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Abstract

Major changes are under way in our power grids. Until very recently, a few hun-
dred, very large, dependable fossil-fuelled power stations were supplying power to
consumers whose only role was to use energy whenever they wanted. Today we
have wind farms, solar farms, solar panels on millions of roofs, smart metering.
Electric vehicles are on the rise and storage technologies are developing rapidly.
Achieving a low-carbon, affordable, and secure electricity system, the so-called ‘en-
ergy trilemma,’ presents many challenges and opportunities. As energy becomes
more dependent on volatile resources such as the wind and sun, flexibility will be-
come increasingly important for maintaining system security at palatable costs. One
new source of flexibility could come from domestic appliances. Thermostatically-
controlled loads (TCLs), such as fridges, freezers, air-conditioners and hot-water
tanks are effectively energy stores that can be adapted to meet the needs of the grid
with negligible impact on consumers. By allowing their operating set points to vary
(a little) according to the electricity frequency, they could provide a valuable re-
source to the grid. However, a thorough understanding of their potential to exhibit
synchronisation will be needed to understand and mitigate against the potential
risks of a decentralised response provider.

In this thesis I outline the operation of the electricity grid in Great Britain and
describe the existing research into using TCLs for demand-side response. I present
a new continuum model for a population of deterministic frequency-sensitive TCLs
that is sufficiently tractable to allow for our stability analysis. I also solve for the
long-term behaviour of a fully synchronised group of TCLs and analyse its stability
to splitting into two groups, and hypothesise about the stability of N groups. Us-
ing system data from National Grid, the operation of the GB electricity system is
simulated over ten-day periods with, and without, a population of fridges providing
frequency response to determine their impact. I find that synchronisation issues
should always be expected when the fridge population is identical, but with even
very low levels of parameter diversity, such issues are eradicated in our simulations.
Given the inherent diversity in a population of TCLs, this research shows that de-
centralised, deterministic control schemes are a viable option for using TCLs for
frequency response, and that such a scheme could provide a valuable resource.
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Notation

Symbol Description Units Appears

• denotes on or off depending on

the context

- (3.28)

c inverse nominal angular momen-

tum

Hz (MWs)−1 (3.12)

coff ḟ when single group is switched

off

Hz s−1 (3.42)

con −ḟ when single group is switched

on

Hz s−1 (3.42)

D(t) total measured demand MW (4.1)

Demresp

(
f(t), t

)
automatic demand response MW (4.3)

Demω0(t) demand at nominal frequency MW (4.2)

Ek(t) total stored kinetic energy MVAs (4.4)

f(t) grid frequency minus nominal

frequency

Hz (3.4a)

f− minimum frequency in single

group periodic solution

Hz (3.55a)

f+ maximum frequency in single

group periodic solution

Hz (3.55b)

foffn grid frequency at time toffn Hz (3.41a)

fonn grid frequency at time tonn Hz (3.41a)

GA, GB group A, group B - (3.80)

Imbtot(t) total imbalance MW (4.5)

Imbunder(t) underlying imbalance MW (4.5)

k dimensionless constant - (3.34)

k0 normalisation constant s−1 (3.23)

loff off cycle duration of single group

periodic solution

s (3.55b)

xiii



lon on cycle duration of single group

periodic solution

s (3.55a)

L single group periodic solution cy-

cle duration

s Figure 3.21

N number of synchronised groups - Table 3.2

Pc maximum TCL population

power consumption

MW (3.12)

SA, SB on/off state of group A, group B - Figure 3.12

t time s (3.3)

toffn time of nth switch off of single

group

s (3.41a)

tonn time of nth switch on of single

group

s (3.41a)

T (t) temperature ◦C (3.3)

T 0
− nominal lower temperature set

point

◦C (3.4a)

T−
(
f(t)

)
lower temperature set point ◦C (3.4a)

T 0
+ nominal upper temperature set

point

◦C (3.4b)

T+

(
f(t)

)
upper temperature set point ◦C (3.4b)

Toff asymptotic heating temperature

(room temperature)

◦C (3.3)

Ton asymptotic cooling temperature ◦C (3.3)

TΓ(t) temperature of the single group

periodic solution

◦C Figure 3.21

u(θ, t)dθ fraction of TCLs between θ and

θ + dθ

- (3.18)

v(θ, t) velocity of TCL in θ-space s−1 (3.19)

w(θ, t) perturbation function s−1 (3.29)

woff histogram bin width for switched

off TCLs

- (4.10)

won histogram bin width for switched

on TCLs

- (4.10)

X ∈ {A, ..., L} switch event - Figure 3.12

XY switch event progression X then

Y

- (3.89)

Z combination of parameters Hz s−1 (3.40)
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Z0 Z with parameters from Ta-

ble 3.1

Hz s−1 (3.40)

α Heating/cooling coefficient s−1 (3.3)

β set point sensitivity to frequency

(when β− = β+)

◦C Hz−1 (3.60)

β− lower temperature set point sen-

sitivity to frequency

◦C Hz−1 (3.4a)

β+ upper temperature set point sen-

sitivity to frequency

◦C Hz−1 (3.4b)

γ damping factor divided by angu-

lar momentum

s−1 (3.12)

δt generator response time lag s (4.7)

∆t time step size s (4.7)

∆P surplus power generation for the

TCLs

MW (3.12)

∆t,∆
′
t switch on time differences be-

tween groups A and B

◦C Figure 3.21

∆T ,∆
′
T temperature difference between

groups A and B at group B

switch on events

◦C Figure 3.21

∆u normalised wave peak amplitude - Table 4.1

ε1, ..., ε5 time differences in single group

linearisation

s Figure 3.21

η(θ, t) perturbation function s−1 (3.27)

θ(t) measure of TCL phase - (3.17)

θn nth normalised phase difference

of two groups

- (3.81b)

λ eigenvalue - (3.34)

λ1 eigenvalue - (3.112)

λ2 eigenvalue - (3.134)

µ combination of parameters (Hz s)−1 (3.33c)

ν0 combination of parameters Hz−1 (3.33a)

ν1 combination of parameters Hz−1 (3.33b)

ξ combination of parameters ◦C s−1 (3.103)

ξ1 combination of parameters ◦C s−1 (3.114)

ξ2 combination of parameters ◦C s−1 (3.118)

ξ3 combination of parameters ◦C s−1 (3.122)
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ξ4 combination of parameters ◦C s−1 (3.126)

ρ(t) proportion of TCLs switched on - (3.12)

ρ0 expected proportion of frequency

insensitive TCLs switched on

- (3.8)

σ proportion in group A in two

group model

- (3.80)

τ0
on nominal on cycle duration s (3.7a)

τon(f) frequency-dependent on cycle

duration

s (3.6a)

τ0
off nominal off cycle duration s (3.7b)

τoff(f) frequency-dependent off cycle

duration

s (3.6b)

φoff(t) combination of parameters Hz−1 (3.21b)

φon(t) combination of parameters Hz−1 (3.21a)
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“I’m absolutely not anti-renewables. I love

renewables. But I’m also pro-arithmetic.”

David MacKay, TEDxWarwick, 2012

1
Introduction

Britain, like many countries around the world, is in midst of what could be called

an ‘energy revolution’ [1]. In the past year alone there have been headlines such as

“GB energy supply enjoys coal-free day for ‘first time since the industrial revolution’

” [2], “This summer was greenest ever for energy, says National Grid” [3], “Britain

opens first subsidy-free solar power farm” [4], and “Jaguar Land Rover to build

electric and hybrid new vehicles only from 2020” [5], to name but a few. The public

is becoming increasingly aware of, and increasingly involved with, the major changes

sweeping the electricity industry.

Historically electricity was supplied by a (relatively small) number of large (gigawatt

(GW)-scale), predictable power plants that met the electricity needs of all consumers

on the network. Energy flowed from suppliers, through the transmission and distri-

bution systems, into homes and businesses where it was consumed. To control the

power system meant controlling the power plants, and controlling and maintaining

the power grid components and infrastructure. The 21st century has seen a dramatic

shift away from this model to a network with thousands of uncontrolled micro-scale

solar panels, hundreds of highly variable large-scale wind and solar farms (often at

the extremities of the transmission network), and contributions to system balancing

from large businesses such as supermarkets. Figure 1.1 shows the fuel input for
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electricity generation in the UK between 1920-2016 based on government electricity

statistics [6]. Over the last hundred years electricity demand has risen dramatically,

and has only recently declined somewhat since its peak in 2005. We can see the

rise and fall of coal and oil as our primary electricity sources. Nuclear and natural

gas are the largest sources of fuel for electricity today, and other fuels such as wind

and solar have been steadily rising since 1990. Figure 1.2 shows the rapid expansion

of solar photovoltaics (PV) over the last eight years to almost 13GW (gigawatt) in

October 2017. Wind power has seen similar trends, with current estimates for in-

stalled onshore and offshore capacity at 11.0GW and 5.3GW respectively1 [7]. Such

widespread changes offer the chance for a future less dependent on fossil fuels [8],

but bring with them many challenges to the secure and affordable operation of the

electricity grid that are yet to be fully addressed [1, 9].

Figure 1.1: Fuel input for electricity generation in millions of tonnes of oil equivalent
in the UK between 1920-2016 based on the data in [6].

Our increasing dependence on volatile and less predictable resources such as the

1These figures exclude projects smaller than 100kW (kilowatt).
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Figure 1.2: Estimated solar photovoltaics deployment, from [10].

wind and sun exposes the system to power fluctuations that need to be carefully

managed. The power system’s ability to respond to such changes is critical for pre-

venting blackouts and protecting network components. Generators or consumers

that can act in a flexible manner will become more valuable as the costs of meeting

these operational challenges increase. Examples of current providers of flexibility in-

clude gas power plants, pumped hydroelectric storage, smaller-scale storage such as

batteries, and businesses contracted to temporarily switch off freezers or air condi-

tioning when called upon. Inflexibility is found in nuclear power stations, solar PV,

wind farms (due to the high cost of requesting flexibility at present), and domes-

tic consumers (currently). Rising flexibility requirements will most likely increase

energy costs for consumers [11]. In the recent review of the evidence on the costs

and impacts of intermittent electricity generation technologies by the UK Energy

Research Centre, it is found that “costs are very sensitive to the flexibility of the

system to which variable renewable generation is added, with estimates of costs of-

ten being dramatically lower for flexible systems”. In order to become more flexible,

systems will need to adapt by making “changes to both the technical and economic

characteristics of electricity generating plant, potential contributions from flexible

demand, storage and increased interconnection capacity, as well as changes to system
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operation, regulatory frameworks and the design of electricity markets” [11].

The focus of our work is on a particular type of flexible demand. Thermostatically-

controlled loads (TCLs) such as fridges, freezers, air conditioners and hot water

tanks can effectively be used as energy stores on the grid. They spend periods of

time switched on, and periods of time switched off in order to keep food, rooms

or water near the right temperature. The precise time when they switch on or

off is of no concern to the user, and so their power consumption can be delayed

or advanced on the order of several minutes if needed, with no detriment to their

operation. To delay consumption is similar to an energy store supplying power to

the grid which will be replaced a little later, and to advance consumption is similar

to filling/charging a store. By allowing the TCL operating set points to vary a small

amount according to the needs of the electricity grid, a population of TCLs can act

as a flexible demand resource, similar to energy storage. The rate of change of the

grid frequency (RoCoF), detectable anywhere on the network, is an approximate

measure of the imbalance between supply and demand. Therefore it would only

require a small addition to an appliance to detect the frequency and compute the

temperature set points accordingly in order for it to become a flexible resource.

There are a number of challenges with regard to making frequency-sensitive TCLs

a reality on the GB grid. For example, there would need to be financial or legal

incentives for companies to install the appropriate controllers in existing or new

TCLs. Would individual consumers be paid for participating in such a scheme, or

would it become a standard component of all new fridge-freezers, for example? If

the System Operator were to pay TCLs for providing a balancing service, it would

need to know how the population would respond to frequency deviations and be

confident that the service could be relied upon. Who would pay if the service did

not meet expectations? Beyond the economic and policy considerations, of most

interest to us is the control mechanism within each TCL. Many options have been

proposed in the literature, but no choice has yet emerged as the optimal solution.

What any robust solution must overcome is the risk of temperature cycle synchro-

nisation. At present, the demand from TCLs is approximately constant throughout

the day. TCLs switch on and off completely independently of one another, and so

their total load is predictable and easy to supply. However, if many TCLs begin

responding to a signal (the frequency) according to the same control rules, their

temperature cycles may become correlated. While this may be useful in the short

term as the population responds together to the frequency, over time these correla-

tions can amplify, to the extent that large portions of the population begin switching

4



on and off at the same time. Understanding the propensity of TCL populations to

synchronise will be key for avoiding such problems.

The first half of this thesis describes a new continuum model for a population of

frequency-sensitive TCLs and presents analyses of the dynamics of a continuum

of TCLs, and also of one and two synchronised groups. We consider a simple,

decentralised, deterministic control scheme for a homogeneous population of TCLs.

Eigenvalue analysis of our model shows that the nominal frequency equilibrium is

stable, at least to small perturbations. We also solve for the periodic solution of

a fully synchronised group of TCLs. This leads us to study the behaviour of two

synchronised groups, which is much more complicated due to the potential for the

order of switching (on or off) to change. We analyse the stability of two groups very

close to the single group solution, and find the region in parameter space in which

the groups will synchronise, and the region in which the groups will separate and

remain distinct. This allows us to hypothesize about the long-term behaviour of N

groups of identical TCLs.

The second half of our work offers a number of simulations which expand on the

mathematics and provide new insights into how TCLs would perform on the real

GB system under our decentralised, deterministic control scheme. We are able to

simulate a large population of TCLs acting on the GB grid using real system data

from National Grid from 2015-2016. The data includes system demand, stored

kinetic energy, frequency, and frequency response from other providers. To the

best of our knowledge, this is the first time TCLs have been simulated with this

amount of system data for such long time periods (ten days). In particular, an

algorithm from National Grid has allowed us to determine how the other response

providers on the system would have acted had the TCLs been frequency-sensitive,

and to calculate the resulting reduction (or increase) in response that they were

required to provide. We test our theory that with sufficient parameter diversity,

a heterogeneous population will avoid the synchronisation issues that befall homo-

geneous populations. We discover that even a very small amount of diversity will

eradicate these problems. Since diversity exists in any real system, we conclude

that the minimal levels required fall within what could be reasonably expected in

a population, and so our control scheme is a viable option to implement in a TCL

population. Thus potentially unpopular controls with stochasticity can be avoided,

as well as infrastructure-intensive centralised control schemes that pose potential

security risks.

Our novel contributions to the literature can be summarised as follows. 1) The de-
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velopment of a new continuum model describing a population of frequency-sensitive

TCLs on the electricity grid. 2) Stability analysis of the nominal frequency equilib-

rium in the model. 3) Stability analysis of a fully synchronised group of TCLs to

splitting in two and a hypothesis regarding the dynamics of N groups. 4) Demon-

stration that very small amounts of diversity can prevent synchronisation issues

in a heterogeneous population, and estimates for the GB system of the potential

reduction in frequency response from other providers.

We assume that the reader has a mathematical background rather than expertise in

power grids and the energy industry, and tailor the background and explanations ac-

cordingly. In Chapter 2 we describe the structure and operation of the GB electricity

grid, introducing power systems concepts that are important for our work such as

power system stability and balancing services (Section 2.1.2). We also expand on

the topics of renewable energy (2.2), smart grids and demand-side response (2.3).

Section 2.4 explains how TCLs can be used for frequency response, describes the

existing literature, and discusses the topic of synchronisation. Chapter 3 contains

our models and mathematical analysis of a continuum of identical TCLs and of one

and two groups of identical synchronised TCLs. In Chapter 4 we explain our sim-

ulation methodologies and present the results. We conclude and propose areas for

further work in Chapter 5.
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“Chirping crickets, croaking frogs, flashing

fireflies, gaps in the asteroid belt, gener-

ators in the power grid-[Norbert] Wiener

spotted sync in all of them.”

Steven Strogatz, Sync: the emerging

science of spontaneous order [12]

2
Background

2.1 The Electricity Grid

The first electric power system began operating in 1882 supplying power (for light-

ing) to 59 customers in New York City [13]. Today power grids span entire conti-

nents, making electric power available to approximately 4.8 billion people [14] and

transforming almost all aspects of the way we live. In this thesis, the work is ap-

plicable to AC power grids in any country, however we focus predominantly on the

electricity grid and current energy policy in Great Britain (GB). We use the terms

electricity grid, power grid, grid and power system interchangeably.

2.1.1 Structure

Put simply, an electricity grid connects electricity generators into a high voltage

transmission network which transmits energy across long distances to distribution

networks where the voltage is reduced (possibly more than once), and ultimately

reaches residential and commercial consumers. The power entering the grid is known

as generation or supply, and the power leaving the grid is referred to as demand or
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load. In addition to generation and load there may also be various types of electricity

storage on the network, although in all major power grids (at present), the capacity

is relatively small compared to generation capacity. As of 2014 the global installed

power generation capacity was approximately 6180GW [15], whereas the installed

capacity of pumped hydroelectric storage (PHS), which accounts for over 99% of

energy storage capacity, was approximately 127GW [16], a ratio of around 50:1.

In Great Britain we have several PHS plants that typically consume electricity at

night (to store energy) when demand is low and supply power to the grid during

peak times of day. Other key components of an AC power system include power

transformers, capacitors, transmission circuits, and control and switching systems1.

This description would have been valid 50 years ago and is still relevant today.

However, the arrival of renewable power generation, electric vehicles, smart meters

and other recent innovations are dramatically altering the way power is generated

and consumed. Diagram 2.1 shows a simplified representation of the electricity grid

(a), and the new technologies that we are starting to see connecting to the grid (b).

Today, power is still generated predominantly by synchronous machines that con-

vert energy sources such as fossil and nuclear fuels into mechanical energy, driving

rotating turbines which in turn produce electrical energy. Alternating current is

produced with a frequency equal to the angular frequency of the motor divided by

2π. In order for the grid to operate effectively, all of the generators need to be

synchronised, i.e. they all need to be rotating at the same frequency (known as

the (electricity grid/system) frequency) so that the phase of the current is the same

at all points in the network2. For the purpose of our work we assume that the

frequency is the same in all locations. When the power being drawn from the grid

is greater than the power being supplied, the generators lose energy and slow down,

and this reduces grid frequency. Vice versa, when demand is less than supply, the

generators start to speed up and grid frequency increases. In Europe the ideal grid

frequency is 50Hz, called the nominal frequency3. The components of any grid are

designed to operate within a narrow range around the nominal frequency. They are

vulnerable to major faults with severe repercussions for the whole system if the grid

frequency deviates outside of this range (approximately 50± 0.5Hz).

It is the one of the roles of the System Operator (SO) to ensure that the grid

frequency remains within a narrow range of the nominal frequency. Of course,

1For a detailed description of these components see, for example, [17].
2In reality the frequency typically varies a little between different locations, although larger

differences are sometimes caused by ‘inter-area oscillations’.
3In North America the nominal frequency is 60Hz.
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(a) Traditional Electricity Grid

(b) ‘Smart’ Electricity Grid

Figure 2.1: Simplified illustration of an electricity grid. Traditionally power flowed
from generators through the transmission and distribution systems to consumers
(a). With the arrival of new technologies such as renewable power, smart meters
and electric vehicles, electricity can also be generated, stored, and supplied into the
grid from the consumer side (b).
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the stable and secure operation of the electricity grid involves far more than just

maintaining the frequency at its nominal value, for example, careful observance

of voltage limits. Many excellent texts can be found explaining in great detail

the structure and requirements of the electricity grid, such as Kundur et al. [13]

and Eremia and Shahidehpour [18]. In this introduction we focus on the aspects of

the electricity grid and system stability most relevant to our work.

2.1.2 Operation

Electricity Markets

Like any commodity, electricity is traded on markets. Domestic electricity con-

sumers pay a pre-arranged tariff to companies called suppliers, who procure the

electricity from a range of markets. Procurement time-scales range from several

years down to one hour in advance of consumption. Unlike other commodities, elec-

tricity has very strict constraints on its physical flow from where it is generated to

where it is consumed. In order for the electricity grid to operate, the amount of

electricity being consumed (bought) must closely match the amount being gener-

ated (sold) at all times. This can be difficult to ensure, because predicting national

demand ahead of time is imperfect, and generators occasionally disconnect from

the system due to faults. Add in the volatility and unpredictability of renewable

resources such as wind power and we have a market where few agents know pre-

cisely how much power they have to sell, and no suppliers know exactly how much

to procure for their consumers. This results in small imbalances between supply

and demand, causing the aforementioned physical network challenges. Electricity

trading arrangements are therefore designed to incentivise accurate forecasting and

to settle inaccurate payments. In this section we introduce the basics of electricity

markets and the role of the System Operator (SO) in keeping the grid balanced and

secure.

In GB the electricity trading arrangements are overseen by the company Elexon.

Consumers are able to choose their supplier and energy can be traded between sup-

pliers, generators (who may also be suppliers) and ‘non physical traders’ such as

banks. Although electricity flow is continuous, for the sake of trading, time is split

into half hour units called ‘settlement periods’ for which electricity can be traded,

from several years up to one hour in advance of real time. Due to the nature of the

electricity grid, although bilateral trades may exist between, for example, a gener-

ator and a supplier to a certain region, in reality it is impossible to tell where the
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electricity originated from when it reaches a consumer. What is important is that

the total power bought minus sold and the total power consumed minus produced,

ultimately balance overall (accounting for transmission losses). The physical bal-

ancing of the system is done by the SO which in GB is National Grid, a private

company regulated by the Office of Gas and Electricity Markets (Ofgem). National

Grid’s role as the SO is to ensure that the system operates safely and securely at

all times in the most cost-effective way for consumers. This means redressing any

power imbalances and preventing grid instabilities through ‘imbalance settlements’

and ‘balancing services’. Imbalance settlements involve accepting offers from agents

to increase their generation/reduce demand, for a price, and/or accepting bids from

agents to pay the SO to reduce generation/increase consumption4 so that the pre-

dicted demand matches the amount procured in the markets [19]. Alongside market

balancing, the SO also ensures the physical balancing of the system by maintaining

system stability, through the use of balancing services, as we explain below.

Power System Stability

Power system stability is defined by the IEEE/CIGRE Joint Task Force on Stability

Terms and Definitions as “the ability of an electric power system, for a given initial

operating condition, to regain a state of operating equilibrium after being subjected

to a physical disturbance, with most system variables bounded so that practically

the entire system remains intact” [20]. Analysis and consideration of this ability

is simplified by considering the three classifications of power system stability sep-

arately: rotor angle stability, voltage stability and frequency stability. Rotor angle

stability refers to “the ability of synchronous machines in a power system to remain

in synchronism after being subjected to a perturbation” [20]. Voltage stability in-

volves maintaining safe and steady voltage levels throughout the system through

reactive power balancing5. As introduced in Section 2.1.1, frequency stability is the

ability of the system to maintain the grid frequency within a small range of nominal

frequency, through supply and demand balancing actions. Frequency stability is the

focus of our attention for the majority of this thesis. For more information on the

other types of power system stability see, for example, [13] or [20].

A vital part of power system stability (and the analysis thereof) is the concept of

4The exception is (currently) renewable suppliers receiving subsidies to generate power, that
must be paid to reduce generation to cover the loss of earnings from feed-in tariffs.

5Reactive power is the “energy loaned periodically to the reactive elements in the load”[21] with
frequency twice the grid frequency. For further reading on reactive power, see, for example, [13, 21,
22].
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power system inertia. The inertia of a synchronous machine or spinning load is its

resistance to changes in its speed of rotation. Inertial/rotational energy is stored in

the rotating components of the power system and this inertia must be overcome in

order to speed up or slow down the rotation. The heavier the rotating components

in a generator or motor (and the greater their distance from the axis of rotation),

the greater the inertia [23]. The total system inertia in a power grid equals the

sum of the inertia from all synchronised components. A power system with high

inertia, such as one with many synchronous generators like coal, gas and nuclear

will naturally have greater frequency stability, since changes to the supply-demand

balance take longer to affect the system due to the high inertia. When system

inertia is low, for example in a system with many asynchronous components such as

solar panels, wind turbines and DC interconnectors 6, the system is more sensitive

to frequency changes, and therefore stability is lower. The anticipated reduction

in system inertia over the next few decades [9] is part of the motivation behind

our research into how domestic appliances can play a role in supporting system

stability. Very closely-related to system inertia is the stored kinetic energy in the

system. System inertia is a more commonly discussed concept in the literature, but

the data we will use in Chapter 4 includes the stored kinetic energy of the system,

rather than system inertia. They are related by the equation Ek = 1
2Iω

2, where I

is total inertia and ω is angular velocity.

Balancing Services

Balancing services are a range of options available to the SO to mitigate against

unexpected changes in supply or demand and potential faults on the transmission

or distribution system. Typically the procurement of balancing services involves

paying a generator or consumer to be prepared to act if a fault occurs on the system,

or to act continuously to keep the system prepared for such an event. In this section

we describe the current set of balancing services in Great Britain [25].

The SO is required to maintain system frequency within statutory limits (50±0.5Hz)

and, in the absence of incidents such as generator outages or power line faults, within

operational limits (50 ± 0.2Hz). This is achieved by employing different types of

frequency response7. The most common types of frequency response service

6An interconnector is an electricity link between power grids in different countries. For example
in GB there are currently four interconnectors, to France (2GW), to the Netherlands (1GW), to
Northern Ireland (0.5GW) and to the Republic of Ireland (0.5GW) [24].

7In other countries such as the United States frequency response is known as frequency regula-
tion.

12



available to the GB System Operator, National Grid, are

• Mandatory Frequency Response: most generators are required to provide this

service in order to connect to the grid. There are three types:

– Primary Response: increase power output/decrease demand within 10

seconds of a frequency incident,8 sustained for a further 20 seconds if

required

– Secondary Response: increase power output/decrease demand within 30

seconds of an event and sustained for 30 minutes as required

– High Response: reduce power/increase demand within 10 seconds of an

event and sustain indefinitely (as required)

• Firm Frequency Response: procured via a tendering process, a provider must

supply at least 10MW of energy as either:

– Dynamic Response: continuously varying output in response to frequency

deviations away from 50Hz

– Static Response: delivery of a pre-determined increase/decrease in power

output when the frequency hits a set level (step-function response)

• Frequency Control by Demand Management (FCDM): industrial/commercial

consumers are paid for the interruption of their power supply for thirty min-

utes, typically thermal appliances such as supermarket fridge-freezers or hotel

air conditioning systems

• Enhanced Frequency Response (EFR): a new service that requires a full re-

sponse within one second of an event. The first tendering exercise was held

in July 2016, when 200MW of EFR was procured from various energy storage

providers.

Based on the current power system conditions such as system inertia, time of day,

and the largest power generator/interconnector power supply to the system that

could be lost due to a fault, National Grid procure a combination of these services

from months to hours ahead of real time.

On longer time-scales (minutes to several hours) reserve services are used to support

the system. Reserve services have a longer start-up time than frequency response

8A frequency incident/event is a sudden change in the power balance, such as when a line or
generator experiences a fault.
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services, and in some cases are initiated manually. There are three main types of

reserve:

• Fast Reserve: response within 2 minutes of an event, increasing power/decreasing

demand by a minimum of 25MW/minute and providing at least 50MW of

power

– Required to be highly reliable and paid to be constantly ready for an

event

– Typically used to take over from frequency response providers and to

support ‘TV pick-ups’ (demand spiking due to television scheduling)

• Short-Term Operating Reserve (STOR): provision of at least 3MW of gener-

ation or demand reduction within 4 hours of instruction and sustained for at

least 2 hours

• BM Start-Up: Balancing Mechanism Units (BMUs) which were not scheduled

to run can be procured to be made available to National Grid for reserve.

Additional types of service include reactive support, current and developing de-

mand side response services and constraint management services. More in-

formation can be found on all of the above balancing services on the National Grid

website [25].

2.2 Renewable Energy

Faced with the threat of climate change, many nations have been setting targets to

reduce carbon emissions. For example, the UK government has committed to reduc-

ing emissions by at least 80% of 1990 levels by 2050 [26]. To reduce our dependency

on fossil fuels, we have seen a huge surge in the development of renewable energy

and so-called ‘smart’ technologies, such as smart metering in homes, electric vehicles,

and various forms of energy storage. As technologies become more cost-effective, ei-

ther through technological advances, mass-production or government subsidies, they

are becoming increasingly prevalent on the GB power grid. Such changes naturally

bring a mixture of challenges and opportunities for system operability, which must

be carefully navigated. Anticipating changes to demand and generation and the

potential issues requiring mitigation is part of the role of the SO.

Each year National Grid produces its ‘Future Energy Scenarios’ (FES); four projec-
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tions for the changes to energy supply and demand in the coming decades, based on

input from stakeholders from all areas of the energy industry. The 2017 scenarios

(projections to 2050) are

• Two Degrees (TD) - high economic growth and investment in green technolo-

gies and strong government policy to drive change, the only scenario in which

the UK meets its carbon targets

• Consumer Power (CP) - high economic growth, lower focus on green govern-

ment policies, market-led investments in smaller generation with shorter-term

financial returns

• Slow Progression (SP) - low economic growth competes with desire to meet

carbon targets, cost-effective long-term environmental policies

• Steady State (SS) - low economic growth, business as usual, security of supply

at low cost, little investment in long-term solutions, the ‘least-green’ scenario.

Figure 2.2 shows the projections for the installed capacity of each class of generation

for each of the four scenarios. We see a moderate-to-large increase in the installed

capacity of renewables in all four scenarios. The role of interconnectors and storage

also increase, as the amount of installed fossil-fuel generators reduces.

Figure 2.2: Installed generation capacity projections by type, for each energy sce-
nario in the 2017 FES [27].

Many papers and industry reports have been written on the potential challenges for
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an electricity grid that arise from increased use of renewable energy, in particular

wind power and solar PV, such as [1, 9, 28–31]. The key operational challenges for a

grid with a high penetration of renewables (or distributed renewables) are reduced

inertia, greater RoCoF (Rate of Change of Frequency), fewer generators capable of

providing frequency response, voltage fluctuation and harmonic distortion, power

quality issues, and the supply volatility and unpredictability caused by the nature

of the weather. The challenges most relevant to our work are the first three, which

directly impact the electricity grid frequency and/or the need for greater frequency

response.

As discussed above, the higher the system inertia, the slower the system will be to

grid frequency fluctuations. To provide inertia to the system, a component must be

synchronously connected (rather than connected with a power electronic converter).

To provide a significant amount of inertia, the component needs to have large rota-

tional inertia, such as a heavy motor or a turbine in a power plant. Solar panels have

no moving parts and therefore contribute no inertia to the system. Wind turbines

and interconnectors are connected via power electronic converters, and so at present

they are unable to supply system inertia. With lower inertia the frequency changes

more rapidly. When the RoCoF is high, the load-shedding controller will decouple

its component(s) from the system to protect them. Certain renewable technologies

such as solar PV are particularly sensitive to high RoCoF and in the event of a fre-

quency incident may remove themselves very quickly from the system, exacerbating

the frequency issues.

Traditionally energy was generated by a relatively small number of very large power

plants, such as coal, oil and gas. In recent years energy generation has become far

more distributed, meaning that we now have a large number of very small generators

on the distribution network with a large spatial distribution. These generators are

often invisible and beyond the control of the SO9. They can also dramatically alter

the way power flows in the distribution network, since bi-directional flows become

possible. In recent years decentralised generation has grown to comprise over a

quarter of installed capacity in GB. National Grid’s Future Energy Scenarios [32]

anticipates that this percentage will increase to 34-40% by 2025 and to 34-50% by

2050. According to their analysis, to achieve the UK carbon targets would require

the highest percentage in each of these ranges.

The analysis presented in National Grid’s System Operability Framework 2015 [9]

9The SO does not have direct observation of these generators and their effects are seen as
reducing system demand.
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predicts a number of challenges for frequency control going forward. System inertia

is expected to reduce over the next 20 years in all four future energy scenarios

during periods of low demand and/or high renewable power generation. Primary

frequency response requirements are expected to increase by 30-40% by 2020, and

new response providers will be needed to meet these requirements.

2.3 Smart Grids and Demand Response

Alongside the recent advances in renewable technologies is the development of the

‘smart grid’ concept. According to EPRI, “The term ‘Smart Grid’ refers to a mod-

ernization of the electricity delivery system so it monitors, protects and automati-

cally optimises the operation of its interconnected elements – from the central and

distributed generator through the high-voltage transmission network and the dis-

tribution system, to industrial users and building automation systems, to energy

storage installations and to end-use consumers and their thermostats, electric ve-

hicles, appliances and other household devices” [33]. To some, the term ‘smart

grid’ is something of a cliché, over-hyped and over-applied. However, it is useful to

distinguish between the centrally-controlled, generator - network - consumer power

flow model of the 20th century, and the vision for future electricity systems with

greater complexity and control schemes. This is not to say that current (or past)

power grids lacked intelligence. Indeed, complex software and automated routines

are essential parts of what is an incredibly complex system, that in many cases,

spans thousands of miles and/or millions of homes. Rather, by integrating new

electrical and communications infrastructures that allow greater participation and

support from distributed resources, such as domestic batteries or electric vehicles,

the grid will become smarter. In the words of Borlase et al. “A truly modern smart

grid would include sustainable concepts that leverage proven, cleaner, cost-effective

technologies available today or under development” [14].

A key part of any smart grid is demand-side response (DSR)10. DSR refers to a

change in a consumer’s (or an appliance’s) normal electricity demand at a certain

time, in response to an incentive or control from a supplier or SO. Dehghanpour

and Afsharnia [34] classify five types of demand response services:

• Energy efficiency services implement energy saving technologies to reduce de-

10The terms ‘demand(-side) response’ and ‘demand management’ are often used interchangeably
in the literature, although they may distinguish between demand responding to system stability
requirements and load shifting to reduce peak demand.
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mand through efficiency savings

• Price response programs incentivise consumers or automatic controllers to

schedule or interrupt demand (typically appliances such as washing machines

or dishwashers) to consume power at cheaper times of day, where price may

depend on prices paid by suppliers or needs of the electricity grid

• Peak shaving programs spread out the total load at peak times to reduce the

maximum energy requirements of the system each day

• Regulation response employs centralised control to assist with power balancing

on a highly frequent basis

• Frequency response (spinning reserve) schemes employ centralised or decen-

tralised (through local measurements) control to provide demand response in

real time, on very fast time-scales.

Each type of response may have an important role to play in the future of the smart

grid, as flexibility becomes more important to the system. In this thesis we concern

ourselves with the final type of DSR; the potential to use demand-side appliances

for the provision of dynamic frequency control.

2.4 Frequency-Sensitive

Thermostatically-Controlled Loads

2.4.1 Introduction

A thermostatically-controlled load (TCL) is an appliance/device whose operation is

controlled by a thermostat. Examples include fridges, freezers, air conditioners, hot

water tanks, heat pumps and swimming pool pumps11. They operate to maintain

a status quo, such as keeping food, water or a building at a roughly constant tem-

perature. Unlike other appliances such as kettles, televisions and electric lighting,

users pay little or no attention to whether their TCLs are switched on or off, and

have no preference, so long as the proper temperature cycling continues to maintain

the room temperature, food freshness or hot water availability. This means that the

exact time at which a TCL switches on or off in its cycle is relatively flexible, and

it is this flexibility that renders them potential providers of DSR.

11Although not strictly operated by a thermostat, swimming pool pumps operate in the same
manner, and so have the same DSR potential.
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Although controlling a large population of small appliances brings new challenges

such as control schemes and service/remuneration designs, in addition to being a

potential resource that already exists, there are also benefits from using an aggre-

gated resource compared to a single large DSR provider. For example, very fast,

continuous responses are possible in ways that are not always possible with a single

machine. Spatially distributed TCLs have the potential to redress local fluctuations

before they create problems at the system level [35]. It can also be argued [36] that

availability and reliability is improved when splitting a service between a multitude

of providers, compared to a single unit which will become completely unavailable

in the event of a fault or scheduled repair. It is estimated in [37] that around 40%

of total demand in Europe comes from household appliances, of which fridges and

freezers make up 15%, electric storage water heaters 9%, and air conditioners around

1%12. Therefore, although individually TCLs consume very tiny amounts of electric-

ity (relative to say, the power generated by a gas power plant), as a large population,

they have the potential to make a meaningful contribution to demand-side (and of

interest to us, frequency) response.

As explained above, the electricity grid frequency is primarily affected by, and is

therefore a measure of, the difference between total supply and demand on the

system. Ensuring the frequency remains as close as possible to 50Hz (the nominal

frequency) requires keeping supply and demand closely matched at all times. TCLs

operate between two temperature set points, switching on when one is reached, and

remaining on until the temperature hits the other set point. Normally these set

points are fixed, unless a user interferes with operation, which is relatively rare.

Figure 2.3(a) shows an example temperature trace of a cooling device such as a

fridge. In this hypothetical case the fridge spends 20 minutes switched on until it

reaches its lower set point when it switches off for 40 minutes.

Electricity grid frequency can be sensed anywhere in the network, and a TCL with

a frequency sensor has the capability to provide sub-second response to a fluctua-

tion [38]. We can make a TCL frequency-sensitive by allowing the set points to vary

according to some function of the grid frequency. Continuing the example above, we

would want the fridge to consume less power when the frequency is less than 50Hz

and more power when the frequency is higher than 50Hz. Consuming less power

means increasing the set points so that the fridge stays off for longer or switches

off sooner in its cycle. Consuming more power requires the opposite. Figure 2.3(b)

12Air conditioners make up a far higher percentage of demand in summer in hot countries such
as the United States, and so a large proportion of the literature is devoted to them.
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gives an illustrative example of frequency-sensitive operation of a fridge. Exactly

how the temperature set points depend on the frequency is an important part of

any control design.

(a) Normal TCL operation (b) Frequency-sensitive TCL operation

Figure 2.3: Illustration of how TCLs normally operate (a) and how frequency-
sensitive temperature set points could increase/decrease the power consumption of
a population by advancing/delaying switching of individuals.

The concept of frequency-sensitive appliances is not a new one. In fact, the tech-

nology to control a load based on some logic applied to system frequency was filed

for patent in 1979 by Fred C. Schweppe at the Massachusetts Institute of Technol-

ogy. He called it the ‘Frequency Adaptive, Power-Energy Re-scheduler’ (FAPER),

noting that the FAPER is applicable to devices “characterized by a need for a cer-

tain amount of energy over a period of time in order to fulfil their function and

an indifference as to the exact time at which the energy is furnished” [39]. More

sophisticated technologies have since been developed, such as the Grid stabilising

system by Hirst in 2010 [40] for TCL behaviour to be governed by the magnitude of

grid frequency deviations. Although the technology for creating frequency-sensitive

TCLs has existed for nearly 40 years, implementation remains limited to a relatively

small number of trials [41–45]. There are a number of reasons for the absence of large

roll-outs of highly distributed DSR schemes [46, 47]. Historically, control paradigms

from both technical and economic perspectives have been established for service

provision from a (relatively) few number of large power plants. Understandably,

the critical nature of electricity grid operation and security deters potentially risky

changes and experimentation and so a great deal of motivation is required for shifts

away from traditional approaches. There is inherent complexity and potentially
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reduced reliability in procuring services from thousands of very small demand-side

resources, which is undoubtedly an obstacle to be overcome. Effects on consumers

and their appliances will be of concern to potential participants. Finally, it will

be crucial for the success of any scheme to adequately address the requirements

for minimum participation numbers and to develop the right business models that

ensure fair rewards and effective incentives.

Research into the possibility of using TCLs for grid balancing services began in the

1980s with key papers such as [48–52]. The changing energy landscape of the 21st

century has brought a new focus to the use of TCLs for electricity grid support and a

wealth of literature on the topic [34, 35, 41, 45–47, 53–78]. Work has varied in nature

from mathematical frameworks to numerical simulations and real-world trials. Most

of the theory can be applied to any type of TCL, and simulations have touched on

many types of TCL technology. A variety of control schemes have been proposed,

from centralised, direct-load control to completely distributed, autonomous load

control. An important obstacle to the introduction of TCLs for frequency response,

in particular, is the propensity for TCL temperature cycling to become synchro-

nised. This can be triggered by frequency deviations that become reinforced and

cause system instabilities. In the remainder of this section we introduce synchro-

nisation phenomena in a general setting, summarise TCL synchronisation evidence

and discussions in the literature, and describe the different types of control schemes

that have been proposed.

2.4.2 Synchronisation

Mitchell defines a complex system as one “in which large networks of components

with no central control and simple rules of operation give rise to complex collec-

tive behaviour, sophisticated information processing, and adaptation via learning

or evolution” [79]. There are many different examples of complex systems and

phenomena. Neurons in the brain are simple electrical pulsators that collectively

receive and respond to chemical signals, from which physical actions and conscious

thought emerge. In physics, complex phenomena include phase transitions, such as

water freezing, ice melting, or condensation. In economic systems, bubbles in stock

markets emerge from many agents buying and selling with no central director. In

such systems, the individual elements are typically fairly simple, and in some cases,

can be fully understood at an individual level. What makes a system more than

just complicated are the interactions between components that result in emergent

phenomena, which no amount of study of an individual component can predict or
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explain. One such class of emergent phenomena is synchronisation.

Synchronisation Phenomena

Firefly colonies stretching miles in SouthEast Asia have been observed to flash in

unison to awe-inspiring effect. Audiences in eastern-European theatres applaud and

the applause becomes a beat of clapping in unison. Walkers on the Millennium

Bridge in London were initially found to cause major oscillations on the bridge

as their footsteps started falling in rhythm. Simple oscillators with no centralised

control spontaneously synchronise their cycles to great effect [12]. In some cases the

phenomenon is beautiful, mystifying to the casual observer, impressive to behold.

In other cases the effects can be devastating.

Power grid stability relies on generator motors rotating in synchrony in order to

prevent inter-area oscillations and large frequency perturbations [80, 81]. Mod-

elling power grids as collections of coupled oscillators has gained recent attention

in physics [82–87]. These references describe a simplified power system using the

Kuramoto framework and assess the stability of the system. For example, [83]

considers the impact of decentralising power on system stability and finds that self-

synchronisation is still possible and that decentralised grids are “more robust to

topological failures”. The authors in [86] establish a synchronisation condition for

a general class of coupled oscillator models and in particular apply their results to

power networks. In contrast to the work that follows on synchronisation with a

population of TCLs, power grids depend on synchronisation in order to operate se-

curely. For a population of generators, synchronisation is highly desirable, and work

such as the aforementioned references attempt to improve how quickly and robustly

a network can synchronise. As explained below, the synchronisation of TCL cycles

is exactly what needs to be avoided.

Synchronisation in TCL Populations

In 2007, Short, Infield and Freris published Stabilization of Grid Frequency Through

Dynamic Demand Control [69]. We discuss their work in more detail below, but

one area they note for further investigation is the potential for the “temperature-

cycling of appliances to become synchronised (especially after a serious frequency

excursion)”. The fear is that if a large population of TCLs is responding to the same

frequency signal, then rather than having a roughly constant total load from the
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appliances, we may start to see spikes and troughs in the load as TCL population

switching behaviour starts to cluster temporally. This would have a destabilising

effect on the system, and lead to an overall detrimental impact on system stability.

The simulations in [69] do not find evidence of synchronisation, however, we be-

lieve that this is largely due to the heterogeneity in the simulated TCL population.

The population was divided into 1000 groups to be modelled separately, and each

group “was randomised by altering every parameter to within ±20%”. An impor-

tant contribution of this thesis is to explore the effects of heterogeneity on TCL

synchronisation.

A number of simulations in the literature indicate TCL synchronisation following

a frequency disturbance, for example [53, 60, 61, 65, 69–71]. Of particular signifi-

cance is the 2012 publication by Angeli and Kountouriotis; A Stochastic Approach

to “Dynamic-Demand” Refrigerator Control [53]. Building on the work of Short et

al. [69], the authors highlight the possibility for synchronisation and the resulting

system instabilities through simulations. In one case the authors simulate the effects

on a homogeneous fridge population of a 1.32GW power loss lasting 15 minutes be-

fore a 10 minute ramped power recovery. It should be noted that while a 1.32GW

loss is possible on the GB grid, fast reserve services would begin to make up for some

of the loss after around 2 minutes, rather than the 10 minutes assumed. Under the

proposed control scheme in [69], the resulting deviations in system frequency and re-

frigerator power consumption indicate “overall unstable behaviour” and undesirable

effects for the fridges and the system. The authors also offer theoretical arguments

for the long-term tendency of the system towards TCL synchronisation. It is rea-

soned that any “small periodic ripples in power system frequency will gradually

entrain oscillations of refrigerators that have similar frequencies of oscillation, thus

reinforcing the frequency ripple and eventually leading to an even larger number of

entrained refrigerators”.

As the title suggests, Emergent synchronisation properties of a refrigerator demand

side management system by Kremers et al. [61] and their subsequent book chap-

ter [60] explore this topic in some detail. The authors use an agent-based model

of frequency-sensitive refrigerators with greater detail than in the aforementioned

research. For example, stochastic door opening and the impact of fridge contents

on temperature are considered. They find three possible types of outcome with the

same parameters due to the stochastic nature of their model, as shown in Figure 2.4.

The authors argue that the “main reason for the emergence of oscillation is the re-

bound effect” [60] which comes from the responding refrigerators switching back on
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Figure 2.4: Taken from [61]: “Examples of different regimes of the refrigerator
system. On top, the total load curve of the refrigerators and below the corresponding
grid frequency. The simulations were performed with the same parameters. Due to
the non-deterministic nature of the model and for the given parameterisation, each
of the three regimes can appear”.

after having switched off to support a large frequency deviation. Although synchro-

nisation is observed in the heterogeneous population (unlike in [69] where it is only

hypothesized), the control scheme used in [60, 61] is significantly different. Rather

than allow the temperature set points to vary continuously in time with the grid fre-

quency, the refrigerators are switched off at a specific frequency point, and switched

back on following a significant frequency drop at another. The benefits of the first

control scheme are that the appliances best-positioned in their cycle respond fastest

to the needs of the grid13. In the event of a frequency incident (a sudden significant

drop in frequency caused by, say, an unexpected loss of a large generator), all ap-

pliances switch off at exactly the same time, and will reconnect at exactly the same

time. We believe that this is a significant contributor to synchronisation observed in

the simulations, and accordingly choose our analysis of frequency-sensitive temper-

ature set points as the means to implement demand-side response. Some of the key

aims of our research are to determine whether a homogeneous population of TCLs

will always be at risk of synchronisation, and to what extent (if any) introducing

heterogeneity can mitigate this risk.

13The coolest refrigerators switch off soonest and the warmest switch on soonest.
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2.4.3 Control Strategies

In recent years a number of different types of control strategy for TCLs to provide

frequency response have been proposed, many of which are discussed and compared

in [34, 46, 74]. There are two main classes into which these types of TCL control

schemes can be divided: centralised and decentralised control (with a spectrum in

between). Their key features and comparative advantages and disadvantages [34]

are summarised in Table 2.1.

Table 2.1: Comparison of centralised and decentralised TCL control strategies. In-
formed by, for example, [34, 88].

Centralised Control Decentralised Control

Key Features • TCLs instructed by a cen-
tral controller

• Autonomous local control

• 2-way communication in all
TCLs

• Control scheme established
once, may be updated period-
ically

Advantages • Highly controllable • No communications infras-
tructure required

• Reasonably predictable • No security risks
• Very fast response possible

Disadvantages • Establishing and maintain-
ing a secure communications
network are very expensive

• Response is less predictable
than with centralised control

• Response time limited by
communication speed

• Synchronisation and insta-
bility effects possible and not
yet fully understood

• Vast amounts of data to
manage

• Errors and noise in local
frequency measurements more
likely

• Data and appliance control
security risks
• Negative public perceptions
of external control of home
appliances

Early work on the behaviour of aggregated TCLs began in the 1980s with cen-

tralised control. Of early mathematical note, in 1985 Malhamé and Chong de-

veloped a mathematical framework for a homogeneous population of houses with

thermostat-controlled heating, with a view to help reduce peak load. They de-

rived a Fokker-Planck equation model for such a population in a stochastic envi-
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ronment that was extended to a heterogeneous population through perturbation

analysis [50]. A criticism of models such as [49–52] is that their complexity and

lack of general closed-form solution renders them unsuitable “to be effectively used

by well-understood feedback control design methods” [67]. It is noted [67] that

these difficulties appear to be the reason why so many of these models are open-

loop control (for example [49–52, 70]). In reality the power system feels the direct

impact of TCL response and so closed-loop control models are preferable. When

a centralised controller issues instructions to TCLs, these instructions do not have

to be influenced by the resulting TCL behaviour, and so typically the control is

open loop. Conversely, the decentralised control approaches of interest to us are

closed-loop control; the system is affected by the TCL response behaviour which in

turn impacts the control scheme in each TCL. Decentralised control strategies are

discussed in greater detail below.

An exception to open-loop control is the work by Callaway in [57] which, developing

the framework in [50], proposes manipulation of the temperature set points by a

broadcast signal from a feedback controller. The approach is applied specifically to

air conditioners to support wind smoothing14. Closed-loop dynamics are also cap-

tured in the aggregate TCL response models proposed in [68, 75] for heterogeneous

populations of air conditioners.

It is widely accepted that if millions of TCLs could be used for frequency response

they could potentially provide a valuable resource for the system. However, if each

device needed constant communication with a central controller, sending data about

its temperature and switching history and receiving operation instructions, the eco-

nomics and security risks would severely outweigh the benefits of the service. Public

perception of the service is also vital for the implementation of any control scheme

that involves appliances in people’s homes. For these reasons we choose to focus on

decentralised control for our research. A better understanding, however, of the po-

tential undesirable side-effects of decentralised control is required before any control

strategy could be put in place.

14Wind smoothing is the varying of supply or demand to smooth out the natural fluctuations in
wind power generation caused by continually varying windspeeds. It is important for improving
the stability and secure operation of electricity grids in the presence of large amounts of wind
generation.
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Deterministic temperature set point control

The simplest form of decentralised TCL control is to change the TCL temperature

set points according to some deterministic function of system frequency. The ad-

vantages are that simple rules require little processing and the TCLs in the best

position to respond to frequency deviations respond first, allowing those that are

least ready to wait a little longer before altering their preferred behaviour. In 2007,

Short, Infield and Freris published Stabilization of Grid Frequency Through Dynamic

Demand Control [69] which inspired and influenced a significant body of work in

this area. The authors simulate the operation of 1320MW of non-identical fridge-

freezers responding to large deviations in grid frequency and fluctuations in wind

power. They propose a control scheme whereby the TCL temperature set points

are linearly dependent on the grid frequency. Figure 2.5 (reproduced from [69])

shows the difference between the normal operation of a fridge and the devised linear

frequency-sensitive control scheme proposed. When the frequency is higher than

50Hz the temperature set points decrease, allowing the fridges to switch on sooner

or stay on longer, thereby advancing power consumption to meet the generation

surplus causing the frequency rise, and vice versa when the frequency drops be-

low 50Hz. Short et al. conclude that the use of many TCLs in this way “has the

potential to provide significant added frequency stability to power networks, both

at times of sudden increase in demand (or loss of generation) and during times of

fluctuating wind power” and “may result in considerable cost savings” [69]. It is

perhaps unsurprising, then, that this initial study of TCLs for frequency smoothing

led to a surge of interest from the research community.

Figure 2.5: Taken from[69]. Normal fridge switch on/off rules (left), linearly
frequency-sensitive switching rules proposed in [69] (right).
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The challenges with this type of control are the aforementioned potential synchro-

nisation issues, and in our work we attempt to fully explore these issues and look

to solve them through the addition of heterogeneity to the TCL population.

Stochastic temperature set point control

In order to prevent synchronisation in a population of TCLs with decentralised

control, many papers introduce stochasticity into the control scheme. Typically

this takes the form of randomising switch on times following a response action or

randomly switching a TCL on or off in addition to the normal control rules. For

example, Xu et al. [47] simulate a heterogeneous population of electric heaters in the

Nordic power grid using fixed frequency threshold response and the deterministic

control proposed in [69], with the addition of stochasticity in two of the control pa-

rameters. They uniformly distribute the frequency switch-off threshold foff between

49.85 and 49.90 Hz and uniformly distribute the time to switch back on following a

drop in frequency below foff between 4 and 6 minutes.

Molina-Garćıa et al. [66] use a distributed frequency-threshold control approach to

model a heterogeneous population of different types of TCL. Figure 2.6 indicates the

control approach - frequency deviations ∆f are allowed to exist without response

for a short period of time τ . Larger deviations cause response more quickly than

small deviations, and depending on the type of TCL different threshold limits can

be applied. TCL protection rules prevent devices from remaining switched off for

too long or switching off too soon after a TCL switches back on following response.

After the minimum recovery time the time of the next switch off is randomised to

prevent TCL synchronisation.

In their 2012 paper [53] Angeli and Kountouriotis model domestic fridges as Markov-

jump linear systems where the on/off switching is governed by transition probability

rates rather than temperature set points. These rates are determined by choosing

the desired population average temperature or duty cycle and the temperature prob-

ability density is steered towards a desired distribution. The authors show that their

algorithm “yields a locally asymptotically stable closed-loop system, regardless of

parameter values and control gains” [53]. They also eliminate the ‘payback’ phase

(overshoots from fridges recovering lost energy following response actions). How-

ever, as noted in [72], in fully eliminating the payback phase the recovery time is

longer for each device and rapid response is less feasible. In their 2013 paper Aunedi

et al. [54] (including the authors of [53]) assess the economic and environmental ben-
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Figure 2.6: Individual load controller ∆f -time characteristic (left), average charac-
teristics for different types of TCL used in simulations (right), reproduced from [66].

efits of frequency response under the control scheme proposed in [53] in which the

switching probabilities are optimised to prevent overshoots and instabilities. Addi-

tional hybrid control schemes are proposed, such as introducing safety temperature

thresholds to prevent the fridges from exceeding their preferred temperature range,

and making these thresholds frequency-dependent, to increase response speed for

large frequency deviations.

Trovato, Tindemans and Strbac have also published a number of papers on stochas-

tic control of TCLs for frequency response. For example, in their 2013 paper [72] the

authors choose to let temperature set points depend on both frequency deviation

and the rate of change of frequency (RoCoF), which helps speed up the response fol-

lowing a major loss. The deterministic scheme from [69] (with RoCoF included) and

the stochastic control in [53] are compared for simulations of a very large (1.8GW)

generator loss. In their later paper [73] the authors note the disadvantages of this

approach, namely that particular scenarios require carefully-tuned parameters and

that beyond the short-term, control over the power profile is limited. In their 2015

paper [73] the authors model a heterogeneous population of TCLs, each indepen-

dently targeting a reference power profile. In this novel approach, the (estimated)

net heating rate is used as a control parameter, which when combined with grid

frequency, allows each appliance to compute the reference power profile. The con-

trol framework is simple enough to be implemented and simulations demonstrate

a number of benefits compared with other approaches. A few issues remain out-

standing, such as the need to prevent devices from switching too soon following one

switch, due to the stochasticity of the control, and the lack of optimal choice for the

reference power profile.

29



A very different approach to controlling TCLs for frequency response that still makes

use of stochasticity is the use of mean-field game theory. For example, in [55] Baga-

giolo and Bauso assign a cost function to each TCL (or ‘agent’) to incentivise prefer-

able behaviour from the appliance perspective in addition to frequency-responsive

behaviour. Synchronisation issues are bypassed by introducing a switching prob-

ability of 1
2 when the frequency requires no response. Further work on stochastic

models of TCL populations for frequency response can be found in [89, 90] whose

stochastic dynamic model is based on formal abstractions.

Fuzzy logic control

A number of papers employ fuzzy logic control to implement a demand-side control

scheme. A fuzzy logic controller (FLC) “provides an algorithm which can convert the

linguistic control strategy based on on expert knowledge into an automatic control

strategy [...] in particular, the methodology of the FLC appears very useful when

the processes are too complex for analysis by conventional quantitative techniques or

when the available sources of information are interpreted qualitatively, inexactly, or

uncertainly” [91]. FLCs are known to work well for nonlinear systems [92], such as

the electricity grid, and avoid the computational intensity required for some other

types of control. For example, in 1996 Bhattacharyya and Crow [93], motivated

by increasing competition in the electricity market and anticipated growth in de-

mand, proposed a fuzzy logic approach to use air conditioners for peak load shaving.

Their scheme optimised both consumer comfort preferences and utility unit com-

mitment savings. More recently, Goel et al. [94] have taken a similar approach

that also considers transmission network reliability. They implement fuzzy dynamic

programming to optimise a trade-off between “peak load shaving, operating cost

reduction and system reliability improvement”.

Fuzzy logic control for frequency response has also been explored, in particular for

islanded power systems (small systems separated from a national, or much larger,

system). For example, frequency control in interconnected two-area power systems

using FLC is presented in [92, 95]. Pandiaraj et al. [96] use both electricity grid fre-

quency and voltage as input variables for their FLC. The authors test their approach

in a laboratory, creating an islanded 18kW power system consisting of water-heating

loads and different amounts of wind power. They find that in general the load con-

trollers were able to maintain frequency and voltage to within the required limits.

Simulations suggest that on a larger system higher levels of control would be possi-

ble.
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Price Signals

An alternative to direct instructions and frequency signals is the use of a price signal

that TCLs could respond to. The advantages of price signals are that it is possible

to measure the financial benefits to consumers of DSR participation, and individual

consumers could potentially make their own choices about the value they place on

service disruption at, say, given times of the day. However, current price signals

typically change on half-hourly or at least several-minute time scales, which makes

them ill-suited for dynamic frequency response. Reviews on the use of price signals

for demand response can be found in references [97–99].

It is interesting to note that, just as with grid frequency-based control, demand-

dependent price controls can also lead to unwanted oscillations in load response.

For example, it is shown in simulations that a population of plug-in electric vehicles

(PEVs) can exhibit “spontaneous emergence of significant oscillations” [46]. The

oscillations are not guaranteed due to the randomised initial conditions of the PEVs,

but the likelihood increases significantly with population size (see Figure 2.7).

Figure 2.7: Total load demand due to price-based control of varying numbers of
PEV loads, reproduced from [46].

An approach far better-suited to frequency response provision is proposed by Schäfer

et al. [100]. Rather than receiving prices from a centralised controller, the authors
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take a decentralised approach and each device calculates the price directly from grid

frequency. Different functions for converting frequency into prices are considered,

along with the effects of time delays on efficacy and instabilities. Oscillations and

instabilities are found to be possible, but the authors argue that a well-chosen design

for the controller and frequency-price coupling may allow these risks to be mitigated.

The potential for synchronisation and instability with price-based demand response

is one of the two “major drawbacks” remarked upon in [35]. The other is the

controversial nature of “exposing customers to price volatility”. Willingness of con-

sumers to participate in these sort of schemes is vital for success, and any hint that

participation could increase energy bills would be likely to prevent the large-scale

roll-out required. For our non-dynamic pricing approach we consider that DSR par-

ticipants would either be incentivised through some kind of regular payment/utility

bill discount, or be required by law to participate (provided that the end-user can

be guaranteed not to be adversely affected).

2.4.4 Summary

The last ten years have seen a wealth of research develop on the use of TCLs

for demand-side response, driven largely by the challenges of integrating renewable

energy sources, and the opportunities of a more ‘smart grid’ approach to electricity

grid operation and design. The potential benefits and challenges of using TCLs with

decentralised control for frequency response are summarised in Table 2.2. TCLs

have the potential to provide a valuable service to the System Operator, but several

obstacles must be overcome in order to achieve a large-scale, cost-effective roll-

out. A number of studies have anticipated or demonstrated through simulations

the potential for TCLs to synchronise and cause problems on the network. In [53]

Angeli and Kountouriotis offer theoretical arguments for the long-term tendency

of the system towards TCL synchronisation. We concur with the mathematical

reasoning presented, nevertheless, we believe that further reasoning and inquiry is

required for a more complete understanding of this phenomenon.

Although stochastic controls have been widely proposed to prevent synchronisation,

we consider the potential unpopularity of randomness in domestic appliance opera-

tion, and reduced mathematical tractability sufficient reasons to focus on determin-

istic control schemes. In this thesis we develop a mathematically rigorous treatment

of the homogeneous case, and explore the potential for the natural heterogeneity in

a population of TCLs to prevent synchronisation issues through simulations based
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on real system data.

Table 2.2: Summary of the potential benefits and challenges of using TCLs with
decentralised control for frequency response [101].

Benefits Challenges

• Low-cost system stability improve-
ments

• Achieving sufficient consumer par-
ticipation

• May increase the amount of renew-
able generation that can be safely in-
corporated onto the system - environ-
mental benefits

• Eliminating undesirable effects on
grid stability during the ‘payback’
phase such as overshoots and synchro-
nisation

•May reduce the number of fossil-fuel
generators to run part-loaded on the
system for frequency response

• Preventing detrimental or notice-
able effects on end-user experience

• Determining the optimal control im-
plementation
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“Nothing in life is to be feared, it is only

to be understood. Now is the time to un-

derstand more, so that we may fear less.”

Marie Curie

3
Model and Stability Analysis

3.1 Introduction

Under what conditions will a population of thermostatically-controlled loads (TCLs)

cause problems for the electricity grid through partial or total synchronisation? If

a population of TCLs is homogeneous (all with identical properties and operating

rules), will synchronisation always occur?

We can think of a population of frequency-sensitive TCLs on the electricity grid as a

system of coupled oscillators. Each moves through its temperature cycle, interacting

with every other TCL through their combined effect on the electricity grid frequency.

The Kuramoto framework was developed [102, 103] which elegantly describes basic

features of this type of system and allows for stability analysis. It has been used

to study a variety of coupled oscillator systems, such as neurons, fireflies, and more

recently crowd-synchronisation on the Millennium Bridge [104]. The Kuramoto

model is governed by the equation

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi), i = 1, ..., N (3.1)
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where θi is the phase of the ith oscillator, ωi is its natural frequency, K ≥ 0 is

the coupling strength, and N is the number of oscillators [105]. The frequency of

each oscillator is equally influenced by the frequencies of all of the other oscillators

(equal coupling). Kuramoto defined the following complex order parameter which

is a measure of the synchronisation of the population,

reiψ =
1

N

N∑
j=1

e−θj . (3.2)

Figure 3.1 illustrates the Kuramoto model and the significance of the order param-

eter. r(t) ≥ 0 is a measure of phase coherence and ψ(t) measures the average phase.

These are mean-field quantities, and it can be shown that the oscillators are cou-

pled only through r and ψ. The mean-field nature of the system allowed Kuramoto

to solve (3.1) exactly in the infinite-N limit [102]. For this case Kuramoto found

the critical value of the coupling strength in terms of the width of the distribution

of natural frequencies ωi, above which the system exhibits partial synchronisation

(r > 0). We will return to this threshold in the last part of this thesis.

Figure 3.1: Illustration of the Kuramoto model

Our work takes inspiration from the Kuramoto model. We can think of the TCLs as

a population of oscillators, moving around the temperature cycle. They are coupled

via the grid frequency signal. However, there are several key differences between the

coupled oscillators of the Kuramoto model and our system, which make modelling

our TCL population more difficult. In the Kuramoto model each oscillator is equally

affected by every other oscillator at all times. In contrast, only the proportion

of TCLs switched on (rather than their temperatures or temperature derivatives)

affects a TCL. Also, the TCLs in the middle of their on or off phase will take longer

to be affected by the frequency than those close to the temperature set points,
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which may have to change their behaviour as the set points move. In the Kuramoto

model, oscillators are modelled as moving around a circle, and with zero coupling

would move according to their natural frequencies (at constant speed). If we were

mapping the temperature cycles onto a circle then we would need the circle to be

able to change in length as the temperature set points change. The dynamics would

also be non-smooth at the switch on and off points. I considered many options for

altering the circle in Figure 3.1 to create a simple model for our system comparable

with the Kuramoto system. For example, mapping the temperature cycling to an

ellipse, mapping the on and off portions of the cycle each to one half of two different

ellipses (due to different on and off durations) with discontinuities at the joins, and

maps to rectangles were all considered. Any successful model would need to account

for the nonlinear ‘natural frequencies’ (rate of change of temperature), the changing

temperature set points, and the coupling with only the switched on TCLs.

With these challenges in mind and inspired by results for the Kuramoto model,

in this chapter we propose a new modelling framework for TCLs and present a

mathematical analysis of the stability of our system. In Section 3.2 we set out our

model. In Section 3.3 we analyse the stability of the system close to the nominal

frequency. The final part of this chapter, Section 3.4, solves for the behaviour of

one and then two synchronised groups of TCLs, simulates the behaviour of three

groups, and proposes how a group of N synchronised groups would behave.

3.2 The Model

We begin by establishing our model which we use throughout the thesis. The mod-

elling is kept appliance-neutral where possible, but it is set up for cooling devices

such as fridges, (fridge-)freezers and air-conditioners, and would need to be altered in

minor ways to be adapted to other appliances like heat pumps or hot water tanks.

For the simulations that follow and in all specific examples given, we consider a

typical fridge as our TCL appliance of choice. Our modelling assumptions can be

summarised as follows:

3.2.1 Assumptions

(i) Electricity grid frequency is the same everywhere on the network and there are

no inter-area oscillations [80] (therefore all machines are assumed to rotate in

synchrony)
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(ii) All TCLs sense frequency deviations with negligible measurement delay or

measurement error

(iii) All system parameters remain constant over time (defined in Table 3.1)

(iv) Fridges and freezers are not affected by the fridge/freezer door being opened,

or by the addition or removal of food (in effect we assume this never occurs)

(v) TCLs have continuous thermostat control (in temperature and time) and can

therefore sense and implement temperature/set point changes with infinite

precision

(vi) TCLs consume constant power when on, and zero power when off, and are

controlled only by the rules outlined in the model.

These assumptions allow us to create a tractable model for analytic study. Assump-

tions (iii) and (iv) are probably the easiest and most natural to relax first, and

could be relaxed by adding time-dependent forcing effects. For most of this thesis I

consider a population of identical TCLs, but our formulation can be extended easily

to an inhomogeneous population and I will give evidence that the effects of sufficient

diversity will be stabilising, as supported by our final simulations.

3.2.2 Individual TCLs

For the temperature cycling of a TCL we adopt the linear model and notation

presented in [53]. Let the temperature of a TCL at time t be denoted by T (t), the

cooling/heating coefficient by α, and the asymptotic temperatures that the TCL

would reach if left on/off indefinitely by Ton and Toff, respectively. Then

Ṫ (t) =

α
(
Ton − T (t)

)
when the TCL is on

α
(
Toff − T (t)

)
when the TCL is off.

(3.3)

A (cooling) TCL will switch off when the temperature reaches its lower temperature

set point T− and switch on when it reaches its upper temperature set point T+. We

choose to make these set points sensitive to system frequency deviations away from

50Hz, denoted f(t) (i.e. f(t) = Frequency(t)−50Hz). Insufficient generation to meet

demand causes f < 0 and so we need the TCLs to reduce their power consumption

to bring f back to zero. We implement this by increasing the temperature set points

so that the TCLs switch off sooner/stay off for longer. Over-supply of electricity

to the grid causes f > 0, and so in this case we decrease the temperature set
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points to increase overall power consumption. Thus we define our frequency-sensitive

temperature set points,

T−
(
f(t)

)
:= T 0

− − β−f(t) lower (switch off) set point (3.4a)

T+

(
f(t)

)
:= T 0

+ − β+f(t) upper (switch on) set point (3.4b)

where β−, β+ are positive constants that determine the sensitivity of the lower and

upper temperature set points to frequency deviations. T 0
− and T 0

+ are the uncoupled1

temperature set points, which we typically take to be 2◦C and 7◦C respectively. This

framework is very similar to that suggested in [69], although we allow the upper and

lower temperature set points to have different sensitivities to the frequency (β− and

β+).

We can solve (3.3) for the temperature of a TCL at time t. If a TCL has temperature

T0 at time t0 and does not switch on/off before time t then the temperature T (t) is

given by

T (t) = (T0 − Ton)e−α(t−t0) + Ton when on (3.5a)

T (t) = (T0 − Toff)e−α(t−t0) + Toff when off. (3.5b)

We can rearrange (3.5a) and (3.5b) and solve for the on and off durations τon and

τoff respectively, assuming constant grid frequency:

τon(f) =
1

α
log

(
T+(f)− Ton
T−(f)− Ton

)
(3.6a)

τoff(f) =
1

α
log

(
Toff − T−(f)

Toff − T+(f)

)
. (3.6b)

These variables will be useful when we consider the equilibrium of the system, in

which the temperature set points become fixed. In the traditional case when TCLs

are uncoupled from the grid (or the special case f ≡ 0) their ‘natural’ on and off

cycle durations, τ0
on and τ0

off, are given by

τ0
on =

1

α
log

(
T 0

+ − Ton
T 0
− − Ton

)
(3.7a)

τ0
off =

1

α
log

(
Toff − T 0

−
Toff − T 0

+

)
. (3.7b)

Note that when a TCL population is not frequency sensitive, the expected proportion

1A fridge is ‘uncoupled’ from the grid frequency if β− = β+ = 0.
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of TCLs switched on is given by

ρ0 =
τ0
on

τ0
on + τ0

off

. (3.8)

In order for the TCLs to operate properly they need to cycle on and off, and so we

require that

Ton < T−
(
f(t)

)
< T+

(
f(t)

)
< Toff ∀ t. (3.9)

We also need a TCL to respond ‘appropriately’ to a change in frequency, that is to

say, for the average power consumption over one cycle to increase when the frequency

decreases, and decrease when the frequency increases. It is shown in Appendix A

that a sufficient condition to ensure this is

β+

β−
∈
(
Toff − T+

Toff − T−
,
T+ − Ton
T− − Ton

)
. (3.10)

which is a non-empty interval (notably containing {1}).

3.2.3 Electricity grid frequency

A simplified equation for the frequency F of a power system can be determined by

Newton’s 2nd Law of Motion or the derived equation for energy. If we let f := F−F0,

where F0 is the nominal grid frequency (50Hz in Europe), and linearise about F0

then we obtain [66]

M
df

dt
+Df(t) = ∆Pg −∆Pl (3.11)

and for brevity we introduce new variables along with explicit consideration of TCL

power consumption,

df

dt
(t) = c

(
∆P − ρ(t)Pc

)
− γf(t) (3.12)

where

M := 4π2IF0 stands for 2π times nominal angular momentum of the rotating masses

in the system

I stands for total inertia of the rotating masses of the system
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D stands for damping factor representing the natural frequency dependence

of the load alongside the damping provided by synchronous generator

damper windings

∆Pg stands for change in total active power generation, compared to a refer-

ence level

∆Pl stands for change in total active power load, compared to a reference

level

c := 1
M stands for inverse nominal angular momentum, introduced for brevity

∆P stands for ‘surplus power generation for the TCLs’, total system active

power generation minus total system active power load, excluding TCL

power consumption

ρ stands for proportion of TCLs switched on

Pc stands for power consumed by TCL population when all switched on

γ := D
M is a variable introduced for brevity.

In this chapter we make the simplifying assumption that the ‘surplus’ power genera-

tion on the system for TCL consumption ∆P is a constant. We use the ‘∗’ notation

to denote equilibrium values. In equilibrium

c
(
∆P − ρ∗Pc

)
− γf∗ = 0 (3.13)

hence f∗ =
c

γ

(
∆P − ρ∗Pc

)
, (3.14)

therefore we can rewrite our equation for ḟ in terms of deviations from equilibrium

values:

˙̃
f(t) = cPc

(
ρ∗ − ρ(t)

)
− γf̃ (3.15)

where f̃ := f − f∗. (3.16)

3.2.4 Parameter Choices

We take as reference the Great Britain (GB) electricity system. This covers main-

land England, Scotland and Wales. In 2015 approximately 10.4m households in

the UK, which also includes Northern Ireland, owned a fridge and 19.1m house-

holds owned a fridge-freezer [106]. In the same year approximately 2.8% of the

population lived in Northern Ireland [107]. If we assume that the average number
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of people per household is the same in Northern Ireland and in GB, and an even

distribution of fridge and fridge-freezer ownership, then approximately 10.1m and

18.6m households in GB owned a fridge and fridge-freezer, respectively. If using

TCLs for frequency response became standard practice, that would mean a very

large number of appliances could participate in frequency response. We model the

case of 1 million fridges participating in frequency response, which corresponds to

roughly 10% of fridges in GB. We take the power consumed by an individual fridge

when switched on, p, to be 70W, as assumed in [71] and [72]. This means that we

let p = 7 × 10−5MW and the total power consumption if all fridges were switched

on, Pc = 7× 10−5 × 106 = 70MW.

Using our approximation for ḟ(t) [1], c = 50
2Ek

, where Ek is total stored kinetic

energy, related to system inertia. Our GB system data (discussed later) gives an

approximate average value for Ek, Ek = 2.5 × 105MVAs (note that MVAs=MJ),

and so c = 1 × 10−4. We let ρ∗ vary between 0 and 1 by changing ∆P . When the

rest of the system is perfectly balanced, ∆P corresponds to the expected power con-

sumption of the population. When the TCLs are identical, as in our case, this is the

same as the duty cycle multiplied by Pc [73]. In the literature, duty cycles for fridges

are typically assumed to be around 30%. Examples in simulations and experiments

include fridge duty cycles of 22% [54], 25% [53], 32% [41] and 33.3% [74]. The lower

the duty cycle, the greater the efficiency of the TCL. We take Ton = −26◦C for

a duty cycle of approximately 33.3% after taking Toff, T
0
− and T 0

+ from [72]. Pa-

rameter α is chosen to achieve a total cycle of approximately 45 minutes, similar

to [74] which assumes 42 minutes. Our parameters are summarised in Table 3.1,

and throughout this thesis we take these values unless stated otherwise.

3.3 Stability of a uniform distribution at 50Hz

The ideal conditions for the stable and efficient operation of the electricity grid would

be (among other things) when grid frequency is exactly at the nominal frequency

(we use the European nominal frequency, 50Hz). This is because the power plants

and other system components are designed to work optimally at this frequency, and

deviations away from 50Hz can cause huge instabilities and even power outages in

extreme cases. In our model when a population of TCLs is consuming its expected

power level2 and the frequency is 50Hz, we have df
dt = 0. It is this ‘ideal’ state

2The ‘expected power level’ is the expected power consumption of the population when uncou-
pled from grid frequency.
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Table 3.1: Parameter values assumed, unless stated otherwise

Parameter Value Units

Toff 20 ◦C
Ton -26 ◦C
T 0
− 2 ◦C
T 0

+ 7 ◦C
α 1.808× 10−4 s−1

β+ 2.4 ◦C.Hz−1

β− 2.4 ◦C.Hz−1

c 1× 10−4 Hz(MVAs)−1

γ 0 s−1

p 7× 10−5 MW
Pc 70 MW
ρ0 0.3355 -

∆P 23.485 MW

that we study in this section (of course in reality, even under normal operation the

electricity grid is subject to noise, and so the frequency fluctuates in a small interval

around 50Hz).

We begin by studying the stability of a population of TCLs uniformly distributed

in phase (meaning the time since last switch on). This means that under constant

temperature set point conditions the TCLs would switch on at a constant rate, and

switch off at a (possibly different) constant rate3. In the context of the Kuramoto

model this is usually referred to as the ‘incoherent solution,’ for example [103, 105].

Just as in Strogatz and Mirollo’s treatment of the Kuramoto model [105], we model

the infinite-N limit of a population of TCLs as a continuum of TCLs distributed

over an interval with periodic boundary conditions.

In order to obtain a tractable model, comparable to the Kuramoto model, three

key challenges must be addressed. Firstly, the TCL temperature cycling is de-

scribed by the piecewise-smooth nonlinear function (see (3.5a) and (3.5b)), with

non-differentiability at each temperature set point. Secondly, these set points are

continuously changing with grid frequency, and so any map to a periodic regime

must be sufficiently flexible to accommodate this. Finally, in order to know a TCL’s

rate of change of temperature at any time, one needs to know both its current

temperature, and its current (on/off) state. We therefore propose a new modelling

3Note that since TCLs heat (or cool) at different rates depending on their current temperature,
uniformly distributing the TCLs within each part of the cycle does not correspond to uniformly
distributing the population over the temperature scale.
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framework to overcome these challenges and permit stability analysis for the model.

We map each TCL with temperature and on/off state to a point θ on the interval

[−1, 1), in such a way that θ dictates both the temperature and the state of a TCL.

The switched off TCLs are mapped to the interval [−1, 0) and the switched on

TCLs are mapped to [0, 1). Then we define the position θ(t) of a TCL at time t

with temperature T (t) and state on or off by

θ(t) =


θon(t) =

1

ατon
(
f(t)

) log

(
T+

(
f(t)

)
− Ton

T (t)− Ton

)
∈ [0, 1) if on

θoff(t) =
1

ατoff
(
f(t)

) log

(
Toff − T+

(
f(t)

)
Toff − T (t)

)
∈ [−1, 0) if off.

(3.17)

Note that the model implicitly assumes that the temperature set points never change

fast enough to leave a TCL outside of the interval [T−
(
f(t)

)
, T+

(
f(t)

)
]. Since in this

thesis we use this model for only linear stability analysis about the equilibrium, we

consider this to be a reasonable assumption. Our choice of θ means that uniformly

distributing a population of TCLs over each part of the temperature cycle (as dis-

cussed above) corresponds to a uniform distribution of on and off TCLs in their

respective halves of θ-space. Figure 3.2(a) illustrates our map from temperature

space to θ-space. In temperature space we need two pieces of information to know

how the temperature of a TCL is changing; its temperature and its state. Our map-

ping reduces the required information to just the value of θ, since the sign of θ gives

its on/off state. Figure 3.2(b) shows what we mean by ‘uniform distribution’. In

each half of θ-space the density of TCLs is uniform, and the proportion in each half

corresponds to the proportion of time spent on/off during its cycle. We introduce

the variable u∗ below. Note that the areas of the two rectangles always sum to one.

As in [105], we consider the population density in θ-space. Let u(θ, t)dθ denote the

fraction of TCLs that lie between θ and θ + dθ at time t. Then u is non-negative,

with period length 2 in θ and satisfies the normalisation∫ +1

−1
u(θ, t)dθ = 1 (3.18)

for all t. The evolution of u is governed by the continuity equation [108]

∂u

∂t
+

∂

∂θ
(uv) = 0 (3.19)
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(a) map from T to θ (b) ‘uniform distribution’ of θ

Figure 3.2: Illustration of the mapping from temperature-space to θ-space (a), and
a ‘uniform distribution’ of TCLs in phase (b), where the proportions switched on/off
are the proportions in equilibrium, and the areas of the rectangles sum to one.

where v is the velocity of a TCL in θ-space, v(θ, t) := θ̇(t). Differentiating (3.17)

gives

von(θ, t) =
1

τon
(
f(t)

)(1 +
1

α

[
φon
(
f(t)

)
θ − β+

T+

(
f(t)

)
− Ton

]
ḟ(t)

)
(3.20a)

voff(θ, t) =
1

τoff
(
f(t)

)(1 +
1

α

[
φoff

(
f(t)

)
θ +

β+

Toff − T+

(
f(t)

)]ḟ(t)
)

(3.20b)

where

φon
(
f(t)

)
:=

β+

T+

(
f(t)

)
− Ton

− β−

T−
(
f(t)

)
− Ton

(3.21a)

φoff
(
f(t)

)
:=

β+

Toff − T+

(
f(t)

) − β−

Toff − T−
(
f(t)

) . (3.21b)

Note that for β+
β−

satisfying (3.10), φon
(
f(t)

)
< 0 and φoff

(
f(t)

)
> 0. Under a

constant grid frequency, θ̇on and θ̇off are constants. In equilibrium u∗ we have

u̇∗ = 0, and therefore (3.19) implies

u∗on(θ) =
k0

v∗on(θ)
; u∗off(θ) =

k0

v∗off(θ)
,
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for some constant k0. Since ḟ∗ = 0, from (3.20a) and (3.20b) we have

v∗on =
1

τ∗on
; v∗off =

1

τ∗off
.

Then for all θ ∈ [−1, 0), [0, 1) respectively,

u∗on(θ) = k0τ
∗
on u∗off(θ) = k0τ

∗
off

and k0 is determined by the normalisation criterion (3.18),∫ 1

−1
u∗dθ = k0(τ∗on + τ∗off) = 1 (3.22)

k0 =
1

τ∗on + τ∗off
. (3.23)

The proportion of TCLs switched on, ρ(t), is given by

ρ(t) =

∫ 1

0
u(θ, t)dθ. (3.24)

In equilibrium ρ(t) = ρ∗ (3.15), therefore

ρ∗ =

∫ 1

0
u∗(θ, t)dθ (3.25)

ρ∗ =
τ∗on

τ∗on + τ∗off
(3.26)

where for any function g
(
f(t)

)
the notation g∗ denotes g(f∗).

We introduce the notation ‘•’ to imply that an equation holds for the variable with

either of two values, ‘on’ or ‘off’. Our approach is to perturb the system about the

equilibrium (u∗, f∗) by a small amount τ∗• η(θ, t), and to consider the evolution of

the perturbation. By (3.18) the perturbation satisfies∫ +1

−1
τ∗• η(θ, t)dθ = 0. (3.27)

We write

u• =
(
k0 + η(θ, t)

)
τ∗• (3.28)

v• =
1

τ∗•

(
1 + w(θ, t)

)
(3.29)
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so that (3.19) becomes

τ∗•
∂

∂t
[η] +

∂

∂θ
[k0 + k0w + η + ηw] = 0. (3.30)

Taking the first order approximation yields

τ∗•
∂

∂t
[η] + k0

∂

∂θ
[w] +

∂

∂θ
[η] = 0. (3.31)

Rearranging (3.29) for w and substituting (3.20a, 3.20b) for v• gives

won =
1

α

(
φ∗onθ −

β+

T ∗+ − Ton

)
ḟ(t)− δτon(t)

τ∗on
(3.32a)

woff =
1

α

(
φ∗offθ +

β+

Toff − T ∗+

)
ḟ(t)− δτoff(t)

τ∗off
(3.32b)

and

δτon(t) = −φ
∗
onf̃(t)

α
; δτoff(t) = −φ

∗
offf̃(t)

α
.

Hence

∂

∂θ
[w•(t)] = φ∗•

ḟ

α
+

(
w(t)

∣∣∣∣
θ=0+

− w(t)

∣∣∣∣
θ=0−

)
δ(θ)+

+

(
w(t)

∣∣∣∣
θ=−1

− w(t)

∣∣∣∣
θ=1

)
δ(θ − 1)

∂

∂θ
[w•(t)] =

1

α

[
φ∗•ḟ − ν0δ(θ) + ν1δ(θ − 1)

]
ḟ(t) +

µ

α

[
δ(θ − 1)− δ(θ)

]
f̃

where we have defined

ν0 :=
β+

T ∗+ − Ton
+

β+

Toff − T ∗+
> 0 (3.33a)

ν1 :=
β−

T ∗− − Ton
+

β−
Toff − T ∗−

> 0 (3.33b)

µ :=
φ∗off
τ∗off

− φ∗on
τ∗on

> 0 if
β+

β−
satisfies (3.10) with T ∗±. (3.33c)

We have a time-invariant linear system (3.31), and so it is natural to look for solu-

tions for which the time dependence of our variables f̃ and η is eλt; λ ∈ C is called
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an eigenvalue of the system. Defining k := k0
α and renaming f̃ to f , (3.31) becomes

τ∗•λη +
∂η

∂θ
+ k
[
φ∗• − ν0δ(θ) + ν1δ(θ − 1)

]
λf + kµ[δ(θ − 1)− δ(θ)]f = 0. (3.34)

We introduce an integrating factor so that on the open intervals (−1, 0) ∪ (0, 1) we

can find an expression for η(θ):

∂

∂θ

(
eλτ

∗
• θη
)

+ kφ•λfe
λτ∗• θ = 0

eλτ
∗
• θη = η•(0)− kφbullet∗λf

∫ θ

0
eλτ

∗
• θ
′
dθ′

= ηbullet(0)− kφbullet
∗f

τbullet∗
(
eλτbullet

∗θ − 1
)

∴ η(θ) =

(
η•(0) + kf

φ∗•
τ∗•

)
e−λτ

∗
• θ − kf φ

∗
•
τ∗•
. (3.35)

At the discontinuities θ = 0 and θ = ±1,

ηon(0)− ηoff(0) = kf(λν0 + µ) (3.36a)

ηoff(−1)− ηon(1) = −kf(λν1 + µ). (3.36b)

We can use (3.35) to find expressions for η(−1) and η(1), and substitute these

into (3.36b). After substitution for ηoff(0) (or ηon(0)) using (3.36a) and rearrange-

ment we arrive at

ηon(0)g(λ) = −kf
(
φ∗on
τ∗on

g(λ) + λ
(
ν1 − ν0e

λτ∗off
))

(3.37a)

ηoff(0)g(λ) = −kf
(
φoff
τ∗off

g(λ) + λ
(
ν1 − ν0e

−λτ∗on
))
. (3.37b)

where g(λ) = eλτ
∗
off − e−λτ∗on . (3.37c)

It is possible to have g(λ) = 0, namely, whenever λ = 2nπ
τ∗on+τ∗off

i for any n ∈ Z, and

therefore we do not divide through by g(λ). Rewriting our equation for the rate of

change of grid frequency near the equilibrium (3.15) as

ḟ(t) = −γf(t)− cPcτ∗on
∫ 1

0
η(θ, t)dθ (3.38)
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and setting ḟ = λf gives∫ 1

0
η(θ, t)dθ = −(λ+ γ)f

cPcτ∗on
. (3.39)

Integrating (3.35) over [0, 1) in θ (the switched on TCLs), setting the resulting

expression equal to the right hand side of (3.39), and substituting our expression in

(3.37a) for ηon(0) establishes the following implicit equation for λ:

(λ+ γ − Zφ∗on)g(λ) = Z(ν1 − ν0e
λτ∗off)(1− e−λτ∗on) (3.40)

where we have defined Z := kcPc, which reflects the strength of the effect of the

TCLs on grid frequency.

When Z = 0 (no effect of the TCLs on the grid frequency) the eigenvalue equa-

tion (3.40) reduces to (λ+ γ)g(λ) = 0, so the eigenvalues are λ = −γ and λ = 2nπi
τ∗on+τ∗off

for n ∈ Z (the roots of g(λ) = 0). It can also be seen from (3.40) that for all Z

there is an eigenvalue λ = 0. It corresponds to conservation of the number of TCLs.

This eigenvalue 0 is removed by the normalisation condition (3.27). The real and

imaginary parts of λ that solve (3.40) can be solved for numerically, using for exam-

ple [109]. Figure 3.3 shows numerical solutions for the first five eigenvalues above

(or on) the real axis for the parameter values given in Table 3.1 in Section 3.2.4,

and allowing Z to vary from its value Z0 derived from the table, by Z = hZ0. There

is an infinite sequence of eigenvalues going upwards, and their reflections in the real

axis. Increasing Z from zero by powers of 10 is seen to decrease the real part of the

eigenvalues from zero and therefore the system is stable to small perturbations.

This is a surprising result because intuitively identical TCLs are vulnerable to syn-

chronisation which would cause instabilities on the system, which is the general

view in the literature as discussed previously. The result is not due to the damping

constant γ, because we chose γ = 0 so as not to mask the effect of the TCLs. What

the analysis does not tell us is how small any perturbations would have to be for a

population of TCLs to have a stabilising effect on grid frequency. It might be that

a larger perturbation than valid for linearisation leads to instability. In Section 4.2

we study the effects of different sized perturbations using simulations, and indeed

find growth of synchronisation. In the next section we consider the behaviour of

a population of TCLs under the opposite type of perturbation - namely all TCLs

synchronised into one or two groups.
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Figure 3.3: Numerical solutions for the first five eigenvalues above the real axis
(there is an infinite sequence going further along the imaginary axis, and they are
reflected in the real axis). We use multiplier h to increase Z, and the real part of
each eigenvalue we have followed decreases from 0 as Z increases from 0.

3.4 Stability of synchronised groups of TCLs

In the previous section we studied the stability of a uniformly distributed (contin-

uum) population of TCLs at the 50Hz equilibrium and found it to be stable almost

everywhere in parameter space. In this section we consider the opposite extreme of

possible TCL distributions, the Dirac delta distribution. This is to say, we explore

the behaviour of a fully-synchronised population of TCLs, all switching on and off

at the same time, all with the same temperature and (again) identical parameters.

This is equivalent to imagining just one TCL with the power consumption of the

whole population. We introduce the following definition.

Definition 3.4.1. TCLs A and B are synchronised (or equivalently, in the same

group) at time t if TA(t) = TB(t) and SA(t) = SB(t) where SI(t) is the on/off state

of TCL I at time t.

Note that since all TCLs obey the same deterministic rules, if two TCLs are syn-

chronised at time t′ then they remain synchronised for all time thereafter (∀t ≥ t′).

We begin this section by studying the periodic solution of the single group and then

explore the behaviour of two groups, ultimately asking whether the single group is

stable to splitting into two.
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3.4.1 Mapping the switch times of the fully-synchronised popula-

tion

We begin by constructing a map from one (whole population) switch on event to

the next. We show that under certain conditions such a mapping is a contraction.

Let the subscript n denote the nth switch on and nth switch off event. Without

loss of generality, suppose that after our initial start time t0 the next switch event is

the population switching on. This implies that for all n ∈ N, toffn > tonn . Figure 3.4

illustrates the notation. Hence the amount of time the population spends switched

on following the nth switch on event is given by

toffn − tonn =
1

α
log

(
T 0

+ − β+f
on
n − Ton

T 0
− − β−foffn − Ton

)
, (3.41a)

where fonn , foffn are the frequencies at the nth switch on and off times. The amount

of time spent switched off following the nth switch off is given by

tonn+1 − toffn =
1

α
log

(
Toff − T 0

− + β−f
off
n

Toff − T 0
+ + β+fonn+1

)
. (3.41b)

Figure 3.4: Illustration of the nth and n+ 1th switching events of the fully synchro-
nised population and the frequency-sensitive temperature set points T−

(
f(t)

)
and

T+

(
f(t)

)
.

Assuming, as for the numerical analysis in Section 3.3, that the system has no

damping, we set γ = 0 in equation (3.15) for ḟ(t). In a synchronised population, at

time t all TCLs are either on (ρ(t) = 1) or all are off (ρ(t) = 0). Then we can define
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constants con, coff > 0 such that

ḟ =

−con := cPc(ρ
∗ − 1) when the population is on

+coff := cPcρ
∗ when the population is off.

(3.42)

Hence the values of f at the switch off and on times are given by the piecewise-linear

functions

foffn = fonn − con(toffn − tonn ) (3.43a)

fonn+1 = foffn + coff(t
on
n+1 − toffn ) (3.43b)

which after substituting for the switching times using (3.41a) and (3.41b) become

foffn − fonn = −con
α

log

(
T 0

+ − β+f
on
n − Ton

T 0
− − β−foffn − Ton

)
(3.44a)

fonn+1 − foffn =
coff
α

log

(
Toff − T 0

− + β−f
off
n

Toff − T 0
+ + β+fonn+1

)
(3.44b)

which can be rearranged into

foffn − con
α

log(T 0
− − β−foffn − Ton) = fonn −

con
α

log(T 0
+ − β+f

on
n − Ton) (3.45a)

fonn+1 +
coff
α

log(Toff − T 0
+ + β+f

on
n+1) = foffn +

coff
α

log(Toff − T 0
− + β−f

off
n ).

(3.45b)

Now since each side of (3.45a) and (3.45b) are functions of only one of the f•n

variables, we can explicitly name them as such:

φ−on(foffn ) := foffn − con
α

log(T 0
− − β−foffn − Ton) (3.46a)

φ+
on(fonn ) := fonn −

con
α

log(T 0
+ − β+f

on
n − Ton) (3.46b)

φ−off(f
off
n ) := foffn +

coff
α

log(Toff − T 0
− + β−f

off
n ) (3.46c)

φ+
off(f

on
n+1) := fonn+1 +

coff
α

log(Toff − T 0
+ + β+f

on
n+1). (3.46d)

Each of the four φ functions is increasing and therefore invertible, and so we can
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write

foffn = φ−
−1

on φ+
on(fonn ) (3.47a)

fonn+1 = φ+−1

off φ
−
off(f

off
n ) (3.47b)

and therefore

fonn+1 = φ+−1

off φ
−
offφ

−−1

on φ+
on(fonn ), (3.47c)

which is a mapping from the frequency at one switch on event to the frequency at

the next. The mapping is a contraction iff∣∣∣∣(φ+−1

off φ
−
offφ

−−1

on φ+
on

)′∣∣∣∣ < 1 (3.48)

iff

∣∣∣∣∣(φ−off)′(φ+
off)′

(φ+
on)′

(φ−on)′

∣∣∣∣∣ < 1 (3.49)

(evaluated at the appropriate places).

Note that
(φ−off)

′

(φ+
off)′

=
1 + β−coff

α(Toff−T−n )

1 + β+coff
α(Toff−T+

n+1)

< 1 (3.50)

iff
β+

β−
>
Toff − T+

n+1

Toff − T−n
. (3.51)

Similarly
(φ+

on)′

(φ−on)′
=

1 + β+con
α(T+

n −Ton)

1 + β−con
α(T−n −Ton)

< 1 (3.52)

iff
β+

β−
<
T+
n − Ton
T−n − Ton

. (3.53)

Therefore a sufficient condition for the mapping to be a contraction is that

β+

β−
∈

(
Toff − T+

n+1

Toff − T−n
,
T+
n − Ton
T−n − Ton

)
(3.54)

which is a non-empty interval (containing {1}), so long as Ton < T−n < T+
n < Toff

and T−n < T+
n+1 for all n. It is worth recalling our earlier condition on the values of

β± (3.10) which also imposed that β+
β−

belong to an open interval containing {1}.
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3.4.2 Solving for the periodic solution of the fully-synchronised

population

The contraction property of the mapping fonn 7→ fonn+1 (3.47c) under the above con-

ditions implies that there is an attracting fixed point so long as Ton < T−n < T+
n <

Toff, and hence a periodic solution for the synchronised population. We now seek

to solve for this periodic solution. Denote by lon and loff the amount of time spent

on and off during one (periodic) cycle, respectively. Since power consumption for

the population is constant during each on/off phase, the frequency moves linearly

between upper and lower values which we denote by f+ and f−. Therefore the

temperature of the population will cycle between upper and lower set points, given

by T 0
+ − β+f+ and T 0

− − β−f−, respectively. Equations (3.43a) and (3.43b) show us

that

f− = f+ − conlon (3.55a)

f+ = f− + coffloff. (3.55b)

The temperature evolution equations (3.5a, 3.5b) allow us to express the switch on

and switch off temperatures as follows:

T 0
+ − β+f+ = (T 0

− − β−f− − Toff)e−αloff + Toff (3.56a)

T 0
− − β−f− = (T 0

+ − β+f+ − Ton)e−αlon + Ton (3.56b)

which after substituting for f− using (3.55a) and rearranging, become

f+(β−e
−αloff − β+) = (T 0

− − Toff + β−conlon)e−αloff + Toff − T 0
+ (3.57a)

and f+(β+e
−αlon − β−) = (T 0

+ − Ton)e−αlon + Ton − T 0
− − β−conlon. (3.57b)

Now we have two equations in terms of f+, lon and loff that we can combine into

one equation and eliminate f+,

(β+e
−αlon − β−)

[
(T 0
− − Toff + β−conlon)e−αloff + Toff − T 0

+

]
= (β−e

−αloff − β+)

[
(T 0

+ − Ton)e−αlon + Ton − T 0
− − β−conlon

]
. (3.58)

We can also express loff in terms of lon by summing (3.55a) and (3.55b) to give

conlon = coffloff or, equivalently, (1− ρ∗)lon − ρ∗loff = 0 (3.59)
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and so equations (3.57b) and (3.59) form a pair of coupled equations for lon and

loff, which can be solved numerically.

Figure 3.5 shows one temperature cycle for the single group under different choices

for ρ∗. Denote by ρ0 the value of ρ when f = 0. As ρ∗ gets further away from ρ0

the solutions drift further from the uncoupled temperature range (2-7◦C). The cycle

lengths are symmetric about ρ∗ = 1
2 but the TCLs consume more power per cycle

as ρ∗ increases.

0 20 40 60 80 100 120 140

time (mins)

-30

-20

-10

0

10

20

te
m

p
e

ra
tu

re
 (
°
C

)

ρ
*
 = 0.091

ρ
*
 = 0.182

ρ
*
 = 0.273

ρ
*
 = 0.364

ρ
*
 = 0.455

ρ
*
 = 0.545

ρ
*
 = 0.636

ρ
*
 = 0.727

ρ
*
 = 0.818

ρ
*
 = 0.909

Figure 3.5: One cycle of the single group solution for different values of ρ∗ when
ρ0 ≈ 0.3355. They include values that lead to unrealistic results for real fridges, but
are there to illustrate the effect.

It is interesting to note that the on and off cycle durations are affected by each of

β, c and Pc equally (when β− = β+ := β). Taking (3.58) and dividing through by

β gives

(e−αlon − 1)

[
(T 0
− − Toff + βcPc(1− ρ∗)lon)e−αloff + Toff − T 0

+

]
= (e−αloff − 1)

[
(T 0

+ − Ton)e−αlon + Ton − T 0
− − βcPc(1− ρ∗)lon

]
(3.60)

in which the terms β, c and Pc only occur in the form of the product βcPc and hence

our claim is true. Parameter β is the sensitivity of the TCLs to the frequency, c is

inversely proportional to system inertia, and Pc is the maximum power consump-

tion possible from the TCL population. Figure 3.6 shows the impact of changing

βcPc (collectively) on the duration of the on and off portions of the temperature
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cycle. We choose a log-linear plot to scale up (and down) from our standard value

(βcPc = 0.0168) by factors of ten, since there could be a very large variation in the

number of TCLs in frequency-sensitive mode. We can think of the collective term

βcPc as a measure of overall sensitivity. Clearly increasing β increases the sensitivity

of each TCL to the frequency. Increasing c decreases system inertia, which in turn

makes frequency more sensitive to supply-demand imbalance fluctuations. Finally,

increasing Pc increases the availability of the demand-side to respond to the fre-

quency (more TCLs in frequency-sensitive mode), and so the population as a whole

can be thought of as becoming more sensitive. The single group case is an extreme

that we would never want to see on the real system, but it can give insights into the

properties of the solutions for more groups. Naturally, as sensitivity increases, the

effect on fridge cycling becomes more severe, something we would like to keep fairly

minimal.

Figure 3.6: Effect changing of βcPc on the on and off cycle durations

3.4.3 The importance of nonlinearity

Before we move on to the more complicated case of two synchronised groups of

TCLs, let us take a moment to ask whether linearising the temperature dynamics

of the TCLs would be a valid simplification of the system. By this, we mean that

the temperature time derivative of each TCL is a constant (rather than being tem-

perature dependent). Note that this is not to be confused with our original linear
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model, which gives rise to exponential, rather than linear temperature dynamics,

as we assume now. Such a simplification could make our analysis of two or more

groups of TCLs significantly easier, but would it be able to capture the important

aspects of our system?

Suppose that the temperature evolution of a TCL is linear, and denote the constant

temperature derivative with respect to time Ṫ (t), by

Ṫ (t) =

−T ′on if the population is switched on

T ′off if the population is switched off.

As in Section 3.4.1, we use the notation tonn and toffn to denote the nth switch on

and switch off times of the population, where, without loss of generality, we let the

first switch be a switch on. We also repeat the notation fonn and foffn to denote

the grid frequency at times tonn and toffn . Assume that the temperature set point

sensitivities to frequency β− = β+ =: β, then

Ton
n = T 0

+ − βfonn (3.61a)

Toff
n = T 0

− − βfoffn . (3.61b)

Equating two expressions for the temperature at the nth switch on and off times

gives relations for the on and off durations. When switching on,

Toff
n + (tonn+1 − toffn )T ′off = T 0

+ − βfonn+1 (3.62)

∴ tonn+1 − toffn =
T 0

+ − T 0
− − β(fonn+1 − foffn )

T ′off
(3.63)

and when switching off,

Ton
n − (toffn − tonn )T ′on = T 0

− − βfoffn (3.64)

∴ toffn − tonn =
T 0

+ − T 0
− − β(fonn − foffn )

T ′on
. (3.65)

Taking γ = 0 in the frequency derivative equation (3.12),

ḟ =

−c(Pc −∆P ) when the population is on

c∆P when the population is off
(3.66)
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and so

foffn = fonn − c(Pc −∆P )(toffn − tonn ) (3.67a)

fonn+1 = foffn + c∆P (tonn+1 − toffn ). (3.67b)

We use (3.67b) to substitute for the f terms in (3.63) and we use (3.67a) to substitute

for the f terms in (3.65):

tonn+1 − toffn =
T 0

+ − T 0
− − βc∆P (tonn+1 − toffn )

T ′off
(3.68)

=
T 0

+ − T 0
−

T ′off + βc∆P
(3.69)

and toffn − tonn =
T 0

+ − T 0
− − βc(Pc −∆P )(toffn − tonn )

T ′on
(3.70)

=
T 0

+ − T 0
−

T ′on + βc(Pc −∆P )
. (3.71)

In both cases the duration between successive switches is a positive constant with

no dependence on n, assuming constant ∆P < Pc (as we do throughout).

Next we turn our attention to the frequency at each switch event. How does the

frequency at the switch on (or switch off) events change over time? We sum (3.67a)

and (3.67b) to give

fonn+1 − fonn = c∆P (tonn+1 − toffn )− c(Pc −∆P )(toffn − tonn ) (3.72)

= c(T 0
+ − T 0

−)

(
∆P

T ′off + βc∆P
− Pc −∆P

T ′on + βc(Pc −∆P )

)
(3.73)

= c(T 0
+ − T 0

−)

(
T ′on∆P − T ′off(Pc −∆P )

(T ′off + βc∆P )(T ′on + βc(Pc −∆P ))

)
. (3.74)

We are assuming that Pc ≥ ∆P and therefore the sign of (fonn+1 − fonn ) depends

exclusively on the sign of denominator.

T ′on∆P − T ′off(Pc −∆P ) = 0 (3.75)

iff ∆P =
T ′off

T ′off − T ′on
Pc (3.76)

=
τ0
on

τ0
on + τ0

off

Pc (3.77)
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which is the expected nominal power consumption of the population (i.e. when

the TCLs operate without frequency sensitivity). When Pc is equal to the nominal

power consumption of the TCLs there is no imbalance on the system. Therefore

there cannot be a periodic solution for the synchronised group if there is any system

imbalance. By (3.67a) and (3.67b) and our result that the on and off durations

are constants, the same condition holds for the sign of (foffn+1 − foffn ). Therefore

the frequency at the switch times will increase or decrease indefinitely. By (3.61a)

and (3.61b), the temperature of the TCLs at each switch will also increase or de-

crease indefinitely.

This reveals the value (and necessity for our purposes) of the exponential heating

and cooling of the TCLs. If the temperature evolution is linear, a synchronised

population will be incapable of assisting with power imbalance. On the contrary,

the exponential temperature evolution means that the duty cycle, and therefore the

average power consumption of the population, change as the temperature operating

range changes.

We can elicit this mathematically by differentiating the nominal duty cycle with

respect to the lower temperature set point when the temperature operating range is

fixed. Let ∆T := T 0
+ − T 0

−. If the temperature evolution is linear, since T ′off = ∆T
τ0off

,

T ′on = ∆T
τ0on

,

∂

∂T 0
−

( τ0
on

τ0
on + τ0

off

)
=

∂

∂T 0
−

( T ′off
T ′off + T ′on

)
= 0.

However, when the temperature evolution is nonlinear, as in our original model,

∂

∂T 0
−

( τ0
on

τ0
on + τ0

off

)
=

−∆T

α(τ0
on + τ0

off)
2

(
τ0
on

(Toff − T 0
−)(Toff − T 0

+)
+

+
τ0
off

(T 0
+ − Ton)(T 0

− − Ton)

)
(3.78)

< 0. (3.79)

We conclude that the exponential heating and cooling of the TCLs is key to their

value as a demand-side resource for supporting the electricity grid frequency. In

addition, the linearisation of the temperature evolution cannot help us to analyse

the dynamics of a population, since the properties in the two cases are significantly

different. With this in mind, we return to our model and analysis of the fully syn-
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chronised group, posing the question: given a population split into two synchronised

groups, will the groups merge into one fully synchronised population, or will they

remain distinct indefinitely?

3.4.4 Two synchronised groups: Simulations

Introduction

Having studied the behaviour of a fully synchronised population we now ask what

would happen if a population comprised two groups of TCLs (recall the definition

of a synchronised group of TCLs in at the beginning of Section 3.4 on page 49).

The key difference between the model for two groups and the model for a single

population is in the equation for ḟ(t). Suppose that the population is divided such

that proportion σ belongs to the group A, GA, and proportion 1− σ belongs to the

group B, GB. Then depending on which of the two groups is switched on at time t,

ḟ(t) will take one of four possible values:

ḟ(t) =



−cPc(σ − ρ∗) if only GA is on

−cPc(1− σ − ρ∗) if only GB is on

−cPc(1− ρ∗) if both GA and GB are on

−cPc(−ρ∗) if both GA and GB are off.

(3.80)

Although this difference may seem fairly simple, moving from one to two groups of

TCLs brings a significant complication when it comes to analysing the model. There

are now multiple possibilities for the order in which switching on and off occurs and

this order can change over time. Simply presupposing the existence of a periodic

solution and solving for it is no longer an option. The groups may always merge

into one (this can happen under certain parameters), and if they do tend towards

separate periodic solutions, the switching order is not obvious, nor easy to solve for.

That is why we begin our study with numerical simulations to gain insights into

the long-term behaviour of two groups under a range of conditions. In the following

subsection we take an in-depth look at the switching events and derivation of the

equations underpinning two-group behaviour. Finally in Section 3.4.6 we linearise

about the single group solution and analytically study the stability of the fully

synchronised population to splitting into two groups.
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Phase difference and long-term behaviour

We would like to know whether two distinct groups can co-exist long term or whether

they will ultimately merge into the single population solution described in Sec-

tion 3.4.2. We begin by simulating the temperature cycling of two groups to acquire

some intuition.

In our simulations the temperatures of the two groups of TCLs are updated each

time step (length one second) along with the grid frequency and if either TCL hits

the temperature set point it switches on/off (see Appendix B for details). Our

parameters correspond to fridges and are given in Table 3.1. In order to observe

the merging/separating of the two groups we need a way to measure the difference

between them. A natural way to do this is to consider the difference between the

switch on times of the two groups. We define the ‘nth normalised phase difference’

θn, for n > 0, as follows:

θn =
nth switch on time of GA − nth switch on time of GB

most recent cycle duration of GA
(3.81a)

θn =
tonn (A)− tonn (B)

tonn (A)− tonn−1(A)
. (3.81b)

The normalisation is to counter the changing cycle lengths of the groups, and keeps

θn ∈ [−1, 1]. The sign of θn depends entirely on the initial conditions of the system,

namely which group switches on first. If limn→+∞ θn ∈ {1, 0,−1} then the groups

have synchronised4 since

lim
n→+∞

θn = 1 ⇒ tonn (B) = tonn−1(A) (3.82a)

lim
n→+∞

θn = 0 ⇒ tonn (B) = tonn (A) (3.82b)

lim
n→+∞

θn = −1 ⇒ tonn (B) =
(
tonn (A)− tonn−1(A)

)
+ tonn (A)

which, assuming constant cycle duration at the limit,

=
(
tonn+1(A)− tonn (A)

)
+ tonn (A)

= tonn+1(A). (3.82c)

4For the case limn→+∞ θn = −1 we also have to assume that the cycle duration of GA has
become constant in order for the limit to imply synchronisation. This can be easily checked simply
by interchanging GA and GB and checking if the limit is now 1.
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In the penultimate line above we have assumed periodic behaviour for GA to make

the cycle duration substitution. It would be preferable not to have to make this

assumption, however since our initial choice of start time is arbitrary we can simply

choose a time such that GB switches on first and then synchronisation will occur

iff limn→+∞ θn ∈ {0, 1}. If limn→+∞ θn ∈ {(−1, 1) \ {0}} the two groups remain

distinct from one another since the phase difference is not a multiple of the cycle

duration of GA.

Figures 3.7-3.10 show eight different possibilities for the long-term behaviour of two

groups. The left-hand plots show how the phase difference θ changes from one

switch on event of GA to the next for different initial switching orders of the two

groups and for two different values of σ. For these figures ρ∗ ≈ 0.1174 (achieved

with the values in Table 3.1 and using Ton = −100. The right-hand plots show the

temperature profiles over time for the two groups over three cycles towards the end

of the simulation, along with the upper and lower temperature set points.

Figures 3.7 and 3.8 show examples of two groups merging into one. When GB is

larger than GA (σ < 0.5) as in Figure 3.7, the phase difference decreases which

signifies that the switch on times of B and the subsequent switch on times of GA

are getting closer together. When GA is larger (σ > 0.5) as in Figure 3.8 the phase

difference increases which signifies that the switch on times of B and the previous

switch on times of GA are getting closer together. In the long-term the groups

synchronise in both cases, as is clear from asymptotic values of θ and by noting that

the temperature cycles have become indistinguishable. It is, however, possible for

the two groups to co-exist distinctly long-term.

Figures 3.9 and 3.10 show the long-term behaviour of two groups in exactly the same

way as in the previous figures but with different values for σ (importantly, much

closer to σ = 0.5). In these four examples the normalised phase difference θ settles

down to a value in (0, 1) or (−1, 0) and the two groups do not merge into one. This

is seen most clearly by comparing the eventual temperature cycling (the right hand

plots) in Figures 3.7 and 3.8 with those in Figures 3.9 and 3.10.

We can find the asymptotic behaviour of the normalised phase difference for any

value of σ ∈ (0, 1), and through repeated simulations, can discern the bifurcation

diagram. We find that the two groups can coexist for values of σ very close to

0.5 (between about 0.48 and 0.52 depending on the other parameters). Figure 3.11

shows the results of repeated simulations which show the full bifurcation picture.

For ease of reading, the narrow range around σ = 0.5 has been magnified. We

61



(a) TA(0) = 2, TB(0) = 5, σ = 0.3 (b) TA(0) = 2, TB(0) = 5, σ = 0.3

(c) TA(0) = 5, TB(0) = 2, σ = 0.3 (d) TA(0) = 5, TB(0) = 2, σ = 0.3

Figure 3.7: Each row shows the results from one simulation for parameter values
shown and ρ∗ ≈ 0.1174, all others as in Table 3.1. Left-hand figures show phase
difference against group A switch on events (see (3.81b)). Right-hand figures show
temperature against time for GA and GB (not distinct from one another due to
synchronisation) for a subset of the time window near the end of the simulation.

find that even if the switch on times of two groups start negligibly close to one

another, given certain values of σ, they can move apart. The intuition behind these

results is that when one group is more than a little larger than the other it will have

a dominating effect and ‘pull’ the smaller group towards it. If, however, the two

groups are of almost identical size, there is no dominant group and they will remain

separate.

We can also explore the effect of varying the parameter ρ∗, which we do by varying
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(a) TA(0) = 2, TB(0) = 5, σ = 0.7 (b) TA(0) = 2, TB(0) = 5, σ = 0.7

(c) TA(0) = 5, TB(0) = 2, σ = 0.7 (d) TA(0) = 5, TB(0) = 2, σ = 0.7

Figure 3.8: Each row shows the results from one simulation for parameter values
shown and ρ∗ ≈ 0.1174, all others as in Table 3.1. Left-hand figures show phase
difference against group A switch on events (see (3.81b)). Right-hand figures show
temperature against time for GA and GB (not distinct from one another due to
synchronisation) for a subset of the time window near the end of the simulation.

Ton. Repeated simulations for different values allow us to construct a diagram to

show the regions in (σ, ρ∗)-space that will lead to synchronisation, and those that

will keep two distinct groups forever apart. We omit this diagram for the time being,

as it matches the bifurcation diagram derived in Section 3.4.6.

Our approach so far has been to consider the system in terms of the continuous

time dynamics. It can take a long time for groups to settle down to their steady-

state behaviour when simulations have to update using small time steps to reduce

numerical errors. An alternative is to model the system as a sequence of discrete
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(a) TA(0) = 2, TB(0) = 5, σ = 0.45 (b) TA(0) = 2, TB(0) = 5, σ = 0.45

(c) TA(0) = 5, TB(0) = 2, σ = 0.45 (d) TA(0) = 5, TB(0) = 2, σ = 0.45

Figure 3.9: Each row shows the results from one simulation for parameter values
shown and ρ∗ ≈ 0.1174, all others as in Table 3.1. Left-hand figures show phase
difference against group A switch on events (see (3.81b)). Right-hand figures show
temperature against time for GA and GB (not distinct from one another due to
synchronisation) for a subset of the time window near the end of the simulation.

switching events. This will be the focus of the next section.
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(a) TA(0) = 2, TB(0) = 5, σ = 0.55 (b) TA(0) = 2, TB(0) = 5, σ = 0.55

(c) TA(0) = 5, TB(0) = 2, σ = 0.55 (d) TA(0) = 5, TB(0) = 2, σ = 0.55

Figure 3.10: Each row shows the results from one simulation for parameter values
shown and ρ∗ ≈ 0.1174, all others as in Table 3.1. Left-hand figures show θ against
A switching events (see (3.81b)). Right hand figures show temperature against time
for GA and GB for a subset of the time window near the end of the simulation.
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Figure 3.11: Bifurcation diagram for the phase difference between two groups of
TCLs. Green solid lines represent stable fixed points, red dashed lines represent
unstable fixed points. Two groups can co-exist for σ ≈ 0.5. The range has been
expanded for diagram, narrower than presented here (approximately ±0.2 around
0.5).

3.4.5 Possible two-group switching behaviour

Switching event orders

To model the temperature cycling behaviour of two groups requires greater consid-

eration than was required for the fully synchronised population (one group). This is

because there are more types of switching events, for which the order is unclear. The

two groups can switch simultaneously or separately, and simply knowing which group
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switched last does not tell us which group will switch next. There are four on/off

state combinations (SA, SB) of the system; (SA, SB) ∈ {(1, 1), (0, 0), (1, 0), (0, 1)}.
Figure 3.12 shows these four system states and labels the 12 switching events be-

tween them (labelled with arrows A-L). The goal is to discover the long-term be-

haviour of a population, and one way of analysing this is to study the progression

of switching events. Do we find that for given parameters and initial conditions a

population will settle down to a certain switching pattern? It is clear that if switch

event K ((0, 0)→ (1, 1)) or L ((1, 1)→ (0, 0)) is reached then the populations have

synchronised into one group, and so the switching pattern will remain as the loop

KL thereafter. Are there other possibilities?

(1,1)(0,1)

(0,0) (1,0)

L

A

H

GB E D

C

F

I

K

J

state

one switches

both switch

Figure 3.12: The 4 system states and 12 switch events for 2 groups. Octagons show
the 4 possible system states (SA, SB). Light arrows show single switch events, dark
arrows show double switch events (both groups switch simultaneously).

To understand the possible orders in which switching events can occur we create a

new diagram (Figure 3.13) formed from nodes representing the arrows in Figure 3.12.

One event can follow another if and only if the end state of the first event is the

same as the starting state of the second. In Figure 3.13 all possible switch event

progressions are shown with arrows. This diagram shows the full set of possible

event transitions. Given the initial states and temperatures of the two groups we

would like to analyse the progression of switch events and discover the long-term

behaviour of the system. This requires solving for the time at which each successive

switch occurs, and the temperatures and states of the groups at each switch.
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(0,0)→(0,1)
B

(1,1)→(1,0)
D

(1,0)→(1,1)
E

(0,1)→(0,0)
G

(1,0)→(0,0)

A

(0,1)→(1,1)

C

(1,1)→(0,1)

F

(0,0)→(1,0)

H

(0,1)→(1,0)

I

(1,0)→(0,1)
J

(0,0)→(1,1)
K

(1,1)→(0,0)
L

Figure 3.13: Rectangles show switching events, arrows represent all possible switch-
ing event progressions. GA switches then GB switches (blue), GB switches then
GA (pink), one of the switches is simultaneous (green), both switches simultaneous
(dashed green).

Solving for the two-group switching behaviour

Suppose that when a switch occurs (at time, say, t = 0) we know the temperatures

of the two groups,
(
TA(0), TA(0)

)
and their on/off states

(
SA(0), SB(0)

)
. In order

to know which group will switch next we solve for the switch time in each case,

GA switching next and GB switching next, and compare the two times. Whichever
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group has the soonest switch time will switch next. If the switch times are the same

then we have a simultaneous switch event.

The general method for solving for the switch times is as follows. Suppose group I

switches at time t = 0 and test the hypothesis that group J switches next (I and J

could be the same group). Then if this next switch occurs at time t,

TJ(t) = T 0
• − β•f(t) (3.83)

f(t) = f(0) + tḟ(t) (3.84)

∴ TJ(t) = T 0
• − β•[f(0) + tḟ(t)] (3.85)

where subscript ‘•’ signifies ‘+’ if group J is switching on at time t and ‘−’ if group

J is switching off at time t. Now our information about the switch at time t = 0

tells us that

TI(0) = T 0
◦ − β◦f(0) (3.86)

∴ f(0) =
T 0
◦ − TI(0)

β◦
(3.87)

∴ TJ(t) = T 0
• − β•[

T 0
◦ − TI(0)

β◦
+ tḟ(t)] (3.88)

where ‘◦’ signifies ‘+’ if GI is switching on at time 0 and ‘−’ if GI is switching off

at time 0. For each hypothetical switching event progression of the form XY5 the

5In the switch progression XY switch X occurs at time 0 and switch Y occurs at time t. For
example, if XY is the switch event progression CD, then group A switches on at time 0 and group
B switches off at time t.
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exact form of equation 3.88 for each possible event progression is as follows.

AH,AK,LK TA(t) = T 0
+ − β+cpρ

∗t− β+
β−

(
T 0
− − TA(0)

)
(3.89a)

BC,BI, JC TA(t) = + β+cp(1− σ − ρ∗)t+ TB(0) (3.89b)

CF,CL,KL TA(t) = T 0
− + β−cp(1− ρ∗)t− β−

β+

(
T 0

+ − TA(0)
)

(3.89c)

DA,DJ, IA, IJ TA(t) = + β−cp(σ − ρ∗)t+ TB(0) (3.89d)

EF,EL,KL TA(t) = T 0
− + β−cp(1− ρ∗)t− β−

β+

(
T 0

+ − TB(0)
)

(3.89e)

FC,FI, JC TA(t) = T 0
+ + β+cp(1− σ − ρ∗)t− β+

β−

(
T 0
− − TA(0)

)
(3.89f)

GH,GK,LK TA(t) = T 0
+ − β+cpρ

∗t− β+
β−

(
T 0
− − TB(0)

)
(3.89g)

HA,HJ, IA, IJ TA(t) = T 0
− + β−cp(σ − ρ∗)t− β−

β+

(
T 0

+ − TA(0)
)

(3.89h)

AB,AK,LK TB(t) = T 0
+ − β+cpρ

∗t− β+
β−

(
T 0
− − TA(0)

)
(3.89i)

BG,BI, JG TB(t) = T 0
− + β−cp(1− σ − ρ∗)t− β−

β+

(
T 0

+ − TB(0)
)

(3.89j)

CD,CL,KL TB(t) = T 0
− + β−cp(1− ρ∗)t− β−

β+

(
T 0

+ − TA(0)
)

(3.89k)

DE,DJ, IE, IJ TB(t) = T 0
+ + β+cp(σ − ρ∗)t− β+

β−

(
T 0
− − TB(0)

)
(3.89l)

ED,EL,KL TB(t) = T 0
− + β−cp(1− ρ∗)t− β−

β+

(
T 0

+ − TB(0)
)

(3.89m)

FG,FI, JG TB(t) = + β−cp(1− σ − ρ∗)t+ TA(0) (3.89n)

GB,GK,LK TB(t) = T 0
+ − β+cpρ

∗t− β+
β−

(
T 0
− − TB(0)

)
(3.89o)

HE,HJ, IE, IJ TB(t) = + β+cp(σ − ρ∗)t+ TA(0). (3.89p)

Note that switch progressions involving a simultaneous switch have multiple valid

equations.

We can equate our equation for TJ(t) with the temperature evolution equation (3.5a)

if on or (3.5b) if off and solve (numerically) for t. Once we have the switch time t the

temperatures of the two groups at time t follow easily. The temperature evolution

equations tell us that for event progressions of the form:

AX, BX, FX, GX JX, LX: TA(t) = (TA(0)− Toff)e−αt + Toff (3.90a)

CX, DX, EX, HX, IX, KX: TA(t) = (TA(0)− Ton)e−αt + Ton (3.90b)

AX, DX, GX, HX, IX, LX: TB(t) = (TB(0)− Toff)e−αt + Toff (3.90c)

BX, CX, EX, FX, JX, KX: TB(t) = (TB(0)− Ton)e−αt + Ton. (3.90d)

where ‘X’ represents any possible switching event directly following the first event in

the pair. These allow us to solve for the switch time and then to find the temperature
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of each group when the switch occurs.

The GA ∼ GB group symmetry means that the following pairs of (memoryless)

switch events are symmetric in GA and GB: A∼G, B∼H, C∼E, D∼F and I∼J.

Therefore any information learned/equations solved for a switch event progression

can be applied to the event progression in its symmetric pair by 1) replacing the

each of the two letters in the event name by their symmetric pairs, 2) swapping TA

and TB in the results/equations, and 3) swapping σ and 1− σ in the equations.

Given the on/off states of the groups at time 0, the space of initial temperatures

of the two groups, (Ton, Toff)
2, can be split into regions of initial conditions that

map to each possible subsequent switch event. On the boundaries of the regions

simultaneous switching occurs. We begin our exploration of these regions by solving

for simultaneous switching in each of the four system states.

Case 1:
(
SA(0),SB(0)

)
= (1,1)

Both groups are switched on and therefore

TA(t) = (TA(0)− Ton)e−αt + Ton (3.91a)

TB(t) = (TB(0)− Ton)e−αt + Ton. (3.91b)

Both groups are cooling down to reach the lower temperature set point and so

whichever started off coolest will switch off first. The groups will switch simultane-

ously if and only if TA(t) = TB(t) which occurs if and only if TA(0) = TB(0).

Case 2:
(
SA(0),SB(0)

)
= (0,0)

Both groups are switched off and therefore

TA(t) = (TA(0)− Toff)e−αt + Toff (3.92a)

TB(t) = (TB(0)− Toff)e−αt + Toff (3.92b)

and so as in case 1 the groups will switch on simultaneously iff TA(0) = TB(0).

If they start at different temperatures the next group to switch on will be the

group with the highest initial temperature. The results for cases 1 and 2 are shown

graphically in Figure 3.14. Note that the results do not depend on which group

switched at t = 0.

Case 3:
(
SA(0),SB(0)

)
= (1,0)

When GA is on and GB is off they will switch simultaneously iff GA reaches its lower

set point at the same time t that GB reaches its upper set point. The temperatures
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(a)
(
SA(0), SB(0)

)
= (1, 1) (b)

(
SA(0), SB(0)

)
= (0, 0)

Figure 3.14: Figures showing which group will be the next to switch given initial
temperatures for cases 1 and 2. The dividing lines indicate simultaneous switching.
For these figures σ = 0.7 and all other parameters are as given in Table 3.1.

of each group at this simultaneous switch are therefore given by

TA(t) = (TA(0)− Ton)e−αt + Ton = T 0
− − β−f(t) (3.93a)

TB(t) = (TB(0)− Toff)e−αt + Toff = T 0
+ − β+f(t) (3.93b)

which we can write in matrix form as(
TA(0)− Ton β−

TB(0)− Toff β+

)(
e−αt

f(t)

)
=

(
T 0
− − Ton

T 0
+ − Toff

)
(3.94)

which gives(
e−αt

f(t)

)
=

1

∆

(
β+ −β−

−(TB(0)− Toff) TA(0)− Ton

)(
T 0
− − Ton

T 0
+ − Toff

)
(3.95)

where determinant

∆ := β+(TA(0)− Ton)− β−(TB(0)− Toff) > 0.
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Therefore we can write

e−αt = g
(
TA(0), TB(0)

)
(3.96)

f(t) = h
(
TA(0), TB(0)

)
(3.97)

where h and g are functions given by the matrix multiplication in (3.95).

The frequency at the next switch time t depends on the previous switch event:

f(t) =


T 0
+−TA(0)

β+
− cp(σ − ρ∗)t if GA switched most recently

T 0
−−TB(0)

β−
− cp(σ − ρ∗)t if GB switched most recently.

(3.98)

To find the simultaneous switch curve in
(
TA(0), TB(0)

)
space we combine the pre-

vious three equations into one equation that we use to solve for TB(0) in terms of

TA(0):

h
(
TA(0), TB(0)

)
=
cp

α
(σ − ρ∗) log g

(
TA(0), TB(0)

)
+

+


T 0
+−TA(0)

β+
if A switched most recently

T 0
−−TB(0)

β−
if B switched most recently.

(3.99)

where

h
(
TA(0), TB(0)

)
:=

(TA(0)− Ton)(T 0
+ − Toff)− (TB(0)− Toff)(T 0

− − Ton)

β+(TA(0)− Ton)− β−(TB(0)− Toff)

g
(
TA(0), TB(0)

)
:=

β+(T 0
− − Ton)− β−(T 0

+ − Toff)
β+(TA(0)− Ton)− β−(TB(0)− Toff)

.

The solution of (3.99) is shown by the dividing line between the two regions in

Figure 3.15 (a and b) for the parameters in Table 3.1. We find that changing the

parameters has negligible impact on the shape of each region.

Case 4:
(
SA(0),SB(0)

)
= (0,1)

Case 4 is just case 3 where groups A and B have been swapped. There is nothing

that marks the groups as different apart from their starting temperatures and the

most recent group to switch therefore the equation to solve is the same as in case 3

only with A in the place of B. The solution of this equation is shown by the dividing

line between the two regions in Figure 3.15 (c and d).
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(a)
(
SA(0), SB(0)

)
= (1, 0), A switched last (b)

(
SA(0), SB(0)

)
= (1, 0), B switched last

(c)
(
SA(0), SB(0)

)
= (0, 1), A switched last (d)

(
SA(0), SB(0)

)
= (0, 1), B switched last

Figure 3.15: Figures showing which group will be the next to switch given initial
temperatures and which group was the last to switch for cases 3 and 4. The dividing
line indicates simultaneous switching and solve equation (3.99). For these figures
σ = 0.7 and all other parameters are as given in Table 3.1.

74



For each event A, B, ..., L we can consider which regions in the space of initial

temperatures (Ton, Toff)
2 will map to which next switch event. For some events not

every initial temperature combination
(
TA(0), TB(0)

)
will be possible. Solving for

the next switch event for each initial pair of temperatures will result in the time

until the next switch, t. If t is found to be negative then the initial condition is

infeasible.

Eliminating infeasible initial conditions

Setting t = 0 in the switch event equations and setting β− ≈ β+ gives:

AB TB(0) ≈ TA(0) + T 0
+ − T 0

− straight line, slope 1

CD TB(0) ≈ TA(0)− (T 0
+ − T 0

−) straight line, slope 1

EF TB(0) ≈ TA(0) + T 0
+ − T 0

− straight line, slope 1

GH TB(0) ≈ TA(0)− (T 0
+ − T 0

−) straight line, slope 1

for BC, DA, HE, FG:

TA(0) = TB(0) straight line, slope 1

for AH, BG, CF, DE, ED, FC, GB, HA, IA, IE, IJ, JC, JG, JI, LK, KL:

T 0
+ ≈ T 0

− not possible.

This allows us to eliminate certain regions of the initial temperature space as we

cannot allow negative time until the next switch. Additionally, for some events it is

implicit that the initial temperature of one group be higher than the other:

• Event B: both off when GB switches on therefore GB must be hotter when it

switches

• Event D: both on when GB switches off therefore GB must be cooler when it

switches

• Event F: both on when GA switches off therefore GA must be cooler when it

switches

• Event H: both off when GA switches on therefore GA must be hotter when it

switches

and so for these events half of the state space is eliminated as infeasible.
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Events I, J, K and L have special properties, being the four events in which the two

groups switching simultaneously. Event I is the switch (0, 1)→ (1, 0) and therefore

no matter which switch happens next, we know that

TA(0) = T 0
+ − β+f(0)

TB(0) = T 0
− − β−f(0)

and therefore

TB(0) = T 0
− −

β−
β+

(
T 0

+ − TA(0)

)
TB(0) =

β−
β+

TA(0)−
(
β−
β+
T 0

+ − T 0
0

)
which is a straight line with slope 1. Due to the symmetrical nature of the two

groups we can interchange A and B in this equation to get the equivalent result for

event J:

TB(0) = β−
β+
TA(0) + β−

β+
T 0

+ − T 0
−.

For events K and L the identical switching behaviour of the two groups tells us

that they have synchronised (merged into one group) and therefore the valid initial

conditions are exactly the line TA(0) = TB(0).

All of this information allows us to summarise the valid initial conditions for each

event and identify which regions within initial temperature space map to which next

event. The results are shown in Figure 3.16. The position of each square corresponds

to the position of the first event in the pair in Figure 3.13. After the initial switch

event (X in the XY pair), GA switching next is shown in pink, GB switching next in

blue, both switching in green and infeasible initial conditions in white. The vector

fields show the direction in which the pair of temperatures will move following the

initial switch (event X in each event progression XY shown). The trajectory of the

temperatures starting at
(
TA(0), TB(0)

)
is a straight line in (TA, TB)-space.

To see this define notation

T•(I) :=

Ton if GI is switched on

Toff if GI is switched off.
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Then by (3.3) we can write the rate of change of temperature of group I as:

ṪI(t) = α
(
T•(I)− TI(t)

)
and therefore

d

dt

(
ṪA

ṪB

)
(t) =

d

dt

(
α
(
T•(A)− TA(t)

)
α
(
T•(B)− TB(t)

))
=
−ṪA(t)

(
T•(B)− TB(t)

)
+ ṪB(t)

(
T•(A)− TA(t)

)(
T•(B)− TB(t)

)2
=
−α
(
T•(A)− TA(t)

)(
T•(B)− TB(t)

)
+ α

(
T•(B)− TB(t)

)(
T•(A)− TA(t)

)(
T•(B)− TB(t)

)2
= 0.

Knowing the shape of the trajectories is useful for considering how the valid regions

shown in Figure 3.16 will change when they map to the temperature space of the

next event. The complications arise from the switch times. Whilst two points

in
(
TA(0), TB(0)

)
-space might be very close to one another, heading along nearby

linear trajectories towards their temperatures at the next switch, they will take

different amounts of time to reach their destination. The time taken to switch is a

nonlinear (implicit) function of the initial temperatures and so if a region of initial

temperatures were to be mapped to their corresponding temperatures at the next

switch event, the region would likely undergo a nonlinear transformation.

Our simulations (such as those presented in Figures 3.9 and 3.10) suggest that for

certain values of σ and ρ∗ the groups will remain separate for all time and settle down

to periodic temperature cycling. We would like to know what event progressions

are possible in the long run. For example, perhaps a trajectory could settle on the

event loop ABGH. If we were to map the region AB (the pink isosceles trapezium

in event square A in Figure 3.16) to its image in the event B square, the vector field

arrows indicate that the new region would be a smaller shape shifted more densely

into the upper right-hand corner. We could imagine that the new region is likely to

intersect the pink region BG, the green line BI and the blue region BC. Therefore

only a portion of the original region could continue on to the next event in the loop,

BG. If ABGH is truly a loop that can exist indefinitely then there exists at least

one point in the AB region that will map back round to itself following one loop.

To explore the potential long-term behaviour of two groups we can solve for their

temperatures and the grid frequency using the switching event equations, mapping
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(0,0)→(0,1)
B

(1,1)→(1,0)
D

(1,0)→(1,1)
E

(0,1)→(0,0)
G

(0,1)→(1,1)

C

(1,1)→(0,1)

F

(0,0)→(1,0)

H

(0,1)→(1,0)
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(0,0)→(1,1)
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L

AK

HE

HA
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AH
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HJ
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DJ

Figure 3.16: Initial condition regions for switching event progression of two groups
of TCLs. For each event X in Figure 3.13 the space of initial conditions that map to
the next switch event Y are labelled XY. GA switches next (pink), GB switches next
(blue), both switch next (green), invalid initial condition (white). Vector field arrows
indicate how initial temperatures will change before the next switch. Connecting
arrows between squares removed for ease of reading, shown in Figure 3.13.

each switch event to the next. Figure 3.17 shows the behaviour of two groups of

TCLs. In the left-hand figures (a, c, e), ρ∗ ≈ 0.27; in the right-hand figures (b,
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d, f), ρ∗ ≈ 0.79. All other parameters are the same for the two simulations, and

σ = 0.48. Figures (a) and (b) show the path through the switch events A-L. Figures

(c) and (d) show these same paths, with the addition of the vertical (time) axis,

which allows us to see the order in which the switch events occur. For example,

Figure (c) indicates that the left-hand simulation initially loops through events A-

B-C-D repeatedly, before changing to loop A-B-G-H. Figures (e) and (f) show the

temperature progressions of the two groups for each choice of parameter values. The

blue numbers next to the circled data points show the temperature pairs at each

of the first four switch events. The fifth temperature pair will be the next point

along the blue line (of points) next to circle 1. The sixth will be the point next to

the circle two on the red line (of points). This continues until the final four points,

marked by a cross at the end of each of the coloured lines. The (TA, TB) coordinates

at each of these final points are labelled as a vector pair. Some of the lines (points

in order of the same colour) have a distinct change in gradient, such as the purple

line in Figure (e) and the blue line in Figure (f). These occur when the switching

event progression loop changes. The TA = TB line is shown to highlight whether

the temperature cycles of the two groups are getting closer together. Synchronised

groups would result in two distinct points on this diagonal line. Figures 3.18 and 3.19

show further examples of initial conditions that end with periodic behaviour in the

A-B-G-H loop, for σ = 0.48 and ρ∗ ≈ 0.27.

To show the difference between synchronising and non-synchronising groups, Fig-

ure 3.20 shows the results for the same two choices of parameters as in Figure 3.17,

except with σ = 0.2 (for both). Note that the four initial switch events (A-B-C-D)

go through multiple different event loops before ultimately reaching the absorbing

K-L loop when the two groups merge into one.

Visualising the switch events progressions for different choices of parameters and

initial conditions is helpful to gain intuition about how two groups can be behave.

In the next section we take an analytic approach to analysing under what conditions

two groups will merge or separate.
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(a) Switch event paths (b) Switch event paths

(c) Switch event paths through time (z-
axis)

(d) Switch event paths through time (z-
axis)

(e) Temperature progression (f) Temperature progression

Figure 3.17: Tracking initial temperature pair (3,5) from event A through switch
events over time, with σ = 0.48. ρ∗ ≈ 0.27 for (a,c,e), ρ∗ ≈ 0.79 for (b,d,f). First
four temperature pairs labelled 1-4 in (e) and (f), continue down the coloured lines
in that order to labelled points. For an expanded explanation see text above.
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(a) Switch event paths (b) Switch event paths

(c) Switch event paths through time (z-
axis)

(d) Switch event paths through time (z-
axis)

(e) Temperature progression (f) Temperature progression

Figure 3.18: Tracking initial temperature pairs (3,5) (a,c,e) and (10,2) (b,d,f) from
event E through switch events over time. First four temperature pairs labelled 1-4
in (e) and (f), continue down the coloured lines in that order to labelled points.
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(a) Switch event paths (b) Switch event paths

(c) Switch event paths (2,7) (from J) (d) Switch event paths (2,7) (from J)

(e) Temperature progression (f) Temperature progression

Figure 3.19: Tracking initial temperature pairs (0,-5) (from I) (a,c,e) and (2,7) (from
J) (b,d,f) through switch events over time. First four temperature pairs labelled 1-4
in (e) and (f), continue down the coloured lines in that order to labelled points.
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(a) Switch event paths (b) Switch event paths

(c) Switch event paths through time (z-
axis)

(d) Switch event paths through time (z-
axis)

(e) Temperature progression (f) Temperature progression

Figure 3.20: Tracking initial temperature pair (3,5) from event A through switch
events over time, with σ = 0.2. ρ∗ ≈ 0.27 for (a,c,e), ρ∗ ≈ 0.79 for (b,d,f). First
four temperature pairs labelled 1-4 in (e) and (f), continue down the coloured lines
in that order to labelled points. For an expanded explanation see text above.
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3.4.6 Linearising about the single group solution

In the previous sections our simulations and switch event mappings suggested that

eventually two groups of TCLs will settle down to periodic solutions. In this section

we use our knowledge of the single group periodic solution from Section 3.4.2 and

the equations for the switching events to ask under what conditions two groups

will merge or remain distinct. Suppose we have a population of frequency-sensitive

TCLs that are split into two synchronised groups. We would like to understand

the dynamics of the switch times, and we ask whether, given sufficient time, the

groups will merge, or whether they will remain distinct, possibly settling down to

separated periodic solutions. In particular, we consider the initial difference between

the switch on times ∆t to be very small and the switch on temperatures very close

to the single group periodic solution from the previous subsection.

Let Γ denote the single group periodic solution, which cycles periodically through

temperature space with temperature TΓ(t). As before, we denote the switched on

duration in this solution by lon and the switched off duration by loff. Suppose that

the population is split into two groups A and B, such that proportion σ belongs

to group A, and proportion 1 − σ belongs to group B. Suppose also that group B

switches on at time t = 0, followed soon after by group A switching on, at time

t1 > 0. Then after a time period of length similar to lon group B switches off, which

is again followed shortly after by group A switching off. After a time period similar

to loff each of the groups then switch back on. We shall assume that the switching

order does not change, since if they to swap, we need only repeat this process with

σ replaced by 1− σ. Simulations show that the switching order will not continue to

change indefinitely.

We would like to compare the temperature cycles of these two groups with the

single group periodic solution Γ. Without loss of generality suppose that group B

initially switches on at the same time as a fully synchronised population solution.

We compare the cycling of the groups A and B using the following measures, along

with all those shown in Figure 3.21. Let ∆T := TB(0)− TA(0) and ∆′T := TB(t4)−
TA(t4), the temperature difference when B switches on the first and second times,

respectively. In addition, let ∆t := t1 − 0 = t1 = ε1 and ∆′t := t5 − t4, the

time difference between the two groups switching on the first, and second times

respectively. Further notation is shown in Figure 3.21.

In order to calculate ∆′T and ∆′t we need to calculate the switch times and tempera-

tures of the two groups at each switch event leading up to t5. Solving for the switch
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Figure 3.21: Linearisation about the single-group solution. Upper diagram: single
group solution TΓ(t). Lower diagram: temperature cycling of groups A and B close
to the single-group solution.

times and temperatures when there are two groups is a little more complicated than

for the fully synchronised case. It requires solving the temperature set point equa-

tions using the system conditions at the previous switch and the equation for ḟ

which now takes one of four values depending on which combination of groups are

switched on (both, neither, A only, or B only). We begin by making the simplifying

assumption β− = β+ := β. Now since group A is switching on at time t1 and group
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B switched off at time 0,

TA(t1) = T 0
+ − βf(t1)

f(t1) = f(0)− cPc(1− σ − ρ∗)t1

f(0) =
1

β

(
t0+ − TB(0)

)
∴ TA(t1) = TB(0) + βcPc(1− σ − ρ∗)t1. (3.100a)

In addition, by the temperature evolution equations,

TA(t1) = (TA(0)− Toff)e−αt1 + Toff. (3.100b)

Equating (3.100a) and (3.100b) and introducing our new notation gives

βcPc(1− σ − ρ∗)∆t + ∆T = (TA(0)− Toff)(e−α∆t − 1). (3.101)

If we write TA(0) = TΓ(0) + δTA(0) and take δTA(0) and ∆t small, then

∆T = (TΓ(0) + δTA(0)− Toff)(e−α∆t − 1)− βcPc(1− σ − ρ∗)∆t

and linearising in ∆t gives

∆T ≈ ξ∆t (3.102)

where ξ := α
(
Toff − TΓ(0)

)
− βcPc(1− σ − ρ∗). (3.103)

More generally, at each switch event we have the temperature evolution equations

that describe the temperature of each group as a function of their temperature at the

previous switch (such as (3.100b)), and an additional equation for the temperature

of the switching group, using the temperature set point equations (such as (3.100a)).
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The temperature evolution equations tell us that:

TA(t1) = (TA(0)− Toff)e−αt1 + Toff (3.104a)

TB(t1) = (TB(0)− Ton)e−αt1 + Ton (3.104b)

TA(t2) = (TA(t1)− Ton)e−α(t2−t1) + Ton (3.104c)

TB(t2) = (TB(t1)− Ton)e−α(t2−t1) + Ton (3.104d)

TA(t3) = (TA(t2)− Ton)e−α(t3−t2) + Ton (3.104e)

TB(t3) = (TB(t2)− Toff)e−α(t3−t2) + Toff (3.104f)

TA(t4) = (TA(t3)− Toff)e−α(t4−t3) + Toff (3.104g)

TB(t4) = (TB(t3)− Toff)e−α(t4−t3) + Toff. (3.104h)

The temperature set point equations provide us with:

TA(t1) = TB(0) + βcPc(1− σ − ρ∗)t1 (3.105a)

TB(t2) = TA(t1) + βcPc(1− ρ∗)(t2 − t1)− (T 0
+ − T 0

−) (3.105b)

TA(t3) = TB(t2) + βcPc(σ − ρ∗)(t3 − t2) (3.105c)

TB(t4) = TA(t3)− βcPcρ∗(t4 − t3) + T 0
+ − T 0

−. (3.105d)

Equations (3.104a) and (3.105a) determine t1 in terms of TA(0) and TB(0). Equa-

tions (3.104a) and (3.104b) determine TA(t1), TB(t1), and so forth, and hence TA(t4), TB(t4)

are determined by TA(0), TB(0). To analyse the linear stability of the fixed point

of this map corresponding to the one group solution TΓ (Section 3.4.2) we find that

∆′T := TB(t4)−TA(t4) depends only on ∆T and some differences of switching times,

by eliminating the temperatures at the intermediary switch times.

∆′T =
(
TB(0)− TA(0)

)
e−α(t4−t1)+

+ (Toff − Ton)(e−α(t4−t3) − e−α(t4−t2) − e−α(t4−t1) + e−α(t4)). (3.106)

Defining L := lon + loff and linearising about the single group solution using the εi

notation from Figure 3.21 (signed displacement from the single group switch times)

gives

∆′T ≈ e−αL∆T + α(Toff − Ton)[(ε3 − ε2)e−αloff − e−αL∆t]. (3.107)

Since (3.104a) and (3.105a) are two equations for TA(t1), (3.104d) and (3.105b) are

two equations for TB(t2), (3.104e) and (3.105c) are two equations for TA(t3), and
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(3.104h) and (3.105d) are two equations for TB(t4), we have

(TA(0)− Toff)e−αt1 + Toff = TB(0) + βcPc(1− σ − ρ∗)t1 (3.108a)

(TB(t1)− Ton)e−α(t2−t1) + Ton = TA(t1) + βcPc(1− ρ∗)(t2 − t1)− (T 0
+ − T 0

−)

(3.108b)

(TA(t2)− Ton)e−α(t3−t2) + Ton = TB(t2) + βcPc(σ − ρ∗)(t3 − t2) (3.108c)

(TB(t3)− Toff)e−α(t4−t3) + Toff = TA(t3)− βcPcρ∗(t4 − t3) + T 0
+ − T 0

−. (3.108d)

We used (3.108a) already to determine t1 in terms of ∆T to first order (3.102).

Denote τ := ε3 − ε2, then to find τ to first order we linearise (3.108c) to obtain

βcp(σ − ρ∗)τ+TΓ(lon) +
(
TB(t2)− TΓ(lon)

)
=

(
TΓ(lon) +

(
TA(t2)− TΓ(lon)

))
e−ατ + Ton(1− e−ατ )

βcp(σ − ρ∗)τ+TΓ(lon) +
(
TB(t2)− TΓ(lon)

)
= TΓ(lon) + TA(t2)− TΓ(lon)− ατ [TΓ(lon) +

(
TA(t2)− TΓ(lon)

)
]+

+ Ton(1− 1 + ατ)

which gives

[βcp(σ − ρ∗) + α(TΓ(lon)− Ton)]τ = TA(t2)− TB(t2). (3.109)

Now we can find a substitution for TA(t2) and TB(t2):

TA(t2)− TB(t2) = TA(0)e−αt2 + Toff(e
−α(t2−t1) − e−αt2)+

+ Ton(1− e−α(t2−t1))− (TB(0)− Ton)e−αt2 − Ton
= −

(
TB(0)− TA(0)

)
e−α(lon+ε2) + Toff(e

−α(lon+ε2−ε1) − e−α(lon+ε2))+

+ Ton(e−α(lon+ε2) − e−α(lon+ε2−ε1))

= −∆T e
−αlon + Toffαε1e

−αlon − Tonαε1e−αlon

= (α(Toff − Ton)∆t −∆T )e−αlon

and we can use this substitution to arrive at

τ = ε3 − ε2 =
(α(Toff − Ton)∆t −∆T )e−αlon

βcPc(σ − ρ∗) + α(TΓ(lon)− Ton)
. (3.110)
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(b) Enlargement

Figure 3.22: Solutions for λ (Eq (3.112)) (solid lines) for different values of ρ∗.
Dashed lines show reflection in σ = 1

2 to show the effect of reversing the switching
order of the groups. Blue: ρ∗ = 0.1, yellow: ρ∗ = 0.2, green: ρ∗ = 0.3, red: ρ∗ = 0.4.
Black line shows the boundary of stability (stable below, unstable above). The
results are identical when ρ∗ is replaced by 1−ρ∗. Figure (b) shows an enlargement
centred at σ = 1

2 , showing that either switching order of the groups leads to λ2 > 1
on a small interval of σ. In this case the groups never merge and in all other cases
they will.

With our expression for τ and for ∆t using (3.102), we arrive at

∆′T = λ∆T (3.111)

where

λ :=

(
1− α(Toff − Ton)

α
(
Toff − TΓ(0)

)
− βcPc(1− σ − ρ∗)

)
·

·
(

1− α(Toff − Ton)

α(TΓ(lon)− Ton) + βcPc(σ − ρ∗)

)
e−αL. (3.112)

So [−1,+1] is a left eigenvector of the linearised map in the space of
(
δTA
δTB

)
with

eigenvalue λ. We can plot λ against σ for various ρ∗ to see whether |λ| < 1 (in

which case the two groups merge into one) or whether |λ| > 1 (they move apart).

The results are shown in Figure 3.22.

Next we derive bounds on the second eigenvalue, and find that it is insignificant for

determining the stability of the system. The temperature cycles of groups A and B

are very close to the single group temperature cycle TΓ and therefore, for I ∈ {A,B}
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we write

TI(0) = TΓ(0) + δTI(0)

TI(t1) = TΓ(0) + δTI(t1)

TI(t2) = TΓ(lon) + δTI(t2)

TI(t3) = TΓ(lon) + δTI(t3)

TI(t4) = TΓ(0) + δTI(t4).

Our approach is to seek a map M such that(
δTA(t4)

δTB(t4)

)
= M

(
δTA(0)

δTB(0)

)
.

Taking linear approximations as in Section 3.4.6, (3.108a) approximates to

TΓ(0) + δTA(0)− αt1(TΓ(0)− Toff) ≈ TΓ(0) + δTB(0) + βcPc(1− σ − ρ∗)t1

t1 ≈
δTB(0)− δTA(0)

ξ1
(3.113)

where ξ1 := α
(
Toff − TΓ(0)

)
− βcPc(1− σ − ρ∗). (3.114)

We can use this expression for t1 and take a first order approximation of (3.104a)

to find an expression for δTA(t1) in terms of δTA(0):

TΓ(0) + δTA(t1) = (TΓ(0) + δTA(0)− Toff)e−αt1 + Toff

δTA(t1) ≈ δTA(0)− αt1(TΓ(0)− Toff)

δTA(t1) ≈ δTA(0) +
α

ξ1

(
Toff − TΓ(0)

)(
δTB(0)− δTA(0)

)
. (3.115)

Similarly, using (3.104b) we find that

δTB(t1) ≈ δTB(0)− α

ξ1
(TΓ(0)− Ton)

(
δTB(0)− δTA(0)

)
. (3.116)

We repeat this process to find expressions for each time interval6 (εi − εi−1) for

6Recall that t1 = ε1 − 0 is the first interval between switch times.
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i ∈ {2, 3, 4} and each subsequent δTA(ti) and δTB(ti). We use (3.108b) to find

ε2 − ε1 ≈
δTB(t1)e−αlon − δTA(t1)

ξ2
(3.117)

where ξ2 := α(TΓ(0)− Ton)e−αlon + βcPc(1− ρ∗). (3.118)

Equations (3.104c) and (3.104d) thus yield

δTA(t2) ≈ δTA(t1)e−αlon − α

ξ2
(TΓ(0)− Ton)

(
δTB(t1)e−αlon − δTA(t1)

)
e−αlon

(3.119)

δTB(t2) ≈ δTB(t1)e−αlon − α

ξ2
(TΓ(0)− Ton)

(
δTB(t1)e−αlon − δTA(t1)

)
e−αlon .

(3.120)

Using (3.108c) we find

ε3 − ε2 ≈
δTA(t2)− δTB(t2)

ξ3
(3.121)

where ξ3 := α(TΓ(lon)− Ton) + βcPc(σ − ρ∗). (3.122)

Equations (3.104e) and (3.104f) yield

δTA(t3) ≈ δTA(t2)− α

ξ3
(TΓ(lon)− Ton)

(
δTA(t2)− δTB(t2)

)
(3.123)

δTB(t3) ≈ δTB(t2) +
α

ξ3

(
Toff − TΓ(lon)

)(
δTA(t2)− δTB(t2)

)
. (3.124)

Finally (3.108d) gives

ε4 − ε3 ≈
δTA(t3)− δTB(t3)e−αloff

ξ4
(3.125)

where ξ4 := α(Toff − TΓ

(
lon)

)
e−αloff + βcPcρ

∗ (3.126)
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and (3.104g) and (3.104h) give

δTA(t4) ≈ δTA(t3)e−αloff +
α

ξ4
(Toff − TΓ

(
lon)

)
(δTA(t3)− δTB(t3)e−αloff)e−αloff

(3.127)

δTB(t4) ≈ δTB(t3)e−αloff +
α

ξ4
(Toff − TΓ

(
lon)

)
(δTA(t3)− δTB(t3)e−αloff)e−αloff .

(3.128)

For each i ∈ {1, 2, 3, 4} we can write(
δTA(ti)

δTB(ti)

)
= Mi

(
δTA(ti−1)

δTB(ti−1)

)

and so (
δTA(t4)

δTB(t4)

)
= M

(
δTA(0)

δTB(0)

)

where

M := M4M3M2M1.

We introduce the following simplifying notation before defining each matrix Mi. Let

A = α
(
Toff − TΓ(0)

)
(3.129a)

B = α(TΓ(0)− Ton) (3.129b)

C = α(TΓ(lon)− Ton) (3.129c)

D = α
(
Toff − TΓ(lon)

)
. (3.129d)
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Then

M1 =
1

ξ1

(
ξ1 −A A
B ξ1 − B

)
(3.130a)

M2 =
e−αlon

ξ2

(
ξ2 + B −Be−αlon

B ξ2 − Be−αlon

)
(3.130b)

M3 =
1

ξ3

(
ξ3 − C C
D ξ3 −D

)
(3.130c)

M4 =
e−αloff

ξ4

(
ξ4 +D −De−αloff

D ξ4 −De−αloff .

)
(3.130d)

We already know one of the eigenvalues of the system (λ), and the second eigenvalue

is given by det(M)
λ . Note that det(M) = det(M4) det(M3) det(M2) det(M1), and

det(M1) = ξ1 − (A+ B) = −B − βcPc(1− σ − ρ∗) (3.131a)

det(M2) = (ξ2 + B
(
1− e−αlon)

)
e−αlon = (B + βcPc

(
1− ρ∗)

)
e−αlon (3.131b)

det(M3) = ξ3 − (C +D) = −D + βcPc(σ − ρ∗) (3.131c)

det(M4) =
(
ξ4 +D(1− e−αloff)

)
e−αloff = (D + βcPcρ

∗)e−αloff . (3.131d)

We can rewrite λ (see (3.112)) in our new notation as

λ =
(B + βcPc(1− σ − ρ∗))(D − βcPc(σ − ρ∗))
(A− βcPc(1− σ − ρ∗))(C + βcPc(σ − ρ∗))

e−αL (3.132)

which allows us to write

det(M)

λ
= [A− βcPc(1− σ − ρ∗)][B + βcPc(1− ρ∗)][C + βcPc(σ − ρ∗)][D + βcPcρ

∗].

(3.133)

Denote the second eigenvalue byλ2, and

λ2 =
det(M)

λ
. (3.134)

Since 0 < A,B, C,D < α(Toff − Ton), σ ∈ (0, 1) and ρ∗ ∈ (0, 1),

|λ2| < [α(Toff − Ton) + βcPc]
4
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which for our choice of parameter values gives

|λ2| < 7.70× 10−9.

Therefore the absolute value of the second eigenvalue is (significantly) less than

1. The second eigenvalue is within the interval (−1,+1) for any σ and ρ∗ for our

parameter values7 and therefore the stability is governed by λ.

By solving for the dividing case λ = 1 we can create a bifurcation diagram in terms

of the parameters σ and ρ∗ to show where the single group solution is attracting

and repelling. Figure 3.23 sketches the solution, along with the solution for the

case when the switching order of the groups is reversed, found by replacing σ with

1 − σ. If in either case (group A switching first or group B switching first) the

solution is attracting, then the two groups will merge together into the one group

solution. However, if both cases have unstable dynamics then the solutions will

never merge. Our simulations showed that in this parameter region the two groups

will settle down to a fixed phase distance apart. If the solution is attracting for one

switching order and repelling for the other, we find that the typical behaviour is

for a small separation in the unstable direction to grow until the phase difference

becomes almost a whole cycle, when they merge. Figure 3.24 illustrates how the

cycles of the two groups can change over time relative to one another, depending on

which of the three regions in the bifurcation diagram their parameters belong to.

What these results show is that when a population is split into two groups, if they are

sufficiently similar in size then they will remain apart, effectively trying to counteract

one another and balance the frequency fluctuations. Conversely, if one of the groups

is significantly larger8 than the other then it will have too strong an effect on the

frequency, and ‘pull’ on the smaller group’s cycle. The closer the proportion switched

on in equilibrium is to the proportion switched off (i.e. the closer it is to 0.5), the

more similar the groups have to be in size to remain distinct.

7Parameter values are taken from Table 3.1 with the exception of β = 0.1. Small β is required
to limit the rate of change of the frequency and ensure model validity.

8‘significantly’ here depends on the size of ρ∗, and may be very small if ρ∗ ≈ 0.5.
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Figure 3.23: Bifurcation diagram for the stability of the single group solution to
splitting in two. Stable if the parameters lie in the yellow or blue regions (the
groups will ultimately merge), unstable in the green parameter region (the groups
will never merge). Boundary lines are solutions to (3.112) as a function of σ (or
1− σ to capture switching order reversal) and ρ∗.

3.4.7 N synchronised groups

Beyond two synchronised groups of TCLs the number of switching events becomes

too large for analytical approaches to be feasible. When we have one group there

are two possible states, on and off (1 and 0). There are two possible events: 1→ 0

and 0→ 1. One event always follows the other and it is possible to find implicit

equations for the periodic solution. With two groups we have four possible states:

(0,0), (0,1), (1,0) and (1,1). From each state we can transition to any of the other

three and so there are 4 × 3 = 12 events, as shown in Figure 3.12. Given the

temperature and state of each group, the previous state of the system is required

to know which switch event comes next. This requirement leads to the 32 possible

‘switching event transitions’ shown in Figure 3.13.

For three groups we now have 23 = 8 possible states, and therefore 8 × 7 = 56

switching events. Our formulae for N groups is thus 2N states and 2N (2N − 1)

switching events. The results for N equals 1 to 5 are shown in Table 3.2. The
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(a) λ(σ, ρ∗) < 1, blue parameter region in Figure 3.23

(b) λ(1 − σ, ρ∗) < 1, yellow parameter region in Figure 3.23

(c) λ(σ, ρ∗) > 1, λ(1 − σ, ρ∗) > 1, green parameter region in Figure 3.23

Figure 3.24: Illustration of the three types of cycling behaviour of two-groups relative
to one another, based on simulations. Arrows indicate the occurrence of many cycles
and the central illustrations are snapshots of the cycling behaviour between the start
and the final behaviour. Synchronisation occurs in cases (a) and (b), while in case
(c) each group tends fixed phase difference apart.

exponential growth in the number of states leads to a huge number of switching

events, even when there are only three groups.

Table 3.2: The number of states and switching events for different numbers of
synchronised groups of TCLs

Number of Groups 1 2 3 4 5

Number of States 2 4 8 16 32

Number of Switching Events 2 12 56 240 992

We found analytically that two groups will remain distinct if their relative sizes

are sufficiently similar. Figure 3.23 shows the regions in (σ, ρ∗) parameter space in

which the groups will merge or synchronise. When there are three groups there are

three possibilities: full synchronisation, partial synchronisation (only two groups

synchronise) and no synchronisation. The large number of possible switching events

prevents us from studying the three group case analytically, however, we are able

to run simulations for three groups. We can visualise the results in two dimensions

using a triangular simplex when ρ∗ is fixed.

A triangular simplex allows us to represent data with three coordinates in two di-
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mensions, by making use of the fact that our system is only two-dimensional. The

proportion of TCLs in each group, σA, σB, and σC sum to 1 and therefore lie in

a plane, and so we can represent the three proportions on a triangular simplex.

Figure 3.25 shows our simplex, an equilateral triangle with height 1. Figure 3.25(a)

shows the Cartesian coordinates (x, y) for a point in the triangle, 3.25(b) shows the

corresponding values of (σA, σB, σC), the proportion in group A, B and C respec-

tively. At the vertices all TCLs belong to just one of the groups and at the centre

the proportions are equal.

The application of basic geometry allows us to find the simplex Cartesian coordinates

(x, y) for point (σA, σB, σC) using the relation(
x

y

)
=

(
− 2√

3
− 1√

3

0 1

)(
σA

σB

)
. (3.135)

Conversely, the proportions σA, σB and σC can be found from the Cartesian simplex

coordinates according toσAσB
σC

 =

−
√

3
2 −1

2

0 1

+
√

3
2 −1

2

(x
y

)
+

1

0

0

 . (3.136)

Figures 3.26, 3.27 and 3.28 show the final condition of our system (full, partial or

zero synchronisation) after 1000 days of simulation for different values of ρ∗. The

proportions in each group are given by the location on the simplex. Due to the

perfect symmetry of the three groups, it was only necessary to take points from

one sixth of the triangle, and then to reflect the results in the lines of symmetry to

see the full picture. Certain regions are more densely packed than others - these

were found to be where the boundaries between outcomes existed and so were more

densely sampled for simulations.

Figure 3.26 shows the results for our typical value of ρ∗ = 0.3355. The sides of

the triangle represent 2 groups with non-zero proportions, and so the results match

the results from the two group case we saw earlier. There is a small region where

the two groups remain distinct (pink), and outside of this region the groups fully

synchronise (green). In the centre of the triangle exists a region where the three

groups will remain distinct, the blue region. The three bands of pink that form a

triangular shape approximately follow the lines where half of the TCLs belong to one

of the groups. Figures 3.27 and 3.28 show the results when parameter Ton is changed
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(a) Simplex with Cartesian coordinates

(b) Simplex with σ coordinates

Figure 3.25: Simplex Cartesian coordinates (a) and σ coordinates (b).
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to change ρ∗ to ρ∗ = 0.2370 and ρ∗ = 0.4692 respectively. When ρ∗ decreases the

partial synchronisation region increases in size and the central zero synchronisation

region reduces. When ρ∗ increases towards 1/2 the partial synchronisation reduces

to what may be a very thin hollow triangle, but the sampling of the space only found

a few points in parameter space where this was the case. The zero synchronisation

region has also become much smaller, which is likely to be due to ρ∗ being further

from 1/3, just as in the two-group case the largest region for zero synchronisation

was when ρ∗ = 1/2.

These results suggest that when a population is split into N groups of similar size

they can remain distinct. If one or more of the groups contains proportion 1/m of

the population, with 0 < m < n, then partial synchronisation may occur.

Figure 3.26: Long-term behaviour of three groups when ρ∗ = 0.3355.
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Figure 3.27: Long-term behaviour of three groups when ρ∗ = 0.2370.
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Figure 3.28: Long-term behaviour of three groups when ρ∗ = 0.4692.
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“You see, Freddy believes that if a fridge falls

off a minivan, you better swerve out of its way.

I believe it’s the fridge’s job to swerve out of

mine.”

Frank Underwood,

House of Cards (2013), Season 1, Episode 4

4
Simulations

4.1 Introduction

In Chapter 3 we took a number of analytical approaches to study the stability of

a population of identical frequency-sensitive TCLs. We found evidence of stabil-

ity to small perturbations but that initial conditions with synchronised groups of

sufficiently different sizes tend to synchronise more. Nevertheless, synchronised so-

lutions are unstable to splitting into roughly equal sized groups. In this chapter we

use simulations to test the analysis done in Chapter 3 and to take more real-world

details into account.

Section 4.2 shows the results of simulating an identical population of frequency-

sensitive TCLs and the grid frequency, in the absence of any other agent. This

corresponds directly to the modelling and analysis from Section 3.3. We simulate

the system from a number of different initial states (perturbations of the initial

distribution of TCLs away from equilibrium), and find that although the perturba-

tions initially die down (as predicted by the linear analysis), ultimately they lead to

larger, growing perturbations.

In Section 4.3 we describe a different model that incorporates real data from the GB
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electricity grid, allowing us to include the effects of naturally-occurring supply and

demand fluctuations as well as the actions of other frequency response providers. In

Section 4.4 we present the results from using this model to simulate a homogeneous

population of fridges, finding evidence of synchronisation and detrimental system

effects. In Section 4.5 we present the results from introducing heterogeneity to

the population, and we investigate the amount of heterogeneity required to prevent

synchronisation issues, comparing our result with the equivalent result from the

Kuramoto model.
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4.2 Perturbations of a uniform distribution of TCLs

In Section 3.3 we analysed the stability of a large population of TCLs uniformly

distributed in each part of the on/off cycle. In this section we simulate a large

population of fridges with initial conditions close to the equilibrium distribution

(the uniform distribution), and compare the results with our analytical work.

The model is the same as presented in Section 3.2, and unless stated otherwise, the

parameter values are as in Table 3.1 on page 42. In the previous chapter we modelled

our population as a continuum. For our simulations we split the fridge population

into 10000 ‘agents’ (groups of fridges) that are each represented by a temperature

and state, and who operate according to the switching rules and temperature pro-

gression equations in Section 3.2.2. These 10000 agents are representative of the

million fridges we assume are participating in our DSR scheme (i.e. operating in

frequency-sensitive mode), since one million (or more) individuals would require

very large amounts of computing time and memory. The power consumption of

each agent is taken to be the total possible population consumption Pc divided by

the number of agents, 10000. Each time step is taken to be 1s, and at each time

step each agent updates its temperature, and based on the frequency at the previous

time step, may switch on or off. The exact switch time is approximated using linear

interpolation between the current and previous time step, and the new temperature

is adjusted accordingly (see Appendix B for details).

To perturb the TCL distribution u(θ) we can alter the number of TCLs switched

on or off from the equilibrium proportions ρ∗ and (1 − ρ∗) respectively, and we

can perturb the uniform distributions within each on/off half of the θ interval. We

choose to perturb the distributions by the addition of a sine wave to u∗, and we refer

to the normalised wave peak amplitude ∆u (normalised by dividing by u∗). This

normalisation means that when we plot u(θ,0)
u∗ , the zero perturbation case is 1 for all

θ both on and off and the results are more clear. Table 4.1 shows eight combinations

of choices for these perturbation parameters. All other parameters are as stated in

Table 3.1 in Section 3.2.4.

Figure 4.1 shows the effects of these perturbations on the initial conditions in each

case, plotting u(θ,0)
u∗ against θ. Figure 4.2 shows the final fridge distributions after

ten days. The unperturbed case (a.i) has remained uniform, while the peaks of

the perturbation cases have all grown by varying amounts. In cases (a.ii)-(a.iv) (no

perturbation to the proportion switched on) the final distributions exhibit increasing

levels of synchronisation, but the clustering is far less than in cases (b.i)-(b.iv) which
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Table 4.1: Parameter values for plots in Figures 4.1, 4.2 and 4.3.

Plot number ρon(0) ∆u

a.i ρ∗ 0
a.ii ρ∗ 0.1
a.iii ρ∗ 0.25
a.iv ρ∗ 0.5
b.i 1.5ρ∗ 0
b.ii 1.5ρ∗ 0.1
b.iii 1.5ρ∗ 0.25
b.iv 1.5ρ∗ 0.5

see the population synchronised into seven or fewer groups. The effects of this

synchronisation on the electricity grid frequency can be seen in Figure 4.3.

Interestingly, in each case with perturbations, the frequency oscillations initially die

down to close to 50Hz. This means that to begin with the fridges are controlling the

frequency oscillations caused by their initial condition perturbations. This aligns

with our analysis from the previous chapter, in which we found that the uniform

distribution of a continuum population is stable to small perturbations. What that

analysis was unable to capture was the long-term effects of frequency sensitivity. In

each case the frequency oscillations grow after less than a day, becoming very large

in several cases. Before the large spikes in (b.iii) we see the frequency oscillations

shrink down. This shows the inherently volatile nature of the system, and potentially

explains why the the oscillations in (b.iv) are ultimately less severe. It could be that

these lower oscillations will shortly become much larger. In either case, the size of

most of the final oscillations would be too large for the system to cope without

frequency response from other providers.

These simulations reveal that while a homogeneous population of TCLs will act to

dampen system perturbations, their behaviour to support the electricity grid will,

given sufficient time, lead to further oscillations. The larger the perturbations, the

sooner these detrimental effects will occur.
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Figure 4.1: Initial fridge distributions in phase, with labels matching those in Ta-
ble 4.1. Pink indicates switched off fridges, blue indicates switched on. Distributions
scaled by 1

u∗ and histograms formed of 100 bins. Left-hand figures have no pertur-
bation to the proportion of fridges switched on, right-hand figures have increasing
perturbation (going downwards) to the number of fridges switched on. All involve
sinusoidal distribution perturbations.
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Figure 4.2: Final fridge distributions after 10 days in θ-space, with properties as
given in Table 4.1 and initial distributions as shown in Figure 4.1. Perturbations
have grown (except for the zero perturbation case (a.i)).
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Figure 4.3: Electricity grid frequency over 10 days (values plotted once per 5 min-
utes), with fridge distributions as described in Table 4.1 and Figures 4.1 and 4.2.
The perturbed systems (all but (a.i)) see an initial reduction in oscillation amplitude
followed by oscillation growth.
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4.3 GB electricity grid simulations: Methodology

Our model and simulations have thus far reduced the complexity of the prob-

lem by assuming that apart from the TCL population and the grid frequency, all

other network conditions remain constant. This was necessary for our model to

be tractable, and to ensure that any results from the simulations were attributable

to the frequency-sensitive TCL population. An important next step is to consider

the TCL population in the context of a real system. In collaboration with the GB

System Operator National Grid, we are able to model the GB system with real data

from 36 separate 10-day periods during 2015-2016, and simulate what would have

happened if a frequency-sensitive fridge population had been active. We consider

how the distribution of TCLs changes over this period, and the reduction in the

amount of response that other providers needed to supply because of the contribu-

tion from the fridges.

We simulate a population of TCLs (specifically fridges) that respond to the grid

frequency according to the rules in Section 3.2.2. To simulate the grid frequency, we

use various historic data from National Grid and model what would have happened

had the population of fridges been frequency responsive at the time. By considering

the population in the context of real data including response provision from other

sources such as power generators, we are able to get a better understanding of

the potential impact of the fridges compared to, say, modelling them in isolation

responding to a one-off frequency event.

Figure 4.4 gives an overview of the simulation process. The rhombus symbol is

used for inputs and outputs, rectangles indicate methods used in the simulation.

Methods are applied working downwards, except for the dashed arrows which create

the iterative loop.

4.3.1 Inputs

As shown in Figure 4.4, there are four types of data input, in addition to the fridge

population initial conditions. We use 36 consecutive samples of ten days’ worth of

continuous data from the period July 2015 - June 2016. Summary statistics and

plots of the input data are presented in Appendix C.

Kinetic energy data consists of National Grid’s best estimate for the total stored

kinetic energy in MVAs (megavolt-ampere seconds) [21]. Values are calculated by
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Figure 4.4: Simulation methodology diagram. Rhombi indicate input or calculated
data/simulated data, rectangles indicate methods/calculations. Events occur from
top to bottom with the exception of the dashed arrows which form the iterative
loop.

summing the inertia of all running synchronised generators1 with an estimate of

kinetic energy from demand. The kinetic energy data provided (confidentially from

1This is a generator-specific constant provided to the System Operator by each power generator.
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National Grid) is per settlement period2 and repeat each value for the full 30 minutes

(rather than interpolating). Typical kinetic energy values are in the range of 20000

- 40000 MVAs.

Demand data consists of per-second metered demand given to us by National Grid.

This is a sum of the power leaving the electricity transmission system, including any

power exports through the interconnectors. Half-hourly demand data is currently

accessible via the ‘Data Explorer’ page National Grid website3.

Historic frequency data consists of per-second system frequency data in hertz.

Frequency measurements are taken in multiple locations to ensure reliable data

availability in the event of any metering faults. The frequency data provided by

National Grid has undergone a cleaning process that takes advantage of the multiple

readings. It is available via National Grid’s ‘Enhanced Frequency Response’ page4.

Response holdings refers to the amount of frequency response delivery in MW

(as a function of grid frequency) that National Grid expect each second. Response

holdings are positive (or negative) for ‘low (high) frequency response delivery’ (when

the frequency is below (above) 50Hz), respectively. For each time step (1 second),

9 different values for response holding are listed. These take the form of primary,

secondary and high response.

Primary response values are given for trigger points at 49.9Hz, 49.5Hz and 49.2Hz.

This means that at these frequencies the power response provided through various

types of primary response service are the historic response holding values given,

subject to a 1 second reaction delay. We assume that the response increases lin-

early from 0 between 49.985Hz and 49.8Hz, and likewise linearly between all other

frequency trigger values. Below 49.2Hz the response is assumed to be the constant

49.2Hz response value. The starting frequency trigger value of 49.985Hz is used to

take into account the Grid Code deadband of (50±0.015)Hz, within which response

is not required. Secondary response values are given for frequency trigger points

49.8Hz and 49.5Hz, and response is modelled in the same was as for primary re-

sponse, only with an 11s response delay. High response values have trigger points

50.2Hz and 50.5Hz. Just as for primary response, the time lag is 1s and again, re-

sponse is modelled as linear interpolation through these points, starting at the edge

of the deadband at 50.015Hz, and remaining constant beyond 50.5Hz. Figure 4.5

2Settlement periods split up the day into 48 half hour units starting on the hour and half hour.
3http://www2.nationalgrid.com/UK/Industry-information/Electricity-transmission-

operational-data/Data-Explorer/
4http://www2.nationalgrid.com/Enhanced-Frequency-Response.aspx
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illustrates an example of how response holding data (Table 4.2) are interpreted in

the model. Values given are indicative only of possible values.

49.2 49.5 49.8 50 50.2 50.5
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Figure 4.5: Representative historic response data with interpolation method for
primary response (solid line below 50Hz), secondary response (dashed line) and high
response (solid line above 50Hz). Zero response in the deadband (50± 0.015)Hz.

Table 4.2: Illustrative historic response holding data behind Figure 4.5.

Primary Secondary High

Frequency Trigger (Hz) 49.2 49.5 49.8 49.5 49.8 50.2 50.5
Response (MW) 850 800 430 950 500 -350 -680

Fridge conditions refers to the initial on/off state and initial temperature of each

fridge in the population. For the simulations presented here we take the zero per-

turbation case (a.i) (Table 4.1) from the previous section.

4.3.2 Calculating the demand at 50Hz

Deviations in grid frequency away from 50Hz affect the total system demand. We

make the assumption that demand increases linearly by approximately 2.5% of its

value at 50Hz for every 1Hz increase in frequency above 50Hz (and decreases by the
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same amount as frequency decreases below 50Hz). In order to know the demand at

the nominal frequency, ‘demand at 50Hz’, Demω0(t), we need to calculate it from

the (measured) demand data input, D(t).

D(t) = Demω0(t)[1 + 0.025(f(t)− 50)] (4.1)

Demω0(t) =
D(t)

1 + 0.025(f(t)− 50)
. (4.2)

We use this new demand data to calculate the underlying imbalance and the response

from demand in the presence of the fridge population.

4.3.3 Calculating the underlying imbalance

In order to calculate the effects of the fridge population on the system frequency,

we first need to calculate the underlying supply-demand imbalance (in MW) that

caused the original system frequency deviations away from 50Hz. At this point it is

necessary to distinguish between two important, similar-sounding terms: underlying

imbalance and total imbalance. By underlying imbalance, Imbunder(t), we mean the

generation-demand imbalance that occurs independently of the system frequency.

This may be due to, for example, fluctuations in wind or solar power generation, or

discrepancies between the total predicted system demand and the actual real-time

demand. In contrast, total imbalance, Imbtot(f, t), includes both the underlying

imbalance and, additionally, what we shall refer to as dynamic imbalance.

There are two sources of dynamic imbalance; generator response (frequency response

provided by power generators as the frequency changes), and demand response (the

automatic change in demand as frequency changes)5. Generator response, Genresp,

consists of the actual response delivered by generators, calculated as described above

from the response holdings and the historic system frequency. Generator response

is assumed to have a small time lag δt, which we take to be 1 second. In contrast,

demand response, Demresp, is assumed to occur instantaneously, and is defined as the

measured system demand D(t) minus the demand at 50Hz, Dω0(t) (see ‘calculating

demand at 50Hz’). Therefore by (4.1)

Demresp

(
f(t), t

)
= 0.025Dω0(t)

(
f(t)− 50

)
. (4.3)

5Note that in this context ‘demand response’ is completely different to demand-side response
services, which, given their current low penetration of the response market, we exclude from our
simulations.
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Both sources of dynamic imbalance will change when we introduce the population

of responsive fridges (because of their impact on the frequency) and therefore will

need to be re-calculated.

We use a linear approximation for the rate of change of frequency [1], which in our

notation, is given by

df

dt
=

50 Imbtot
(
t
)

2Ek(t)
(4.4)

where 50 is the nominal frequency 50Hz and Ek(t) is stored kinetic energy in MVAs.

Since

Imbtot
(
t
)

= Imbunder
(
t
)

+ Genresp
(
f(t− δt), t

)
−Demresp

(
f(t), t

)
(4.5)

we are able to find

Imbunder
(
t
)

=
Ek(t)

25

df

dt
−Genresp

(
f(t− δt), t

)
+ Demresp

(
f(t), t

)
(4.6)

which for simulation time step size ∆t gives

Imbunder
(
t
)

=
Ek(t)[f(t)− f(t−∆t)]

25∆t
−Genresp

(
f(t− δt), t

)
+ Demresp

(
f(t), t

)
.

(4.7)

We take ∆t = 1s, so ∆t = δt, the generator response time lag. Generator response

is calculated using historic response holdings and the frequency t − δt seconds ago

along with some constraints on the generator ramp rates.

4.3.4 The iterative loop

Once the underlying imbalance has been calculated for all time steps it can be used

along with the response holdings and fridge conditions to begin a loop formed of

three calculation steps, that iterates over all time steps (see the ‘iterative loop’ in

Figure 4.4). The steps are as follows:

1. Calculate the frequency response delivery from the fridge population

and from the dynamic response providers based on the previous frequency

value6. For the fridge population this requires summing the switched on fridges

6The first iteration takes the first historic frequency value, after which the ‘new frequency’ values
are used.
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multiplied by their individual power consumption, and subtracting the power

consumption of the population if the fridges were not frequency-sensitive. Re-

sponse from the dynamic response providers is described above.

2. Calculate the new frequency f∗(t) using the equations from ‘calculating

the underlying imbalance’, and beginning with the approximation

f∗(t) = f∗(t−∆t) + ∆t
df∗

dt
(t)

= f∗(t−∆t) + ∆t
25 Imb∗tot

(
t
)

Ek(t)

and since

Imb∗tot
(
t
)

= Imbunder
(
t
)

+ Genresp
(
f∗(t− δt), t

)
− 0.025 Demω0

(
f∗(t)− 50

)
we get

f∗(t) =

f∗(t−∆t) + 25∆t
Ek(t)

(
Imbunder

(
t
)

+ Genresp
(
f∗(t− δt), t

)
+ 1.25Demω0

)
1 + 0.625 δt

Ek(t)Demω0

.

Note that we let f∗(0) = f(0), the original frequency value at time 0.

3. Calculate the new fridge conditions by updating their temperature set

points with the new frequency f∗ calculated in step 2, according to equa-

tions (3.4a) and (3.4b). Each fridge temperature is evolved one time step

according to (3.5a) or (3.5b). If a switch on or off should have occurred during

the time step then the exact time of switch is estimated and the temperature

is recalculated from the switch time to the end of the time step using linear

interpolation (see Appendix B for details).

4.3.5 Outputs

There are two key outputs for our analysis. Firstly, the temperatures and states

of each fridge over time, and secondly, the frequency response supplied by all other

providers on the grid. Since response can be positive or negative depending on the

frequency, but both incur payment, we take the absolute value of the response at

each time step. We take the cumulative sum of the difference between this response

in the presence of TCLs and the original system response, and call it ‘cumulative

response savings’, which we measure in MWh. This allows us to find out how much
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benefit (or detriment) the fridges provided the system, and how that changes over

time as they respond to frequency perturbations. We explain the specifics below.

Cumulative response savings

The other frequency response providers change their output depending on the value

of the frequency, under certain ramping constraints. We can compare the amount

of response they provide in the original case7 (without fridges in frequency-sensitive

mode, but with all of the fluctuations inherent in the data), with the amount of

response they provide with the new frequency, that evolves over time according to

the actions of these providers and the fridge population. We define the following

terms to make this comparison precise. Let

• origResp(t) be the original response from other providers (i.e. before we

introduce frequency-sensitive fridges to the population) at time t

• nonTclResp(t) be the response from the other providers at time t

• newTotResp(t) be the total response of the system (fridges plus others) at

time t

• tclDem(t) be the total demand of the TCL (in our case fridge) population at

time t

• respSavings(t) be the difference between the original response and the new

response from the other providers at time t

• cumulativeSavings(t̂) be the cumulative response savings from the first time

step to time step t̂

The expected demand from the fridge population is given by ρ0Pc where ρ0 := τ0on
τ0on+τ0off

,

and so we calculate

nonTclResp(t) = newTotResp(t)−
(
ρ0Pc − tclDem(t)

)
(4.8a)

respSavings(t) = |origResp(t)| − |nonTclResp(t)| (4.8b)

cumulativeSavings(t̂) =

t̂∑
t=1

respSavings(t) (4.8c)

7For further details about the response from other providers, see the ‘Response holdings’ topic
in Section 4.3.1.
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We use the absolute value of response as it can be positive or negative, depending on

whether the frequency is above or below 50Hz. If the fridges are acting beneficially

to the system the cumulative response will grow over time, and if they cause more

harm than good then the cumulative response will become negative.

The remainder of this chapter is devoted to the results from our simulations of a

homogeneous, and then a heterogeneous population of fridges using this methodol-

ogy.

4.4 GB electricity grid simulations: Homogeneous pop-

ulation results

In this section we analyse the results from simulations of a population of identical

fridges in the presence of other frequency response providers and underlying system

imbalances, as described above. We group the fridges into 10000 groups (or agents)

in order to represent between one and ten million fridges without requiring very

large amounts of computational time. We simulate the system every second over a

10-day period and record the impact on both the other response providers and the

individual fridges. We repeat the simulations for 36 consecutive 10-day periods over

12 months starting from 1st July 2015. We repeat these 36 simulations for different

values of our main control variables.

In Section 4.4.1 we consider the impact of varying the total fridge load, Pc, in the

range 70 - 700MW. In our simulations we find that increasing the participation

level 10 fold only increases the potential benefits by a factor of 7, but increases

the potential harm by a factor of 15. We present the cumulative response savings

(defined in Section 4.3.5) in both absolute terms (MWh) and as a proportion of

the original response provided. We also show the maximum savings reached over

the 10-day periods, and when this maximum occurred. As the results implicate

synchronisation, we present a way to visually assess the amount of synchronisation

in the population using a histogram approach. Finally we consider the impact on

fridge temperatures of their frequency-sensitive behaviour, finding minimal impact.

Section 4.4.2 has a similar structure to Section 4.4.1 except that we vary the sensi-

tivity of the fridges to the frequency, β, between 1.2 - 6.0◦C/Hz. All other values

are as in Table 3.1 or from the GB system data8. We find that with greater sen-

8This means that when we vary the total MW load of the fridges, β = 2.4◦C/Hz, and when we
vary β the total fridge load = 70MW.
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sitivity to the frequency, both the potential for harm and good increase, and the

results become more variable. Again we show the cumulative response savings at

the end and at their highest during the period, and when the maximum occurred.

We also repeat our study of synchronisation with our histogram approach, finding

very high levels of synchronisation again. For greater sensitivity we see a higher

impact on fridge temperature, as would be expected. We summarise our findings in

Section 4.4.3.

4.4.1 Varying total fridge load

Varying the total fridge load, Pc is equivalent to increasing the number of fridges

participating in our demand-side response scheme (i.e. the number of fridges that

are in frequency-sensitive mode). We consider four different participation levels: Pc

equals 70MW, 280MW, 490MW and 700MW, which corresponds to 1m, 4m, 7m

and 10m fridges in our model. Note that we continue to simulate the population

using 10000 groups of fridges in all cases. We begin by analysing the impact of the

frequency-sensitive population on the system, in particular, the savings (or addi-

tional requirements) of response supplied by other frequency response providers.

Cumulative response savings over time

We begin with two examples (Pc = 70MW (a) and Pc = 700MW (b)) of the cumu-

lative response savings for each of the 36 data sample simulations. Figure 4.6 shows

cumulativeSavings(t̂) for each parameter choice (a) and (b). Each plotted line

shows the results for one of the 36 10-day simulations. After an initial increase in

the savings, for many of the simulations (at least one third in both cases) the savings

decrease to reach negative final savings (i.e. additional requirements). Increasing

participation ten-fold (from a to b) increases the maximum savings by a factor of

7, but amplify the worst case by a factor of 15. When there are fewer participants

(Pc = 70MW), the results are more erratic over time, which we attribute to there

being less response on the system, and so a less smooth frequency trace to respond

to. To see the effects of varying the parameters, in the plots that follow we present

only the final value of cumulative savings at the end of the ten-day period.
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(b) Pc = 700MW

Figure 4.6: Cumulative response savings (MWh), the difference between other
providers’ response with and without the frequency-sensitive fridge population (cu-
mulatively) for the 36 data samples over one year for two different participation
levels. Negative results indicate the other providers had to compensate for detri-
mental fridge behaviour.
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Final and maximum cumulative response savings

Figure 4.7(a) shows the cumulative response savings at the end of each 10-day

period, for each of the 36 data samples over the 12 month period (blue) and the

mean for each choice of total fridge load, Pc, in red. We see that as Pc increases

the results become far more variable. In the best case there is an approximately

linear increase in the cumulative response savings, from around 100MWh to around

550MWh. However, with the increased potential for beneficial savings comes a

highly increased risk for increased response requirements. That is to say, at the end

of the 10-day period of study the other providers on the system were required to

provide more response overall when the fridges were frequency-sensitive, for some

of the periods studied. This is possible in all cases, but particularly severe when

the total fridge load is 700MW, with the worst-case simulation requiring almost

800MWh of additional response when the fridges were trying to help.

A natural next question is to compare the response with and without the frequency-

sensitive fridges as a proportion of the original response from the providers. Some

periods will require more response than others, and so dividing by the amount of

response originally required allows us to compare all periods fairly, and to give us

an idea of the scale of the impact of the fridges on the system. Figure 4.7(b) shows

these results. The best impact is to make savings of around 5%, while the worst is

to require around 8% more response from other providers. In all parameter cases

the mean (in red) is limited to between 0% and 2% of original response. We see that

after 10 days the impact of the fridges can be detrimental for any of the four choices

of Pc, and as the participation level increases the effects can be highly unpredictable,

depending on the conditions of the system during the period studied. But perhaps

the detrimental populations did not cause problems throughout the period, but

became synchronised and reduced the cumulative savings part-way through?

Figure 4.8 shows a much more positive outlook. It shows the peak of the cumula-

tive savings over the 10-day period, whenever it occurred. Increasing the level of

participation increases the mean of the maximum savings as well as the maximum,

which reaches around 550MWh (almost 7% of original response). It is worth noting

the decreasing returns on participation, in that the 10-fold increase from 70MW

to 700MW of total fridge load increases the mean of the maximum cumulative re-

sponse savings by an approximately 6-fold increase in savings. In the worst case for

490MW and 700MW the response savings are about the same (around 125MWh,

1% of original savings).
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(b) Savings as a proportion of original response

Figure 4.7: Final cumulative response savings for each of the 36 10-day data samples
over the 12 month period (blue) and the mean for each choice of total fridge load
(red).
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Figure 4.8: Maximum cumulative response savings for each of the 36 10-day data
samples over the 12 month period (blue) and the mean for each choice of total fridge
load (red).
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Given that these results are generally much better than at the end of the 10-day

period, when do these maxima occur? That is to say, at what point (if possible)

should a population of fridges receive a signal to return to their original desyn-

chronised state? Figure 4.9 shows the time at which the cumulative savings peak

for each simulation. Immediately we see a wide range of results for all parameter

values, between 1 and 10 days. The mean is around 7 days after the start of the

simulation for all participation levels. Unpredictability is highly undesirable when

balancing the electricity grid. To ensure no detrimental effects on the system, as-

suming these results are representative of system conditions going forward, we would

need to desynchronise the population after at most 1 day. Later in this chapter we

will introduce diversity to our fridge population to see whether this will reduce the

potential for the early onset of detrimental effects on the system.
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Figure 4.9: Time (in days since start) of maximum cumulative response savings for
each of the 36 10-day data samples over the 12 month period (blue) and the mean
for each choice of total fridge load (red).
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Evidence of synchronisation

It is likely that the detrimental effects that can occur are caused by the synchro-

nisation of the population into groups which makes them a less effective response

provider, with the potential to do harm. We can investigate the synchronisation

of the populations by mapping the temperature and state of each fridge to θ-space

(defined in Section 3.3), and creating a histogram of the results.

Figure 4.10 shows how our histogram would look when the population is in its

equilibrium distribution (the initial condition). Proportion ρ0 is switched on (θ ∈
[0, 1)) and proportion 1 − ρ0 switched off θ ∈ [−1, 0)). This difference in densities

requires different bin widths on each of the two halves. This is our base case with

zero synchronisation, against which we shall compare distributions after 10 days of

simulation.

Figure 4.10: How we split the TCL population into bins for a histogram, accounting
for the different ‘normal’ densities in each half of the interval. This example shows
the population when it is completely non-synchronised.

We create the bin widths for the on and off halves, won and woff respectively, so

that in this distribution the number of fridges in each bin will be identical across θ.

We divide the interval into 1000 bins, which means in equilibrium 10 fridges (0.1%

of the population) will be in each bin. Then we require

wonρ0 = woff(1− ρ0) (4.9a)

wonnon = 1 (4.9b)

woffnoff = 1 (4.9c)

non + noff = 1000 (4.9d)
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and so we can write

1 +
noff
non

=
1000

non
(4.10a)

1 +
1− ρ0

ρ0
=

1000

non
(4.10b)

∴ non = [1000ρ0] (4.10c)

won =
1

[1000ρ0]
(4.10d)

woff =
1

[1000(1− ρ0)]
(4.10e)

where the notation [x] denotes x rounded to the nearest integer. We round because

for a histogram we require an integer number of bins.

Rather than present the histograms for each of the 36 simulations for each of the

4 parameters, we order the bins from smallest to largest (the size refers to how

many fridges are in the bin) and present the number of fridges in the nth largest

bin for each simulation at the end of the 10-day period. It turns out that in each

case the fridges have become highly synchronised, and so the results, shown in

Figure 4.11, are for the 20 largest bins only. That is to say, for all four choices

of the total fridge load, fridges have become clustered in 1-2% of the θ-interval.

Perhaps surprisingly, the greatest levels of synchronisation occur for the smallest

participation level (70MW). We hypothesize that when more fridges are providing

frequency response the frequency (at least to begin with) is kept closer to 50Hz,

and so the population experiences lower fluctuations to respond to. The fridges

are not only displacing the need for other providers to supply response, but are

increasing the total level of response and keeping the frequency closer to 50Hz.

When we introduce diversity to the population we will be able to use this measure

of synchronisation to see whether/how increasing population diversity reduces these

high levels of synchronisation.
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(d) Pc = 700MW

Figure 4.11: The percentage of fridges in the 20 fullest bins for different total fridge
loads. Individual simulation results shown in blue, mean in red.
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Impact on fridge temperatures

In addition to the benefits or costs to the system, introducing frequency sensitivity

to a population will also impact the fridges themselves. An effective control design

will ensure that the impact to any individual is minimal. Figure 4.12 shows the

lowest, highest, and mean of the temperature extrema of the simulations from the

36 time periods for each parameter. There is little difference between the results

for any time period or value of Pc. This shows that our choice of β = 2.4 is a good

choice for the impact on the fridges. We will explore the effects of varying this

parameter in the next section.
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Figure 4.12: Circles show the minimum and maximum of the lowest (blue) and
highest (red) temperatures for each parameter. Diamonds show the mean of the
lowest (blue) and highest (red) temperatures reached over all simulations for the
same parameter.

127



4.4.2 Varying fridge sensitivity to the frequency

Another key control parameter is the sensitivity of each fridge to the electricity

grid frequency, parameter β (setting β+ = β−). Our chosen value of β has so far

been β = 2.4◦C/Hz, to ensure that a fridge with lower temperature set point 2◦C

will not reduce below freezing point so long as the frequency stays within statutory

limits. In this section we explore the effects of taking β to be 1.2◦ C/Hz, 2.4◦C/Hz,

3.6◦C/Hz, 4.8◦C/Hz and 6.0◦C/Hz. Note that the case β = 2.4 has exactly the

same parameter values as the Pc = 70 case above.

Final and maximum cumulative response savings

As we increase the sensitivity of the fridges to the frequency the cumulative response

savings have greater variance, and the potential increased response requirements

also increase, as shown in Figure 4.13. In the most extreme cases the other response

providers have to provide over 300MW of extra response over the course of the

10-day period, around 3-4% of the original amount.

Figure 4.14 shows the maximum cumulative response savings for each value of β.

The mean and highest value increases with β, with the highest savings reaching over

300MWh (over 3%) of savings. However, the minimum value possible in each case

changes little with β.

Figure 4.15 shows the time when these maxima occurred. As β increases the mean

of the times occur earlier in the period (apart from the highest β value), from just

under 9 days to 6-7 days. As in the case for varying participation levels, there is a

wide range of peak times for all choices of β.
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(b) Savings as a proportion of original response

Figure 4.13: Final cumulative response savings for each of the 36 10-day data sam-
ples over the 12 month period (blue) and the mean for each choice of β.
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Figure 4.14: Maximum cumulative response savings for each of the 36 10-day data
samples over the 12 month period (blue circles) and the mean for each choice of β
(red diamonds).
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Figure 4.15: Time (in days since start) of maximum cumulative response savings
for each of the 36 10-day data samples over the 12 month period (blue circles) and
the mean for each choice of β (red diamonds).
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Evidence of synchronisation

Figures 4.16 and 4.17 show the percentage of fridges in the largest (most full) 2% of

histogram bins, as described above. As β increases the level of synchronisation of the

populations increases, from highly synchronised to almost completely synchronised

(note that β = 6.0 results in all fridges existing in just two of the 1000 histogram

bins). These results make sense because the more sensitive the fridges are to the

frequency, the greater the impact will be on their cycling.
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(b) β = 2.4

Figure 4.16: The percentage of fridges in the 20 fullest bins for β = 1.2, 2.4. Indi-
vidual simulation results shown in blue, mean in red.
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(a) β = 3.6
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(b) β = 4.8
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(c) β = 6.0

Figure 4.17: The percentage of fridges in the 20 fullest bins for β = 3.6, 4.8, 6.0.
Individual simulation results shown in blue, mean in red.
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Impact on fridge temperatures

Finally we consider the impact of varying fridge sensitivity to the frequency on their

temperatures. Figure 4.18 shows the range of lowest and highest temperatures of the

fridges over the 10-day period over all 36 time periods. Naturally, as the sensitivity

increases we see greater shifts in temperature away from the nominal temperature

set points, 2◦C and 7◦C. The range of minimum and maximum temperatures also

increases. It is worth noting that even in the extreme cases, the temperatures never

drop to less than 0◦C or increase to more than 8◦C.
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Figure 4.18: Circles show the minimum and maximum of the lowest (blue) and
highest (red) temperatures for each parameter. Diamonds show the mean of the
lowest (blue) and highest (red) temperatures reached over all simulations.
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4.4.3 Summary

We find that by increasing the level of participation from 70MW of total fridge load

to 700MW we have the potential to save 100-600MWh (1-7% of original response).

However, the population becomes highly synchronised in all cases, and the time when

these savings occur is unpredictable, ranging between 1 and 10 days of frequency-

sensitive behaviour. This leads to detrimental effects on the network by the end of

the 10-day period in a large number of cases. Increasing fridge sensitivity to the

frequency also exacerbates these problems. Increasing sensitivity beyond 2.4◦C/Hz

shows potential benefits to the maximum cumulative savings that could be achieved

in this period, but the time at which the maximum is reached showed a trend

towards the beginning of the period, and for all but the lowest fridge sensitivity,

the maximum is reached in under 2 days in multiple cases. Reducing the sensitivity

reduces the negative effects but also reduces the potential benefits. All simulations

(varying Pc and β) show no adverse temperature impact on the fridges during the

10 days of study.
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4.5 GB electricity grid simulations: Heterogeneous pop-

ulation results

Thus far all of our simulations have involved populations of identical fridges, that

is to say, all parameter values pertaining to fridge operation have been identical.

In this section we diversify some of the parameters and study the effects. In Sec-

tion 4.5.1 we explain our method for parameter diversification, and introduce our

‘diversity factor’ δ. In the following two sections we present the same graphs as in

Sections 4.4.1 and 4.4.2 (homogeneous population varying load or sensitivity), only

now the parameter we vary is the diversity factor. The difference between these

sections is that Section 4.5.2 takes our lower bound on participation, Pc = 70MW,

and Section 4.5.3 takes the upper bound, Pc = 700MW. In both cases we find neg-

ligible synchronisation for even our lowest diversity factor, and so in Section 4.5.4

we explore the minimum diversity requirements for synchronisation and compare

the numerical results with a an approximately equivalent result using the Kuramoto

model. We summarise the findings of our heterogeneous simulations in Section 4.5.5.

4.5.1 Diversifying the TCL population

In the literature the studies with parameter diversity typically take a few or all

parameters from a uniform distribution, with upper and lower bounds within 20%

of the mean. Table 4.3 contains a survey of ten different papers, summarising their

approach to parameter heterogeneity. The uniform distribution is a popular choice,

although normal and log-normal distributions are also used. Unfortunately there is

a large absence of justification for these choices.

In the absence of data on realistic distributions for the parameters, we consider

the normal distribution to be the most natural choice. We choose a uni-modal dis-

tribution because we have no evidence to suggest that it should be multi-modal,

and we expect the occurrence of parameter values to become less likely as they

get further from the mean (as opposed to the uniform distribution which considers

all values to have probability p or probability 0). The zero diversity case for each

parameter taking value x corresponds to a normal distribution with mean x and

standard deviation 0. We therefore increase the standard deviation to increase the

level of heterogeneity. As such, we take the means as the values from the homo-

geneous population simulations. For each parameter, we increase the diversity by

choosing a value for the standard deviation, and multiplying all standard deviations
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Table 4.3: Parameter heterogeneity literature survey.

Reference TCL type Parameter(s)
Diversification

Method

Borsche et
al. [56]

refrigerator all
∼ U [0.85x̂i, 1.15x̂i]

where x̂i denotes mean
of parameter i

Callaway
[57]

building
temperature
regulation

thermal capacitance
C (kWh/◦C)

C ∼ Lognormal(10,2)

thermal resistance R
(◦C/kW)

R ∼Lognormal(2,0.4)

energy transfer rate
P (kW)

P ∼Lognormal(14,2.8)

Dehghanpour
& Afsharnia

[110]
refrigerator all within ±20%

Hao et al.
[111]

air
conditioner

thermal capacitance
C (kWh/◦C)

C ∼ U [1.5, 2.5]

thermal resistance R
(◦C/kW)

R ∼ U [1.5, 2.5]

rated electrical power
P (kW)

P ∼ U [4, 7.2]

temperature setpoint
θr (◦C)

θr ∼ U [18, 27]

temperature
deadband δ (◦C)

δ ∼ U [0.25, 1.0]

Kremers et
al. [60]

refrigerator door opening
opening∼Exp(15),

duration∼ N (20, 50)
all “varied by 5%”

Short et al.
[69]

fridge-freezer all within ±20%

Soudjani &
Abate [90]

air
conditioner

thermal capacitance
C (kWh/◦C)

C ∼ U [8, 12] and
C ∼ U [2, 18]

Soudjani et
al. [89]

air
conditioner

thermal resistance R
(◦C/kW)

switches between two
values according to a

(homogeneous) Poisson
process

ambient temperature
Toff (◦C)

Toff ∼ U [30, 34]

Trovato et
al. [112]

8 types of
refrigeration

all
varied independently

by ±15%

Wai et al.
[74]

refrigerators
ambient temperature

Toff (◦C)
Toff ∼ N (20, 2)

thermal conductance
C (W/◦C)

C ∼ N (9.426, 0.9426)
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by a common factor. We call this factor the ‘diversity factor’, δ, and we multiply

the standard deviation for each parameter by δ simultaneously. We simulate five

different levels of diversity by taking diversity factors 0, 0.25, 0.5, 0.75 and 1.

For example, room temperature (Toff) in GB is unlikely to vary across the country

by more than a few degrees Celsius, and a range of 8◦C would be a reasonable

maximum range. Hence with the mean of 20◦C, we’d like our simulation with the

greatest diversity to have almost all9 room temperatures within the range 16 −
24◦C10. To achieve this we set the standard deviation σ, by taking 3σ = 4 and then

the standard deviation for diversity factor δ, σ(δ) = 4
3δ. Table 4.4 shows our choice

of standard deviation for each parameter, for each diversity factor. Note that the

aforementioned example corresponds to the final column of Toff, with value 4/3.

For Ton we let 3σ = 6 which is just over 20% of the mean value, -26◦C, similar

to the three references above. Rather than treat the temperature set points T 0
−

and T 0
+ independently, which could result in fridges with impossibly short or overly

long cycle times, we instead diversify their difference. For each fridge, after T 0
− and

(T 0
+ − T 0

−) have been selected (independently) from their normal distributions, T 0
+

is calculated from their sum. Fridge cooling rates will vary depending on the age

and model of the appliance. We allow the cooling/heating rate α to vary such that

3σ = α
2 in the largest diversity case. Table 4.5 shows the expected parameter range

for different percentages of the population for each diversity factor and parameter.

For example, with 0.25% diversity we expect 68.3% of the population to have room

temperature Toff within the range (19.67,20.33)◦C.

9By ‘almost all’ we mean the expectation of 99.7% of the population, which is equivalent to
roughly three times the standard deviation.

10Note that this is the mean ±20%, as used by [69, 74, 110]. We mention percentages for
comparison with other references, but of course in the context of temperature in degrees Celsius,
percentage differences have no sensible meaning.
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Table 4.4: Mean and standard deviation for each parameter and diversity factor.
First 5 parameters are set, final 4 parameters are estimated from the data. Tem-
peratures in degrees Celsius, times (τon, τoff) in minutes.

Diversity Factor

0 0.25 0.5 0.75 1

Parameter Mean Standard Deviation

Ton -26 0 0.50 1.00 1.50 2.00

Toff 20 0 0.33 0.67 1.00 1.33

T 0
− 2 0 0.13 0.25 0.38 0.50

(T 0
+ − T 0

−) 5 0 0.08 0.17 0.25 0.33

α× 105 18.08 0 0.75 1.51 2.26 3.01

T 0
+ 7.00 0 0.15 0.30 0.45 0.60

τon 15.15 0 0.73 1.49 2.31 3.27

τoff 30.00 0 1.55 3.16 4.91 6.91

duty cycle 33.55% 0 0.70 1.34 2.02 2.69
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Table 4.5: Expected parameter range for different percentages of the population for
the five diversity factors.

Diversity Population Ton Toff T− T0
+ −T0

−

0 100% -26 20 2 5

68.3% (-26.5,-25.5) (19.67,20.33) (1.875,2.125) (4.92,5.08)

0.25 95.5% (-27.0,-25.0) (19.33,20.67) (1.750,2.250) (4.83,5.17)

99.7% (-27.5,-24.5) (19.00,21.00) (1.625, 2.375) (4.75,5.25)

68.3% (-27.0,-25.0) (19.33,20.67) (1.750,2.250) (4.83,5.17)

0.5 95.5% (-28.0,-24.0) (18.67,21.33) (1.500,2.500) (4.67,5.33)

99.7% (-29.0,-23.0) (18.00,22.00) (1.250, 2.750) (4.50,5.50)

68.3% (-27.5,-24.5) (19.00,23.00) (1.625,2.375) (4.75,5.25)

0.75 95.5% (-29.0,-23.0) (18.00,22.00) (1.250,2.750) (4.50,5.50)

99.7% (-30.5,-21.5) (17.00,23.00) (0.875, 3.125) (4.25,5.75)

68.3% (-28.0,-24.0) (18.67,21.33) (1.500,2.500) (4.67,5.33)

1 95.5% (-30.0,-22.0) (17.33,22.67) (1.000,3.000) (4.33,5.67)

99.7% (-32.0,-20.0) (16.00,24.00) (0.500, 3.500) (4.00,6.00)

Diversity Population α× 105

0 100% 18.08

68.3% (17.33, 18.83)

0.25 95.5% (16.57, 19.59)

99.7% (15.82,20.34)

68.3% (16.57, 19.59)

0.5 95.5% (15.07, 21.09)

99.7% (13.56,22.60)

68.3% (15.82, 20.34)

0.75 95.5% (13.56, 22.60)

99.7% (11.30,24.86)

68.3% (15.07, 21.09)

1 95.5% (12.05, 24.11)

99.7% (9.04,27.12)
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4.5.2 Simulation results for Pc = 70MW

We simulate the heterogeneous populations for each of the five diversity factors, with

all parameters as given in Table 3.1. Note that δ = 0 is identical to the β = 2.4,

Pc = 70 case above.

Final and maximum cumulative response savings

Figure 4.19 shows the the final savings in MWh as a proportion of the original

response from other providers. We see that even with the smallest introduction of

diversity studied, δ = 0.25, there are no longer any cases in which the population

causes more harm than good by the end of the ten-day period (savings <0). The

mean increases with diversity, and the variance is lower in all cases compared to the

homogeneous case.

Figure 4.20 shows the maximum of the cumulative savings over the ten-day period.

The plots are very similar to those in Figure 4.19, which indicates that the cumula-

tive savings rarely peak and start to reduce within the period. This is confirmed by

Figure 4.21, which shows that the maximum cumulative savings are indeed achieved

at the end of the 10 days studied in almost all cases. The difference between the

results for δ = 0 and δ = 0.25 is dramatic. Even the introduction of this small

amount of diversity has removed the early peaking of the cumulative savings and

the harmful effects of the population.
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Figure 4.19: Final cumulative response savings for each of the 36 10-day data sam-
ples over the 12 month period (blue) and the mean for each diversity factor (red).
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Figure 4.20: Maximum cumulative response savings for each of the 36 10-day data
samples over the 12 month period (blue) and the mean for each diversity factor
(red).
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Figure 4.21: Time (in days since start) of maximum cumulative response savings for
each of the 36 10-day data samples over the 12 month period (blue) and the mean
for each diversity factor (red).
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Evidence of synchronisation

The results thus far all indicate that synchronisation in our populations with δ > 0

will be far lower than in the cases with δ = 0. As before, we plot the percentage of

fridges in each of the fullest 2% of bins. As expected, Figures 4.22 and 4.23 show

negligible amounts of synchronisation for all populations with δ > 0.
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(b) diversity factor = 0.25

Figure 4.22: The percentage of fridges in the 20 fullest bins for each diversity factors
0 and 0.25. Individual simulation results shown in blue, mean in red.

145



980 985 990 995 1000

0
20

40
60

80
10

0

bin (ordered by size)

pe
rc

en
ta

ge
 o

f p
op

ul
at

io
n 

in
 e

ac
h 

bi
n

(a) diversity factor = 0.5

980 985 990 995 1000
0

20
40

60
80

10
0

bin (ordered by size)

pe
rc

en
ta

ge
 o

f p
op

ul
at

io
n 

in
 e

ac
h 

bi
n

(b) diversity factor = 0.75
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Figure 4.23: The percentage of fridges in the 20 fullest bins for diversity factors 0.5,
0.75 and 1. Individual simulation results shown in blue, mean in red.
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4.5.3 Simulation results for Pc = 700MW

When we increased the level of fridge participation in our DSR scheme from 70MW

up to 700MW, the homogeneous population showed an increase in the mean final

and maximum response savings, but also a much higher propensity for detrimental

effects. To what extent does the introduction of heterogeneity improve these results?

We repeat our simulations with an increase in total participating fridge load from

70MW to 700MW.

Figure 4.24 shows that even for our lowest level of diversity, δ = 0.25, none of the

36 10-day simulations result in negative final response savings. Even the best case

with zero diversity is worse than the worst case with a little diversity. With δ > 0

the response savings are on the order of 10%, or 1GWh of response. The results

for the maximum savings (Figure 4.25) are almost identical for δ > 0 because, as

Figure 4.26 shows, the maximum is reached at the end of the period.
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Figure 4.24: Final cumulative response savings with Pc = 700MW for each of the
36 10-day data samples over the 12 month period (blue) and the mean for each
diversity factor (red).
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Figure 4.25: Maximum cumulative response savings for each of the 36 10-day data
samples over the 12 month period (blue) and the mean for each diversity factor
(red).
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Figure 4.26: Time (in days since start) of maximum cumulative response savings
with Pc = 700MW for each of the 36 10-day data samples over the 12 month period
(blue) and the mean for each diversity factor (red).
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As in the 70MW case, there is negligible evidence of synchronisation for diversity

factor δ > 0, as seen in Figures 4.27 and 4.28.
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Figure 4.27: The percentage of fridges in the 20 fullest bins for diversity factors 0
and 0.25, with Pc = 700MW. Individual simulation results shown in blue, mean in
red.
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(b) diversity factor = 0.75
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Figure 4.28: The percentage of fridges in the 20 fullest bins for diversity factors 0.5,
0.75 and 1, with Pc = 700MW. Individual simulation results shown in blue, mean
in red.
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4.5.4 Minimum diversity requirements

Simulations

Having found negligible evidence of synchronisation of a fridge population with

even our lowest diversity factor, the natural question is to ask where the diversity

threshold lies between synchronisation and (effectively) none. We can repeat our

simulations for 70MW with decreasing levels of diversity δ, to see at what level the

synchronisation observed for δ = 0 sets in. The most effective approach turns out to

be reducing δ by powers of ten, as simply reducing δ from 0.25 by small increments

is insufficient to detect synchronisation. For this reason our plots have a logarithmic

horizontal axis with a discontinuity to allow us to plot the results from δ = 0.

Figure 4.29(a) shows the cumulative response savings at the end of the 10-day sim-

ulation as a proportion of original system response. Figure 4.29(b) shows the maxi-

mum cumulative savings during the 10-day period, again as a proportion of original

response. The trend is almost identical in each figure. Again, the results seem to

be split into two regions; above δ ≈ 10−3 there is an upwards trend that starts close

to horizontal. We interpret this as the diversity being initially sufficient to prevent

synchronisation, but with little more to offer, but as the diversity factor increases it

is able to provide additional benefits. For the smallest values, δ < 10−3, the mean

savings drop rapidly, with many instances of negative savings. For δ ≤ 10−5 the

results look very similar to the case with zero diversity.
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(a) Final savings

(b) Maximum savings

Figure 4.29: Final (a) and maximum (b) response savings for each of the 36 10-
day data samples over the 12 month period (blue) and the mean for each diversity
factor (red). Logarithmic horizontal axis to permit careful exploration of very small
diversity factors.
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Figure 4.30 shows the time during each 10-day simulation when the maximum re-

sponse savings was reached. Recall that values noticeably less than 10 days indicate

synchronisation, and the closer to 0, the stronger the effect. For (relatively) large

δ, i.e. δ ∈ (10−3, 1] there is no evidence of synchronisation. At δ = 10−3 we see

a potential turning point. Below this at least one simulation reaches its maximum

savings before nine days. The mean descends swiftly and the variance increases

rapidly as we decrease δ.

Figure 4.30: Time (in days since start) of maximum cumulative response savings for
each of the 36 10-day data samples over the 12 month period (blue) and the mean
for every diversity factor simulated (red). Logarithmic horizontal axis to permit
careful exploration of very small diversity factors.
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These results are very encouraging, since requiring a diversity factor of only 10−3

means we need only a very small amount heterogeneity in our population to avoid

synchronisation problems. We can see what δ = 10−3 means for the interval within

which we expect 99.7% of our population to belong for each parameter in Table 4.6.

Table 4.6: Implications of δ = 10−3 for each parameter. The third column gives the
expected interval for 99.7% of the population to belong to.

parameter
standard
deviation

99.7% interval units

Ton 0.020 −26± 0.060 ◦C

Toff 0.133 20± 0.040 ◦C

T 0
− 0.005 2± 0.015 ◦C

(T 0
+ − T 0

−) 0.003 5± 0.010 ◦C

α× 105 0.030 18.08± 0.090 s−1

T 0
+ 0.006 7± 0.018 ◦C

τon 0.033 15min 9s ± 5.89s min, s

τoff 0.069 30min ± 12.44s min, s

duty cycle 0.027 33.55 ± 0.081 %
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Comparison with the Kuramoto model

We can compare these results with the analytical results for the Kuramoto model. In

the Kuramoto model, when the coupling strength K reaches a critical value Kc the

order parameter solution bifurcates. That is to say, for K < Kc the order parameter

is 0 (no synchronisation), and for K > Kc the order parameter increases towards 1

(partial synchronisation). The synchronisation threshold is Kc = 2
g(ω̄) , where g is

the distribution of natural frequencies ω and ω̄ is the mean of g [113]. If we define

∆ω to be the full width at half maximum of distribution g, then if g is normal then

g(ω) ≈ 1
∆ω . Since we have taken our parameters to be constant (notably our form

of coupling strength, which we define later) and vary the width of the distribution,

we would like to find the critical ∆ω, which we call ∆ωc. Rearranging the formula

found by Kuramoto (above), ∆ωc = π
2K. We should see partial sync for ∆ω < ∆ωc

(going to full sync as ∆ω → 0), and no sync for ∆ω > ∆ωc.

For our system the coupling strength is determined by the sensitivity of the TCLs

to the frequency, and the sensitivity of the frequency to the TCLs. We have seen

these parameters together before, namely they combine to form βcPc (we assume

β− = β+ = β). The natural period for each TCL is given by τ0
on + τ0

off and so

their natural frequencies are given by 2π
τ0on+τ0off

. In order to compare our system

with the Kuramoto model we need to non-dimensionalise the key equations in our

system. We do this for our original model, which is an approximation of the system

equations, since the inertia, underlying demand and response from other providers

changes over time on the real system. As such, our results will be an approximation

for the simulation results. We make the following non-dimensionalisation, using

‘hat’ notation to denote non-dimensional variables, and ‘bar’ notation to denote the

mean of a parameter.

˙̂
T =

−α
ᾱ

(
T̂ − Ton

Toff−Ton
)

if on

−α
ᾱ

(
T̂ − Toff

Toff−Ton
)

if off
(4.11a)

T̂± = T̂ 0
± − β̂±f̂ (4.11b)

˙̂
f = Ĉ(ρ∗ − ρ)− γ̂f̂ (4.11c)
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where

T̂ =
T

Toff − Ton
t̂ = ᾱt

f̂ =
f

f0

Ĉ =
cPc
ᾱf0

T̂ 0
± =

T 0
±

Toff − Ton

β̂± =
β±

Toff − Ton
f0 = 50Hz

γ̂ =
γ

γ̄

(4.12)

and so our coupling strength

K = β̂Ĉ =
βcPc

ᾱf0( ¯Toff − ¯Ton)
≈ 0.0404 (4.13)

and the ‘natural frequency’ of each TCL is given by

ω =
2π

log

(
(T 0

+−Ton)(Toff−T 0
−)

(T 0
−−Ton)(Toff−T 0

+)

) . (4.14)

Hence for our parameter choices ∆ωc = π
2K ≈ 0.634. By taking data samples we

find that ω is approximately normally distributed. This allows us to use the result

that the full width at half maximum ∆ωc ≈ 2
√

2 log(2)σ. By taking large data

samples for each of our parameters we are able to estimate the standard deviation

σω for different diversity factors. We find that δ = 10−1.915 gives ∆ω ≈ π
2K. This

is a little higher than our estimated threshold (δ = 10−3), but our model does

have some key differences from the Kuramoto model, and this value is still very

reasonable. It is also still very small, and so little variation is required to prevent

partial synchronisation.
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4.5.5 Summary

Our simulations have shown that even with a very small amount of parameter di-

versification, our populations that when identical became highly synchronised with

often very detrimental effects, no longer exhibit such behaviour. Figure 4.31 shows

just one example of the cumulative response savings over time, when δ = 0.01,

β = 2.4◦C/Hz and Pc = 700MW. Comparing this with Figure 4.6 on page 119

shows the benefits of a small amount of diversity very clearly.
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Figure 4.31: Cumulative response savings (MWh) for a heterogeneous fridge popu-
lation with δ = 0.01, β = 2.4◦C/Hz and Pc = 700MW. The introduction of a very
small amount of diversity has eradicated the detrimental behaviour in all cases and
the fridges provide a clear benefit to the system.

Increasing our diversity factor δ from 0 to 0.25 showed the greatest improvement,

with additional (although less strong) benefits from further increases. In the 70MW

case the response savings were within 100-200MWh, approximately 1-3% savings.

Increasing the participation level ten fold to 700MW increased these savings to the

750-1500MW range (depending on the diversity factor), around 7.5-15% savings.

With the introduction of diversity the maximum savings was no longer reached

before the 10th day of the simulation, compared to a wide range of peak times

without diversity (between day 2 and 10). We can conclude that the introduction

159



of diversity to our model removes the harmful effects of synchronisation seen in

the homogeneous population case, even when a substantial number of fridges are

participating on the system (700MW). While we cannot say how much diversity is

realistic on the system, our studies have shown that even for small levels of diversity,

the issues have disappeared.
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“We can only see a short distance ahead,

but we can see plenty there that needs to

be done.”

Alan Turing, Computing Machinery and

Intelligence [114]

5
Conclusions

In the words of the World Energy Council, “disruptive trends are emerging that will

create a fundamentally new world for the energy industry” [115]. To balance the

‘energy trilemma’ - ensuring a power supply that is simultaneously secure, affordable,

and environmentally sustainable - will be a tough challenge that no single solution

can address. Innovation needs to be sought across the entire system, in technologies,

energy markets and government policies. Greater contribution to system security

from the demand side will be needed, motivating further research and development

in this area. Thermostatically-controlled loads are just one of many options for

demand-side response that have been proposed, but have yet to be rolled out at

scale. A few small-scale trials [41–45] have been carried out, and in recent years the

topic has gained popularity in the research community. We agree with Oldewurtel

et al. that “while some [demand-side response] schemes are already in place, it can

be expected that TCLs will play a much more important role in providing a fast

and accurate source of flexibility in the future electricity grid” [35].

In order for a large number of frequency-sensitive TCLs to play such a role, their

capabilities and associated risks need to be fully understood. Our goal in this thesis

has been to further this understanding. For our mathematical analysis we chose a

simple, deterministic model for TCL control, as proposed by Short et al. [69]. This
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allowed us to analyse the stability of the system from two different perspectives. For

the first, we developed a continuum model which enabled us to analyse the stability

of the uniformly distributed (in phase) population at nominal frequency. We found

that the equilibrium is stable, even in the absence of a stabilising external force (γ

in the model). This result was surprising, but indicated that our analysis could not

capture the full picture.

Thinking that the system might be unstable to larger perturbations, we next sought

to model one and then two synchronised groups of TCLs. We solved for the periodic

solution of one group, and then explored the many different types of switching

behaviour available to two groups. We mapped out the possible switching events

of two groups and simulated the event progressions for different initial conditions

to reveal insights into the long-term periodic behaviour, finding evidence that two

groups will each tend towards a periodic solution (which may be the same solution).

To study the system analytically, we modelled two groups of TCLs cycling close to

the single group periodic solution, and solved for the stability of the system. We

found the parameter region in which the two groups will synchronise, and the region

in which they will remain forever distinct. We were able to hypothesise that if N

groups are very similar in size, or distributed so that a few groups could merge so

that the resulting groups were all approximately the same size, then the groups may

spread out and avoid total synchronisation. This matched with our previous work,

since modelling a continuum of TCLs is effectively modelling N synchronised groups

in the limit N →∞.

In Chapter 4 we presented the methods and results behind our simulations. In

the Section 4.2 we simulated a population using the model from Chapter 3, to

compare the continuum model with 10000 groups of fridges with different amounts

of perturbation away from equilibrium. We found that although in the short term

the TCLs acted to reduce the resulting frequency perturbations, synchronisation

accumulated and eventually led to larger frequency oscillations.

In Sections 4.3-4.5 we modelled homogeneous and heterogeneous populations of

fridges as if they had been frequency-sensitive on the GB grid during 2015-2016.

By accounting for how frequency response is provided by other generators, we were

able to determine the impact of the fridge population on the actions of these other

providers. In the homogeneous case the results had huge variation depending on

the 10-day period from which the system data was taken. Synchronisation was

a big problem in many cases, causing the other providers to work harder than

they did without the frequency-sensitive fridges. Part of our initial motivation for
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using a deterministic model was our hypothesis that the parameter diversity which

exists naturally in a population could be sufficient to prevent the accumulation of

synchronisation and the associated issues. Our simulations of non-identical TCLs

revealed that even with very small levels of parameter diversification these issues

were indeed prevented. In fact, our initial heterogeneous simulations revealed no

evidence of such problems, and so diversity had to be reduced by factors of ten until

we were able to observe the threshold at which the population showed the same

issues as the homogeneous case.

It is important to consider the real-world implications of our results in the context

of the modelling assumptions that underpin them. We have assumed that grid

frequency is the same everywhere on the network, when in reality fluctuations will

originate in specific locations and spread across the network. This means that

TCLs could potentially prevent local issues from becoming grid-scale. Imbalances

at the distribution network level are becoming increasingly important to manage,

and so our results are strengthened by the removal of this assumption. We have

also assumed that all parameters remain constant over time. This ignores any fridge

door opening and food addition or removal, as well as change in room temperature

or long-term changes such as appliance efficiency reduction. In general, fridge usage

(door opening and contents changing) are random events, with some correlation

around meal times, and will typically diversify the population states and parameter

values. The minimum diversity requirements we found were necessary to prevent

synchronisation mean that even if many people went to open their fridge at a similar

time, the difference in room temperatures and durations for which the doors remain

open would be highly unlikely to counteract the natural population diversity and

cause synchronisation. Our assumptions that require further investigation are the

absence of measurement delay or error, which could be tested with a small number

of appliances and sensors, and the energy consumption of each TCL, which in reality

would exhibit a small spike when an appliance switches on.

There are several key requirements for moving this work beyond the theoretical and

into practical application. Simulations of different types of TCL, such as fridge-

freezers, air conditioners and hot-water tanks would be useful to understand exactly

how the results apply beyond a population of fridges. We have explored changing

the value of control parameter β, but an optimal value of both β− and β+ would

be beneficial to protect the TCLs and give the optimal frequency response to the

system. Anyone proposing to use TCLs for frequency response would need to give

the System Operator an estimate of how much response will be provided from a
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population of TCLs under different frequency conditions, and be able to provide

confidence in such an estimate. This would likely require additional simulations. A

small-scale trial would be useful to test the assumptions we have made, as discussed

above. This could also be used to select the most effective and affordable control

equipment to fit (or retro-fit) into TCLs. A theoretical analysis of the stability of

a heterogeneous population was a subject we did not have time to explore in any

depth, although our continuum model was developed to be sufficiently general that

it could be used to model a heterogeneous population.

Economic analysis of the benefits of using TCLs, and the decreasing returns on

investment as more TCLs participate would be valuable for developing potential

business models. These would need to consider how the value of system flexibility

will change as system inertia reduces and the generation mix evolves. The response

capabilities and costs of TCLs could be compared with those of other response

providers, such as different types of electricity storage. Finally, there is a require-

ment for greater policy research into the best strategies for a large-scale roll-out of

frequency-sensitive TCLs. Participation incentives (either market or government-

led) or mandates would be needed to motivate the development of this service.

Our work has advanced our collective understanding of the nature of frequency-

sensitive TCLs and shown that they can make a positive contribution to the op-

eration of the electricity grid. Therefore, despite the additional work required to

further their development, we hope that frequency-sensitive TCLs for power system

frequency control will continue to be an active area of research, which could lead

to real benefits for the secure, affordable and low-carbon operation of the power

system.
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Appendices

A Derivation of model validity condition (3.10)

The sufficient condition for a fridge to change its power consumption as required

by the system frequency (3.10) is derived as follows. We would like to know how

the typical power consumption over one cycle changes as system frequency changes.

Typical power consumption per cycle p̄ is given by

p̄ = pon
τ0
on

(τ0
on + τ0

off)
(5.1)

where pon is the power a TCL consumes when switched on.

∂τ0
on

∂f
=
β−(T 0

+ − Ton)− β+(T 0
− − Ton)

α(T 0
− − Ton)2

(5.2a)

∂τ0
off

∂f
=
β−(Toff − T 0

+) + β+(Toff − T 0
−)

α(Toff − T 0
+)2

. (5.2b)

Therefore

∂p̄

∂f
=

pon
α2(τ0

on + τ0
off)

2

[
−β+(T 0

− − Ton) + β−(T 0
+ − Ton)

(T 0
− − Ton)2

(ατ0
on + ατ0

off)

−
(
β−(T 0

+ − Ton)− β+(T 0
− − Ton)

(T 0
− − Ton)2

+
β−(Toff − T 0

+) + β+(Toff − T 0
−)

(Toff − T 0
+)2

)
ατ0

on

]
.

(5.3)
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Since pon > 0, ∂p̄
∂f is strictly positive if and only if

β+

(
τ0
on(Toff − T 0

−)(T 0
− − Ton)− τ0

off(Toff − T 0
+)2

(T 0
− − Ton)(Toff − T 0

+)2

)

+ β−

(
τ0
off(Toff − T 0

+)(T 0
+ − Ton)− τ0

on(T 0
− − Ton)2

(Toff − T 0
+)(T 0

− − Ton)2

)
> 0

(5.4)

which is the case if and only if

β+

(
τ0
on(Toff − T 0

−)(T 0
− − Ton)− τ0

off(Toff − T 0
+)2

)
(T 0
− − Ton)

+ β−

(
τ0
off(Toff − T 0

+)(T 0
+ − Ton)− τ0

on(T 0
− − Ton)2

)
(Toff − T 0

+) > 0

(5.5)

which is equivalent to

τ0
on(T 0

− − Ton)2
(
β+(Toff − T 0

−)− β−(Toff − T 0
+)
)

+ τ0
off(Toff − T 0

+)2
(
β−(T 0

+ − Ton)− β+(T 0
− − Ton)

)
> 0.

(5.6)

Therefore a sufficient condition for the derivative of p̄ wrt ∆f to be positive, is that

both terms in the preceding equation be strictly positive. Since τ0
on, τ0

off and the

squared terms are always strictly positive this leaves us with two sufficient criteria:

β+

β−
<

T 0
+ − Ton
T 0
− − Ton

> 1

β+

β−
>

Toff − T 0
+

Toff − T 0
−

< 1 (5.7)

(recall that Ton < T 0
− < T 0

+ < Toff).
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B Simulations

In all of our simulations, at each time step we update the temperature set points

based on the grid frequency at the previous time step, and evolve the temperature

of each TCL using (3.5a) or (3.5b). We test to see whether the TCL should have

switched on/off since the previous time step, and if so, we estimate the time at

which the TCL switched, and recalculate the temperature at the new time step. We

use the following equations, illustrated in Figure B1.

Figure B1: Method for updating TCL temperature after a switch (on).

We approximate the time δt after the previous time step t when the TCL temper-

ature was equal to the upper (or lower) temperature switch point as follows. We

shall use the notation T• to denote Ton if the TCL was on at time t, or Toff if the

TCL was off. A linear approximation for T between the time steps is given by the

equation T̂ (t+ t̃) ≈ T (t)+(T̂ (t+1)−T (t))t̃ (we use the hat notation to indicate that

the temperature will be updated, initially T̂ (t + 1) = T (t + 1)). The equation for

the temperature set points is given by T±(t+ t̃) = T±(t+ 1) + (T±(t+ 1)− T±(t))t̃.

Equating these to find the time δt when they intercept gives

δt =
T±(t)− T (t)

T̂ (t+ 1)− T (t)−
(
(T±(t+ 1)− T±(t)

) (5.8)

and so we find an approximation for the temperature at the switch time

T (t+ δt) = T (t) + (T̂ (t+ 1)− T (t))δt (5.9)

therefore the TCL temperature post-switch is given by

T (t+ 1) =
(
T (t)− T•)e−α(1−δt) + T•. (5.10)
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In Figure B1 we exaggerate the curvature of the temperature curves to show that

there will be a small error created by the initial linearisation. However, the tem-

perature is very close to linear on the scale of one second, and so we deem the

approximation worthwhile for the computational time saved solving for the inter-

cept, which would still be an approximation. What the figure also shows is the

benefit of estimating the switch time, since the recalculated temperature at time

t+ 1 can be significantly different to the original temperature. This is particularly

true when a TCL would have switched near the beginning of a time step.

Once the TCL temperatures at time t + 1 have been calculated the frequency for

time t+ 1 is calculated.

C Data

In this appendix we present more details about the system data provided by National

Grid and described in Section 4.3.1 on page 109 . Some of the data was given

confidentially, and so we present summary statistics to indicate approximate means

and ranges of the data for each of the 36 10-day simulation periods. We number the

periods chronologically from 1 to 36, taken from the period July 2015 - June 2016.

C.1 Stored kinetic energy

Fig C1 shows a box plot of the stored kinetic energy (MVAs) for each 10-day period.

Each box shows the interquartile range and median, and the whiskers show the

minimum and maximum of the data range. The data shows a seasonal trend with

higher stored kinetic energy tending to occur in the winter months, with a couple

of exceptions.

C.2 Demand

Stored kinetic energy is highly influenced by total system demand (MW), and we

see this in Figure C2. Again, demand is significantly higher in the winter months,

with two exceptions. This is likely to be due to reduced demand over the holiday

season.
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Figure C1: Summary of stored kinetic energy data.
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Figure C2: Summary of system demand data.
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C.3 Historic frequency

At almost all times the electricity grid frequency is very close to 50Hz. We are most

interested in the tails of the data distribution, and so we give them special attention

in our summary. In Figure C3 the crosses show the mean frequency for each 10-day

period, and the triangles above (and below) show the mean plus (or minus) one

standard deviation. We define ‘high frequency’ to be data points greater than or

equal to 50.2Hz, and ‘low frequency’ to be data points less than or equal to 49.8Hz.

The figure includes a box plot of both the high and low frequency data. The box

width is proportional to the number of high (or low) data points. No box implies

there were no times during the 10-day period when frequency was high/low. Periods

8 and 18 have two erroneous high outlier values which extend beyond the plot. They

are each greater than 52Hz, and only occur for one second each. These are impossibly

high, therefore we conclude that they are measurement errors, which will not effect

the simulations in any meaningful way due to their negligibly short duration. The

large variation in high and low frequency values helps us to understand the wide

range of results from our simulations, and motivates our use of many time periods.
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Figure C3: Summary of historic frequency data.
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C.4 Response holdings

There are three types of response holding data; primary, secondary and high. For

each of the seven ‘trigger points’ (see Table 4.2 and Figure 4.5 on page 112) there is

a corresponding MW level of response that is held. For each of primary, secondary

and high response we combine the amount of response held at each of the two or

three trigger levels, and present the total response held (for confidentiality reasons).

Figure C4 shows the amount of high response held in each period using box plots

in the same manner as the previous plots. Figure C5 shows the equivalent data

statistics for primary and secondary response holdings. Note that in many cases the

same provider will be supplying response at all two (or three) trigger points, and so

the sum of response is not a sum of maximum available response, due to double (or

triple) counting.
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Figure C4: Summary of high response holdings.
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Figure C5: Summary of low response holdings.
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