncertainties in project execution and disrupt the 

relationship between project investments and project progression; not knowing where the 

project stands, makes managers and designers uncomfortable. Intelligent gating is 

expected to increase understanding as it may reveal how uncertainties in the project are 

developing. Especially when the project status and its progression can be visualised, as a 

universal language, it enables monitoring of the project risks and serves as a platform for 

discussion. 

6.2.1 Problem 

Chapter 5 has shown that the axioms are both related to information in design and 

because of this, the conceptual status of the project and its robustness may be seen as 

continuous indices. Table 6.1 inventories their relations. 

Table 6.1 Relation between information in design and the axioms 

Phase 

Related to 

Exploration Conceptual Robustness 

Axiom Address Independence 

Axiom, starting with 

definition of FRs, DPs, 

and PVs 

Complete satisfaction of 

the Independence Axiom 

needed to complete this 

phase 

Complete satisfaction of 

the Information Axiom 

needed to complete this 

phase 

Kind of information Address unrecognised 

information as soon as 

possible and as thorough 

as possible 

Address unorganised 

information (aggregate of 

unrecognised and 

recognised information) 

Address Axiomatic 

Information  

 

There has been discussion in literature if the axioms may be considered 

independent from each other. In Appendix C, this is investigated; the conclusion is that 

the axioms are independent, and they address different kinds of information. However, 
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the Independence Axiom may be disruptive to the Information Axiom. To address the 

disruptive behaviour, the guidelines of AD advise to address the Independence Axiom 

first, followed by the Information Axiom. The reason is that the Independence Axiom 

determines the design matrix, and by doing this, it sets the boundaries for the Information 

Axiom. The boundaries are the design matrices and the design relations. Note that for 

concurrent design of microsystems it concerns both matrix [A] and [B] (Product design 

matrix and the process design matrix). Setting the design matrices determines the 

structure of the product and process design, making sure it is a ‘Viable Design’. 

Optimising the design relations by reducing the statistical variance, making it statistically 

robust, turns the viable design into a good design and the design relations operate as they 

should. From this perspective the more general concept arises that the Independence 

Axiom is about ‘doing the right things’ and the Information Axiom is about ‘doing things 

right’ (Puik & Ceglarek, 2014a). Though these statements are not meant to be 

inexhaustible, they contribute well to general understanding of how these kinds of 

information address the product design. The method for visualisation should take this 

order into account. 

6.2.2 Current Situation 

In the current situation, the axioms are typically applied as intended. The order to 

address the Independence Axiom before the Information Axiom is a standard guideline 

of AD. The matrix, though it originates from mathematical analysis, does have a visual 

function; not only are coupled, decoupled, and uncoupled matrices easily recognised due 

to their represented shape, the matrix also gives a very quick insight in the complexity of 
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a product design. However, these are only momentarily statuses of the design, it does not 

show how the project evolves. 

6.2.3 Key Limitations 

The key limitations are divided in three categories: (i) currently there is no 

visualisation of project progression based on the gating function, (ii) there is little ability 

to prove insight to different kinds of project dynamics, and (iii) there is no visualisation 

of errors in the design and how to recover: 

(i) No visualisation of project progression based on the gating function: 

• The ability to visualise conceptual and robustness phases of product design; 

• The visualisation of the absolute status of progression the project. 

(ii) Little ability to prove insight to different kinds of project dynamics: 

• What is the most efficient development path in terms of investment (SMEs); 

- Optimised development path for project lead time (microsystems, semi-

conductor industry); 

- Lowest chance for development errors (safety systems, medical industry). 

(iii) No visualisation of errors in the design and how to recover: 

• What are the consequences of design errors; 

• What are the alternatives for recovery? 
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6.3 Methodology to Visualise Progression of the Development Process 

Based on Information in Design 

6.3.1 The Axiomatic Maturity Diagram 

The Axiomatic Maturity Diagram is based on the information content in a product 

design as represented by the Independence Axiom and the Information Axiom (Puik & 

Ceglarek, 2014b). The diagram, shown in Figure 6.1, uses two axes, one for each axiom, 

plotting the degree in which the axioms are satisfied. The diagram in itself has no 

axiomatic properties but it takes its name from the fact that it applies the axioms as 

premises. 

 

Figure 6.1 The Axiomatic Maturity Diagram. 

The horizontal axis plots the Independence Axiom, the vertical 

axis plots the Information Axiom. The development path is arbitrary 

The horizontal axis is the ‘axis of organisation’ starting at ‘No Organisation’ and ending 

with ‘Proof of Concept’. Proof of concept indicates that the product design is a viable 

design; the design matrix is decoupled and therefore unorganised information has become 

equal to zero. As was shown in Figure 5.3, this implies that both kinds of sub-related 
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information (unrecognised information and recognised information) have been 

eliminated. The vertical axis represents robustness of the design from ‘Not Robust’ to 

‘Fully Robust’. As was explained in Chapter 5, a fully robust system implies that the 

axiomatic information has become equal to zero (the traditional information in AD 

coming forth from a bad common range). The lower left-hand corner indicates a high 

level of ignorance; the designer has little knowledge how to satisfy FRs with his DPs and 

therefore the ‘Axiomatic Maturity’ is low. The upper right-hand corner shows low 

information content and maximum probability of FRs being satisfied. This is the area of 

high axiomatic maturity. Development of products starts in the lower left-hand side and 

moves to the upper right-hand side. Products are fully mature when they reach the upper 

right-hand corner of the Axiomatic Maturity Diagram, as marked with a dot. The diagram 

is plotted in Figure 6.1. The shown development path is arbitrary. The axes of the 

Axiomatic Maturity Diagram are swapped in comparison to the real and imaginary axes 

in the complexity diagram of (Suh, 2005b). Two reasons apply to deviate from that 

definition; firstly, because the Independence Axiom and the Information Axiom are 

simply plotted in that order, and secondly because the level of independence, as set by 

the Independence Axiom, never moves backwards (as long as no knowledge of the 

designer is lost, it will typically increase). By choosing this way of plotting, the path of 

evolving maturity takes the form of a mathematical function. This makes reading the 

Axiomatic Maturity Diagram more natural. Note that the information in design is 

inversely related to the satisfaction of the Axioms; information is gradually reduced as 

the axiomatic maturity increases (from lower left to upper right). 
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6.3.2 Presumed and Legitimate Position in the Axiomatic Maturity Diagram 

At any moment of development, the designer may presume an actual position in 

the diagram according to the current status of the design, but this position may differ from 

the real and legitimate position of the design; the presumed and legitimate positions may 

have discrepancies. A discrepancy is caused by a lack of knowledge of the designer 

because he has missed some essential design artefacts. As a result, the designer rates the 

level of engineering of the current product design higher than it actually is good for. When 

he finds the design error that causes the discrepancy, the problem can be addressed. 

However, if it is not discovered, the discrepancy will present itself at some point in the 

remaining part of the development process or after market introduction as a surprise to 

the engineers. The presumed position in the diagram needs to be corrected and that may 

lead to a project delay. Discrepancies between the presumed and legitimate position in 

the Axiomatic Maturity Diagram are the result of unrecognised information and due to 

its disruptive character, it may have large impact on the remaining product development 

process. Therefore, the goal is to discover discrepancies between presumed and legitimate 

positions as early as possible. 

6.3.3 Determination of the Legitimate Position 

Finding unrecognised information is the key challenge for product designers and 

there is no method that comprehensively enables this. However, it is possible to apply 

methodologies that objectively determine the position of a design in the Axiomatic 

Maturity Diagram. This forces the presumed position to be based on facts instead of gut 

feeling. It will contribute to a higher degree of realism of the designer. A number of 

methods that focus on the conceptual design have been described in literature. These 

methods could be used to apply regularities to the design and in order to reveal 
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unrecognised information (some of these methods were introduced in Chapter 2); Tay & 

Gu apply the hierarchical product topology of the design from the functional and physical 

domains into a relational data model (Tay & Gu, 2002). Chen et al. expand this method 

with a production framework (Chen et al., 2012) and the architecture framework for 

manufacturing system design of Benkamoun et al. also use the axiomatic domains and 

the hierarchical structure (Benkamoun et al., 2014). Zhang & Chu have developed an 

approach for the design of product and maintenance by combining AD, QFD and FMEA 

(Zhang & Chu, 2010). Suh has also reported a sequence of steps to follow that are based 

on FMEA (Suh, 2004). Finally, the CµSD Framework of Chapter 4 may be applied to 

add regularities using iterative improvement cycles. 

As unrecognised information only exists in its hidden state, it instantly changes to 

recognised information when it is discovered. In the form of recognised information, the 

designer can address it by completing and decoupling the design matrix. Quantification 

of recognised information may be done with the ‘Independence Measure’ in Acclaro 

Design™ as described by Do (Do, 2015). 

Axiomatic information is easier to quantify. It does not blur the perception of the 

designer with discrepancies between perceived and legitimate positions. The common 

ranges of the system can be quantified with the known statistical methods such as methods 

for six sigma (Yang & EI-Haik, 2008) and Taguchi (Taguchi et al., 2005). Remaining 

risks could be quantified by FMEA (Suh, 2004; Puik et al., 2013c) or Qualitative Analysis 

(Puik et al., 2013b). 
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6.3.4 Ideal Development Path in Product Design 

Product development, as indicated above, will start somewhere at the lower left 

hand side and will move diagonally upwards. The exact starting point will depend on the 

complexity of the project definition. A high-tech project that is new to the world might 

start with high amount of ignorance in the deep lower left corner. A project that aims to 

develop according to the First-Right-Time philosophy should start without unrecognised 

information and starts further to the lower right-hand side of the diagram. Also, the chosen 

path may be dependent on the amount of risk that is acceptable to the company, e.g.; the 

most efficient development path in terms of investment (SME), a path that reduces lead 

time (semiconductor industry), or a path that minimises development errors (medical or 

avionics). As explained in Section 6.2.1, it is preferred to start with the Independence 

Axiom followed by the Information Axiom due to the disruptive character of unorganised 

information, thus: 

• Define FRs and find all relevant DPs to address unrecognised information; 

• Decouple the design matrix to address recognised information; 

• Match the design ranges and system ranges to guarantee an adequate common 

range to address axiomatic information. 

This leads to a preferred path that first moves to the right and then angles upwards. 

It is plotted in the left-hand graph of Figure 6.2. 

Depending on the preferred project strategy, a more or less risky path could be followed. 

In case of the rather conservative and slow but safe path of the Waterfall-Model, (Royce, 

1970) the procedure of following Independence and Information Axioms in that order 

would be persistent (Figure 6.2 right-hand graph). A slightly more risky path that in 

practice enhances the development speed of projects is the path of ‘Simultaneous 
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Engineering’ (Bullinger & Warschat, 2012). This gives the designer more room to start 

early work on robustness, process technology, and other life cycle elements. This merges 

the work on Independence and Information Axioms and possibly shortens project lead 

time. 

 

Figure 6.2 Left; preferred development path through the Axiomatic Maturity 

Diagram, as indicated in literature, first moves to the right to satisfy Axiom 1. 

After this, Axiom 2 is satisfied in an upward direction. Right; depending on the nature 

of the project, a different strategy may be followed. The right lower curve would 

represent a waterfall management approach, while the upper would represent 

 the path in case of a simultaneous engineering strategy 

6.3.5 Consequences of Typical Errors 

Unexpected errors in the development process are mostly related to the discovery 

of unrecognised information. This reveals discrepancy between the presumed and 

legitimate position. It will divert the development path in the Axiomatic Maturity 

Diagram. Depending on the kind of error, a discontinuity will appear. This discontinuity 

is the result of the conversion of unrecognised information to recognised information. It 

Independence Axiom

In
fo

rm
at

io
n 

A
xi

om

P
ro

of
 o

f C
on

ce
pt

N
o 

O
rg

an
is

at
io

n

Fully Robust

Not Robust

D
oi

ng
 th

in
gs

 ri
gh

t

Doing the right things

Independence Axiom

In
fo

rm
at

io
n 

A
xi

om

P
ro

of
 o

f C
on

ce
pt

N
o 

O
rg

an
is

at
io

n

Fully Robust

Not Robust

Simultaneous
Engineering

Waterfall

Operational Room for
Project Management style
Speed vs Risk Mitigation



161 
      

may show as a kink in the development path or a jump to a different position in the 

diagram, depending on: 

• Availability of a solution to address the problem; 

• Robustness of the current design being affected or not. 

If a solution to a newly revealed problem is available, it will cause a jump in 

horizontal direction because unrecognised information is converted to recognised 

information and that is addressed right away. If robustness of the design is affected, this 

means that the design matrix changes and robust DPs are replaced by non-robust DPs. 

This will cause a drop in vertical direction because axiomatic information increases. The 

following typical design errors could occur: 

No decoupling of the design matrices: The first typical problem is the example 

that was applied in Chapter 5, Subsection 5.3.3 where relevant FRs and DPs are known 

but the design matrix is coupled. As a result, the designer will have problems setting up 

the system and it will show inexplicable system behaviour. It is possible to optimise the 

design conforming the Information Axiom and have adequate common ranges, but 

recognised information remains in the system. An example is the combination lock as 

described by (Suh, 2004; 2005a): If a combination lock is to be opened without knowing 

the code, it is a matter of trial-and-error to open it. Even if the instruction manual is 

available it is not possible to open it without further knowledge (being the code). The 

designer knows he is missing essential knowledge. 

As shown in Figure 6.3, the result depends on whether the DPs need replacement. 

If this is the case, replacing DPs will lead to a fall back in satisfaction of axiomatic 

information on the vertical axis. If the design matrix is decoupled and the known DPs can 
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be maintained, the effects may be minimal; all information will be eliminated and the 

mature state is the result. 

 

Figure 6.3 A coupled design matrix does not conflict with satisfaction of  

the Information Axiom. However, if decoupling of the matrix needs replacement  

of DPs, the Information Axiom is not automatically satisfied for the new DPs 

and efforts may be lost (left). The second option shows a luckier situation that the 

 DPs can be maintained. In this case the impact on the design is minimal (right) 

Wrongly chosen DP: Another typical problem is the second example of Subsection 5.3.3. 

A wrongly chosen DP leads to the situation that the DP does not satisfy the related FR. It 

will seem to the designer that the design matrix is understood and decoupled, but in fact 

this is not the case. Time and effort are spent to match the system and design ranges of 

this DP, but since the DP has no effect, these efforts do not succeed. The designer may 

deduce that something is wrong but he does not know that the particular DP is causing 

the problem. As such, this situation leads to unrecognised information. To correct the 

problem, the designer needs to locate the wrong DP. As a result, the design matrix will 

need corrections and to address the related FR, a new and relevant DP will need to be 

Independence Axiom

In
fo

rm
at

io
n 

A
xi

om

P
ro

of
 o

f C
on

ce
pt

N
o 

O
rg

an
is

at
io

n

Fully Robust

Not Robust

Independence Axiom

In
fo

rm
at

io
n 

A
xi

om

P
ro

of
 o

f C
on

ce
pt

N
o 

O
rg

an
is

at
io

n

Fully Robust

Not Robust



163 
      

installed. Figure 6.4 plots the possible discontinuities when a wrong DP in the design 

matrix is discovered. 

 

Figure 6.4 Discovery of a wrong DP leads to a discontinuity in the development 

process. In the unlucky situation that an obsolete DP was already optimized, efforts  

are lost and the new DP again needs optimization and a correction takes place 

(left). In a lucky situation, the problem can be solved with minor efforts. In this case, 

the related unrecognized as well the recognized information disappears (right) 

Non-matching system and design ranges: A non-matching system and design range for 

one or more of the design relations between FRs and DPs leads to the situation that the 

Information Axiom cannot be fully satisfied. Note that the definition of axiomatic 

information is based on joint probability (quantified product of all probabilities, appendix 

C) or the sum of all information in the design relation. Therefore, the mature state is only 

reached if all system- and design-ranges are matched (Figure 6.5). In this case, there is 

no discrepancy between presumed and legitimate positions. 
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Figure 6.5 Non-matching system- and design ranges prevent the mature 

state from being reached. The design will not become robust 

6.3.6 How the Axiomatic Maturity Diagram Addresses the Key Limitations  

The Axiomatic Maturity Diagram has the capability to address the key limitations 

as follows: 

• If the designer indeed has not chosen the right structure, the horizontal axis will 

start rising early. It leads to discrepancies in presumed and legitimate positions in 

the Axiomatic Maturity Diagram; 

• If the designer does not succeed in making the design robust it will not reach the 

fully robust status marked with the dot Figure 6.5; 

• It was shown what errors can occur, how to recover from it, and what the 

consequence are in terms of work that needs to be redone Figure 6.3, Figure 6.4, 

Figure 6.5; 

• The different development paths for SMEs, semiconductor industry, safety 

systems or medical industry, follow different trajectories as indicated in Figure 

6.2.  
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6.4 Two Cases that Apply the Axiomatic Maturity Diagram to Explain 

Design Errors in Retrospect 

Two cases that help explaining design errors by application of the Axiomatic 

Maturity Diagram are included in Appendix E. These cases do not specifically address 

microsystems, but show how the diagrams may be used in practice. It also demonstrates 

the generic character of the method. 

6.5 Discussion on the Application of Information to Monitor Development 

Processes 

Based on information in design it is possible to trace product development. Three 

kinds of information each show a typical course that characterises the state of design: 

• Unrecognised information leads to discontinuities in the development path; 

• Recognised information prohibits product development to reach proof of concept 

(in horizontal direction); 

• Axiomatic information prohibits product development to reach the state of 

robustness (in vertical direction). 

6.5.1 Strengths of this Approach 

In learning organisations, universities but as well companies, visualisation of the 

design process can serve as a tool to explain the origin of errors made in projects to 

students and novice designers. Causes and consequences become clear lessons for future 

design projects and it will contribute to the learning experience of the designer (design 

team). Communication, supported by these visual means, could function as a universal 

language to widen the scope of personnel, increasingly being capable of understanding 

what went wrong, for students, engineers, but also managers, and executives. 
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The innovative contribution in this chapter is largely carried by the concept of 

unrecognised information. The impact of this kind of information is substantial; it can 

make or break the process of product design due to the discontinuities that can set the 

design back and might appear as a total surprise to the designer. 

6.5.2 Weaknesses of this Approach 

The concept of unrecognised information also uncovers the largest weakness of 

this analysis; unrecognised information, as the name indicates, is hard to recognise and 

that is also the reason why it remains hidden. Good understanding of the design e.g. by 

mathematical, quantitative or qualitative modelling, increases the chance to perceive 

unrecognised information. The reason is that good understanding leads to well-chosen 

regularities in design and this eliminates information in general. Providing a graphical 

overview of the product status does not necessarily reveal missing information, but it may 

help to understand the stages in the development process and how to act accordingly. 

Faulty scenarios, eventually from the past, can be analysed, characterised, and corrected. 

This learning experience might help understanding of future projects if similar patterns 

occur and are indeed recognised by the designer. However, in the execution of design 

projects it is never completely clear if discrepancies in the Axiomatic Maturity Diagram 

are latent. Till now, this cannot be guaranteed. 

6.5.3 Further Remarks 

The order in which the three kinds of information are addressed is preferably the 

same as in the bullet list above. The safest way is to address unrecognised information as 

soon as possible by functional modelling of the system or testing the (preliminary) design 

with the µSD or CµSD Framework. This changes unrecognised information in recognised 
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information so it can be addressed. Further, recognised information and axiomatic 

information will be addressed in that order conforming good practice of AD. The 

principle of simultaneous engineering proposes a parallel approach of recognised 

information and axiomatic information up to some extent. This consciously trades speed 

of development for development risks. The right path to choose should be an executive 

decision. 

6.6 Conclusion 

This chapter presents a way to apply the different kinds of information for a 

graphical analysis of the product development process. The Axiomatic Maturity Diagram 

is applied for the visual representation. Unrecognised information may present itself with 

discontinuities in the diagram and causes bends or sudden jumps in the development path. 

There are two causes for jumps; a fall back in robustness of the design due to the fact that 

optimised DPs become obsolete, or the recognition of a problem for which a solution is 

available. In the first situation, a vertical drop is the result and the second case leads to a 

horizontal progression. If no jump is caused, the information is converted to recognised 

information, which may be addressed by the decoupling of the design matrix. It results in 

a steady move to the right in the diagram. A preferred path is found by addressing 

unrecognised information, recognised information, and axiomatic information in that 

order, analogue to good practice in AD. Finally, the visualised analysis in the Axiomatic 

Maturity Diagram contributes to the understanding of imperfections during the execution 

of projects. Because of this it is especially suitable for learning environments. The 

strengths are not particularly recognised in the prediction of imperfections in projects; 

this remains a challenge for future investigations. 
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CHAPTER 7  

ASSESSMENT OF RECONFIGURATION SCHEMES FOR 

RECONFIGURABLE MANUFACTURING SYSTEMS BASED ON 

RESOURCES AND LEAD TIME* 

7.1 Introduction 

The current requirement of reducing lead-times for the development of 

microsystems and their manufacturing systems has changed the way these manufacturing 

systems are developed. Instead of developing them from scratch, which was the standard 

up to the 20th Century, modern ways to develop manufacturing systems are to compose 

them of standardised elements. Not only can these Reconfigurable Manufacturing 

Systems (RMS) be assembled from modular parts, they can also be modified in a later 

stadium when it needs adaptions for later generations of the product. 

This chapter addresses the reconfiguration process of RMS. As such, it applies the 

capability of the method for intelligent gating to assess what needs to be done to 

                                                

 

 

 

 

* Parts of this chapter were published in: 

Puik, E. C. N., Telgen, D., Moergestel, L., van, & Ceglarek, D. (2014). Classification of Reconfiguration Resources and Lead Time 

for Reconfigurable Manufacturing Systems. In F. Chen (Ed.). Presented at the International Conference Flexible Automation and 

Intelligent Manufacturing, San Antonio, (Puik et al., 2014b). 

Puik, E. C. N., Telgen, D., Moergestel, L., van, & Ceglarek, D. (2016). Assessment of Reconfiguration Schemes for Reconfigurable 

Manufacturing Systems Based on Resources and Lead Time. Robotics and Computer-Integrated Manufacturing (Puik et al., 2017a). 
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successfully reconfigure the RMS and fulfil the actual need for manufacturing. The 

assessment is then applied to compare different scenarios for reconfiguration. 

Section 7.2 defines the problem statement, inventories the current situation in the 

field, and evaluated the key limitations. Section 7.3 presents a methodology to assess 

alternatives for reconfiguration by looking forward and inventory the needed resources 

and lead time. It calculates and compares necessary resources to execute the options for 

reconfiguration. Section 7.4 studies a case that compares different reconfiguration 

schemes, applied for the 3D measuring probe of Chapter 3. Finally, Section 7.5 discusses 

the results and Section 7.6 draws conclusions. 

7.2 Analysis & Approach 

This section analyses the state-of-the-art of how manufacturing systems are 

generally assessed in the field. It will be compared to the other options that were 

mentioned in the introduction of the thesis (DMS, AMS, FMS). 

7.2.1 Problem Statement 

As RMS are a logical addition to Dedicated Manufacturing Systems (DMS), 

Adjustable Manufacturing Systems (AMS), and Flexible Manufacturing Systems (FMS) 

it is desirable to know how these systems relate to each other. Zhang et al. conducted an 

analytical comparison of DMS, AMS, FMS & RMS (Zhang et al., 2006a), rating given 

systems on ‘Adaptability’ and ‘Reconfiguration Time’ as shown in Figure 7.1. The 

overview in Figure 7.2 was obtained by combining the data in a two-dimensional 

representation. RMS are not adapted as quickly as FMS as the change of structure comes 

with more overhead than the change of software. RMS score well on adaptability; 
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Figure 7.1 Adaptability of (left) and 

reconfiguration time of 

manufacturing systems (right) 

 Figure 7.2 Comparison of DMS, AMS, 

FMS and RMS. Note that the horizontal 

axis is reversed compared to Figure 7.1 

changing the structure of the system adds broad possibilities for implementation of 

optimised process technology. However, the exact position of the RMS in the graph may 

vary depending on the kind of reconfiguration. The manner in which (re)configuration is 

performed determines how much renewal is applied in the system. 

A direct consequence of this discrimination is the amount of work that is required 

to carry the reconfiguration through. The lead time and resources needed for 

implementation will be lower if reconfiguration takes place with known and tested 

process modules. If new process modules need to be developed, lead time and 

reconfiguration efforts are considerably larger, but the added capability of the system may 

be expected to increase noticeably too. Therefore, the ‘reconfiguration scheme’ of an 

RMS needs to be carefully investigated ahead to find the adjustment of the system that 

adequately matches production demand. Schemes refer to the systematic layout of a 

particular setup and how it is composed from individual (modular) process modules. A 

method for inventorying and quantification of risks in the reconfiguration process could 

help to find the right balance in optimisation on the short, the mid, or the longer term. 
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7.2.2 Current Situation 

Assessment of manufacturing systems from an economic perspective is a widely-

investigated topic that over the years has created profound improvement of manufacturing 

efficiency. Increasing dynamics in manufacturing have led to increased need for 

changeability on the shop floor. Assessment, that initially was of a pure economic nature, 

is in modern management extended with the consideration how that valuation affects 

potential strategic benefits, e.g. being able to adapt to rapidly changing product demands 

(Kuzgunkaya & ElMaraghy, 2009). In this context is respectively inventoried: (i) 

adaptability assessments that compare a range of systems (DMS, AMS, FMS, or RMS), 

(ii) the assessment of the adaptability of FMS, and (iii) assessment of adaptability of RMS. 

(i) Methods for Comparison of DMS, AMS, FMS, and RMS 

Since radical changes in the structure of DMS and AMS are not intended nor 

foreseen, methods for assessment of change of DMS and AMS are minimal in literature. 

A survey by Hollstein et al focusses on possibilities rather than limitations by 

inventorying how far existing (dedicated) manufacturing systems can be upgraded with 

economically feasible interventions (Hollstein et al., 2012). Michaelis & Johannesson 

choose a comparable approach but add the principle of co-design to fit the development 

of new products to the opportunities and limitations of existing equipment (Michaelis & 

Johannesson, 2012). Zhang & Chu compare the economic performance of the systems by 

focussing on the time needed to carry through changes (Zhang & Chu, 2010). 

Kuzgunkaya & ElMaraghy go further and compare FMS and RMS based on a 

combination of key parameters e.g. economic considerations (Kuzgunkaya & ElMaraghy, 

2009), structural complexity, and responsiveness. Amico et al extend comparison on 

economic considerations with the theory of ‘real options’ to define a payoff function that 
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can be used to compare different systems (Amico et al., 2006). Nassehi et al apply ‘formal 

methods’, mathematical techniques for the specification, design and verification, to check 

the consistency of manufacturing processes (Nassehi et al., 2012). 

(ii) Assessment of the Adaptability of FMS 

Though the adaptability of FMS is of a different nature than that of RMS, related 

work investigates the change of a number of FMS on the shop floor, which is a similar 

but higher-level approach compared to the reconfiguration of RMS. Abdel-Malek & Wolf 

focus on the most efficient mapping of FMS in a factory. In their approach, FMS can be 

moved, changed, or upgraded similarly like process modules in a RMS (Abdel-Malek & 

Wolf, 1991; 1994). This is benchmarked using Key Performance Indicators (KPI) to 

compare different alternatives and select the best option. Lotfi presented a linear 

programming model for the optimisation of a number of objectives i.a., financial aspects, 

flexibility, and group homogeneity (Lotfi, 1995). Yan et al. use a what they call ‘Life 

Locus Tree’ that is not only modelling the birth of the FMS but also focusses on use, 

adaption, and expansion (Yan et al., 2000).  

(iii) Assessment of the Adaptability of RMS 

With the start of the new millennium, assessment of the adaptability of RMS has 

gained attention. Spicer developed a method for economic evaluation of RMS and 

presents design principles for RMS to optimise the number of process modules in a 

system (Spicer et al., 2007). Abdi & Labib introduce a method called Analytic Hierarchy 

Process, a tactical tool to decompose the match between a manufacturing system and a 

family of products to a hierarchical order (Abdi & Labib, 2003; 2007). The model has the 

ability to support product family justification in a wide variety of RMS. Farid & 
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McFarlane assess reconfigurability of distributed manufacturing systems with a ‘Design 

Structure Matrix’ to define reconfiguration ease (Farid & McFarlane, 2006; 2008; Farid, 

2014). The matrix is inspired by Axiomatic Design and defines the number of ‘Degrees 

of Freedom’ of the system. A higher number of DoF increases the number of 

transformation processes and increases flexibility of the system. Hasan et al. present a 

mathematical reconfigurability model based on the ‘Multi Attribute Utility Theory’ 

(Hasan et al., 2013). This model is capable of computing the effort for converting an 

existing machine configuration to a new configuration. The model discriminates between 

modules added, removed, or changed. Weighting factors are applied to vary the impact 

of change, but no further dependency to the kind of change is applied. The method as 

proposed by Hasan et al. is the only method for assessment of RMS that, though in a basic 

way, takes the difficulty of the reconfiguration process into account. 

7.2.3 Key Limitations 

The reconfiguration scheme has significant influence in needed resources and lead 

time of the reconfiguration process. Mainly new developments make heavy demands on 

resources and lead time. Therefore: 

• Reconfiguration schemes of RMS need to be carefully investigated ahead to find 

the adjustment of the system that adequately matches production demand; 

• A method for inventorying and quantification of risks in the reconfiguration 

process could help to find the right balance in optimisation on the short, the mid, 

or the longer term; 

• Such methods, to assess the reconfiguration schemes of RMS, do not exist yet. 
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7.3 Methodology to Apply the Framework of Functional Gating as a 

Measure for Comparison of Reconfiguration Schemes  

The method for assessment of reconfiguration schemes as presented in this 

chapter is based on the method for concurrent gating of Chapter 4. Figure 7.3 shows the 

seven steps as defined there. 

 

Figure 7.3 Development of RMS in seven steps from the embryonic 

stage to an independent and robust design 

New equipment schemes can in some cases be assembled without development of 

new process modules. However, in the majority of situations this is not possible because 

modules that are well specified need to be applied outside their specified operating 

window or product-specific modules need to be developed. The development needed to 

upgrade the process modules causes new risks in the configuration process of the RMS. 

The index method will be applied to discriminate between these situations. 

The method for concurrent gating of Chapter 4 divides the development process 

into seven stages by defining relatively accurate nuances between the stages based on 

decomposition. For the classification of reconfiguration resources, a number of seven 
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stages seems not necessary; the overhead of determining accurate value judgement for a 

reasonably large number of modules would make the method laborious. Therefore, the 

number of seven stages is reduced to a limited number of three stages. The applied stages 

are (indicated blue/grey in Figure 7.3): 

(a) ‘Repeat’: Process modules have been applied in the past and are well documented, 

processes are used within their specified operating windows; 

(b) ‘Adapt’: Process modules have been applied in the past and are well documented, 

processes are used outside defined operation windows or in an alternative manner that 

has not been tested; 

(c) ‘Expand’: Process modules do not yet exist and have to be developed (the library of 

modules is expanded). 

(a) Reconfiguration that ‘Repeats’ application of known and tested process modules, 

which might be considered as the most moderate change, will cause the index level to 

drop to ‘Reverse zigzagging completed, design relations validated at Product level’ 

(Figure 7.3). Successful testing after integration will bring the RMS up to the final level 

again. It does not matter if a single or a larger number of modules are replaced; system 

level tests are always required to bring the system back to production level; 

(b) The classification of the reconfiguration type ‘Adapt’ needs examination of the 

definition. It states ‘Fully decoupled matrices [A] and [B]’ which means that all prior 

testing becomes obsolete and verification and validation should be executed again in the 

new situation; 

(c) Reconfiguration type ‘Expand’ per definition needs to go through all development 

levels of the index method as the index method was designed for new module 
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development. Module development is starting completely on the left-hand side in Figure 

7.3. 

Since the three stages repeat, adapt & expand have been derived from the more 

nuanced method for concurrent gating, classification is expected to be quick and clean. 

Therefore, the most appropriate stage for process module development can be defined 

without confusion or discussion. 

7.3.1 Calculation of Resources & Lead Time for Initial Configuration 

The simplified method with three straightforward stages can be applied for 

assessment of the reconfiguration schemes of modular manufacturing equipment. There 

will be typically more than a single good scheme to configure a manufacturing system; 

many alternative configuration schemes exist that all have particular advantages and 

drawbacks with respect to e.g. reliability, complexity, configuration time, reconfiguration 

time, and cost. By calculation of the resources and lead time of the respective 

configuration schemes, comparison between the alternative solutions can be made. In this 

way, pros and cons can be objectively considered. 

Total resources needed for (re)configuration of a particular manufacturing system 

can be calculated by summation of the total efforts to integrate all process modules of that 

manufacturing setup. The number of steps to reach a robust and independent design as 

indicated in Figure 7.3 is a measure for the resources needed per module. Depending if 

modules are reused, adapted, or expanded; this would be a number of respectively 1, 4, 

or 7 steps. However, required resources are not always proportional to the number of 

steps. Therefore, weighting factors are applied to correct for eventual discrepancies. The 
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result is a score for the total amount of efforts needed to (re)configure a manufacturing 

setup, expressed as ‘Reconfiguration Resource Units’ (RRU), according to 

OOP(;7)Q?L8 = SB ∙ W;;	B																																																																																																																																				(7.1)
V<6=W?>9:7

BXYBM6=W?>9:7

 

that represents the resources needed to complete reconfiguration of a manufacturing 

system. In this equation, S is the number of index steps for each module and WRR is the 

weighting factor to correct for discrepancies between the number of index steps and the 

true reconfiguration resources. WRR can be any non-negative real (ℝ[ ∪ {0}). The 

weighting factors can be optimised based on experience. 

Comparably, the minimum lead time (mLTU), or the best possible time to 

complete the reconfiguration, may be determined by the longest development trajectory 

of any of the new process modules. Note that the mLTU is dimensionless and therefore 

expressed in ‘minimum Lead Time Units’. By multiplication of this number and the 

average lead time per index step, the true minimum lead times for reconfiguration can be 

calculated. Again, weighting factors are applied for estimation of the lead time per 

module depending on the choice for repeat, adapt, or expand. The dimensionless 

minimum lead time for (re)configuration of the total system is found by taking the upper 

bound of all individual dimensionless lead times according to 

+`aP ;7 Q?L8 = 	max	 SYBM6=W?>9:7 ∙ WVe	YBM6=W?>9:7, . . , SV<6=W?>9:7 ∙ WVe	V<6=W?>9:7 																																											(7.2) 

and it should be noted that the weighting factors may be chosen in the same manner as 

the weighting factors for calculation of resources, as more drastic changes require more 

time. However, the weighting factors WRR and WLT for reconfiguration resources and lead 
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time can be optimised separately if needed to increase the accuracy of the calculation. 

This is typically done when experience with the method grows. 

7.3.2 Calculation of Resources & Lead Time if Reconfiguration Is Planned Ahead 

If reconfiguration takes place on a regular basis, and a number of future 

readjustments can be foreseen, the calculation of resources can be applied further ahead 

in time. Engineers may decide to choose a more flexible configuration scheme for the 

initial setup since later reconfigurations may benefit when they need to be converted for 

newer products. The joint efforts for reconfiguration can be reduced on the long run by 

well-timed investments in equipment flexibility. The total of all reconfiguration resources 

can be calculated by summation of the efforts required for the initial system and the efforts 

required for future reconfigurations. The method to determine the efforts for a single 

scheme, by summation of weighting factors as given in Equation (7.1), is expanded by a 

second summation of the future reconfigurations according to 

OOPW9:=Bg:7;7Q?L8 = OOP(;7)Q?L8	h

V<6=i?L8BK9M<=B?L

hXYBM6=i?L8BK9M<=B?L

 

OOPW9:=Bg:7;7Q?L8 = 		 SB,h ∙ W;;	B,h

V<6=C?>9:7

BXYBM6=W?>9:7

																																																																													(7.3)
V<6=i?L8BK9M<=B?L

hXYBM6=i?L8BK9M<=B?L

 

where the index i counts the number of process modules and index j counts the number 

of (re)configurations including the initial configuration. The best possible dimensionless 

lead time for all reconfiguration actions together could be calculated comparably by 

summation of the upper bounds of the respective reconfigurations 

+`aPW9:=Bg:7;7Q?L8 = max	 SYBM6=W?>,h ∙ WVe	YBM6=W?>,h, . . , SV<6=W?>,h ∙ WVe	V<6=W?>,h

V<6=i?L8BK

jXYBM6=i?L8BK

																					(7.4) 
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which provides the minimal dimensionless lead time spent to all (re)configuration actions. 

Equations (7.3) & (7.4) enable comparison of alternative choices for equipment 

configuration and a number of successive reconfigurations. It provides information how 

a choice for a certain scheme escalates to future systems and so affects the reconfiguration 

resources and lead time compared to alternative schemes. The gain for an alternative 

scheme can be calculated by subtracting the reconfiguration resources of the alternative 

scheme from the basic scheme according to 

OOPl<BL = 		 SB,h ∙ W;;	B,h

V<6=C?>9:7

BXYBM6=W?>9:7

			
V<6=i?L8BK

hXYBM6=i?L8BK m<6BQ	nQo7C7

 

																																															− 		 SB,h ∙ W;;	B,h

V<6=C?>9:7

BXYBM6=W?>9:7

			
V<6qi?L8BK

hXYBM6=i?L8BK @:=7ML<=Br7

																																																			(7.5) 

where the first term represents the (re)configuration resources of a basic scheme and its 

derivative reconfigurations and the second term represents the resources for an alternative 

scenario. The gain in best lead time can be determined in the same manner 

+`aPl<BL = 	max 	 SYBM6=W?s,h ∙ WVe	YBM6=W?>,h, . . , SV<6=W?>,h ∙ WVe	V<6=W?>,h

V<6=i?L8BK

hXYBM6=i?L8BK m<6BQ	nQo7C7

 

													− 	max	 SYBM6=W?>,h ∙ WVe	YBM6=W?>,h, . . , SV<6=W?>,h ∙ WVe	V<6=W?>,h

V<6=i?L8BK

hXYBM6=i?L8BK @:=7ML<=Br7

																				(7.6) 

in which a positive gain in dimensionless lead time is in favour of the alternative scheme. 

7.3.3 How the Framework of Functional Gating Addresses the Key Limitations  

The novelty of the presented solution here is that it not only compares different 

strategies for possible manufacturing solutions, being able to compare their economic 
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strengths, but also supports substantiated development of the RMS by inventorying the 

need for new process modules to be developed. This brings the complexity of the 

reconfiguration process versus the envisioned expansion of the RMS into the equation. 

7.4 Case: Calculation Example for Reconfiguration of an RMS for 3D 

Measuring Probes 

The methods for the calculation of reconfiguration resources and lead time were 

applied on a true case; the configuration of a manufacturing machine for the assembly of 

3D measuring probes. 3D Measuring probes are made for geometrical measurement of 

high tech products with high accuracies and small tolerances. 

   

Figure 7.4 3D Probe for 

geometrical measurements in 

the nanometre range 

Figure 7.5 Conventional  

(passive) alignment setup           

Figure 7.6 Flexible 

configuration with 

computer vision 

The probes are applied in geometric coordinate measuring machines to enable 

measurements in the nanometre range (Haitjema & van Seggelen, 2003). The heart of the 

probe consists of a surface-micro-machined silicon ‘Die’ (semiconductor-chip) that 

contains sensitive strain gauges to convert mechanical nanometre movements to electrical 

signals. A stylus is applied to measure the object by gently touching the surface and 

subsequently transfer the sensing movement to the Die. The probe is shown in Figure 7.4. 
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The intention of the project was to invest in a production system with a family of products 

in mind. However, when the initial system was configured, it was not yet clear how many 

siblings the family was going to have. Keeping all options open for maximum flexibility 

appeared a costly option. However, limiting the flexibility of the equipment, due to rigid 

design choices, decimates the advantages of the reconfigurable framework of the 

production system. By application of assessment of application schemes, a number of 

alternative configuration schemes were developed being able to compare resources and 

lead time. 

The production engineers had a number of technically sound options to configure 

the production system. These options were brought down to two different strategies; the 

application of ‘passive’ alignment or ‘active’ alignment. Passive alignment is the 

traditional variant where the tool that determines the position of the parts is a passive tool 

(mating surfaces, or alignment pins as shown in the inset of Figure 7.5). Active alignment 

applies active systems for determination of the part’s position. Mostly used is a computer 

vision system that applies a camera and pattern recognition system for finding the position 

of the parts. This position is communicated with the robotic manipulator for placement 

(Figure 7.5 and Figure 7.6). 

7.4.1 Configuration of the Initial Manufacturing system 

Alternative configuration schemes of the manufacturing system are obtained by 

combining different process modules. The options were narrowed down to a single active 

and passive scheme. Passive alignment would be the most obvious way for the company; 

it could be realised by straightforward mechanical components. The active alignment 

system is more comprehensive; it applies a computer vision system, consisting of camera 

with suitable optical system for lens and illumination of the object, computer with 
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appropriate software and a number of fixtures to bring the parts in place. The vision 

system had not been applied before and the physical properties of the optical system made 

the vision system initially more complex. In the perspective of the ‘simplified 

classification’ method of this chapter (Subsection 7.3): 

• Passive alignment can be applied by adapting an existing process module; 

• Active alignment with the vision system can be applied if the library of process 

modules is expanded. 

These two solutions were compared by calculating the values for RRU and mLTU 

conform Equations (7.1) & (7.2). The values for S are determined by the number of steps 

that are bridged in the axiomatic model of Figure 7.3, the result is shown in Table 7.1. 

Table 7.1 Weighting factors to calculate 

reconfiguration resources and lead time 
 

Applied parameters for S & W 

For Calculation of 

Reconfiguration 

Resources 

For Calculation of 

Lead Time 

 

 S WRR  S WLT 

Repeat 1 1 Repeat 1 1 

Adapt 4 1 Adapt 4 1 

Expand 7 1 Expand 7 1 

As this is the first case to be addressed by this method for comparison, there is no sensible 

experience yet by application of weighting factors WRR and WLT. Note that the intrinsic 

distribution of the method, by counting the number of steps to completion, already 

introduces a basic principle of weighting even if no weighting factors are applied. 

Therefore, active weighting was at this stage not yet applied: weighting factors for 

optimisation of reconfiguration resources and the best lead time were all set to 1. 
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A tailored pick & place system to manufacture the probe was configured from 

standard process modules. Table 7.2 shows the configuration scheme in case of passive 

alignment. 

Table 7.2 Configuration scheme for 

passive alignment 

Table 7.3 Configuration scheme 

for active alignment 

 

Scheme 1 Initial setup for passive alignment 

Process 

Module 

Class S WRR WLT S.WRR S.WLT 

Base Frame Repeat 1 1 1 1 1 

Manipulator Repeat 1 1 1 1 1 

Gripper Adapt 4 1 1 4 4 

Feeder A Repeat 1 1 1 1 1 

Feeder B Repeat 1 1 1 1 1 

Nest for 

Carrier 

Adapt 4 1 1 4 4 

Alignment 

Body 

Adapt 4 1 1 4 4 

Reconfiguration resources according 

to Eqn (1) 

16  

Minimum dimensionless lead time 

according Eqn (2) 

4 

 

Scheme 2 Initial setup for active alignment 

Process 

Module 

Class S WRR WLT S.WRR S.WLT 

Base Frame Repeat 1 1 1 1 1 

Manipulator Repeat 1 1 1 1 1 

Gripper Adapt 4 1 1 4 4 

Feeder A Repeat 1 1 1 1 1 

Feeder B Repeat 1 1 1 1 1 

Nest for 

Carrier 

Adapt 4 1 1 4 4 

Alignment 

Body 

Expand 7 1 1 7 7 

Reconfiguration resources according 

to Eqn (1) 

19  

Minimum dimensionless lead time 

according Eqn (2) 

7 

The same exercise was applied for the configuration scheme of an active alignment 

system; this is shown in Table 7.3. The summation in Table 7.2 and Table 7.3 is executed 

according to Equation (7.1) for the configuration resources and according to Equation 

(7.2) for calculation of the minimum dimensionless lead time. In both situations, a total 

number of 7 process modules are applied. It is the last module that is different for both 

configuration schemes; instead of repeating a known module, the vision system is 

developed as a new module and the library of process modules is expanded. It can be seen 

that both the initial reconfiguration resources and the lead time for configuration are 

higher for the second configuration scheme. Based on this sole configuration only, the 
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first configuration scheme would be the better one. Resources are saved and lead time is 

shorter (16/4 compared to 19/7). 

7.4.2 If Reconfiguration Is Planned Ahead 

The calculation in the last subsection does not evaluate further than the initial 

configuration of the system. If this is the case, an alternative configuration scheme that 

invests in flexibility will be less interesting due to the overhead that comes with it. 

However, this will change if reconfiguration is planned further ahead. Table 7.4 shows 

the same comparison if a first and a second reconfiguration indeed are carried through. 

The two respective reconfigurations have the same character, which is usually the 

case if parts are modified but the structure of the product is not changed. Again, the 

solution with passive alignment is compared to the active alignment system with the 

vision camera. The calculations in the table are the result of Equations (7.1 – 7.4). The 

outcome shows that after the first reconfiguration the two options score exactly the same. 

Reconfiguration resources and lead time for both schemes are equal (26/8). However, 

after the second reconfiguration, scheme 2 appears more efficient. This scheme thrives 

better in a large number of reconfigurations. Also, all further reconfigurations within the 

same family of products will be in favour of scheme two. This can be seen in Table 7.5; 

the gain in reconfiguration resources is calculated by Equations (7.5) & (7.6). Due to the 

fact that in this example the weighting factors for RRU and mLTU have been chosen the 

same, the RRUgain and mLTUgain show the same values. 
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Table 7.4 Comparison of scheme 1&2 including first and second reconfiguration.  
 

Reconfiguration Scheme for Passive Alignment 

Initial Setup  First Reconfiguration  Second Reconfiguration 

Process 

Module 

Class S.WRR S.WLT Class S.WRR S.WLT ΣRRU ΣmLTU Class S.WRR S.WLT ΣRRU ΣmLTU 

Base 

Frame 

Repeat 1 1 Repeat 1 1 RRU & 

mLTU after 

1st re-

configuration 

according to 

Eqs (3 & 4) 

Repeat 1 1 RRU & 

mLTU after 

2nd re-

configuration 

according to 

Eqs (3 & 4) 

Manipulator Repeat 1 1 Repeat 1 1 Repeat 1 1 

Gripper Adapt 4 4 Repeat 1 1 Repeat 1 1 

Feeder A Repeat 1 1 Repeat 1 1 Repeat 1 1 

Feeder B Repeat 1 1 Repeat 1 1 Repeat 1 1 

Nest for 

Carrier 

Adapt 4 4 Repeat 1 1 Repeat 1 1 

Alignment 

Body 

Adapt 4 4 Adapt 4 4 Adapt 4 4 

RRU according to 

Eqn (1) 

16  RRU 

Eqn (1) 

10  26  RRU 

Eqn (1) 

10  36  

mLTU according to Eqn (2) 4 mLTU Eqn (2) 4  8 mLTU Eqn (2) 4  12 

 

Reconfiguration Scheme for Active Alignment 

Initial Setup  First Reconfiguration  Second Reconfiguration 

Process 

Module 

Class S.WRR S.WLT Class S.WRR S.WLT ΣRRU ΣmLTU Class S.WRR S.WLT ΣRRU ΣmLTU 

Base 

Frame 

Repeat 1 1 Repeat 1 1 RRU & 

mLTU after 

1st re-

configuration 

according to 

Eqs (3 & 4) 

Repeat 1 1 RRU & 

mLTU after 

2nd re-

configuration 

according to 

Eqs (3 & 4) 

Manipulator Repeat 1 1 Repeat 1 1 Repeat 1 1 

Gripper Adapt 4 4 Repeat 1 1 Repeat 1 1 

Feeder A Repeat 1 1 Repeat 1 1 Repeat 1 1 

Feeder B Repeat 1 1 Repeat 1 1 Repeat 1 1 

Nest for 

Carrier 

Adapt 4 4 Repeat 1 1 Repeat 1 1 

Alignment 

Body 

Expand 7 7 Repeat 1 1 Repeat 1 1 

RRU according to 

Eqn (1) 

19  RRU 

Eqn (1) 

7  26  RRU 

Eqn (1) 

7  33  

mLTU according to Eqn (2) 7 mLTU Eqn (2) 1  8 mLTU Eqn (2) 1  9 
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Table 7.5 Gain in reconfiguration resources and lead time. Note that 

reconfiguration ‘0’ is the initial configuration of the production system 
 

Reconfiguration No 

 0 1 2 3 4 5 6 

RRUGain -3 0 3 6 9 12 15 

mLTUGain -3 0 3 6 9 12 15 

7.5 Discussion 

The case shows that assessment of reconfiguration schemes can be applied to 

compare alternative setups of reconfigurable equipment. The method also shows that it 

can be applied in an early stage of development. 

7.5.1 Strengths of the Application of Reconfiguration Schemes 

The framework enables reasonably objective determination of the development 

status of process modules; because only three options are applied, reuse, adapt, and 

expand, and there is substantial difference between these options, there is little discussion 

how modules should be classified. Therefore, a quick and effective resource estimation 

of the impact of the redesign can be made. The integrity of the Axiomatic Design matrix 

acts as a determinative parameter for the impact when redesigning process modules. The 

design matrix can be explored with relatively little effort. It enables the method to be 

applied in dynamic environments, for internal or external quotations and for 

determination of response-times to market demand. Therefore, the method seems reliable 

to assess resources and lead time when reconfiguring RMS. It also seems possible to 

apply the method as a systems engineering tool for effective comparison of alternative 

reconfiguration schemes. 
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7.5.2 Weaknesses of the Reconfiguration Schemes 

The strength of the method for assessment of RMS also comes with a downside. 

Especially for new process modules, it can be difficult to estimate the required amount of 

work for development of those modules. When there are several process modules to 

expand or adapt, the accuracy of the method may be compromised. 

When comparing schemes for the initial configuration, according to Equations 

(7.1 & 7.2), the result tends to be in favour of the conventional and less flexible solution. 

The reason is that implementation of flexibility comes at a cost; direct comparison will 

always be in favour of a system optimised for a single product due to the fact that it has 

no flexibility requirements to address. The second set of equations, assuming that a 

number of reconfigurations will be carried through, as calculated by Equations (7.3 & 

7.4), may be too tolerant due to the uncertainty that these future reconfigurations indeed 

take place while the method just assumes that this is the case. 

Minimum dimensionless lead time, as calculated by Equation (7.4), compares the 

total (dimensionless) time that is spent to multiple reconfigurations when equipment is 

converted a number of times. Comparably, Equation (7.6) determines the gain in lead 

time over these conversions. These parameters can be applied to estimate the total loss of 

turnover due to the execution of reconfigurations, since systems under reconfiguration 

are not producing. However, the outcomes of Equations (7.4 & 7.6) are under restriction 

that unlimited resources can be applied to the reconfiguration process. Mainly for large 

reconfiguration projects, the number of workers involved is against the limit and 

resources have to be applied sequentially. The equations may not deliver the desired result 

in these cases. 
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7.5.3 Limitations of the Reconfiguration Schemes 

The number of gradations when modifying process modules, repeat, adapt, or 

expand as here proposed, is limited to a number of three. The thought behind it is that 

quick comparison does benefit from a simple framework. The simplification leads to 

straightforward application of the method which enhances agility; a deliberate choice was 

made to let agility prevail over accuracy. Experienced users may decide for a different 

balance and expand the assessment method to use all seven stages of the gating 

framework. 

7.5.4 Other Considerations 

Despite the fact that accuracy cannot be guaranteed under all circumstances, the 

method can be used to compare configuration schemes in the early stage of projects since 

other methods, insofar as they exist, have their shortcomings too. 

There are statistical effects that may improve the accuracy of the method. At first, 

when applied to configuration schemes with a large number of process modules, accuracy 

is expected to improve due to the averaging effect. Secondly, when applied to situations 

where the number of repeated modules is high, the accuracy is also expected to improve 

due to the larger certainty of estimation of process modules that are reused versus modules 

that need sweeping changes. 

During application, many (sub)systems as applied in comparable configuration 

schemes will be similar. These systems may be either, included in, or excluded from the 

resource calculations as needed. In any case, all inaccuracies of calculations that concern 

identical systems in different configuration schemes will not influence the accuracy of 

comparison of different alternatives. This explains that the power of the tool comes more 

to its own in comparison of resources, for competing reconfiguration schemes, than in 
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absolute calculation of required resources. The dimensionless character of RRU and 

mLTU is in these cases no longer object of consideration. 

The nature of the reconfiguration process influences the character of the 

manufacturing system. When reconfiguration just concerns actions of the type ‘repeat’, it 

is doubtful if the structure of the equipment will change. According to the definition 

(Koren et al., 1999), the RMS is then used as an FMS and only delivers ‘Generalised 

Flexibility’ (ElMaraghy, 2006). If the system is reconfigured with a number of process 

modules that are expanded, the system is used as a true RMS and delivers ‘Customised 

Flexibility’. The former is considerably less adaptable than the latter but offers better 

agility due to the less complicated development efforts needed. This effect is shown in 

Figure 7.7. This observation confirms the findings of this chapter; increased adaptability 

comes at the price of higher resources and increased lead time. 

 

Figure 7.7 The character of the reconfiguration process determines the difference 

between ‘Generalised Flexibility’ and ‘Customised Flexibility’ 
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7.5.5 Opportunities for Further Improvement 

Weighting factors that were implemented for the case with the measurement probe 

were all set to 1 (Table 7.1). The reason was that the intrinsic distribution of the index 

method, by counting the number of steps to completion (Figure 7.3), already introduced 

a basic principle of weighting even without the weighting factors set to a specific value. 

However, it is unlikely that the actual work to execute the reconfiguration matches the 1, 

4, or 7 steps of the index method. It may be expected that the accuracy of the procedure 

can be improved as the understanding of the process increases. The weighting factors 

provide experienced users the ability to refine the process according to their findings. 

In many situations, the certainty that future reconfiguration will take place is low; 

it cannot be guaranteed if and when it will happen. The current equations cannot be 

applied for these situations because the certainty that a future reconfiguration takes place 

is not yet implemented in the model. If the future reconfiguration is incorporated in the 

comparison, and does not take place in reality, an investment in flexibility may not be 

earned back. Otherwise, if it is not incorporated but it does take place, a better scheme 

could have been chosen at an earlier stage. To overcome this problem, the probability that 

a reconfiguration actually takes place could be brought into the model. 

7.6 Conclusions 

The assessment method for inventorying the reconfiguration of RMS can be 

successfully applied to compare different solutions when reconfiguration is planned 

ahead. The effective ways to quantify the impact on resources enables quick comparison 

for engineers and management. The method is particularly suitable to get a quick 

indication of the needed resources, albeit rough, but presented in the conceptual phase of 
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development of product and manufacturing means. The method for assessment is based 

on the structure of concurrent gating, which gives a solid scientific substantiation. For 

convenience, a simple and practical framework is built around the basis of Axiomatic 

Design, that distinguishes three levels of reconfiguration for the modular parts of the 

RMS; repeat, adapt, and expand. It simplifies application considerably, but it also lowers 

the accuracy of the method. 
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CHAPTER 8  

PRODUCT DESIGN IN THREE PHASES; A CONSTITUENT ROADMAP 

THAT MONITORS THE STATUS OF THE DESIGN PROCESS BY 

TRACKING KNOWLEDGE OF THE DESIGNER* 

8.1 Introduction 

This chapter combines the best characteristics of the models that were presented 

in this thesis. In one general model, it enables intelligent gating, and iterations in the 

design process to respectively support project control, and agility. This model is called 

‘Constituent Roadmap’ because it connects to existing models that may be applied within 

its context. The constituent roadmap is based on information in design and AD plays a 

central role. 

This chapter is organised as follows; Section 8.2 analyses the problem to be 

addressed. Section 8.3 proposes the constituent roadmap. In Section 8.4, the constituent 

                                                

 

 

 

 

* Parts of this chapter were published in: 

Gielen, P., Sillen, R., & Puik, E. C. N. (2012). Low cost environmentally friendly ultrasonic embossed electronic circuit board (pp. 

1–7). Presented at the 2012 4th Electronic System-Integration Technology Conference, IEEE, (Gielen et al., 2012). 

Puik, E. C. N., & Ceglarek, D. (2015). Axiomatic Product Design in Three Stages; A Constituent Roadmap that Visualises the Status 

of the Design Process by Tracking the Knowledge of the Designer, Presented at the ASME IMECE2015, Houston, (Puik & 

Ceglarek, 2015a). 

Puik, E. C. N., & Ceglarek, D. (2015). The Quality of a Design Will Not Exceed the Knowledge of Its Designer; an Analysis Based 

on Axiomatic Information and the Cynefin Framework. Procedia CIRP, 34, 19–24, (Puik & Ceglarek, 2015b). 



194 
 

roadmap is demonstrated by the development of a ‘Micro Hydrogen Sensor’. Section 8.5 

discusses the findings, and Section 8.6 draws conclusions. 

8.2 Analysis and Approach 

Monitoring project progression, during project execution, is valuable for project 

managers and engineers. This section inventories the importance to track project 

progression based on actual knowledge of the design. 

8.2.1 Problem 

In the previous chapters were discussed: (i) functional and concurrent gating 

based on the level of decomposition, in other words, measuring ‘implemented knowledge 

to the design’, and (ii) intelligent gating that measures knowledge ‘still to be acquired 

and implemented to complete the project’. The latter has advantages, ‘what is still to come 

in a project’ can count on more interest than ‘what has been done so far in a project’. 

Obviously, it is also the more difficult option; it is more difficult to predict the future than 

look back at what was achieved so far. 

Intelligent gating requires understanding of what is still to come in the project. 

This understanding should be based on knowledge of the current design and what is 

needed to complete the design. Knowledge is the central theme that enables intelligent 

gating. 

When it comes to knowledge, the acquisition of knowledge prioritises over the 

implementation of knowledge for two reasons: (i) knowledge should be acquired before 

it can be implemented, and (ii) knowledge acquisition is a more difficult process than 

knowledge implementation. The first statement does not need further explanation, 

however the second is explained here. Knowledge implementation can be executed by 
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spending time and efforts to structure the design; a potentially laborious process that 

comes with little uncertainties and can be accurately planned ahead. However, knowledge 

acquisition suffers from similar peculiarities as finding unrecognised information. Like 

unrecognised information, the right knowledge reveals itself in an unpredictable manner. 

As such, planning of knowledge acquisition comes with substantially more uncertainties, 

causes more risks in project execution, and is considered a more difficult process. 

Knowledge is more than being familiar with a list of FRs and the related 

decomposition tree, stronger, these are just ‘things worth knowing’ and they hardly 

involve having knowledge e.g.; if the background why this is the case is missing, it misses 

its added value. It is therefore important that knowledge is anchored in the project and 

that the designer, who owns the knowledge, is present to ensure its proper use. 

8.2.2 Current Situation 

The Waterfall- and V-Models do not really anchor knowledge, even gated 

decisions may need reconsideration if required by residual project risks. In Subsection 

2.4.1 an inventory was made of methods that have the capability of modelling the design. 

Of these methods, the investigations of Benkamoun, and Komoto & TomiYama are 

particularly valuable for this research since they add the capability of actively securing 

knowledge in the model itself or in the direct periphery of the model. Benkamoun’s 

‘Architecture Framework’ (Benkamoun et al., 2014) increases the relations between the 

system representation and a rational and systematic design process. As such it could be 

applied for progress determination of the project. Unfortunately, the model is not 

equipped for this functionality in its present form. 
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Komoto & Tomiyama describe a product modelling framework called ‘System 

Architecting CAD’ (Komoto & Tomiyama, 2012). SA-CAD tracks system 

decomposition, it models parameter relations, and performs consistency management of 

the parameters. An interesting aspect is that SA-CAD could eventually store design 

knowledge used in system architecting independently from specific engineering 

disciplines. Unfortunately, this is not implemented yet. 

8.2.3 Key Limitations 

• Presence of the knowledge is the basis of a reliable design provided that it is 

relevant and well applied. This makes relevant and complete knowledge a binding 

condition to enable a satisfactory design process; 

• Application of knowledge is not enough; knowledge should be anchored in the 

project; 

• The current methods, that do track knowledge in the design are difficult to apply 

for enhancement of intelligent gating. 

8.3 Methodology to Implement Knowledge Based Intelligent Gating 

To address the key limitations, the method for concurrent gating will be combined 

with the decomposition of information in design. These two methods will form the basis 

of the constituent roadmap. 

Subsection 8.3.1 will inventory how knowledge can be embedded, and Subsection 

8.3.2 will define the three phases of the roadmap. Finally, Subsection 8.3.6 will explain 

how the constituent roadmap addresses the key limitations. 
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8.3.1 Knowledge in Axiomatic Design; How Is It Applied & Where Is It Located 

Earlier investigation, based on information in design (Puik & Ceglarek, 2014a), 

has led to the belief that ‘the quality of a design never exceeds that of the designer’. A 

good design in the hands of an ignorant designer will not be recognised as such (Suh, 

2005b); this is shown by the example of an ignorant designer that does not understand 

how a design matrix was optimised and what the FR-DP-PV relations are. Optimisations 

in the perception of the designer will in the best-case lead to reinvention of the wheel; 

they might lead to a different good design, but probably will degrade the level of the 

design. As a result, the design matrix will be unclear, at least not decoupled, and the 

information content of the design will increase. Ergo, it cannot be assumed that that an 

ignorant designer will produce a good design without understanding the design relations 

and the decoupling of the design matrix.  

It was briefly explained in the introduction that the designer is usually not a single 

person. In practice, it is a group of people, with various specialisms, to address problems 

with various natures. Typical groups of people that are involved in the development 

process according to the domains in AD: 

• The marketer, who translates ‘Customer Attributes’ (CAs) into ‘Functional 

Requirements’ (FRs); 

• The product designer who relates FRs to ‘Design Parameters’ (DPs); 

• The production engineer, who searches for ‘Process Variables’ (PVs) that match 

the DPs.  

The state of a design is kept in the axiomatic domains by defining its design relations 

(CAs, FRs, DPs, and PVs). The relations are intrinsically static; only by external activity 
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of the mentioned marketer, product designer, and process engineer, the relations of the 

design will change (Figure 8.1). 

 

Figure 8.1 Connections of the domains in AD 

To investigate how knowledge is applied, in order to reduce information content 

of the design, it is essential to understand where information and knowledge are located. 

AD defines the basis for this; missing or unclear relations between the domains increase 

the information content of the design. Clear relations, that are defined in uncoupled design 

matrices (or decoupled with knowledge of the order to tune the DPs), reduce the 

information content. Respectively the marketer, the product designer, and process 

engineer of Figure 8.1 apply knowledge to the design in order to regulate the relations 

between the domains and thus reduce the amount of information. When a sloppy marketer 

fails to define good relations between CAs and FRs, the FRs will not represent the 

qualities that a customer expects of the design. As a result, DPs and PVs will be incorrect 

too. Information in design can originate at either one of the three places where relations 

between the domains are established; product planning, product design, or the process 

design. Information typically tends to escalate through the successive domains in the 

right-hand direction (when the method of zigzagging is applied on a faulty FR). 
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Though the designer applies knowledge to the design, that knowledge is not 

transferred into the design. It is knowledge ‘application’ that leads to reduction of the 

information content, not the knowledge itself. The knowledge itself remains with the 

designer. Relevant knowledge and understanding as applied to a good design has 

provided optimal relations between the domains and, as a result, the information content 

in the design has disappeared. 

Summarising; in order to produce a good design, knowledge must be applied to 

the relations of the domains. Recapitulating the kinds of knowledge: 

• Applied knowledge is transferred to the design; 

• Knowledge is implemented is in the design matrices; 

• Knowledge stays with the designers and may be secured in reports for later use. 

In addition to the last item, knowledge may be lost by various reasons e.g. staff turnover, 

poor administration, forgetfulness, etc., but can be written down in reports for application 

by future generations. This secures the essential data about the design and makes it easier 

for a successive designer to understand the design considerations by levelling his 

knowledge to that of the initial designers. 

8.3.2 Product Design in Three Phases 

Figure 8.2 shows decomposition of useful information as presented in Chapter 5. 

A good design has no useful information because knowledge of the designer is applied to 

the design and it completely regulates the behaviour of that design; by definition all FRs 

will be satisfied in this situation. To get rid of useful information, all three unrecognised, 

recognised, and axiomatic information should be addressed and eliminated. These kinds 
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of information are coupled to respectively the explorative phase, conceptual phase and 

the robustness phase (conforming Table 6.1 on page 152). 

 

Figure 8.2 Breakdown of information in design and how it leads 

to the successive phases of the Constituent Roadmap 

Chapter 6 explained how AD applies the order for the application of the axioms. 

Conforming this definition, unrecognised, recognised, and axiomatic information are 

addressed in that same order: 

• The explorative phase looks for coherence in the product design process. The aim 

is to obtain an overview of FRs, as complete as possible at this early stage of the 

project. All DPs that interact with each FR are inventoried. Successively this 

should be continued for each DP and its PVs. The goal is to gain understanding of 
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the design as soon as possible, and by doing this, find as much unrecognised 

information as possible. 

Exploration ends with an ‘Image on the Future System’ conforming Banathy’s 

model (Figure 2.7); 

• The conceptual phase validates the concept by completion and decoupling of the 

design matrix. Functionality is tested by iterative improvement cycles conforming 

the method of Chapters 3 & 4. Unorganised information, the aggregate of 

unrecognised and recognised information, is eliminated from the design; 

The conceptual phase ends with a ‘Model of the Future System’, also according 

to Banathy’s model; 

• Finally, the robustness phase tunes PVs and DPs to satisfy the FRs within all 

operating windows of the system. This leads to elimination of all axiomatic 

information. 

This phase ends with a ‘Validated and Verified System’. 

Table 8.1 gives an overview of the status of progression of the successive phases 

during product development. In the next section, these three phases will be applied in a 

general roadmap for concurrent product design. 

Table 8.1 Relation between information in design and the axioms 

Phase 

Status 
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No Information 

Addressed 
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Information 
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Information 
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Addressed 

Phase No Phase 
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Design Relations Some relations 

known 

FR-DP Rel. known 

DP-PV Rel. known 

FR-DP Rel. known 

DP-PV Rel. known 

All design relations 

fully robust 

Design Matrices Some Elements 

Known 

Some Elements 

Known 

Design Matrices 

Decoupled 

Design Matrices 

Decoupled 
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8.3.3 Constituent Roadmap of Product Design 

The particular feature of the constituent roadmap is that it tracks the 

implementation of knowledge but, at the same time, also tracks and archives the 

knowledge related processes to understand how knowledge is applied to the product 

design. The constituent roadmap is intended to be modular in itself and integrates with 

all models that were so far reported in this thesis e.g.: Quality Function Deployment, 

Qualitative Analysis, Failure Modes and Effect Analysis, Morphological Matrix, and 

Structured Analysis Design Technique.  

The structure of the constituent roadmap consists of a merged matrix of 7 x 4 cells 

that gathers applied knowledge in the odd rows and gathers knowledge in the even rows. 

Its structure is based on the knowledge application model of Figure 8.1. The first part of 

the constituent roadmap, in which the odd rows are defined, is shown in Figure 8.3; there 

is strong resemblance with the axiomatic domains and their hierarchy. Decomposition is 

implemented on the vertical axis. This is analogue to the decomposition as applied in the 

V-Model. In this case, the levels are the same as in Chapter 4 and originating from the 

German V-Modell XT. Note that the customer domain is included as well. So far in this 

thesis, the functional domain was always the starting point for the design process. The 

constituent roadmap proposes a slightly different approach; the customer domain will be 

leading for the definition at Project and Product levels, but not for the Systems and Parts 

levels, where the functional domain is maintained as starting point. The reason is that the 

customer may not be expected to have the capability to deliver substantive technical input 



203 
      

for the highly technological levels. Figure 8.4 shows how knowledge related processes 

are located in the even columns of the constituent roadmap. 

 

Figure 8.3 The odd rows of the Constituent Roadmap focus on applied knowledge 
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Figure 8.4 The even rows focus on knowledge needed to understand the design 

The implementation of knowledge may be secured by documenting all models that 

underlie the design. These models can be system engineering models, but also numerical, 

marketing, and organisational models. The documentation does not only address success 

factors but also less successful options; knowledge about the current design will be 

secured in the project documentation as well as knowledge of the alternatives for the 

design that were not applied will also be secured including the reason to decide so. 

To finalise the constituent roadmap, the two matrices will be combined to: (i) 

construct the design relations (CAs, FRs, DPs, and PVs), (ii) capture what knowledge 

was applied to the design, and (iii) to capture to what implementation of knowledge (or 

solutions) this has led (Figure 8.5). 
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8.3.4 The Check Matrix 

The ‘Check Matrix’ is applied to track progression of the constituent roadmap. Its 

structure is based on the status of the even rows of the roadmap as shown in Figure 8.5. 

The corresponding design relation is represented by a number in the check matrix e.g.; 

the relation of the FRs and DPs at the ‘parts’ level in Figure 8.5 is indicated with ‘0’. This 

number can vary from ‘0’ to ‘3’ as the maturity of the design relation increases. The 

number represents the design phase (explorative, conceptual, robustness) with which that 

particular design relation could maximally comply: 

‘0’  If it would not comply with any completed design phase; 

‘1’  If it complies with a completed explorative phase; 

‘2’  If it complies with a completed conceptual phase; 

‘3’  If it complies with a completed robustness phase. 

As such the number indicates the status of the knowledge relation between the domains. 

It will be used as a measure of progression considering elemental relations of the product 

development process. 
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Figure 8.5 The check matrix gives an overview of the knowledge status of the product 

8.3.5 Procedure of Application 
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to address. These problems can be addressed in order of priority; by a process called ‘Yo-

yoing’. 

 

Figure 8.6 The full Constituent Roadmap and the process of yo-yoing 

Yo-yoing is specifically applied in the explorative phase of development. Yo-yoing 

executes the iterations of CµSD framework, but now its movement addresses all domains, 

instead of only the functional domain. As such, yo-yoing describes a motion through the 

constituent roadmap that is more erratic than the process of zigzagging. Yo-yoing moves 

not only up and down but if needed in lateral direction to address the most significant 

uncertainty left in the project. Like the process of decomposition, it starts at a high 

hierarchical level (Project or Product) where the overview on the project is maximal but 

jumps from there to the place where project uncertainties are highest. It performs an 

explorative search in order to check if knowledge is present to successfully connect the 

FR with a DP, or a DP with a PV. From there it bounces back to the highest level to check 

Customer
Domain

CA

Functional
Domain

FR

Physical
Domain

DP

Process
Domain

PV

Project

Product

Systems

Parts

Product
Planning

Product
Design

Process
Engineering

How the
parts work

How the
parts are
produced

How the
product
satisfies

customer’s
expectations

Product
market

combination

How the
systems work

How the
product works

How the
project

operates

How the
systems are

produced

How the
product

is produced

How the
project is 
managed

D
ev

el
op

m
en

t H
ie

ra
rc

hy

Knowledge Related Processes

Implementation of knowledge

What the
parts

should do

What the
parts look

like

What
product

the customer
is looking for

What service
the customer
is looking for

What the
systems

should do

What the
product

should do

Project brief
(scope of

the project)

What the
systems
look like

What the
product

looks like

What the
project

looks like

How the
parts are

made

How the
systems are

made

How is the
product
made

How the
project

is executed



208 
 

for the next largest risk. In this way, it pokes around in the matrix to address the largest 

development risks one by one. This is shown in Figure 8.6. When large amounts of quick 

tests need to be done to check if knowledge on a certain topic is available, as is the case 

in the explorative phase, yo-yoing offers a solution. However, if a structure needs to be 

tested in a sound manner, the process of zigzagging is preferred. The process of 

zigzagging is applied for the final check to make sure that the design is decoupled. 

Zigzagging verifies the design relations layer by layer, from left to right, until the structure 

of the design is completely understood. In this case for the constituent roadmap, 

zigzagging is the final check to validate the conceptual design, and close the conceptual 

phase. It is applied to check if: (i) the relations between FRs, DPs, and PVs are present, 

(ii) if the matrices are decoupled or uncoupled, (iii) to determine if knowledge was 

correctly applied to the design, and (iv) if all unused DPs and PVs are fixed. Zigzagging 

is a thorough process with a strictly defined path through the domains. If an error in the 

design is found, zigzagging stops and starts again from the point where the error is 

corrected. Because of this thoroughness, zigzagging may be a slow process compared to 

the agile process of yo-yoing. However, both serve a specific goal; yo-yoing is applied to 

learn as much as possible about the design in an as short as possible timeframe to 

eliminate as much unrecognised information as possible. Zigzagging is a sound process 

that checks if the structure of the design is completely understood. 

In the next paragraphs, the three phases of the constituent roadmap are described 

as it would evolve during project execution. The check matrix plays an essential role in 

this process. 

Rationale for the explorative phase: The first phase forms the exploratory part of 

development. The goal is to determine preliminary design relations and to find out which 
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knowledge is relevant for the association of CAs, FRs, DPs, and PVs. It is important that 

no parameters are missed as such a knowledge gap may lead to unrecognised information 

in the design. 

The check matrix starts with zeros for all relations. At first, the mission of the 

project (e.g. the project brief) is decomposed to form an image of the future product. A 

wide scope of the designer is required to make sure that no issues in the periphery are 

forgotten. Yo-yoing is applied to address immature relations in the product design using 

the risk-adjusted approach of the CµSD framework; the order of addressing the relations 

in the check matrix is determined by severity of the risks (rationale of Subsection 3.3.3 

or coding may be applied in the context of qualitative risk analysis (rationale of 

Subsection 3.3.4). During on-going decomposition, CAs, FRs, DPs, and PVs are 

determined. All relations must be accompanied with a notion how satisfaction is realised 

e.g. how a DP relates to an FR in order to satisfy it. The check matrix is applied to gather 

the results; if all FR-DP relations of a hierarchical level are present, the respective cell of 

the check matrix is set to ‘1’. When all zeros have disappeared from the check matrix, 

phase one is completed. Phase one may be repeated for alternative product solutions. 

In the situation that parts of the design are reused from earlier designs, the design 

uncertainty on the reused parts may be low. In this case, the check matrix me be advanced 

to the level that is believed realistic for that part. The procedure for assessment as was 

presented in Chapter 6 may be applied to determine reusability of these parts. Note that 

this assessment procedure was developed for RMS, so it may be applied for the DP-PV 

relations without further adoptions. If it is to be applied for the FR-DP relations, the 

method may need adjustments; adaptation to this situation should be straightforward 

because the concept remains unchanged. 
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Rationale for the conceptual phase: The second phase of conceptual validation leads to a 

viable design (proof of concept). It is based on decoupling of the matrix. Typically, the 

earlier mentioned set of tools may be applied to define the relations of CAs, FRs, DPs, 

and PVs (Figure 8.7). 

 

Figure 8.7 Combining known methods for systems engineering with the 

Constituent Roadmap during the phase of conceptual validation 

Analogue to the explorative phase, the approach is iterative and yo-yoing may be applied 

to analyse straggling relations throughout the hierarchy and across the domains. Towards 

completion of the conceptual phase, yo-yoing is replaced by zigzagging. 

It is possible to start the conceptual phase with more than a single product concept. 

However, at the end, a single most promising solution is selected for continuation to the 

next phase. 



211 
      

The respective index of the check matrix is increased to ‘2’ to indicate that the 

design relations are fully understood and decoupled. When all cells of the check matrix 

have advanced to a minimum of ‘2’, the system is conceptually solid, which means that 

there is a complete model from the functional and manufacturing perspective. 

Rationale for the robustness phase: The final phase is executed conform good axiomatic 

practice. The product is made robust by matching the design range and the system range 

within the common statistical frameworks of Six Sigma (Yang & EI-Haik, 2008) or 

Robust Design (Taguchi et al., 2005) (explained Appendix B). It ensures reliable 

satisfaction of FRs with DPs incorporating their tolerances (same for the other design 

relations). This phase applies the process of reversed zigzagging, since the verification of 

robustness starts at the bottom level of the hierarchy. When reversed zigzagging reaches 

the highest hierarchical level, relations are proven robust, the check matrix is upgraded to 

‘3’. The product is fully engineered when the complete check matrix is set to ‘3’. This 

final phase completes the implementation of all relevant knowledge in the design. The 

result is a good design (verified and validated system). 

Recording of Design Information: During all three phases, the check matrix has a purpose 

in recording design information. Information that was applied to upgrade the check values, 

may be stored in a project database at the end of each phase (e.g. the output of the models 

conforming Figure 8.7). The structure, in which data is stored, can be comparable to the 

check matrix, since knowledge application concentrates at these nodes. 

8.3.6 How the Constituent Roadmap Addresses the Key Limitations 

The check matrix forms the basis of a reliable design; it is composed of the 

crossroads in the design that apply knowledge in the role of the product planner, the 
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product designer, or the process engineer. Analysis of the check matrix is analogue to 

analysis of the status of the design and it follows whether knowledge was applied to 

understand the design relations. In essence, the check matrix forces the designer to gather 

the right knowledge and use it to structure the design. This addresses the key limitation 

that monitoring of the design should be based on knowledge. 

The structure of the check matrix is also the structure that should be leading for 

the process of project documentation. When systems engineering models are applied e.g., 

by using the rationales of the CµSD framework, or by applying the models conform 

Figure 8.7, these models will intrinsically structure and secure the applied knowledge. 

Future project members can use the models to understand why elementary project 

decisions were taken. 

It can be stated that the check matrix is a direct reflection of the knowledge 

required in the project. The underlying thought is that consistent design relations indicate 

that knowledge is applied to essential parts of the project. 

8.4 Case: Design of World’s Smallest Hybrid Hydrogen Sensor System 

The constituent roadmap was applied to a new product development case; a 

microsystem development project that was funded by the European Committee in the 

perspective of a call that aims to develop ground breaking new technology for zero-power 

ICT systems (ECSFP, 2009). The Project ‘SiNAPS’ (Semiconducting Nanowire Platform 

for Autonomous Sensors), a granted proposal from this call, was aiming to develop a 

wireless ‘Smart Dust’ sensor system to be hooked-up to the Internet of Things. 
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8.4.1 Problem Definition 

The project-call for zero-power ICT systems, describes its aims and how these 

aims should be satisfied to qualify for the reserved development resources. Basically, the 

call defines the CAs for the project. Project ideas for the call need to be ‘sold’ conforming 

customer-supplier relations by submitting a proposal that will be reviewed by the 

‘customer’, in this case a line-up of delegates on behalf of the European Committee. 

Project SiNAPS was granted because its project proposal satisfactorily described a project 

within the scope of the call. SiNAPS sets an ambitious goal; the proposal describes how 

a miniature sensor device may be developed, that will be acknowledged as the smallest 

hybrid sensor system in the world (Fagas et al., 2014). Not only the way the system will 

be developed, realised, and integrated is accurately described in the project proposal, also 

the respective contributions of the participating organisations and the roles of their 

members with proven qualifications are explained (Fagas, 2008). Basically, the proposal 

conceptually defines the highest hierarchical level of the project, including high level FRs, 

DPs and PVs. 

The technological description of the project proposal defines a sensor system that 

is composed of a number of microchips in a small sensor casing. Due to its hybrid nature, 

the parts need to be assembled one by one in a package. In total, a number of six chips 

(further referred to as ‘Dies’) are integrated to form an autonomous measurement 

platform with a target volume smaller than 4 mm3. The concept of the SiNAPS sensor 

system is shown in Figure 8.8. 
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Figure 8.8 SiNAPS Block Diagram of Sensor System 

Further, the project starts with a relatively empty slate. All silicon Dies will be 

designed from scratch, enabling the project to be flexible and unconventional. The radio 

frequent transceiver of the system (Figure 8.8) will not be implemented in order to apply 

maximum resources to the measurement system and power management. 

8.4.2 Application of the Constituent Roadmap in the Explorative Phase 

The explorative phase started with determination of the CAs, FRs, DPs, and PVs. 

All results were gathered in the constituent roadmap. Table F.1 of Appendix F shows the 

completed constituent roadmap for the initial status of the project, and Table 8.2 below 

shows the check matrix at this stage. What strikes in Table 8.2 are the high scores for the 

knowledge relations at the Project and Product levels. The scores of ‘2’ indicate that FRs, 

DPs, and PVs are basically decoupled and therefore already meet the conditions needed 

to close the conceptual phase. This high level of completion was the result of the relatively 

far developed project proposal, of which high demands were made to obtain funding. 
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Table 8.2 Initial check matrix of the constituent roadmap 

 
Knowledge about 

CA-FR Relation 

Knowledge about 

FR-DP Relation 

Knowledge about 

DP-PV Relation 

Project 2 2 2 

Product 2 2 2 

System  0 1 

Part  0 0 
 

For the sensor system, two alternatives are available for implementation in the 

sensor system; both alternatives comply with the project proposal. The first sensor option, 

a Nanowire based biosensor for various chemical and biological measurements, is 

completely new and not operational yet. The second sensor option is a Nanowire based 

sensor that measures a single gas. This sensor uses an operating principle that is based on 

‘Palladium Nanowires’ to measure hydrogen concentrations. The sensor has a less 

complex design that is more mature. This is confirmed when the system and part levels 

are inventoried. The check matrix is shown in Table 8.3 and the complete overview again 

in Table F.2 in Appendix F. 

Table 8.3 Initial check matrix for alternative hydrogen sensor 

 Knowledge about 

CA-FR Relation 

Knowledge about 

FR-DP Relation 

Knowledge about 

DP-PV Relation 

Project 2 2 2 

Product 2 2 2 

System  1 1 

Part  1 1 
 

Basically, if the hydrogen sensor is chosen, the project could pass the exploration phase 

right away since a full set of design relations is known. However, in order to see if the 

more ambitious biosensor can be brought up to the required level, the development of the 

two sensors is kept in parallel for some time. After six months, substantial progression 

was made for the sample disposal of the biosensor, as shown in Figure 8.9. However, the 
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selectivity of the system was not at the required level yet. The biosensor was dropped 

from the project and the hydrogen sensor was upgraded to the main line of research. The 

explorative phase of the project was closed. The check matrix remained as in Table 8.3. 

  

Figure 8.9 Biosensor with sample disposal (left), Nanowire hydrogen sensor (right) 

8.4.3 Application of the Constituent Roadmap in the Conceptual Phase 

The conceptual phase had the goal to concurrently develop the sensor design and 

its production processes. Since all Dies were using standard CMOS technology (a project 

constraint), standardised ways for production could be used by the application of 

validated design rules. The status of the constituent roadmap, including the final FRs, 

DPs, and PVs, for the conceptual phase are given in Table F.3 in the appendix. Due to the 

successful decomposition, the sensor consisted of six separate components that could be 

individually optimised. However, there appeared coupling in the sensor system itself due 

to the fact that the number of FRs exceeded the number of DPs for the sensor chip. 

FR3.2.2 ‘Measure Sensitively’ and FR3.2.3 ‘Measure with Quick Response’ are satisfied 

by only a single DP ‘Diameter of the Nanowire’. Though this indeed did lead to dependent 

behaviour, it did not jeopardise the functionality of the system; reduction of the diameter 

of the Nanowires leads to better sensitivity as well as to a quicker response. Therefore, 
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DP3.2.2 could be used to satisfy both FR3.2.2 as FR3.2.3. Characterisation on older 

generation of Palladium Nanowire Dies had already shown that the coupling should not 

lead to problems (Offermans et al., 2009). Therefore, the coupling was accepted in the 

design. 

The PV-cells and the palladium Nanowire Sensor Die were functionally tested in 

a number of iterative cycles. The Power Die (general power management circuitry), that 

was designed fully according to CMOS specification was software tested by applying the 

method of ‘Boundary Scanning’ (a debugging method that applies IO simulations to test 

the functionality of the chip design). To conclude the conceptual phase, the design 

matrices were derived (Table 8.4) and the check matrix was updated (Table 8.5). 

Table 8.4 Design matrices for the conceptual validation 

Knowledge about 

FR-DP Relation 

Knowledge about 

DP-PV Relation 
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Table 8.5 Check matrix for proof of concept 

 Knowledge about 

CA-FR Relation 

Knowledge about 

FR-DP Relation 

Knowledge about 

DP-PV Relation 

Project 2 2 2 

Product 2 2 2 

System  2 2 

Part  2 2 
 

With all elements of the check matrix at a minimum of ‘2’, the conceptual phase was 

completed. 

8.4.4 Application of the Constituent Roadmap in the Robustness Phase 

The third and last phase of the constituent roadmap focusses on the robustness of the 

design. Chapter 7 has shown that the complexity of a system may be addressed by testing 

the system under various windows of operation, or by complete understanding of the 

design relations (matrix and statistical relation). In this case, a combination is applied.  

 

Figure 8.10 Test setup to characterise PV cells and Power Manager Die 
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The PV cells of the sensor were tested in a setup with the charge circuit of the Power 

Manager as shown in Figure 8.10. In parallel, the hydrogen sensor was separately tested 

by connecting it to the ADC circuit. After testing, when it proved to be fully functional, 

the sensor system was fully assembled. 

All results were carefully written down in reports, and because this concerned a 

research project, most of it was reported in academic papers. Table 8.6 shows the papers 

that were produced during validation of the final phase of the project. All lower levels 

were reported in academic papers. However, the project level was not published in 

academic papers but confidentially reported to the customer, (European Committee). The 

project report was officially accepted. 

Table 8.6 Provided documentation after robustness phase 

 Knowledge about 

CA-FR Relation 

Knowledge about 

FR-DP Relation 

Knowledge about 

DP-PV Relation 

Project Final Report 
SiNAPS 

Acceptance letter 

European board 

Final Report 
SiNAPS 

 

Final Report 
SiNAPS 

 

Product Acceptance letter 

European board 
(Fagas et al., 2014) (Fagas et al., 2014) 

System  (van der Bent et al., 

2015; Khosro Pour 

et al., 2012) 

(Lafeber et al., 

2014; Khosro Pour 

et al., 2013; Tong et 

al., 2010) 
Part  (van der Bent et al., 

2010) 
(Tong et al., 2010) 

 

The final sensor is shown in Figure 8.11. The Dies are placed on a substrate of just over 

4 mm2. Combined with low thickness of the chosen concept, that was under 1 mm in total, 

the goal of max 4 mm3 was met. 
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Figure 8.11 World’s smallest hydrogen sensor after completion 

8.5 Discussion 

In essence, the constituent roadmap is a knowledge-tracking model. In the first 

phase, it monitors the presence of necessary knowledge during the search for coherence, 

in the second phase, it monitors if this knowledge was applied to acquire a model to 

support conceptual validation. Finally, in the third phase, it checks whether knowledge 

was applied to implement solutions according to good practice. The check matrix 

visualises progression in a consistent way throughout the development process. This 

enables easy access for less-experienced users. The roadmap is based on information in 

AD, in which the unorganised component, related to the Independence Axiom, was split 

into an unrecognised and a recognised part. Users are stimulated to designate the relevant 

knowledge in the design, before making final conceptual choices when the milestone 

‘proof of concept’ approaches. This increases the resolving power of the method. 
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8.5.1 Strengths of the Constituent Roadmap 

The way of knowledge stocktaking for the product and its domains, in relation to 

the hierarchy of the V-Model (V-Modell- XT) is new. Also new is the way this knowledge 

is visualised in the check matrix that focusses on all knowledge related processes. 

Together it combines accessibility of the scientifically forceful method of Axiomatic 

Design, yet dealing with the plenitude of the product design in a structured way. Due to 

the visual nature of the model, it is suitable as a universal language to improve 

understanding between all stakeholders in the organisation, whether they are managers, 

staff or technicians. Especially since the roadmap is simple to apply; its use is attractive 

to all parties. 

The method retains its solid academic basis due to the application of AD. Many 

ways to combine AD with other systems engineering methodologies have been reported 

in the past. The constituent roadmap may benefit from these combinations comparably. 

However, the application of a conceptual phase, with divided attention for exploration 

and validation, analogue to the work of Banathy (Banathy, 1996), Pahl & Beitz (Pahl & 

Beitz, 2013), Ulrich & Eppinger (Ulrich & Eppinger, 2004), and Wang (Wang et al., 

2002), increases resolving power in the early phase of design. The dynamics of 

convergence and divergence according to Banathy (Figure 2.7) can be seamlessly mapped 

to the constituent roadmap and is expanded to the rear. The explorative phase will lead 

to ‘the image of the future system, ‘conceptual validation’ leads to ‘the model of the future 

system’, and the phase ‘gain robustness’ will lead to a new goal: ‘a validated system’. 



222 
 

8.5.2 Weaknesses and Limitations of the Constituent Roadmap 

The constituent roadmap also has shortcomings. Complete underpinning of the 

check matrix can be laborious, especially when descending in the hierarchical tree when 

it tends to gain in width. Quite a number of design relations have to be scanned before 

complete understanding of knowledge application can be guaranteed. Moreover, dutiful 

application of the roadmap does not relieve the designer of the need to collect relevant 

design knowledge, and thorough understanding of the design remains essential. The 

constituent roadmap may be easy to apply, but cannot unburden the designer of gathering 

design knowledge. 

As said, communication within the company could improve when the constituent 

roadmap is used. However, a limiting factor is that this only works when some instruction 

about the method is given to its users. 

8.5.3 Other Considerations 

The constituent roadmap combines an implementation of concurrent gating and 

intelligent gating. Concurrent decomposition was maintained by using the hierarchy of 

the V-Modell XT and as such supports concurrent gating; zigzagging is applied by 

descend through the hierarchy level after level. 

On the other hand, knowledge stocktaking forms the basis for the constituent 

roadmap. The method forces knowledge application in the design and its understanding 

by the designers. The design must be substantiated before the check matrix can be 

upgraded. 
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8.5.4 Opportunities for Further Improvement 

The Axiomatic Maturity Diagram of Chapter 7 was not yet integrated with the 

Constituent Roadmap. The reason is that the methods to respectively determine the 

absolute amount of information in the design, and the project status in the Axiomatic 

Maturity Diagram, are not well-developed yet; so far it was applied as a qualitative tool 

for analysis of projects in retrospect. However, the Axiomatic Maturity Diagram can be 

combined in good harmony with the constituent roadmap to analyse and recover from 

eventual errors in the design. 

8.6 Conclusions 

The constituent roadmap may serve as a model to track product development from 

the earliest stage to market introduction. Two new features are characteristic for the 

constituent roadmap. First, the way of knowledge stocktaking for the product and its 

domains may be considered novel. Secondly, the way this knowledge is visualised in the 

check matrix focusses on all knowledge related processes. Together, it combines 

accessibility of the scientifically vigorous method of Axiomatic Design, yet dealing with 

the plenitude of development challenges in product design in a structured and clear way. 
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CHAPTER 9  

GENERAL DISCUSSION 

The chapters in this thesis all ended with a discussion that reflected on the 

individual chapters. This general discussion is used to reflect on the research questions of 

the thesis, and issues that go beyond the scope of the individual chapters. The research 

questions as defined in the introduction were: 

The thesis was split into two parts; the first part has addressed RQ1 and the second 

part focussed on the implementation of that analysis to address RQ2. RQ1 will be 

discussed in Section 9.1, RQ2 will follow in Section 9.2. 

9.1 Discussion of Methods to Monitor How Project Uncertainties Evolve 

as the Project Progresses 

9.1.1 Strengths of the Proposed Methods 

Firstly, the µSD and CµSD frameworks give quick feedback on the product 

development process for microsystems. As such, it enables agile optimisations of the 

product design. The CµSD framework adds the concurrent approach of microsystem 

RQ1: 

How do project uncertainties, during the development process of microsystems 

and their production means, evolve as the project progresses? 

RQ2: 

How can this knowledge be applied in a protocol to guide engineers effectively 

and concurrently through the development process of microsystems and their 

production means? 
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design for production means. Therefore, the agile advantage provides benefits to the 

development of products and process technology. 

Secondly, intelligent gating, enabled by the decomposition of information in 

design, explains that lacking knowledge leads to ‘irregularities in design’. This causes a 

design to have a shortage of structure and organisation and it cannot be guaranteed that 

such a design operates as required; in terms of AD, there is no certainty that the FRs are 

satisfied by the DPs (the same applies to DPs and PVs). 

Thirdly, the information theory teaches us that the bigger the design challenge, 

the more irregularities are introduced in the system, and the more likely that something 

may go wrong in the development process. This uncertainty calls for: (i) a conserved use 

of immature technology, and (ii) increased appreciation of proven technology. A modular 

approach in product and manufacturing design may reduce uncertainties when modular 

parts can be reused, provided that the modular parts are well engineered and documented.  

Fourthly, graphical simulation of the development process by application of the 

Axiomatic Maturity Diagram, increases understanding of typical errors that are made 

during the design process. The results of this investigation will help to recognise how the 

errors are caused, what the consequences of the errors are, and how they can be addressed. 

The Axiomatic Maturity Diagram may be helpful to communicate these causes and 

consequences within the team of designers, between departments, managers and 

technicians, or even between companies. 

Finally, unrecognised information is the most troublesome of problems in the 

development process. There are two main ways to deal with this kind of information. One 

way is to eliminate irregularities in the system by organising the design from top to 

bottom; this is basically what the zigzagging process in AD does. The other way is by 
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subjecting the product, or functional elements of the product if it is not completed yet, to 

proper testing. This is preferably done as early as possible to prevent errors from 

escalating. Designers, managers, or humans in general, easily let themselves be fooled by 

their perception of the design and may overlook shortcomings that will lead to unexpected 

functional behaviour. Physics, or nature in general, cannot be fooled* and by execution of 

proper tests it will uncover any difference in functionality. 

9.1.2 Weaknesses of the Proposed Methods 

Application of information in design, as described in this thesis, has also 

weaknesses. The largest drawback is that there is yet no absolute certainty that 

unrecognised information is found before it may escalate to serious proportions. Even if 

a design matrix is defined and decoupled, there could be a hidden DP that influences one 

or more FRs and basically causes coupling of the design. There does not have to be a sign 

of any kind to warn the designer that there is hidden information in the system. Also, 

testing does not guarantee that the error is found. Even with a good test-plan, it may 

happen that a hidden design parameter is not varied. There is a substantial chance that 

this actually happens; as the DP was not recognised in the first place, probably the test-

plan is not targeting this DP either. 

                                                

 

 

 

 

* Exclude some novel quantum-mechanical insights from this statement 
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Another weakness is that there is a significant chance of ‘over-engineering’ by 

some designers. The challenge for total understanding of the product design may lead to 

analysis-paralysis. This response is also known as an ‘anti-pattern’ (Koenig, 1998), a 

response to a recurring problem that is usually ineffective or even counterproductive. It 

may lead to a designer being afraid to release the product because he is not sure about 

many details in the design that might cause unwanted behaviour. 

9.1.3 Limitations of the Proposed Methods 

Application of information in design as described in this thesis also has its 

limitations. The method for tracking projects, using the Axiomatic Maturity Diagram in 

its current state of development, is mainly useful in retrospect. It cannot be applied on 

problems that are not known yet. 

9.1.4 Opportunities for Further Improvement 

Time-dependence of a design or system adds substantial uncertainty. It was not 

yet investigated and remains for future research. However, also for time-independent 

information, there is still room for improvement in determination of the real position in 

the Axiomatic Maturity Diagram. Chapter 6 has reported a number of measures for 

quantification of the axes that could bring determination of the real position to a higher 

level. Note that there will be many drawbacks when trying to apply these measures; due 

to its nature, unrecognised information is not easy to predict and though a quick scan of 

these methods showed opportunities for investigation, there does not seem to be a quick 

solution so far. A fairly new opportunity could be to apply an adapted version of the 

method of inventive problem solving (TRIZ). As is, the method is able to contribute to 

the synthesis of solution concepts. It could be modified to find potential risks when 
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inventive principles are applied. A quick literature scan learns that some work has been 

done in this direction e.g. Regazzoni & Russo present an improved risk management 

model for product and system design to reduce failure occurrence based on TRIZ and 

FMEA (Regazzoni & Russo, 2011). Teoh & Case published a knowledge modelling 

procedure based on FMEA that is particularly suitable for automation (Teoh & Case, 

2004). 

9.2 How to Guide Engineers Through the Development Process? 

9.2.1 Strengths of the Proposed Methods 

The constituent roadmap combines a number of strengths to explore, define, and 

reduce information in design. First, the principle of yo-yoing, as was explained in Chapter 

8, implements the iterative feedback loop of the (C)µSD framework and as such enables 

early testing in the development procedure. This is analogue to the probe-sense-respond 

approach as suggested for complex systems by the Cynefin framework. It takes place in 

the early stage of product design when invested resources in the project are still low. Yo-

yoing, increases the chances of finding unrecognised information in the design and reveal 

it as early as possible. The constituent roadmap implements the process of zigzagging in 

the conceptual phase, explained in chapter 4, as a final and exhaustive check of the design 

relations and their decoupling. During the robustness phase, the process of reversed 

zigzagging enforces testing bottom up as the product is composed from its elementary 

parts. Again, all design relations are tested, however now they are tested for statistical 

rigour. It is the third and final check that may reveal unrecognised information in the 

design before the product is released. A particular strength of the constituent roadmap is 
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that it intrinsically generates product design documentation. This is of advantage for 

maintenance or further development of the system in a later stadium. 

9.2.2 Weaknesses of the Proposed Methods 

The weaknesses of the constituent roadmap are also related to the nasty 

characteristics of unrecognised information as explained in Section 9.1. Though thorough 

application of the procedures proposed by the constituent roadmap during exploration, 

conceptualisation, and search for robustness, indeed do contribute to understanding of 

many project issues, it is still not guaranteed that the actual goal, ‘complete understanding 

of all design relations’ will be reached. The reason is that a ‘completely regulated system’, 

that includes the work of all suppliers, operations, and materials is exceptionally diffuse 

and therefore not realistic. 

Secondly, the definition and understanding of every detail in a design requires a 

lot of work; at the lower hierarchical levels, the width of the decomposition trees gets 

exponentially large. The question is, who is willing to spend substantial effort for 

something that cannot guarantee full functionality of the design? 

Finally, though the method was kept as simple as possible, it requires quite a 

number of skills to apply the constituent roadmap. As the constituent roadmap is built on 

both AD and the V-Model, these methodologies of system engineering also have to be 

learnt in its periphery. 

9.2.3 Limitations of the Proposed Methods 

A limitation of the constituent roadmap is that the methodology does not expand 

knowledge. It even does not indicate where or how the missing knowledge can be 

acquired. It basically guides the designer in his search for unrecognised information and, 
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since unrecognised information instantly changes to recognised information after it is 

spotted, it leaves fresh recognised information flagged to be addressed by the designer. 

This is only sensible if the designer has the capability and time to acquire the essential 

knowledge to bring this to successful conclusion. 

Another limitation is that the constituent roadmap does not bring the design to a 

higher level of absolute maturity. All actions are based on the current design as is: it does 

not renew the concept of the design nor does it stimulate the designer to explore new 

areas. The reality is that it does rather detract from innovation, since most changes come 

with a lot of uncertainty. It could make the approach rather conservative. 

9.2.4 Opportunities for Further Improvement 

Within the scope for improvement it would be useful to investigate how 

innovation can be safely realised within the constituent roadmap. Though the constituent 

roadmap does not stimulate innovation, it as well does not hinder it. The same applies for 

a modular approach; reusing existing modular parts may not be good for innovation but, 

with good definitions, new modules can be developed which increases innovation. The 

modular approach supports the constituent roadmap since documented modules can be 

easily reused and assessed within the methodology. So, when combining the constituent 

roadmap with a modular approach, as was done in Chapter 7 for RMS, focus may be 

maximised on the innovative new modules, while leaving the other modules in the safe 

and known design space. This could be supported with a software like Acclaro Design™ 

that has the ability to incorporate existing and known modules of the design as 

commodities or commercial off the shelf parts. 
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9.3 Other Considerations 

The information theory of Shannon & Weaver, as was explained in Chapter 5, shows that 

imperfect knowledge of a situation leads to random behaviour. Since it is not possible to 

exhaustively understand all phenomena in our environment, and it is also not possible to 

control all these phenomena, it means that the future behaves randomly up to some extent. 

This is the case for the phenomena that have not been regulated. Things, of which we can 

guarantee that they have no irregularities, will behave in a structured way. This means 

that in principle, the future behaves randomly, however things can be conditioned by the 

application of our knowledge. In this thesis, this is applied for product design and 

manufacturing of microsystems. The application of this insight goes beyond product 

design and manufacturing. In this research, a lot of work has been dedicated to the 

combination or development of suitable and practical models to understand the product 

design and its manufacturing means; parts of it have proved successful. For phenomena 

that are not understood, a safety net has been applied in the form of applied testing. The 

reason that testing is a powerful method to find hidden problems in the design is because 

‘people get fooled, but not physics’ (Puik, this thesis). Therefore, testing appears a good 

procedure to investigate complex systems or parts of it. This is not surprising since it 

matches the Cynefin method of probe-sense-respond, where probing is an examination of 

quality, analogue to testing, and sensing is the awareness that follows from the applied 

test. The examination of quality may be quite broad, since the effect is not known in 

advance, and this makes it a diverging process. The awareness that follows from the test 

is converging because new knowledge is acquired and that knowledge confirms or 

negates the prevailing hypotheses. Probe-sense-respond as investigative cycle is a 

diverging and converging process. Altogether, this diverging-converging process is 
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applied many times at all levels of the design. As such, the three stages of the constituent 

roadmap can be visualised in Banathy’s model of Divergence and Convergence by 

expanding it to the back. In Figure 9.1 the three investigated models for systems 

engineering are plotted synchronously in time. Though, the exploration stage only has 

been distinguished in Banathy’s model, its activities are also executed within AD. The 

image of the future system is characterised by: hierarchical break down, preliminary FRs, 

proposed DPs for every FR, a number of alternatives in design, and customer accordance 

with the image of the future system. 

 

Figure 9.1 The three stages of the constituent roadmap by extending 

Banathy’s model of divergence and convergence 
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9.4 Opportunities for Further Improvement 

The exploration stage within the framework of AD, in Figure 9.1 marked with the 

grey block ‘New Design Rule?’ could need further investigation. Errors made during the 

explorative phase are disruptive for decoupled designs, comparable to the way in which 

the Independence Axiom is disruptive to the Information Axiom (as was explained in 

Subsection 6.2.1). The goal of a designer should be to reduce all unrecognised 

information before starting the process of decoupling. The solution for this problem is to 

pursue a complete set of design relations during the explorative phase. A complete set of 

design relations requires: (i) a complete set of FRs, (ii) awareness of all DPs that affect 

each FR, and (iii) awareness of all PVs that affect each DP. Even if the design cannot be 

decoupled yet, there is no unrecognised information left in the system. 

As explained in paragraph 9.2.2, it can be quite an amount of work to understand 

all of these design relations. Fortunately, there are ways to structure the design effectively, 

e.g. by applying: (i) commercial off the shelf parts from third parties that are specified by 

the supplier, (ii) reused solutions from the past that were specified by the design team 

itself, (iii) experience of the designer (similar to reuse but more flexible since it is based 

on knowledge instead of knowledge application), and (iv) standards that describe 

interfaces and the use of systems. 

The question is what kind of precept this new design rule is. The new design rule 

does not appear to be an axiom itself. Even the Information and Independence Axioms 

are no true axioms in the sense that they cannot be derived from a higher truth; Chapter 

5 has shown that they can be derived from useful information and/or the Complexity 

Axiom, the latter still holding the status of a true axiom. Note that this new design rule 

may be a corollary of the Complexity Axiom. Another perspective is that it is a corollary 
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of the Independence Axiom, because the presence of a complete set of design rules is a 

binding condition to decouple the design. This perspective would relate the Independence 

Axiom completely to unorganised information (Figure 5.3). This last viewpoint does not 

harmonise well with the disruptive character of the new design rule, which suggests that 

finding a complete set of design relations is a separate design stage to be completed before 

decoupling the system. The exact definition of these options remains open for future 

investigations. 

9.5 Conclusions 

Successful development of microsystems may be a great enabler for the product 

innovation of companies, but the development of these products and their 

industrialisation comes with many undesirable risks. In the context of risk mitigation, the 

following outcomes are the result of the research described in this thesis: 

i. The µSD, CµSD, and CµSD with intelligent gating combine the strengths of iterative 

and sequential project monitoring methods. As such, they combine the strengths of 

Scrum, as well as the V-Model, which leads to agile feedback of the performance of 

the design and rigour in project execution; 

ii. Decomposition of possible development problems, when developing (micro)systems, 

leads to three kinds of information in design to be addressed; unrecognised, 

recognised, and axiomatic information. The first two kinds are newly defined and 

relate to the ‘unknown unknowns’ and the ‘known unknowns’ in a system; 

iii. These kinds of information in design are strongly related to the Theory of Complexity 

in Axiomatic Design and may be addressed by a ‘Probe-Sense-Respond’ sequence 
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of actions. Axiomatic information is the kind of information that was originally 

defined in Axiomatic Design, it addresses the robustness of the design; 

iv. A number of systems engineering models were proposed to monitor the project risks 

as they develop during project execution at three levels of abstraction to: (i) to 

monitor project progression, (ii) to compare reconfiguration schemes for RMS, and 

(iii) a combined framework of the different models in the thesis; 

v. This combined framework is called ‘Constituent Roadmap’ The constituent roadmap 

uses many elements of Axiomatic Design. It consists of three phases: (i) an 

explorative phase that leads to a number of potential products and defines the first 

FRs and DPs. A yo-yoing motion in this stage, through the product’s hierarchical 

structure, explores the concept of the design by forcing quick tests of the many 

ambiguities in the design to bring them at an equal level, (ii) a conceptual phase 

decouples the FRs by a zigzagging motion through the hierarchical structure of the 

system, and (iii) the system is made robust by testing in a reversed zigzagging motion 

that is oriented bottom up through the hierarchy of the system. 

Models for systems engineering generally try to bring project risks, latent in the 

product development process, towards the present. As such, these risks can be addressed 

in the early stage of development when investments are still low. The models in this thesis 

have this same characteristic; they may be combined or expanded with new or other 

existing ways for systems engineering. It is not possible to guarantee that project 

execution during development of microsystems has no disturbances, even with proper 

application of the models, but chances of errors remaining in the design will be 

substantially reduced.  
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APPENDIX A 

DESIGN & IMPLEMENTATION OF RECONFIGURABLE 

PRODUCTION EQUIPMENT FOR AN AUTOMOTIVE PIEZO 

ACTUATOR 

This appendix provides supplementary data to Chapter 3. The case follows the 

design optimisation of an automotive actuator to enable efficient manufacturing of a 

reconfigurable production platform. The maturity of the product design was explicitly 

registered during the phases from early ‘Manufacturing Development’ via ‘Pilot 

Production’ to ‘Manufacturing Ramp-Up’. Product development and manufacturing 

development took place in a concurrent fashion to find an optimal balance between 

product- and equipment complexity. 

A.1 Definition of the Product  

The product under investigation is a subsystem that makes part of a pneumatic 

switch for an automotive comfort system. It consists of a ceramic piezoelectric strip, one 

double and two single brass contact springs, as shown in Figure A.1. 

 

Figure A.1 Piezo assembly for an automotive pneumatic switch 
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The contact springs are to be mounted on the piezo actuator. Due to the complex shape 

and fragile nature of the product, a sequential production process is preferred. This allows 

higher system complexity and direct feedback control of the production process (Hsu, 

2004). The connection between piezo and contacts should guarantee that the parts are 

electrically connected. At the position of the bond, the piezos are equipped with a 

conductive coating. The contacts are stamped from a coated metal strip that is supplied 

on a reel. The connection will be realised with an electrically conductive adhesive. At the 

initial phase of the project, the engineers think of applying a ‘Carbon Paste’ for the 

adhesive connection. Tests have indicated that the carbon paste will ensure an acceptable 

electrical resistance for this specific application. The carbon paste however needs curing 

at an increased temperature of 120-140 degrees centigrade; a process that needs several 

hours to complete. It is not acceptable to occupy the assembly tool that brings the parts 

together in the right position for hours per product during the curing phase. Therefore, a 

second adhesive, that can be cured considerably faster, is applied to keep the contact 

springs into place when the piezo assembly is taken out of the positioning tool. Adhesives 

that can be cured in time of seconds typically apply an external optical energy source e.g. 

IR or UV. In this case, an ultraviolet curing adhesive is selected. This will enable the 

assembly system to continue with the successive product shortly after the previous 

assembly action is completed. A cycle time of roughly 10 seconds is expected to be 

feasible, meeting the production requirement of 5000 products per day in a double shift 

of 16 hours. Curing the carbon paste is performed afterwards as a batch process. Given 

the small geometrical dimensions of the products, a single furnace is able to hold the daily 

production. During production hours, parts are buffered by the capacity of the furnace, 

enabling batch-curing overnight. The next day all parts will be available for testing. 
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A.2 Initial Setup of the Manufacturing System 

The company has deployed a manufacturing strategy comprising reconfigurable 

production elements in a structure of lines, cells, modules and devices. This means that a 

number of frequently used processes and their hardware-toolsets have been standardised 

and documented. These process modules available for reuse without the need to develop 

them from scratch. In this case, a contamination controlled cabinet, the manipulators, and 

the dispensing modules for the adhesives could be used off-the-shelf. This makes the 

realisation of the envisioned production platform a matter of ‘Configure to Order’ rather 

than ‘Engineer to Order’. 

Yang and Nelson’s approach for determination of system architecture of 

reconfigurable equipment will be applied (Yang & Gaines, 2001; Hsu, 2004): (i) 

determination of assembly process flow through the system, (ii) decomposition of system 

functions, and (iii) determination of the general system architecture. 

A.2.1 Determination of Process Flow Through the System 

A preliminary layout for the production machine was visualised using the SADT 

data diagram (Figure A.2). This layout was set as a starting point for further 

decomposition. 
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Figure A.2 Initial assembly process flow 

 

A.2.2 Decomposition of System Functions 

The assembly process flow was divided into five elementary steps: (i) system 

initialisation, (ii) part pick-up, (iii) move part to assembly position, (iv) align & insert, 

and (v) prepare for next assembly operation. After the initial inventorying action, a 

number of logistical starting points were defined: 

• Contact springs are fed into the system using tape on reel. This is due to the fact 

that the manufacturing equipment of the springs defaults to this standard; 

• The piezo strips, are supplied in a custom designed tray that was developed for 

the previous process (coating the piezo strips); 

• An output tray, that uses a different number of parts than the input tray, has already 

been designed. The implicit fact that the different number of parts in input- and 

output-tray causes up to twice as many machine stops, to feed and remove parts, 

is accepted (input- and output trays will not be replaced simultaneously); 
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• The standardised robotic manipulator will be used for the handling of the parts 

through the machine. For the rest the machine should reuse as much pre-developed 

technology modules as possible; 

• Based on this information, a team of experts was asked to define a most promising 

layout for the manufacturing of given parts. This layout should meet the five 

elementary actions for the process flow, based on the chosen logistical limitations. 

Note that at this point only prototype parts were produced manually, also no investments 

in production hardware were made. 

A.2.3 Determination of General System Architecture 

Based on the assembly process flow and the decomposed system functions, a first 

analysis of the envisioned manufacturing system was made. It appeared after an initial 

consideration that a system to match the structure of Figure A.2 calls for large hardware 

investments. Due to the sequential approach, the system would be equipped with separate 

assembly stations for placement of respectively Contact Spring 1, Spring 2 and the Final 

Contact Spring. Each station would need a complete set of process modules, each 

consisting of at least a carbon paste dispenser, a placement tool for each contact spring, a 

dispenser for UV curing adhesive, the light source for UV curing, and the feeder systems. 

A general guideline in machine building is to keep all process components 

(dispensers, feeders, manipulators) as occupied as possible (Boothroyd, 2005; 

Dashchenko, 2006). However, this is not the case in the initial manufacturing layout. The 

assembly stations are used only used once every cycle. This leaves constantly two of the 

three assembly stations inactive, causing a bad occupational ratio (being defined as the 
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active time of the module divided by the cycle time). To reduce the investments in 

manufacturing hardware, the occupational ratio should be improved. 

A solution was found by grouping the placement actions of all three contact 

springs. The three assembly sequences, for the separate contact springs, are combined in 

a single parallel placement action instead of sequential per contact. Additionally, all 

adhesive dots of the carbon paste may be dispensed with one and the same dispensing 

system. The product design must be optimised by applying ‘Design for Assembly’ (DfA) 

to enable parallel assembly. In analogy with proven semiconductor back-end industry, 

the piezo actuator was optimised by leaving the contacts springs attached to another till 

the assembly of the contact springs has been completed. The contact springs may still be 

supplied using a lead-frame on a reel. In this case the springs will be cut from the mother 

tape in two stages. Initially, an assembly of three springs is cut from the tape in such way 

that the springs remain attached by the metal of the tape. This ’contact spring assembly’ 

is positioned and UV-fixated as a whole. This reduces three separate assembly cycles to 

a single combined process. A final cutting action separates the contacts after curing the 

UV-adhesive. Batch curing of the carbon paste is still performed afterwards. Its integrity 

is relying on the UV-fixation until thermal curing has completed. The optimised product 

design is shown in Figure A.3. 

Optimisation of the product design has considerable impact on the process flow 

through the production system. This is shown in the updated SADT data representation 

of Figure A.4. The reduction of the number of process steps indicates a lower demand for 

logistical handling actions though the manufacturing system and thus increases efficiency. 
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Figure A.3 Optimised assembly sequence leaves the contact springs attached 

 

 

Figure A.4 SADT data diagram for the optimised assembly process flow 

A.2.4 Further Decomposition of the Proposed System 

The next phase is to bring all modular parts of the machine to a comparable and 

adequate operational standard. This should provide certainty that little or no problems 

will occur when used for industrial manufacturing. The first step to achieve this is to 

further examine the modular parts of the machine using the SADT parameter analysis. 

Not only new modules to the reconfigurable concept are under investigation; all modules 

will be examined in their (new) context. A team of experts from both product design and 

production engineering perform the examination in face-to-face meetings. Out of a total 
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of nine processes, a number of three processes are emphasised in this appendix as an 

example. In Figure A.5, process FRaa1.2 ‘Dispense Carbon Paste’ is shown. 

 

Figure A.5 SADT parameter analysis of the dispensing  

process of the carbon paste dots 

The flow is divided in a ‘Functional’ part (what must go right) and a ‘Dysfunctional’ part 

(what can go wrong). ‘Controls’ and ‘Norms’ can lower the severity of the whims of the 

system since it enables monitoring of the process. Appointing ‘Constants’ and 

‘Parameters’ helps determination of the sensitivities of the process. It contributes to a 

higher level of objectivity in the expert group process, since the disturbing factors are 

named and their influences can be estimated. The remaining risks, which are to be 

considered as basic hazards, are inventoried at the end and are identified with a number 

for practical follow-up. 

For two other processes, placing the contact spring assemblies and cutting the 

access material, the SADT parameter description is given in Figure A.6 respectively 

Figure A.7. 
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Figure A.6 SADT parameter analysis of the placement  

of the contact spring assembly 

 

Figure A.7 SADT parameter analysis of the cutting process 

after UV fixation of the spring contact assembly 

At this stage, the product flow through the production systems is known and reviewed. 

All processes need to be made to fit in harmony to prove feasibility of the system. The 

Maturity Grid is applied to inventory and visualise the remaining risks in the system. 
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A.2.5 Application of the Maturity Grid 

Not all problems in the proposed manufacturing solution are solved at this early 

stage of production engineering. First, it is still uncertain that all potential problems in 

the system have been recognised. Secondly, no differentiation has been made between 

the various risks that have been defined in the SADT parameter analysis. The solution for 

the first problem is to update the SADT analysis a number of times during the pro-cess 

of early production engineering. The Maturity Grid will be applied to determine the 

severity of the risks that have been defined. Risks from the SADT parameter analysis will 

be plotted in the in the matrix (Figure A.8, Table A.1). 

 
Figure A.8 The Classic Maturity Grid will give feedback about the 

severity of uncertainties in the actual production concept 
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Table A.1 Risks in the early process development stage 

FRaa1.2 
Dispense 
Conductive 
Adhesive 

FRaa1.2-1 (-3, -4) Wrong amount of adhesive 
FRaa1.2-2 (-3, -4) Short circuit due to adhesive threads 
FRaa1.2-3 (-3, -1) Polluted Piezo due to misplaced adhesive 
FRaa1.2-4 (-1, -3) Inaccurate position of the dots 

FRaa3.1 
Place Contact 
Spring 
Assembly 

FRaa3.1-1 (-3, -3) Position Piezo vs contact spring assembly not correct 
FRaa3.1-2 (-3, -3) Placement accuracy of the contact spring changes while 

handling 
FRaa3.1-3 (-3, -3) Contact spring assembly bent due to handling 

FRaa4.1 
Cut Access 
Material 

FRaa4.1-1 (-3, -4) De-bonding during cutting action 
FRaa4.1-2 (-3, -3) Bending contacts during cutting 
FRaa4.1-3 (-2, -2) Polluted contacts due to lubricant of the cutting tool 

 

A.2.6 Motivation of the Initial Risk Ratings  

The risks rating of Table A.1 are motivated as follows: 

• FRaa1.2-1 ‘Wrong amount of adhesive’, was set to level (-3, -4), because there 

was no guarantee that the dispense system would be able to produce a constant 

dot size without further precautions due to internal and external influential factors 

of the dispense process. E.g. due to air in the adhesive, when filling the syringe, 

air bubbles could disrupt the homogeneous character of the adhesive. Since a 

Time-Pressure dispense system was anticipated on, this effect is not suppressed. 

Secondly, viscosity changes of the adhesive could lead to disruptions of the 

amount of adhesive dispensed. In the system, at least two factors that dominantly 

influence viscosity are present; temperature variation of the environment and 

ageing of the adhesive in the syringe that causes it to cure in a premature phase; 

• FRaa1.2-2 ‘Short circuit due to adhesive treads’ was also set to (-3, -4) due to the 

risk of short-circuiting the contacts by smearing threads pulled from the adhesive. 

This problem is not reliably detected with optical inspection; 

• FRaa1.2-3 ‘Polluted piezo due to misplaced adhesive’ occurs when adhesive does 

not reach the right place for the dot e.g. when the needle tip is polluted or vibrates. 
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Note that this is an aesthetic issue, the product may be expected to function 

according to specs. Therefore, the status was defined as (-3, -1); 

• FRaa1.2-4 ‘Inaccurate position of the dots’ was set to (-1, -3). This process was 

applied in numerous previous systems and the tolerances were designed vastly 

within the operational range. The only cause to disrupt the process seemed the 

situation where the piezo was not gripped accurately. An incorrectly gripped piezo 

however, is certain to be discovered since the gripper will run short of vacuum, 

being not able to keep the part firmly enough for placing the contact spring 

assembly. This would cause the machine to stop. Therefore, the remaining risk 

was considered minimal; 

• FRaa3.1-1 ‘Position piezo vs. contact spring assembly not correct’, FRaa3.1-2 

‘Placement accuracy of the contact spring changes while handling’ & FRaa3.1-3 

‘Contact spring assembly bent due to handling’ were all defined as (-3, -3). At this 

stage, the needed tolerances required for a correct placement of the contact spring 

assembly were in range of the maximum performance of the manipulator. This 

standardised manipulator for this reconfigurable platform was able to perform 

these accuracies in terms of reproducibility, but not in terms of absolute accuracy. 

Therefore, the process was considered not mature enough at level 3, meaning that 

further development was a necessity. Pickup errors are most certainly detected by 

visual inspection; this justifies category A; 

• In case of FRaa4.1-1 ‘De-bonding during cutting action’, a cutting action damages 

the UV fixation at the risk of failing conductance. The key issue however is that 

this problem is initially undiscovered. It causes products to fail at a later stage in 
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the field and in such way that the customer will definitely not accept the problem. 

Since the cause of the problem is known, the problem qualifies as (-3, -4) risk; 

• FRaa4.1-2 ‘Bending contacts during cutting’ could occur when the contact spring 

assembly was not positioned well on the piezo actuator. In the cutting tool, a 

support for the contacts during cutting is foreseen, but if the contact has been in 

placed in a position too high on the piezo, the contacts will bend first till they are 

supported. At this stage, de-bonding could occur. De-bonding will be noticed; 

therefore, this risk was set to (-3, -3); 

• FRaa4.1-3 ‘Polluted contacts due to lubricant of the cutting tool’. Stamping tools 

as applied cutting the contact spring assembly from the lead frame are usually 

lubricated with a mineral lubricant. Access lubricant would, if it were able to reach 

the bonding surfaces of the piezo, have a negative effect on bonding quality. The 

ability of the lubricant to actually reach the bonding surface is at least questionable 

and it would only occur when the tool is lubricated excessively. De-bonding is 

certainly not accepted. An escape for the problem can be applied by using the 

cutting tool without lubricant. This reduces the operational life expectations for 

the tool. The impact of this effect still had to be investigated at this point. For this 

reason, the risk was qualified as (-2, -2). 

A.3 Structured Risk Optimisation using the Maturity Grid; First 

Improvement Cycle 

Now all risks have been charted, the next goal is to structurally reduce them to a 

safe level ((x, 0) or (0, y)). This may be done by: (i) changing the product design, by (ii) 

optimisation of the production equipment, or (iii) optimising both concurrently. The risk 

analysis gives an overview of the magnitude of the risk, but that does only provide an 
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indirect qualification which of the strategies (i, ii or iii) should be applied; small risks 

may be easily solved by sole optimisation of production equipment while large risks may 

need changes of product design and equipment. Assuming the product development team 

has already seriously considered the manufacturing aspects of the product in advance 

(preferably in consultation with production engineers), a first assumption would be that 

all processes that are needed for the manufacturing of the product may be expected to be 

well chosen. Therefore, the first attempt will be to produce the product ‘as is’ without the 

need for initial design optimisations. Note that a first evaluation, to determine the process 

flow through the equipment, has taken place and has led to an early stage design 

optimisation i.e.; the decision to mount all spring contacts simultaneously. At this stage 

the focus is on finding solutions to produce the product against acceptable cost with the 

envisioned layout. Until problems occur, with technical or economic feasibility, this 

method will be maintained as a starting point. 

A.3.1 Dispense Conductive Adhesive (FRaa1.2-1, FRaa4.1-2, FRaa4.1-3 & 

FRaa4.1-4) 

To place the four dots, as the contact at the end face will be connected with 

adhesive dots on both sides, the manipulator will handle the piezo and move it to the 

dispensing system. The advantage of this method is that the robotic manipulator can 

accurately control the movements of the piezo to optimise the dispensing action. A test 

setup was made to perform early testing of the process. The results of the tests are shown 

in Figure A.9 
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Figure A.9 Sequential stadia of the dispense results as performed 

by the test setup for process FRaa1.2 

The first test was not successful. As the piezo moved away from the dispense needle, the 

adhesive dots were torn apart and flipped downwards after ‘breaking’. This led to 

uncontrolled blobs of adhesive on the piezo surface (Figure A.9 left). The cause of the 

problem is mainly that dispensing in the vertical plane is a procedure that is aberrant from 

the preferred modality (to perform this task in the horizontal plane). Nevertheless, after 

slowing down the process, the problem could be reduced as shown in the middle picture. 

Note that the dot height is still one and a half times the diameter, which is inconvenient 

for placement of the contact spring assembly. By adding an upward movement at the end 

of the dispensing action the dots could be flattened providing an excellent solution for 

this product (right). 

After producing a test run of 250 pcs, bonding was tested positive. Smear of the 

adhesive was low due to the flattened dots and the correct position of the dots. The 

bonding strength was tested destructively and proved well within margins. The 

application of de-aired adhesive syringes was selected to prevent problems with air 

bubbles in the adhesive. Due to these process optimisations, the engineers were confident 

they had reduced the risks FRaa1.2-1, FRaa1.2-2, FRaa1.2-3 & FRaa1.2-4 ready for 

application. 
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A.3.2 Place Contact Spring Assembly (FRaa3.1-1, FRaa3.1-2 & FRaa3.1-3) 

To mount the spring contact assembly onto the piezo, a solution was chosen to 

hold the assembly after cutting it from the lead frame in the cutting tool. This position 

has accuracy in the micron range determined by the centre pins in the cutting tool. This 

accuracy suits the strict requirement for the placement process optimally. In this station, 

the piezo could be inserted in the opening (Figure A.10). Spring action of the contacts 

from the assembly was designed to supply enough friction to keep the assembly in place. 

Due to the low weight of the assembly, even the inertial forces due to high acceleration 

remain acceptably low. The procedure was tested on prototype parts acknowledging the 

concept of generating enough friction. 

 

Figure A.10 Holding the contact spring assembly in the cutting 

tool after separating it from the lead frame 

The robotic manipulator needed a relatively high accuracy of plus or minus 20 microns 

in the lateral direction to pick up the spring assembly without damaging it. The available 

manipulation module, a standard SCARA robot, was able to reproduce this accuracy in a 

testing environment but when operating 24/7, the thermal growth of the robot-arm was 

too large to maintain performing in this range of accuracy. Increasing the tolerances in 
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the product design was no option due to the fact that it would reduce the clamping action 

of the contact spring assembly beyond acceptation, not being able to pick the piezo out 

of the tool without moving the assembly. A solution was found by increasing the accuracy 

of the robotic manipulator. At the start of every new tray, roughly 15 minutes, the 

manipulator would calibrate its absolute position in respect of the cutting tool. This was 

done by adding a switch with micrometre accuracy on the tip of the robot. Using the 

switch, it could ‘feel’ the absolute location of the cutting tool and calibrate the origin for 

the tool. In this way, the absolute accuracy of the manipulator was made equal to the 

reproducibility that is specified significantly higher. 

Above solutions were tested in a lab setup. Based on the outcome, the engineers 

decided to reduce the risks FRaa3.1-1 to FRaa3.1-3 to level (-2, -3), ‘solution to be tested’. 

A.3.3 Cut Access Material (FRaa4.1-1, FRaa4.1-2, FRaa4.1-3) 

Cutting the access material was considered as a delicate process step. While 

cutting, some mechanical load on the contact spring assembly is inevitable. After the 

cutting procedure, the three contacts of the con-tact spring assembly will be separated. 

This means that if one of the three contacts will suffer from de-bonding, due to the 

parasitic forces from cutting action, the product must be rejected. 

To get grip on the strength of the bonds, to survive the cutting process, the UV 

fixation was tested by destructively pulling the contacts from the piezo. The test setup for 

this is shown in Figure A.11. 
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Figure A.11 Pull testing the strength of the UV adhesive fixation by applying 

upward force to the contact spring before the cutting process 

The test showed serious bending of the contact assembly, before the actual fixation was 

destructed. Hence, if the cut-ting process could be performed without noticeable 

deformation, chances would be fair to assume the bond still being intact. A test sequence 

of 250 products was cut using a hand tool to evaluate the ratio of defected parts. All parts 

survived the cutting process without de-bonding. Based on these findings, the engineers 

were confident to reduce risks FRaa4.1-1 and FRaa4.1-2 to status ‘to be applied’. 

The supplier of the cutting tool was consulted about minimising the amount of 

lubricant for the cutting tool. Based on the lifetime performance of earlier designed tools, 

calculations made plausible that the tool would last beyond the lifetime stated for this 

project, even with minimal lubrication. Given this information FRaa4.1-3 was given (0, -

2) by the engineers. 

A.3.4 Risk Analysis: Reflecting on the First Series of Iterative Loops by a Team of 

Experts 

After the risk optimisation phase was completed, the team of experts was again 

invited to update the Maturity Grid. The matrix was updated based on their impression of 

the tests that had been done. The analysis by the team of experts came at some points to 
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a different outcome than the engineers’. This was due to a broader scope of the team of 

experts as it was represented by members of many specialties (product design, system 

engineering, materials engineering & production engineering). This led to some new 

insights and different positions for some of the appointed risks (Table A.2): 

• FRaa1.2-1 ‘Wrong amount of adhesive’, was set back because the environmental 

temperature that was not conditioned, would influence the viscosity of the 

adhesive, causing changes in dot volume. Secondly, there was no guarantee that 

the position of the syringe-tip was steadily reproducible and could randomly touch 

the piezo surface. It is not possible to check the dot volume after placement of the 

contact spring assembly since it will cover the dots.  For this reason, the status 

was set to (-3, -4); it concerns an essential functionality that is not being detected 

during production; 

• FRaa1.2-3 ‘Polluted piezo due to excess adhesive’, which occurs by adhesive 

wires or excess adhesive caused by a dirty dispense needle, was set back to (-3, -

1). It was confirmed by the team of specialists that this is an aesthetic issue and 

the product may be expected to function according to specs. However, the team 

did not accept reduction of the risk level until the customer explicitly approved 

the aesthetic consequences; 

• FRaa3.1-1, FRaa3.1-2 & FRaa3.1-3 were accepted by the team as proposed. A 

new potential problem was identified; if the piezos are not discharged before they 

are fed into the machine their form will change due to parasitic charge that is 

collected during earlier processing or temperature changes. This effect is will 

cause the placement process to fail. The risk status (-2, -3) was subject to be 
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maintained until the piezos could be sufficiently discharged before the assembly 

action takes place; 

• FRaa4.1-1 & FRaa4.1-2 ‘De-bonding during cutting action’. Since the cutting tool 

is still to be designed from scratch it seems inappropriate to assume that the 

solution is sufficiently tested with a few prototypes and a hand-cutting tool; 

cutting speeds and geometry will have a comprehensive influence. The risk was 

redefined to (-2, -4) for FRaa4.1-1 & (-2, -3) for FRaa4.1-2. 

The updated results are plotted in the Maturity Grid in Figure A.12. 

 

Figure A.12 Updated Maturity Grid after pre-investigations for 

the production of the automotive actuator 
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Table A.2 Redefined positions of the process-risks after 

completion of the first optimisation cycle 
 

FRaa1.2 
Dispense 
Conductive 
Adhesive 

FRaa1.2-1 (-3, -4) Wrong amount of adhesive 
FRaa1.2-2 (-3, -4) Short circuit due to adhesive threads 
FRaa1.2-3 (-3, -1) Polluted Piezo due to misplaced adhesive 
FRaa1.2-4 (-1, -3) Inaccurate position of the dots 

FRaa3.1 
Place Contact 
Spring 
Assembly 

FRaa3.1-1 (-3, -3) Position Piezo vs contact spring assembly not correct 
FRaa3.1-2 (-3, -3) Placement accuracy of the contact spring changes 

while handling 
FRaa3.1-3 (-3, -3) Contact spring assembly bent due to handling 

FRaa4.1 
Cut Access 
Material 

FRaa4.1-1 (-3, -4) De-bonding during cutting action 
FRaa4.1-2 (-3, -3) Bending contacts during cutting 
FRaa4.1-3 (-2, -2) Polluted contacts due to lubricant of the cutting tool 

A.4 Structured Risk Optimisation Using the Maturity Grid; Second 

Improvement Cycle 

A.4.1 Addressing Remaining Risks as Set by the Specialist Team 

At this point the analysis using the SADT and the Maturity Grid indicates that 

after the first optimisation cycle, a number of seven processes still have no adequate 

solution yet. This level of consciousness about the proposed manufacturing system 

postpones a ‘go’ to continue with the implementation of the proposed solutions. It was 

decided to add an extra cycle for optimisation of the process technology, to address 

remaining problems (inventoried in Table A.3): 

• In case of FRaa1.2-1 ‘Wrong amount of adhesive’, a solution was found by 

upgrading process technology with a combination of solutions. First, temperature 

controlled needle heaters were installed to minimise the influence of the 

environmental temperature of the production environment. Secondly, a calibration 

tool was designed to adjust the exact position of the dispense-needle-tips during 

production, guaranteeing that the syringes would be installed well. After testing 

the improvements, risk FRaa1.2-1 was reduced back to (-1, -4); 
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• Problem FRaa1.2-3 ‘Polluted piezo due to excess adhesive’, could be addressed 

by adding extra inspection intervals at the change of the trays. This however would 

require time and a number of test samples at every check, lowering the effective 

output of the production system. Using a test setup, a number of 1000 products 

were produced. All products were tested electrically and were found to be 

functioning well. The problem indeed was of an aesthetic- instead of a functional 

nature. After consulting the final customer of the product, the decision was not to 

invest in further actions and accept the pollution. The risk of FRaa1.2-3 was set 

to (-2, 0); 

• FRaa3.1-1, FRaa3.1-2 & FRaa3.1-3. The problem of the bending piezos was 

investigated and appeared to occur in some situations. While cooling down the 

piezos from the previous heat cycle, the piezos would bend as much as half a 

millimetre from its neutral axis, causing the accurate placement of the piezo in the 

contact spring assembly to fail (mounting in the slot shown in Figure A.10. By 

leaving the piezos to rest after the heat cycle however, the electric charge would 

flow away through the air depending on the humidity at the works. An 

intermission of 120 minutes was found to be sufficient to eliminate the problem 

even with low environmental humidity. By subscribing a waiting time, before 

parts are allowed to pass, the problem was reduced to position (-1, -4); 

• Issue FRaa4.1-1 & FRaa4.1-2 ‘De-bonding or bending during cutting action’, that 

was set back to (-3, -4) appeared of a serious nature. Though the cutting process 

has been designed to minimally transfer cutting forces to the bonding plane, 

tolerances on positioning accuracy and parts would lead to forces on the bond, 

which may cause de-bonding. The bottom punch will support solder leads of the 
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contacts during the cut up to some level. Geometry and tolerances of the parts 

were chosen in such way that the upper punch always applies a downward force 

to the part. Though this could straighten the parts and reduce tolerances in the final 

assembly, only a minimal height difference could be eliminated in this way. Finite 

element calculations of the contact showed that the forces on the bond rose quickly 

with the height difference due to the fact that the situation was over constrained. 

To prevent this problem from occurring the contact was modified with a double 

bend to add extra degrees of freedom to allow straightening (Figure A.13). The 

width of the contact was reduced to increase contact flexibility further. Based on 

the earlier performed tests on the bonding strength, the situation was found safe 

to be implemented; the risk of FRaa4.1-1 was set back to (-1, -4). 

 

Figure A.13 Adding a double bend in the contact spring assembly 

allowed the cutting process to straighten the contacts without 

having the risk of damaging the fixation on the assembly 

A.4.2 Updating the Maturity Grid 

The updated results are plotted in in the Maturity Grid in Figure A.14. 
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Figure A.14 Updated Maturity Grid after pre-investigations for 

the production of the automotive actuator 

Table A.3 Redefined positions of the process-risks after 

completion of the second optimisation cycle 
 

FRaa1.2 
Dispense 
Conductive 
Adhesive 

FRaa1.2-1 (-1, -4) Wrong amount of adhesive 
FRaa1.2-2 (-1, -4) Short circuit due to adhesive wires 
FRaa1.2-3 (-2, -0) Polluted Piezo due to misplaced adhesive 
FRaa1.2-4 (-1, -3) Inaccurate position of the dots 

FRaa3.1 
Place Contact 
Spring 
Assembly 

FRaa3.1-1 (-1, -3) Position Piezo vs. contact spring assembly not correct 
FRaa3.1-2 (-1, -3) Placement accuracy of the contact spring changes 

while handling 
FRaa3.1-3 (-1, -3) Contact spring assembly bent due to handling 

FRaa4.1 
Cut Access 
Material 

FRaa4.1-1 (-1, -4) De-bonding during cutting action 
FRaa4.1-2 (-1, -3) Bending contacts during cutting 
FRaa4.1-3 (-0, -2) Polluted contacts due to lubricant of the cutting tool 

A.5 Integration of the Production System 

A.5.1 Hardware and Software Integration 

With the process flow through the system determined, the system decomposed to 

elementary functions and the general system architecture known, the production system 

could be engineered in detail. Since this was a reconfigurable manufacturing platform, a 
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framework of process modules was existent and a most modules were reused keeping 

engineering efforts minimal. The whole process could be integrated on a configurable 

production cell of 1m2. 

The hardware integration of the system took eight weeks from finalisation of the 

last Maturity Grid. After that, a number of four weeks were needed for debugging control 

software. After completion of the total system, hardware and software, the machine was 

considered ready for pilot production. From this moment on, pilot series were produced 

on a regular basis. During pilot production, preliminary product series were delivered to 

the customer and applied in prototype products. During this phase, all parts were 

inspected both visually and electrically. Statistical information was kept and inventoried. 

During the first 12 weeks from start production, the development team followed the 

manufacturing performance accurately, 100% monitoring the production. After twelve 

weeks, the daily numbers produced grew over 1500 products. From this moment on 

samples were taken and analysed producing statistical data of the systems performance. 

A.5.2 Troubleshooting During Pilot Production 

Many small optimisations were made in the equipment control software, to 

increase consistency, like the manufacturing yield, and to speed up the production process 

to the desired performance. During week 2 however, problems of a more serious nature 

occurred. The contact spring assembly did not stay in place, after initially being 

positioned correctly, before the UV curing adhesive could fixate the assembly. The 

contact spring assembly was designed to have clamping action but in some situations, the 

friction seemed too low to keep the assembly in place. Measuring the metal lead frame 

with the contact spring assembly and the piezo actuators learned that the dimensions of 
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the contacts were within tolerances as were the thicknesses of the piezo itself. In worst-

case conditions, however, the clamping force was just too low. Basically, this was a 

design issue; orienting tests had been performed to choose the dimensions and their 

tolerances, but apparently, the working range had not been determined well. The result 

was twofold; the position of the contact spring assembly could not be maintained till UV 

fixation had taken place and, due to movement of the assembly, smearing adhesive was 

causing short circuit. This last problem was mainly the case when the amount of 

conductive dispensed adhesive was on the upper limit. The problem results in roughly 

50% non-functioning products and thus destroying the opportunity of a good yield. The 

problem is visualised in the Maturity Grid in Figure A.15. 

 
Figure A.15 Moving contact spring assemblies, in combination with 

misplaced adhesive, may lead to short circuited contacts (FRaa1.2-2) 

and an incorrectly positioned assembly (FRaa3.1-1) 

To solve the problem, a two-stage solution was chosen. Initially, batches of thin piezos 

were skipped and the amount of adhesive was reduced. The tool for production of the 
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lead-fame could be slightly adjusted to reduce the opening of the spring contact assembly. 

These measures took care for a workaround on the short term. In parallel, a more 

structural solution was prepared by modifying the production tool for the lead-frame so 

the opening could be reduced further and the clamping action could be guaranteed under 

all tolerance combinations. 

After implementation of the improvements, all risks as defined were in the 

category ‘Solution Positive’. With all significant obstacles addressed, it was expected that 

the yield would rise quickly (Figure A.16). 

 
Figure A.16 After solving the clamping problem and fine-tuning parameters 

all risks were considered under control in week 4 

A.5.3 Increasing Manufacturing Yield 

The yield as determined in this project uses the general definition that 

“manufacturing yield’ is equal to the division of ‘Correctly produced products’ and ‘Total 

number of products that initially was started with’. 
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Figure A.17 Development of production yield as function of time (dark line) 
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The production yield as realised by this project is shown in Figure A.17. The following 

milestones apply: 

• Week number -12 is the moment that the order was granted; 

• Week number 0 is the official start of the ‘pilot production’; 

• Week number 16 is the start of the regular production. The equipment was 

transported to the manufacturing location. 

The manufacturing yield raised in the first eight weeks to over 80% and after 

fourteen weeks over 90%. Most rejected parts were produced in the first eight weeks. Due 

to a rapid growth of production at a time where the manufacturing yield is still moderate, 

a lot of scrap parts were produced. This however was not different from earlier projects. 

After pilot production, when the equipment was moved to the production site, it 

was also placed in line with the manufacturing equipment of the lead frames. By this 

change, the capability of the production system was able to improve further. The targeted 

daily production of 5000 products was reached before week 32 (outside graph). The 

manufacturing yield at that point exceeded 98,5%. 
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APPENDIX B  

AXIOMATIC DESIGN 

B.1 The Axiomatic Domains and Design Equations 

AD demands clear formulation of design objectives through the establishment of 

‘Domains’ called: (i) ‘Customer Attributes’, (ii) ‘Functional Requirements’, (iii) ‘Design 

Parameters’, and (iv) ‘Process Variables’. The domains are hierarchically decomposed 

(Figure B.1). 

 

Figure B.1 Axiomatic Domains and their hierarchical organisation 

To investigate the relations between these domains, AD declares ‘Axioms’ that cannot be 

proven nor derived from physical phenomena. A number of seven conceptual axioms 

were defined in 1978 when the first paper about AD was presented (Suh et al., 1978). 

Two of those seven axioms stood the test of time and form the foundation of AD today, 

now known as the ‘Independence Axiom’ and the ‘Information Axiom’. The 

Independence Axiom advises to ‘Maintain the independence of the functional 

requirements’, the Information Axiom recommends to ‘Minimise the information content 

of the design’. A product design will be a good design if both axioms are satisfied. AD 

also explains how the axioms may be satisfied as shown in Figure B.2. The right-hand 

three domains are mathematically related (Equations B.1 and B.2) but this is not possible 

for the customer domain; the customer domain is therefore disregarded for now. 
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Figure B.2 Axiomatic Domains and their relations 

The domains in which functional requirements (FR), design parameters (DP) and process 

variables (PV) are represented as vectors are interrelated with design matrices (B.3), 

starting with the design Equations according to good-AD-practice (Suh, 1990) 

uO = z ∙ wx 																																																																																																																																																																									(B. 1) 

wx = | ∙ xy 																																																																																																																																																																									(B. 2) 

where [A] & [B] are the product and process design matrices. If a product design has 

three FRs and three DPs, the product design matrix has the following form 

z =
-DD -DF -D}
-FD -FF -F}
-}D -}F -}}

																																																																																																																																																														(B. 3) 

and a good design would be ‘Uncoupled’ or ‘Decoupled’ if the matrix is diagonal or 

triangular as respective shown in Equations (B.4) and (B.5), 

z =
X 0 0
0 X 0
0 0 X

																																																																																																																																																																										 B. 4  

z =
X 0 0
X X 0
X X X

																																																																																																																																																																										 B. 5  

where the X-es indicate non-zero elements of the matrix and as such indicate a relation 

between the associated DPs and the FRs. In an uncoupled design, every FR is related to 
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a single DP. In a decoupled design, it may be related to more than one DP, but if the right 

order is applied to adjust the FRs with the DPs, all FRs can be tuned sequentially. 

B.2 The Process of Zigzagging 

To check if all FRs are satisfied by their DPs and if subsequently the DPs are 

satisfied by their PVs, AD uses a procedure called ‘Zigzagging’. Zigzagging is a top down 

descend through the hierarchy of the design while all domains are successively addressed. 

At every level a check is performed if the FRs and DPs are satisfied before going down 

on level, this is shown in Figure B.3. 

 

Figure B.3 The process of hierarchically zigzagging through the domains 

The process of zigzagging is always performed from the left- to the right-hand side. 

Zigzagging preferably covers all domains. In practice, it is not always possible to 

incorporate the customer domain since the functional requirements have been recorded 

in the project agreement with the customer. Successful completion of the zigzagging 

process will lead to an uncoupled or a decoupled design matrix and satisfies the 

Independence Axiom which completes the conceptual phase of the project. 
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B.3 Robustness in Axiomatic Design 

The completion of the process of zigzagging does not automatically guarantee that 

the FRs will always be satisfied because tolerances on the DPs and PVs may lead to drift 

of the FRs and cause them to move outside their tolerance range; this indicates a problem 

with robustness of the design. Here the Information Axiom is applied to make sure that 

the FRs will stay within the envisioned tolerances. The concept of ‘Information in Design’ 

will be exhaustively explained in Chapter 5. For now, it satisfies to explain the concept 

of overlap between the ‘Design Range’ and the ‘System Range’ of the design. The FR 

will be satisfied if the actual value as realised in the physical system is within the 

boundaries of the design range. The realised value behaves according to a system 

‘Probability Density Function’ as shown in Figure B.4. Only in the cases of overlap of 

the two ranges, the shaded area, the FR is successfully satisfied. The probability of a good 

outcome is analogue to the area of the overlap as represented by the ‘Common Range’. 

Ideally, the common ranges of the design are (close to) 100%, which guarantees that the 

FRs will be satisfied under almost all circumstances and the design may be considered to 

be a robust design. In this case, the ‘Information Content’ of the design is minimal and 

the Information Axiom is satisfied. 

 

Figure B.4 Design range, System range and the Common range 
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APPENDIX C 

DEPENDENCIES OF THE AXIOMS IN AD 

C.1 Investigations into the Dependency of the Axioms 

The dependency of the axioms has been investigated a number of times. The first 

book about AD (Suh, 1990) includes a paragraph about the relationship between axioms 

1 and 2. Suh addresses the misunderstanding that the Independence Axiom is a 

consequence of the Information Axiom, by explaining that a coupled design could have 

lower information content than an uncoupled design. Without the Independence Axiom, 

it is not possible to choose the uncoupled design, which, from the design perspective, is 

more preferred than the coupled design. The second book (Suh, 2001) contains some 

mathematical proof of the independence, based on the Boltzmann entropy of the FR array 

as was published by (El-Haik & Yang, 1999). If the design matrix is square and non-

singular with constant entries, and DPs are normally distributed random variables, the 

entropy h of the FRs is given by 

ℎ {uO} = ℎ( wx ) + $. z 																																																																																																																																																			(C. 1) 

where |[A]| is the determinant of the design matrix [A]. Investigation of the determinant 

leads to the understanding that a coupled matrix can indeed have lower information 

content than an uncoupled matrix, which was reflected by the substantiation of corollary 

7. In 2005, the book of El-Haik confirms Equation (C.1) (EI-Haik, 2005). Based on these 

investigations it may be concluded that both axioms serve a particular goal and should be 

maintained. 
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C.2 Background on Axiomatic Complexity 

Complexity is defined as ‘A measure of uncertainty in achieving the specified FRs’ 

(Suh, 2005b). The Complexity Axiom advises to ‘Reduce the complexity of a system’. 

The theory defines two kinds of complexity, ‘Time-Independent’ and ‘Time-Dependent 

Complexity’. In the case of time-independent complexity, the behaviour is governed by 

the given set of FR and DP relationships. Time-dependent complexity depends upon the 

initial condition with FR and DP relationships, but unless the system goes back to the 

same set of initial conditions periodically, the distant future behaviour is totally 

unpredictable as the system tends to escalate (Suh, 1999). Time-dependent complexity is 

not further investigated in this thesis. 

Time-independent complexity consists of two components: ‘Real’ and ‘Imaginary’ 

time-independent complexity, further to be referred to as real complexity and imaginary 

complexity (CR and CIm). Real complexity is inversely related to the probability of success 

that the associated FRs are satisfied according to one of the following relations 

Å; = − $%&ÇxB

C

BXD

																																																																																																																																																																						 		(C. 2) 

	Å; = − $%&ÇxB|{h}																Ñ%,	 Ö = 1,2, . . , Ü − 1 																														
C

BXD

																																																																							(C. 3) 

depending if the system is uncoupled (6.2) or decoupled (6.3). Relation (6.2) is under the 

reservation that the total probability Pi is the ’joint probability of processes that are 

statistically independent’. Relation (6.3), for decoupled systems, is modified to correct 

for dependencies in the probabilistic function (Suh, 2005b). ‘b’ Is in both cases the base 

of the logarithm, usually in bits or nats depending of the preferred definition. Given (6.2) 

and (6.3), real complexity can be related to the information content in AD, which was 
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defined in terms of the probability of success of achieving the desired set of FRs (Suh, 

1990), as 

Å; = !																																																																																																																																																																																														(C. 4) 

in which CR is real complexity and I is information according to the definition of  Shannon 

(Shannon, 1948). 

Imaginary complexity is defined as complexity that exists due to ‘a lack of 

understanding about the system design, system architecture or system behaviour’ (Suh, 

1999). It is caused by the absence of essential knowledge of the system. The designer 

cannot solve the problems in a structured manner and therefore is forced to apply trial-

and-error. Imaginary complexity exists due to a lack of knowledge of the designer. 

C.3 Breakdown of Complexity in the Context of AD 

Like most definitions in AD, complexity is also defined in the functional domain. 

This implies that ‘Total Complexity’ can be decomposed in a functional and a non-

functional part analogue to information. The breakdown of total complexity is given in 

Figure C.1. Total complexity is broken down in a functional part ‘Complexity according 

to the Complexity Axiom’ and a ‘Superfluous’ part. Superfluous complexity has no effect 

on the FRs of the system and therefore is not relevant for AD. It is further ignored. Real 

complexity is by definition equal to the information of the Information Axiom; their direct 

relation was given by Equation (C.4). 
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Figure C.1 Breakdown of total complexity 

Imaginary complexity is harder to understand. Suh defines it as ‘uncertainty that is no real 

uncertainty’ and ‘it arises because of the designer’s lack of knowledge and understanding’ 

(Suh, 2005a). The book states further, ‘when a design is uncoupled or decoupled, the 

imaginary component of complexity is equal to zero’ (Suh, 2005a). For a decoupled 

design this is only guaranteed if the optimisation order of the design relations is known. 

Imaginary complexity is inversely related to the satisfaction of the Independence Axiom. 
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APPENDIX D  

THE CYNEFIN FRAMEWORK 

Cynefin is a decision-making framework that can be applied on organisations, 

systems, or even complex social environments. It was applied, evaluated, and refined at 

the IBM Institute of Knowledge Management (Kurtz et al., 2003), and later expanded to 

be used as a leadership model (Snowden & Boone, 2007). Cynefin has not yet gained 

much drag within the AD community or even product development in general, but with 

the view on information in AD as reported by Puik & Ceglarek (Puik & Ceglarek, 2014a), 

both methodologies appear to connect and harmonise well together. 

 

Figure D.1 The four contexts of the Cynefin framework. 

When in disorder, the actual context is not known 

The framework consists of three basic types of systems; ‘Ordered’ systems, ‘Complex’ 

systems and ‘Chaotic’ systems. Ordered systems are divided in to two types: ‘Simple’ 

ordered systems and ‘Complicated’ ordered systems. In the centre of the four contexts is 

a fifth field added: ‘Disorder’. Together this leads to the Cynefin framework as shown in 

Figure D.1. 
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• In the Simple context, cause and effect relationships are clear, predictable, 

repeatable, and generally linear. The systems in this context are self-evident to 

every reasonable person. The decision model of the Simple context is sense-

categorise-respond. Good response in these situations would be to watch what is 

coming in, match it to previously determined categories and decide what to do. 

The Simple context is the context of ‘best practice’; 

• In the Complicated context, there is a logical relation between cause and effect, 

but it is not self-evident and therefore requires expertise. An analytical method is 

needed to solve problems, or an expert could be called in. The decision model 

therefore is sense-analyse-respond. The Complicated context is the context of 

‘good practice’; 

• A complex system is a system without causality. Cause and effect are only obvious 

in hindsight, with unpredictable emergent outcomes. The decision model is probe-

sense-respond. Carrying out experiments is a key characteristic; a successful 

outcome is enhanced; a bad outcome is suppressed. Actions lead to a novel way 

of doing things. The Complex context is the context of ‘emergent practice’;  

• A Chaotic system shows no relation between cause and effect. The goal should be 

to restore order. The decision model therefore is to act-sense-respond. Actions 

will be new and unconventional. This is the context of ‘novel practice’; 

• Disorder is the space when it is not clear to which context a situation should be 

appointed. 

The boundaries between the contexts are transitions that can be taken without 

specific effects, except for the boundary between the Simple context and the Chaotic 

context. This boundary is referred to as the ‘Complacent Zone’ or the ‘Cliff’. The danger 
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is that once a system is in the Simple context, people start to believe that things are simple 

by nature. It may lead to the belief that things are always ordered and that success from 

the past is proof that systems cannot fail. The result is that the actual position moves to 

the border and at a given moment falls over the cliff into a crisis (Kurtz et al., 2003). 
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APPENDIX E  

APPLICATIONS OF THE AXIOMATIC MATURITY DIAGRAM 

E.1 An On-Line Payment Application 

The first case concerns a Dutch company that delivers solutions for on-line 

payments. This store management system combines online payments, store payments, 

and integrates stock keeping of stores and warehouses in a single solution. It is a complex 

multi-mainframe system with many interfaces. The system may be seen as the core 

around which the operations of many stores are organised. If the system goes down, no 

payments can be done in both physical and on-line stores. 

Because of the importance for the operations to the customers, the company gives 

an up-time guarantee with penalty clause. Maintenance of the system is done at certain 

nights of the week when all stores are closed. Regular updates take place to add features 

and to correct malfunctions. Backups are made to secure data. All this is done over the 

internet from a single location in the Netherlands over several thousands of cash registers 

in Europe. Security is a significant issue; many attempts to hack the system take place. 

The company also hires professional hackers to test the system for vulnerabilities. Since 

all systems are connected to the internet there are many interfaces and even more ports to 

approach the system. 

E.1.1 The Problem 

At a given day, the ICT manager of the company is hinted by the one of the 

professional hackers that a certain interface gives access to the system because a port is 

opened. The manager has this problem examined by the team and they confirm that the 

port is opened. This is a necessity to ad certain functionality to the system. However, the 



294 
 

team is convinced that this vulnerability is not of a worrisome nature. Some days later, 

the manager is not quite comfortable with the situation and in the evening, he tries to get 

access to the system from his home location. To his surprise, he is able to gain access 

without any password and he is also able to start and stop processes on the mainframes 

and even worse, he is able to execute ghost payments. 

E.1.2 The Consequence 

The same evening, the manager reports the problem to the general manager. That 

same night they try to reconstruct the origin of the problem. They conclude that the 

vulnerability has been there for over six months. Next morning, a crash team is composed. 

A risk analysis indicates a severe problem. A few thousand systems are in the field with 

the same vulnerability. 

E.1.3 The Solution 

The problem can be fixed; the team has to reroute a number of communication 

channels to restore the vulnerability. After some long days, a fix is completed. It is 

implemented on a test system and tested for a week. After this it is rolled out to a limited 

number of systems before it is rolled out completely. 

E.1.4 Elaboration from the Perspective of Information 

In the beginning of this evaluation the vulnerability already is in the system. There 

is peace in the company because no one is aware of the problem. But this calm is 

unfounded; The system may be terribly hacked any moment with the result that the system 

can be halted or fake bank transfers take place. All this is caused by the presence of 

unrecognised information in the system. 
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Figure E.1 The designer is confronted with a correction in the Axiomatic Maturity 

Diagram when unrecognised information reveals itself 

Once discovered, the calmness in the company gives way to the ‘Restrained Panic’ 

of the knowledge that anything may go wrong any moment. This is visualised in Figure 

E.1 with a drop in the Axiomatic Maturity Diagram. After this, the engineers concurrently 

develop a conceptual fix. The fix needs changes in the software design which may reduce 

the robustness of the system. Robustness is regained by testing the system again. The end 

position in the Axiomatic Maturity Diagram is comparable to the supposed end position 

before learning about the unrecognised information but it is more mature than the true 

starting point. 

In the Cynefin framework, the situation moves from the Simple context directly 

to the Complex context. There is no state of chaos in the company, but all engineers feel 

the pressure to understand the situation and come up with the solution. Since it is a 

complex system, they need time to find that solution. Once rolling out the system starts, 

the company comes at ease and moves via the Complicated context back to Simple. 
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E.2 Case 2 De Havilland Comet 

The second case is a case from the history books. It concerns the De Havilland 

Comet. Extensive research has been done to find the cause and effect of this case (Withey, 

1997; Wanhill et al., 2016). The Comet was the world’s first production commercial 

jetliner developed and manufactured by de Havilland. It featured an aerodynamically 

clean design with four turbojet engines buried in the wings, a pressurised fuselage, and 

large square windows. The plane was a gigantic step forward in avionics, with cruising 

speeds up to 800 km/h and cruising altitudes of over 13.000 metres. 

E.2.1 The Problem 

In 1954 two de Havilland Comets broke up in flight with no apparent reason 

known at that time. Because of this, the plane was grounded. 

E.2.2 The Consequence 

Investigations were needed to find the problem that caused the two crashes in 1954 

and this appeared a complex problem. The planes were put in a water basin to test the 

integrity of the fuselage by pressurising it. After a relatively low number of load changes, 

it ruptured. Further investigation learned that fatigue cracks starting at the pivots of the 

square windows and hatches led to accelerated growth of cracks. When the cracks became 

too large, the fuselage ruptured, starting at the forward escape hatch and the top hatches 

(Figure E.2). 
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Figure E.2 Cracks started at the escape hatches and the windows 

that both had a square shape and were pivoted (Withey, 1997) 

E.2.3 The Solution 

The problem was solved by an increase of the hull thickness, and by improving 

the pivots and the shape of hatches and windows, but it took four years before commercial 

flights resumed. 

E.2.4 Elaboration from the Perspective of Information 

At the beginning of the design, this plane already suffered from the weakness that 

the shape of the square hatches led to tension concentrations in the metal. Pivots 

weakened the fuselage further at the locations with high tension. The wall of the fuselage 

was relatively thin to save weight and the combination of these factors led to the presence 

of unrecognised information. When this information came to the surface the problems 

were difficult to oversee; not only many lives were lost but also the confidence in the 

safety of the plane disappeared; enthusiasm about a great plane made place for total chaos. 
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Figure E.3 In this situation a safe development path through 

the Axiomatic Maturity Diagram is followed that is characterised by 

a steep incline during the restoration of robustness 

The aircraft crash investigation that followed revealed the true position in the Axiomatic 

Maturity Diagram (Figure E.3). The fatigue problem shortened the lifespan of the plane, 

and that FR was no longer satisfied. Substantial conceptual improvements were needed 

which resulted in a significant drop in robustness. The improvements restored the 

independence of the system up to a high extent. The repair cycle ended with restoring the 

robustness by repeating the many tests that are required to get the necessary permissions 

to resume service. 

In the Cynefin framework, the situation moves from the Simple context to the 

complacent zone and falls over the cliff, straight into chaos. When the fuselage tests were 

completed the relation between cause and effect was restored. Based on that 

understanding a new start could be made by the De Havilland Comet. That restart was 

successful from the technological perspective as the fuselages remained intact from that 

moment. 

Independence Axiom

In
fo

rm
at

io
n 

A
xi

om

P
ro

of
 o

f C
on

ce
pt

N
o 

O
rg

an
iz

at
io

n

Fully Robust

Not Robust

Aircraft Crash 
Investigation

Conceptual 
Fix

Restore 
Robustness



299 
      

	
Co

ns
tit
ue

nt
	R
oa

dm
ap

	S
co
re
s	a

t	s
ta
rt
	p
ro
je
ct
	

	 Cu
st
om

er
	A
tt
rib

ut
es
	

	
	

Fu
nc
tio

na
l	R

eq
ui
re
m
en

ts
	

	
De

sig
n	
Pa

ra
m
et
er
s	

	
Pr
oc
es
s	V

ar
ia
bl
es
	

Pr
oj
ec
t	

- 
Fo
un

da
tio

ns
	o
f	E

ne
rg
y	
Ha

rv
es
tin

g	
at
	th

e	
na

no
sc
al
e:
	D
em

on
st
ra
tio

n	
of
	ra

di
ca
lly
	n
ew

	
st
ra
te
gi
es
	fo

r	e
ne

rg
y	
ha

rv
es
tin

g	
an

d	
lo
ca
l	s
to
ra
ge
	

be
lo
w
	th

e	
m
ic
ro
m
et
re
	sc

al
e.
	E
xp
lo
ra
tio

n	
an

d	
ha

rn
es
sin

g	
of
	p
ot
en

tia
l	e
ne

rg
y	
so
ur
ce
s	a

t	t
ha

t	
sc
al
e	
in
cl
ud

in
g	
ki
ne

tic
	e
ne

rg
y	
pr
es
en

t	i
n	
th
e	
fo
rm

	
of
	ra

nd
om

	fl
uc
tu
at
io
ns
,	a
m
bi
en

t	e
le
ct
ro
m
ag
ne

tic
	

ra
di
at
io
n,
	c
he

m
ic
al
	e
ne

rg
y	
an

d	
ot
he

rs
;	

- 
Se
lf-
po

w
er
ed

	a
ut
on

om
ou

s	N
an

os
ca
le
	e
le
ct
ro
ni
c	

de
vi
ce
s:
	A
ut
on

om
ou

s	N
an

os
ca
le
	e
le
ct
ro
ni
c	

de
vi
ce
s	t
ha

t	h
ar
ve
st
	e
ne

rg
y	
fr
om

	th
e	

en
vi
ro
nm

en
t,	
po

ss
ib
ly
	c
om

bi
ni
ng
	m

ul
tip

le
	so

ur
ce
s,
	

an
d	
st
or
e	
it	
lo
ca
lly
.	T
he

se
	sy

st
em

s	w
ou

ld
	

co
or
di
na

te
	lo
w
-p
ow

er
	se

ns
in
g,
	p
ro
ce
ss
in
g,
	

ac
tu
at
io
n,
	c
om

m
un

ic
at
io
n	
an

d	
en

er
gy
	p
ro
vi
sio

n	
in
to
	a
ut
on

om
ou

s	w
ire

le
ss
	N
an

os
ys
te
m
s.
	�
	

2	
FR

	
De

ve
lo
p	
a	
se
lf-
po

w
er
ed

	IC
T	

sy
st
em

	th
at
	is
	b
ey
on

d	
st
at
e	
of
	

th
e	
ar
t.	

2	
DP

	
De

ve
lo
p	
sm

al
le
st
	P
V	
po

w
er
ed

	
se
ns
or
	in
	th

e	
w
or
ld
.	

2	
PV

	
Ap

pl
y	
CM

O
S	
co
m
pa

tib
le
	

pr
od

uc
tio

n	
pr
oc
es
se
s	f
or
	a
ll	

sil
ic
on

	d
ie
s;
	

PV
’	

Ap
pl
y	
en

gi
ne

er
in
g	
m
et
ho

ds
	

sy
st
em

at
ic
al
ly
;	

PV
’’	

Ap
pl
y	
	a
	p
ro
je
ct
	te

am
	w
ith

	p
ro
ve
n	

cr
ed

en
tia

ls	
fo
r	t
he

	fi
el
d	
of
	

re
se
ar
ch
.	

Pr
od

uc
t	

	
	

Co
ns
tr
ai
nt
:	D

ev
el
op

	th
e	
sm

al
le
st
	P
V	

po
w
er
ed
	se

ns
or
	in
	th

e	
w
or
ld
.	

	
Co

ns
tr
ai
nt
:	A

pp
ly
	e
ng

in
ee
rin

g	
m
et
ho

ds
	

sy
st
em

at
ic
al
ly
.	

	C
on

st
ra
in
t:	
Ap

pl
y	
CM

O
S	
co
m
pa

tib
le
	

pr
od

uc
tio

n	
pr
oc
es
se
s	f
or
	a
ll	
sil
ic
on

	d
ie
s.
	

- 
Po

ss
ib
ili
ty
	o
f	b

ui
ld
in
g	
au

to
no

m
ou

s	N
an

os
ca
le
	

de
vi
ce
s	(
fr
om

	se
ns
or
	to

	a
ct
ua

to
rs
),	
ex
te
nd

in
g	
th
e	

m
in
ia
tu
ris
at
io
n	
of
	a
ut
on

om
ou

s	d
ev
ic
es
	b
ey
on

d	
th
e	
le
ve
l	o
f	t
he

	‘s
m
ar
t	d

us
t’;
	

- 
N
ew

	a
pp

lic
at
io
ns
	in
	a
	v
as
t	n

um
be

r	o
f	I
CT

	fi
el
ds
	

su
ch
	a
s	i
nt
el
lig
en

t	d
ist
rib

ut
ed

	se
ns
in
g,
	fo

r	h
ea
lth

,	
sa
fe
ty
-c
rit
ic
al
	sy

st
em

s	o
r	e

nv
iro

nm
en

t	m
on

ito
rin

g.
	

2	
FR

1	
Ha

rv
es
t	e

ne
rg
y	
fo
r	o

pe
ra
tio

n	
fr
om

	th
e	
en

vi
ro
nm

en
t;	

FR
2	

M
an

ag
e	
th
e	
en

er
gy
	in
	th

e	
de

vi
ce
;	

FR
3	

Q
ua

nt
ify
	e
nv
iro

nm
en

ta
l	

ch
em

ic
al
	su

bs
ta
nc
e;
	

FR
4	

Pr
ov
id
e	
po

w
er
	a
nd

	d
at
a	
to
	th

e	
RF

	fr
on

te
nd

.	

2	
DP

1	
Ap

pl
y	
na

no
w
ire

	P
V	
Ce

lls
;	

DP
2	

In
cl
ud

e	
En

er
gy
	M

an
ag
em

en
t	

ci
rc
ui
tr
y;
	

DP
3	

De
ve
lo
p	
se
ns
or
	d
ie
	to

	m
ea
su
re
	

ch
em

ic
al
	su

bs
ta
nc
e;
	

DP
4	

In
cl
ud

e	
ex
te
rn
al
	in
te
rf
ac
e.
	

2	
PV

1-
3	

Di
es
	w
ill
	h
av
e	
th
ei
r	s
pe

ci
fic
	

CM
O
S	
m
an

uf
ac
tu
rin

g	
re
ci
pe

	a
nd

	
w
ill
	b
e	
m
ad

e	
in
	b
at
ch
es
	p
er
	

ki
nd

;	
PV

4	
In
te
rf
ac
e	
w
ith

	su
bs
tr
at
e	
an

d	
st
an

da
rd
ise

d	
w
ire

bo
nd

	p
ro
ce
ss
.	

Sy
st
em

	
	

Li
m
ite

d	
to
	M

ea
su
rin

g	
Sy
st
em

	(E
ne

rg
y	

Ha
rv
es
te
r,	
En

er
gy
	M

an
ag
er
,	a
nd

	
In
te
gr
at
io
n	
no

t	f
ur
th
er
	e
la
bo

ra
te
d)
:	

- 
En

ab
le
s	b

io
	se

ns
in
g;
	

- 
De

te
ct
io
n	
of
	sp

ec
ifi
c	
m
ol
ec
ul
es
	

at
	th

e	
su
rf
ac
e	
of
	n
an

ow
ire

s.
	

0	
Li
m
ite

d	
to
	M

ea
su
rin

g	
Sy
st
em

	(P
V	
Ce

lls
,	

En
er
gy
	M

an
ag
em

en
t	C

irc
ui
tr
y,
	a
nd

	
In
te
gr
at
io
n	
no

t	f
ur
th
er
	e
la
bo

ra
te
d)
:	

- 
FE
T	
de

vi
ce
;	

- 
Li
nk
in
g	
re
ce
pt
or
	g
ro
up

s	t
o	

en
ab

le
	su

rf
ac
e	
fu
nc
tio

na
lis
ed

	
N
an

ow
ire

s.
	

1	
Li
m
ite

d	
to
	M

ea
su
rin

g	
Sy
st
em

	(P
V	
Ce

lls
,	

En
er
gy
	M

an
ag
em

en
t	C

irc
ui
tr
y,
	a
nd

	
In
te
gr
at
io
n	
no

t	f
ur
th
er
	e
la
bo

ra
te
d)
:	

- 
PM

M
S	
M
ic
ro
flu

id
ic
	sy

st
em

;	
- 

Fl
ow

	st
ru
ct
ur
e	
m
ad

e	
w
ith

	
lit
ho

gr
ap

hy
	p
ro
ce
ss
.	

Pa
rt
	

	
Li
m
ite

d	
to
	M

ea
su
rin

g	
Sy
st
em

:	
- 

Co
nt
ai
n	
fu
nc
tio

na
lis
ed

	su
rf
ac
e;
	

- 
Di
re
ct
	m

ed
iu
m
	a
lo
ng
	

fu
nc
tio

na
lis
ed

	su
rf
ac
e.
	

0	
Li
m
ite

d	
to
	M

ea
su
rin

g	
Sy
st
em

:	
- 

Ch
an

ne
ls	
in
	P
M
M
S;
	

- 
So
m
e	
Fu
nc
tio

na
lis
at
io
n	
fo
r	

pr
ob

e/
ta
rg
et
	re

ac
tio

ns
.	

0	
Li
m
ite

d	
to
	M

ea
su
rin

g	
Sy
st
em

:	
- 

PM
M
S	
Ch

an
ne

l	s
tr
uc
tu
rin

g;
	

- 
PM

M
S	
bo

nd
in
g;
	

- 
Bu

rie
d	
re
sis

t	r
em

ov
al
.	

	

APPENDIX F  

DESIGN & IMPLEMENTATION OF A MICRO HYDROGEN SENSOR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table F.1 Constituent roadmap at start project 



300 
 

	 	
Co

ns
tit
ue

nt
	R
oa

dm
ap

	S
co
re
s	a

t	s
ta
rt
	p
ro
je
ct
	(a

lte
rn
at
iv
e	
se
ns
or
)	

	 Cu
st
om

er
	A
tt
rib

ut
es
	

	
Fu
nc
tio

na
l	R

eq
ui
re
m
en

ts
	

	
De

sig
n	
Pa

ra
m
et
er
s	

	
Pr
oc
es
s	V

ar
ia
bl
es
	

Sy
st
em

	
	

Li
m
ite

d	
to
	M

ea
su
rin

g	
Sy
st
em

	&
	A
DC

	
(E
ne

rg
y	
Ha

rv
es
te
r,	
En

er
gy
	M

an
ag
er
,	

an
d	
In
te
gr
at
io
n	
no

t	f
ur
th
er
	e
la
bo

ra
te
d)
:	

- 
Id
ea
	is
	to

	a
pp

ly
	tw

o	
Pa
lla
di
um

	
na

no
w
ire

s	o
n	
a	
sin

gl
e	
ch
ip
.	O

ne
	

of
	th

e	
w
ire

s	w
ill
	b
e	
pa

ss
iv
at
ed

	
to
	su

pp
re
ss
	H
yd
ro
ge
n	
di
ffu

sio
n	

an
d	
al
lo
w
s	f
or
	te

m
pe

ra
tu
re
	

co
rr
ec
tio

ns
.	E
le
ct
ro
ni
c	
ci
rc
ui
tr
y	

en
ab

le
s	c

om
pe

ns
at
io
n	
an

d	
ca
lib
ra
tio

n.
	

1	 	
Li
m
ite

d	
to
	M

ea
su
rin

g	
Sy
st
em

	&
	A
DC

	
(P
V	
Ce

lls
,	E
ne

rg
y	
M
an

ag
em

en
t	

Ci
rc
ui
tr
y,
	a
nd

	In
te
gr
at
io
n	
no

t	f
ur
th
er
	

el
ab

or
at
ed

):	
- 

M
ea
su
rin

g	
cu
rr
en

t	w
ill
	b
e	

ap
pl
ie
d	
on

	th
e	
Pd

	N
an

ow
ire

s;
	

- 
AD

C	
is	
ap

pl
ie
d	
to
	c
on

ve
rt
	

cu
rr
en

t	t
o	
di
gi
ta
l	v
al
ue

;	
- 

St
at
e	
m
ac
hi
ne

	fr
om

	A
DC

	w
ill
	

be
	a
pp

lie
d	
fo
r	n

um
er
ic
al
	

ca
lc
ul
at
io
n.
	

1	
Li
m
ite

d	
to
	M

ea
su
rin

g	
Sy
st
em

	&
	A
DC

	(P
V	

Ce
lls
,	E
ne

rg
y	
M
an

ag
em

en
t	C

irc
ui
tr
y,
	a
nd

	
In
te
gr
at
io
n	
no

t	f
ur
th
er
	e
la
bo

ra
te
d)
:	

- 
Ad

ju
st
	m

an
uf
ac
tu
rin

g	
of
	

N
an

ow
ire

s	t
o	
m
ee
t	c
om

pl
ia
nc
e	

w
ith

	lo
w
-p
ow

er
	c
ha

ra
ct
er
	a
nd

	
re
al
ist
ic
	in
pu

t	c
ur
re
nt
s	o

f	A
DC

.	

Pa
rt
	

	
Li
m
ite

d	
to
	M

ea
su
rin

g	
Sy
st
em

	&
	A
DC

:	
- 

O
ne

	N
an

ow
ire

	te
m
pe

ra
tu
re
	

se
ns
iti
ve
;	

- 
Se
co
nd

	N
an

ow
ire

	te
m
pe

ra
tu
re
	

an
d	
Hy

dr
og
en

	se
ns
iti
ve
;	

- 
Du

al
	A
DC

	a
llo
w
s	f
or
	

su
bt
ra
ct
io
n.
	

1	
Li
m
ite

d	
to
	M

ea
su
rin

g	
Sy
st
em

	&
	A
DC

:	
- 

O
ne

	N
an

ow
ire

	is
ol
at
ed

	w
ith

	
pa

ss
iv
at
io
n	
co
at
in
g;
	

- 
Du

al
	A
DC

	a
llo
w
s	f
or
	

su
bt
ra
ct
io
n.
	

1	
Li
m
ite

d	
to
	M

ea
su
rin

g	
Sy
st
em

	&
	A
DC

:	
- 

Pa
ss
iv
at
io
n	
w
ith

	g
la
ss
	c
oa

tin
g	
or
	

flu
id
	a
cr
yl
at
e	
di
sp
en

sin
g;
	

- 
St
an

da
rd
	e
le
ct
ro
ni
c	
ci
rc
ui
tr
y	
fo
r	

AD
C,
	p
ro
ce
ss
in
g,
	a
nd

	
in
te
rf
ac
in
g.
	

	 	
	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Table F.2 Alternative sensor system at start project 



301 
      

	 	
Fi
na

l	C
on

st
itu

en
t	R

oa
dm

ap
	S
co
re
s	f
or
	C
on

ce
pt
ua

l	S
ta
ge

	
	 Cu

st
om

er
	A
tt
rib

ut
es
	

	
	

Fu
nc
tio

na
l	R

eq
ui
re
m
en

ts
	

	
De

sig
n	
Pa

ra
m
et
er
s	

	
Pr
oc
es
s	V

ar
ia
bl
es
	

Pr
oj
ec
t	

- 
Fo
un

da
tio

ns
	o
f	E

ne
rg
y	
Ha

rv
es
tin

g	
at
	th

e	
na

no
sc
al
e:
	D
em

on
st
ra
tio

n	
of
	ra

di
ca
lly
	n
ew

	
st
ra
te
gi
es
	fo

r	e
ne

rg
y	
ha

rv
es
tin

g	
an

d	
lo
ca
l	s
to
ra
ge
	

be
lo
w
	th

e	
m
icr

om
et
re
	sc

al
e.
	E
xp
lo
ra
tio

n	
an

d	
ha

rn
es
sin

g	
of
	p
ot
en

tia
l	e
ne

rg
y	
so
ur
ce
s	a

t	t
ha
t	

sc
al
e	
in
clu

di
ng
	k
in
et
ic	
en

er
gy
	p
re
se
nt
	in
	th

e	
fo
rm

	
of
	ra

nd
om

	fl
uc
tu
at
io
ns
,	a
m
bi
en

t	e
le
ct
ro
m
ag
ne

tic
	

ra
di
at
io
n,
	ch

em
ica

l	e
ne

rg
y	
an

d	
ot
he

rs
;	

- 
Se
lf-
po

w
er
ed

	a
ut
on

om
ou

s	N
an

os
ca
le
	e
le
ct
ro
ni
c	

de
vi
ce
s:
	A
ut
on

om
ou

s	N
an

os
ca
le
	e
le
ct
ro
ni
c	d

ev
ice

s	
th
at
	h
ar
ve
st
	e
ne

rg
y	
fro

m
	th

e	
en

vi
ro
nm

en
t,	

po
ss
ib
ly
	co

m
bi
ni
ng
	m

ul
tip

le
	so

ur
ce
s,	
an

d	
st
or
e	
it	

lo
ca
lly
.	T
he

se
	sy

st
em

s	w
ou

ld
	co

or
di
na

te
	lo
w
-

po
w
er
	se

ns
in
g,
	p
ro
ce
ss
in
g,
	a
ct
ua

tio
n,
	

co
m
m
un

ica
tio

n	
an

d	
en

er
gy
	p
ro
vi
sio

n	
in
to
	

au
to
no

m
ou

s	w
ire

le
ss
	N
an

os
ys
te
m
s.	
�
	

2	

FR
	

De
ve
lo
p	
a	
se
lf-
po

w
er
ed

	IC
T	

sy
st
em

	th
at
	is
	b
ey
on

d	
st
at
e	
of
	

th
e	
ar
t.	

2	

DP
	

De
ve
lo
p	
sm

al
le
st
	P
V	
po

w
er
ed

	
se
ns
or
	in
	th

e	
w
or
ld
.	

2	

PV
	

Ap
pl
y	
en

gi
ne

er
in
g	
m
et
ho

ds
	

sy
st
em

at
ica

lly
;	

PV
’	

Ap
pl
y	
	a
	p
ro
je
ct
	te

am
	w
ith

	
pr
ov
en

	cr
ed

en
tia

ls	
fo
r	t
he

	fi
el
d	
of
	

re
se
ar
ch
.	

Pr
od

uc
t	

	
	

Co
ns
tr
ai
nt
:	D

ev
el
op

	th
e	
sm

al
le
st
	P
V	

po
w
er
ed
	se

ns
or
	in
	th

e	
w
or
ld
.	

	
Co

ns
tr
ai
nt
:	A

pp
ly
	e
ng

in
ee
rin

g	
m
et
ho

ds
	

sy
st
em

at
ic
al
ly
.	

	C
on

st
ra
in
t:	
Ap

pl
y	
CM

O
S	
co
m
pa

tib
le
	

pr
od

uc
tio

n	
pr
oc
es
se
s	f
or
	a
ll	
sil
ico

n	
di
es
.	

- 
Po

ss
ib
ili
ty
	o
f	b

ui
ld
in
g	
au

to
no

m
ou

s	N
an

os
ca
le
	

de
vi
ce
s	(
fro

m
	se

ns
or
	to

	a
ct
ua

to
rs
),	
ex
te
nd

in
g	
th
e	

m
in
ia
tu
ris
at
io
n	
of
	a
ut
on

om
ou

s	d
ev
ice

s	b
ey
on

d	
th
e	
le
ve
l	o
f	t
he

	‘s
m
ar
t	d

us
t’;
	

- 
Ne

w
	a
pp

lic
at
io
ns
	in
	a
	v
as
t	n

um
be

r	o
f	I
CT

	fi
el
ds
	

su
ch
	a
s	i
nt
el
lig
en

t	d
ist
rib

ut
ed

	se
ns
in
g,
	fo

r	h
ea
lth

,	
sa
fe
ty
-c
rit
ica

l	s
ys
te
m
s	o

r	e
nv
iro

nm
en

t	m
on

ito
rin

g.
	

2	

FR
1	

Ha
rv
es
t	e

ne
rg
y	
fo
r	o

pe
ra
tio

n	
fro

m
	th

e	
en

vi
ro
nm

en
t;	

FR
2	

M
an

ag
e	
th
e	
en

er
gy
	in
	th

e	
de

vi
ce
;	

FR
3	

Q
ua

nt
ify
	e
nv
iro

nm
en

ta
l	

ch
em

ica
l	s
ub

st
an

ce
;	

FR
4	

Pr
ov
id
e	
po

w
er
	a
nd

	d
at
a	
to
	th

e	
RF

	fr
on

te
nd

.	

2	

DP
1	

Ap
pl
y	
na

no
w
ire

	P
V	
Ce

lls
;	

DP
2	

In
clu

de
	E
ne

rg
y	
M
an

ag
em

en
t	

cir
cu
itr
y;
	

DP
3	

Ap
pl
y	
se
ns
or
	d
ie
	to

	m
ea
su
re
	

ch
em

ica
l	s
ub

st
an

ce
;	

DP
4	

In
clu

de
	e
xt
er
na

l	i
nt
er
fa
ce
.	

2	

PV
1-
3	

Di
es
	w
ill
	h
av
e	
th
ei
r	s
pe

cif
ic	

CM
O
S	
m
an

uf
ac
tu
rin

g	
re
cip

e	
an

d	
w
ill
	b
e	
m
ad

e	
in
	b
at
ch
es
	p
er
	

ki
nd

;	
PV

4	
In
te
rfa

ce
	w
ith

	su
bs
tr
at
e	
an

d	
st
an

da
rd
ise

d	
w
ire

bo
nd

	
pr
oc
es
s.	

Sy
st
em

	
	

Lim
ite

d	
to
	M

ea
su
rin

g	
Sy
st
em

	&
	A
DC

	
(E
ne

rg
y	
Ha

rv
es
te
r,	
En

er
gy
	M

an
ag
er
,	a
nd

	
In
te
gr
at
io
n	
no

t	f
ur
th
er
	e
la
bo

ra
te
d)
:	

FR
3.
1	

De
te
rm

in
e	
te
m
pe

ra
tu
re
	

FR
3.
2	
	

De
te
rm

in
e	
fu
nc
tio

n	
of
	te

m
p	

an
d	
hy
dr
og
en

	co
nc
en

tr
at
io
n;
	

FR
3.
3	
	

Co
m
pe

ns
at
e	
co
nc
en

tr
at
io
n	

w
ith

	te
m
pe

ra
tu
re
.	

2	

Lim
ite

d	
to
	M

ea
su
rin

g	
Sy
st
em

	&
	A
DC

	(P
V	

Ce
lls
,	E
ne

rg
y	
M
an

ag
em

en
t	C

irc
ui
tr
y,
	

an
d	
In
te
gr
at
io
n	
no

t	f
ur
th
er
	e
la
bo

ra
te
d)
:	

DP
3.
1	

Ap
pl
y	
se
tu
p	
w
ith

	p
as
siv

at
ed

	
Na

no
w
ire

	&
	A
DC

;	
DP

3.
2	

Ap
pl
y	
se
tu
p	
w
ith

	P
al
la
di
um

	
Na

no
w
ire

	&
	A
DC

;	
DP

3.
3	

In
te
gr
at
e	
su
bt
ra
ct
io
n	
in
	A
DC

.	

2	

Lim
ite

d	
to
	M

ea
su
rin

g	
Sy
st
em

	&
	A
DC

	(P
V	

Ce
lls
,	E
ne

rg
y	
M
an

ag
em

en
t	C

irc
ui
tr
y,
	

an
d	
In
te
gr
at
io
n	
no

t	f
ur
th
er
	e
la
bo

ra
te
d)
:	

PV
3.
1	

Ca
lib
ra
te
	A
DC

-b
ia
s	c

ur
re
nt
	to

	
re
sis

ta
nc
e	
of
	p
as
siv

at
ed

	
Na

no
w
ire

;	
PV

3.
2	

Ca
lib
ra
te
	A
DC

-b
ia
s	c

ur
re
nt
	to

	
re
sis

ta
nc
e	
of
	P
d	
Na

no
w
ire

;	
PV

3.
3	

In
te
gr
at
e	
st
at
e	
m
ac
hi
ne

.	
Pa

rt
	

	
Lim

ite
d	
to
	M

ea
su
rin

g	
Sy
st
em

	&
	A
DC

:	
FR

3.
1.
1	

M
ea
su
re
	a
cc
ur
at
el
y;
	

FR
3.
1.
2	

M
ea
su
re
	w
ith

	q
ui
ck
	re

sp
on

se
;	

FR
3.
2.
1	

M
ea
su
re
	H
yd
ro
ge
n	
in
	a
ir	

se
le
ct
iv
el
y;
	

FR
3.
2.
2	

M
ea
su
re
	se

ns
iti
ve
ly
;	

FR
3.
2.
3	

M
ea
su
re
	w
ith

	q
ui
ck
	re

sp
on

se
.	

2	

Lim
ite

d	
to
	M

ea
su
rin

g	
Sy
st
em

	&
	A
DC

:	
DP

3.
1.
1	
Ch

ar
ac
te
ris
e	
re
sis

ta
nc
e;
	

DP
3.
1.
2	
Lo
w
	m

as
s	o

f	p
as
siv

at
ed

	
Na

no
w
ire

;	
DP

3.
2.
1	
In
tr
in
sic

	se
le
ct
iv
ity

	fo
r	H

2	b
y	

ap
pl
ica

tio
n	
of
	P
al
la
di
um

;	
DP

3.
2.
2	
Tu

ne
	N
an

ow
ire

	th
ick

ne
ss
	fo

r	
se
ns
iti
vi
ty
	a
nd

	re
sp
on

se
.	

	

2	

Lim
ite

d	
to
	M

ea
su
rin

g	
Sy
st
em

	&
	A
DC

:	
PV

3.
1.
1	
So
ftw

ar
e	
co
m
pe

ns
at
io
n;
	

PV
3.
1.
2	
Th

in
	p
as
siv

at
io
n	
la
ye
r;	

PV
3.
2.
1	
M
an

ag
e	
pu

rit
y	
of
	P
d;
;	

PV
3.
2.
2	
Su
ffi
cie

nt
ly
	h
ig
h	
re
so
lu
tio

n	
pr
oc
es
s.	

	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table F.3 Constituent roadmap at finalisation of conceptual phase  



302 
 

	 	
Fi
na

l	C
on

st
itu

en
t	R

oa
dm

ap
	S
co
re
s	f
or
	P
ro
je
ct
	

	 Cu
st
om

er
	A
tt
rib

ut
es
	

	
	

Fu
nc
tio

na
l	R

eq
ui
re
m
en

ts
	

	
De

sig
n	
Pa

ra
m
et
er
s	

	
Pr
oc
es
s	V

ar
ia
bl
es
	

Pr
oj
ec
t	

- 
Fo
un

da
tio

ns
	o
f	E

ne
rg
y	
Ha

rv
es
tin

g	
at
	th

e	
na

no
sc
al
e:
	D
em

on
st
ra
tio

n	
of
	ra

di
ca
lly
	n
ew

	
st
ra
te
gi
es
	fo

r	e
ne

rg
y	
ha

rv
es
tin

g	
an

d	
lo
ca
l	s
to
ra
ge
	

be
lo
w
	th

e	
m
ic
ro
m
et
re
	sc

al
e.
	E
xp
lo
ra
tio

n	
an

d	
ha

rn
es
sin

g	
of
	p
ot
en

tia
l	e
ne

rg
y	
so
ur
ce
s	a

t	t
ha

t	
sc
al
e	
in
cl
ud

in
g	
ki
ne

tic
	e
ne

rg
y	
pr
es
en

t	i
n	
th
e	
fo
rm

	
of
	ra

nd
om

	fl
uc
tu
at
io
ns
,	a
m
bi
en

t	e
le
ct
ro
m
ag
ne

tic
	

ra
di
at
io
n,
	ch

em
ic
al
	e
ne

rg
y	
an

d	
ot
he

rs
;	

- 
Se
lf-
po

w
er
ed

	a
ut
on

om
ou

s	N
an

os
ca
le
	e
le
ct
ro
ni
c	

de
vi
ce
s:
	A
ut
on

om
ou

s	N
an

os
ca
le
	e
le
ct
ro
ni
c	d

ev
ic
es
	

th
at
	h
ar
ve
st
	e
ne

rg
y	
fr
om

	th
e	
en

vi
ro
nm

en
t,	

po
ss
ib
ly
	co

m
bi
ni
ng
	m

ul
tip

le
	so

ur
ce
s,	
an

d	
st
or
e	
it	

lo
ca
lly
.	T
he

se
	sy

st
em

s	w
ou

ld
	co

or
di
na

te
	lo
w
-

po
w
er
	se

ns
in
g,
	p
ro
ce
ss
in
g,
	a
ct
ua

tio
n,
	

co
m
m
un

ic
at
io
n	
an

d	
en

er
gy
	p
ro
vi
sio

n	
in
to
	

au
to
no

m
ou

s	w
ire

le
ss
	N
an

os
ys
te
m
s.	
�
	

3	

FR
	

De
ve
lo
p	
a	
se
lf-
po

w
er
ed

	IC
T	

sy
st
em

	th
at
	is
	b
ey
on

d	
st
at
e	
of
	

th
e	
ar
t.	

3	

DP
	

De
ve
lo
p	
sm

al
le
st
	P
V	
po

w
er
ed

	
se
ns
or
	in
	th

e	
w
or
ld
.	

3	

PV
	

Ap
pl
y	
en

gi
ne

er
in
g	
m
et
ho

ds
	

sy
st
em

at
ic
al
ly
;	

PV
’	

Ap
pl
y	
	a
	p
ro
je
ct
	te

am
	w
ith

	
pr
ov
en

	cr
ed

en
tia

ls	
fo
r	t
he

	fi
el
d	
of
	

re
se
ar
ch
.	

Pr
od

uc
t	

	
	

Co
ns
tr
ai
nt
:	D

ev
el
op

	th
e	
sm

al
le
st
	P
V	

po
w
er
ed
	se

ns
or
	in
	th

e	
w
or
ld
.	

	
Co

ns
tr
ai
nt
:	A

pp
ly
	e
ng

in
ee
rin

g	
m
et
ho

ds
	

sy
st
em

at
ic
al
ly
.	

	C
on

st
ra
in
t:	
Ap

pl
y	
CM

O
S	
co
m
pa

tib
le
	

pr
od

uc
tio

n	
pr
oc
es
se
s	f
or
	a
ll	
sil
ic
on

	d
ie
s.
	

- 
Po

ss
ib
ili
ty
	o
f	b

ui
ld
in
g	
au

to
no

m
ou

s	N
an

os
ca
le
	

de
vi
ce
s	(
fr
om

	se
ns
or
	to

	a
ct
ua

to
rs
),	
ex
te
nd

in
g	
th
e	

m
in
ia
tu
ris
at
io
n	
of
	a
ut
on

om
ou

s	d
ev
ic
es
	b
ey
on

d	
th
e	
le
ve
l	o
f	t
he

	‘s
m
ar
t	d

us
t’;
	

- 
Ne

w
	a
pp

lic
at
io
ns
	in
	a
	v
as
t	n

um
be

r	o
f	I
CT

	fi
el
ds
	

su
ch
	a
s	i
nt
el
lig
en

t	d
ist
rib

ut
ed

	se
ns
in
g,
	fo

r	h
ea
lth

,	
sa
fe
ty
-c
rit
ic
al
	sy

st
em

s	o
r	e

nv
iro

nm
en

t	m
on

ito
rin

g.
	

3	

FR
1	

Ha
rv
es
t	e

ne
rg
y	
fo
r	o

pe
ra
tio

n	
fr
om

	th
e	
en

vi
ro
nm

en
t;	

FR
2	

M
an

ag
e	
th
e	
en

er
gy
	in
	th

e	
de

vi
ce
;	

FR
3	

Q
ua

nt
ify
	e
nv
iro

nm
en

ta
l	

ch
em

ic
al
	su

bs
ta
nc
e;
	

FR
4	

Pr
ov
id
e	
po

w
er
	a
nd

	d
at
a	
to
	th

e	
RF

	fr
on

te
nd

.	

3	

DP
1	

Ap
pl
y	
na

no
w
ire

	P
V	
Ce

lls
;	

DP
2	

In
cl
ud

e	
En

er
gy
	M

an
ag
em

en
t	

ci
rc
ui
tr
y;
	

DP
3	

Ap
pl
y	
se
ns
or
	d
ie
	to

	m
ea
su
re
	

ch
em

ic
al
	su

bs
ta
nc
e;
	

DP
4	

In
cl
ud

e	
ex
te
rn
al
	in
te
rf
ac
e.
	

3	

PV
1-
3	

Di
es
	w
ill
	h
av
e	
th
ei
r	s
pe

ci
fic
	

CM
O
S	
m
an

uf
ac
tu
rin

g	
re
ci
pe

	
an

d	
w
ill
	b
e	
m
ad

e	
in
	b
at
ch
es
	p
er
	

ki
nd

;	
PV

4	
In
te
rf
ac
e	
w
ith

	su
bs
tr
at
e	
an

d	
st
an

da
rd
ise

d	
w
ire

bo
nd

	
pr
oc
es
s.	

Sy
st
em

	
	

Lim
ite

d	
to
	M

ea
su
rin

g	
Sy
st
em

	&
	A
DC

	
(E
ne

rg
y	
Ha

rv
es
te
r,	
En

er
gy
	M

an
ag
er
,	a
nd

	
In
te
gr
at
io
n	
no

t	f
ur
th
er
	e
la
bo

ra
te
d)
:	

FR
3.
1	

De
te
rm

in
e	
te
m
pe

ra
tu
re
	

FR
3.
2	
	

De
te
rm

in
e	
fu
nc
tio

n	
of
	te

m
p	

an
d	
hy
dr
og
en

	co
nc
en

tr
at
io
n;
	

FR
3.
3	
	

Co
m
pe

ns
at
e	
co
nc
en

tr
at
io
n	

w
ith

	te
m
pe

ra
tu
re
.	

3	

Lim
ite

d	
to
	M

ea
su
rin

g	
Sy
st
em

	&
	A
DC

	(P
V	

Ce
lls
,	E
ne

rg
y	
M
an

ag
em

en
t	C

irc
ui
tr
y,
	

an
d	
In
te
gr
at
io
n	
no

t	f
ur
th
er
	e
la
bo

ra
te
d)
:	

DP
3.
1	

Ap
pl
y	
se
tu
p	
w
ith

	p
as
siv

at
ed

	
Na

no
w
ire

	&
	A
DC

;	
DP

3.
2	

Ap
pl
y	
se
tu
p	
w
ith

	P
al
la
di
um

	
Na

no
w
ire

	&
	A
DC

;	
DP

3.
3	

In
te
gr
at
e	
su
bt
ra
ct
io
n	
in
	A
DC

.	

3	

Lim
ite

d	
to
	M

ea
su
rin

g	
Sy
st
em

	&
	A
DC

	(P
V	

Ce
lls
,	E
ne

rg
y	
M
an

ag
em

en
t	C

irc
ui
tr
y,
	

an
d	
In
te
gr
at
io
n	
no

t	f
ur
th
er
	e
la
bo

ra
te
d)
:	

PV
3.
1	

Ca
lib
ra
te
	A
DC

-b
ia
s	c

ur
re
nt
	to

	
re
sis

ta
nc
e	
of
	p
as
siv

at
ed

	
Na

no
w
ire

;	
PV

3.
2	

Ca
lib
ra
te
	A
DC

-b
ia
s	c

ur
re
nt
	to

	
re
sis

ta
nc
e	
of
	P
d	
Na

no
w
ire

;	
PV

3.
3	

In
te
gr
at
e	
st
at
e	
m
ac
hi
ne

.	
Pa

rt
	

	
Lim

ite
d	
to
	M

ea
su
rin

g	
Sy
st
em

	&
	A
DC

:	
FR

3.
1.
1	

M
ea
su
re
	a
cc
ur
at
el
y;
	

FR
3.
1.
2	

M
ea
su
re
	w
ith

	q
ui
ck
	re

sp
on

se
;	

FR
3.
2.
1	

M
ea
su
re
	H
yd
ro
ge
n	
in
	a
ir	

se
le
ct
iv
el
y;
	

FR
3.
2.
2	

M
ea
su
re
	se

ns
iti
ve
ly
;	

FR
3.
2.
3	

M
ea
su
re
	w
ith

	q
ui
ck
	re

sp
on

se
.	

3	

Lim
ite

d	
to
	M

ea
su
rin

g	
Sy
st
em

	&
	A
DC

:	
DP

3.
1.
1	
Ch

ar
ac
te
ris
e	
re
sis

ta
nc
e;
	

DP
3.
1.
2	
Lo
w
	m

as
s	o

f	p
as
siv

at
ed

	
Na

no
w
ire

;	
DP

3.
2.
1	
In
tr
in
sic

	se
le
ct
iv
ity

	fo
r	H

2	b
y	

ap
pl
ic
at
io
n	
of
	P
al
la
di
um

;	
DP

3.
2.
2	
Lo
w
	m

as
s	o

f	N
an

ow
ire

;	
DP

3.
2.
3	
Lo
w
	m

as
s	o

f	N
an

ow
ire

.	

3	

Lim
ite

d	
to
	M

ea
su
rin

g	
Sy
st
em

	&
	A
DC

:	
PV

3.
1.
1	
So
ftw

ar
e	
co
m
pe

ns
at
io
n;
	

PV
3.
1.
2	
Th

in
	p
as
siv

at
io
n	
la
ye
r;	

PV
3.
2.
1	
M
an

ag
e	
pu

rit
y	
of
	P
d;
;	

PV
3.
2.
2	
‘F
ly
in
g’
	N
an

ow
ire

s	f
or
	b
et
te
r	

in
te
rf
ac
in
g	
of
	m

ed
iu
m
;	

PV
3.
2.
3	
Na

no
w
ire

s	i
n	
th
e	
50

	
Na

no
m
et
re
	ra

ng
e.
	

	 	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table F.4 Constituent roadmap at finalisation of robustness phase 


