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ABSTRACT
We present high cadence detections of two superflares from a bright G8 star (V =
11.56) with the Next Generation Transit Survey (NGTS). We improve upon previous
superflare detections by resolving the flare rise and peak, allowing us to fit a solar
flare inspired model without the need for arbitrary break points between rise and
decay. Our data also enables us to identify substructure in the flares. From changing
starspot modulation in the NGTS data we detect a stellar rotation period of 59 hours,
along with evidence for differential rotation. We combine this rotation period with the
observed ROSAT X-ray flux to determine that the star’s X-ray activity is saturated.
We calculate the flare bolometric energies as 5.4+0.8

−0.7 × 1034and 2.6+0.4
−0.3 × 1034erg and

compare our detections with G star superflares detected in the Kepler survey. We find
our main flare to be one of the largest amplitude superflares detected from a bright
G star. With energies more than 100 times greater than the Carrington event, our
flare detections demonstrate the role that ground-based instruments such as NGTS
can have in assessing the habitability of Earth-like exoplanets, particularly in the era
of PLATO.

Key words: stars: activity – stars: flare – stars: individual: NGTS J030834.9-211322
– stars: rotation

1 INTRODUCTION

Stellar flares are explosive phenomena caused by reconnec-
tion events in a star’s magnetic field (e.g. Benz & Güdel
2010). When previously observed from the ground, they have
been synonymous with active M stars, which flare regularly
and brightly compared to their quiescent flux. Yet it is well

? E-mail: J.Jackman@warwick.ac.uk
† E-mail: P.J.Wheatley@warwick.ac.uk

known that the Sun shows regular flaring behaviour, with
flares being detected over a wide range of energies. These
range from 1023 erg for “nanoflares” (Parnell & Jupp 2000)
up to approximately 1032 erg for the largest occurrences
such as the Carrington event (Carrington 1859; Hodgson
1859; Tsurutani et al. 2003). Observations of solar type stars,
mainly with Kepler, have shown that much more energetic
“superflares” of bolometric energies 1033 to 1036 erg are also
possible (e.g. Shibayama et al. 2013).

The discovery of Earth sized exoplanets in the habitable
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2 J. A. G. Jackman et al.

zones of their host stars (e.g. TRAPPIST-1 and Proxima
Centauri: Gillon et al. 2017; Anglada-Escudé et al. 2016) has
given renewed importance to these superflares, in particular
their effects on exoplanet habitability (e.g. Lingam & Loeb
2017). Previous studies have found that the increase in UV
radiation associated with flares can result in ozone depletion
(Segura et al. 2010), changes to atmospheric composition
(Venot et al. 2016) and even biological damage (e.g. Estrela
& Valio 2017). These effects are relatively well studied for M
dwarf hosts, however it is expected that in future PLATO
(Rauer et al. 2014) will reveal habitable zone planets around
K and G stars. Compared to flares from later-type counter-
parts, detections of superflares from G stars are relatively
rare. To date, no G star superflares have been detected with
a CCD detector from the ground, although several have been
seen either visually, in photography or with vidicon detec-
tors (Schaefer 1989; Schaefer et al. 2000).

In recent years, observations with the Kepler satellite
(Borucki et al. 2010) have captured greater numbers of su-
perflare events from G-type stars. These have been from
both the long (30 minutes) and short (1 minute) cadence
modes. In the long cadence mode, Maehara et al. (2012)
and Shibayama et al. (2013) found 365 and 1547 superflares
from 148 and 279 G-type stars respectively. In the 1-minute
short cadence mode, 187 superflares from 23 solar-type stars
were found by Maehara et al. (2015). From these detections,
the statistical properties of superflares on G-type stars were
considered, with Maehara et al. (2012) and Shibayama et al.
(2013) finding a power law distribution of occurrence rate
against energy of superflares that is comparable to solar
flares, and with Maehara et al. (2015) identifying a corre-
lation between the e-folding flare duration (time from flare
amplitude peak to 1/e of its initial value) and the bolometric
flare energy.

Candelaresi et al. (2014) also studied the occurrence
rate of superflares from G dwarfs, as well as K and M dwarfs.
They found the occurrence rate of superflares decreased with
stellar effective temperature, and also peaked at a Rossby
number of 0.1 (where Rossby number is the ratio of rotation
period and convective turnover time). A Rossby number of
0.1 also corresponds to the rotation rate at which the X-
ray emission of active stars saturates at 0.1 percent of the
bolometric luminosity (e.g Pizzolato et al. 2003; Wright et al.
2011).

Previous studies have shown there may be a possible
maximum limit on the energy that can be output by a G
star superflare. Wu et al. (2015) identified a saturation value
of around 2× 1037 erg, using stars in the sample of Maehara
et al. (2012) that displayed periodic modulation. Similar sat-
uration behaviour was detected by Davenport (2016) from
their sample of 4041 flaring stars, for example from the flar-
ing G dwarf KIC 11551430. Davenport (2016) also found ev-
idence for a weak correlation between flare luminosity and
rotation period.

While these detections have shown the statistical prop-
erties of these white light flares, their temporal morphology
and its link to solar flare morphology has not been investi-
gated. This is due to undersampling of the flare rise and peak
from previous stellar flare surveys (mainly Kepler), particu-
larly for shorter duration events. High cadence (< 1 minute)
data are required in order to compare observed solar flares
and stellar superflares.

Property Value Reference

RANGTS 03:08:34.9
DecNGTS -21:13:22

RANGTS (Deg) 47.14557

DecNGTS (Deg) -21.22284
W4 8.773 4

W3 9.699 4

W2 9.731 4
W1 9.699 4

Ks 9.768 1

H 9.865 1
J 10.216 1

i′ 11.174 3

r′ 11.356 3
g′ 11.899 3

Gaia G 11.354 2
V 11.562 3

B 12.291 3

NUV 16.943 5
FUV 20.666 5

ROSAT X-ray Count Rate (ct/s) 0.042 6

µRA −1.2 ± 1.1 7
µDEC −6.2 ± 1.1 7

Table 1. Properties of NGTS J0308-2113. Coordinates are given
in the J2000 system. References are as follows, 1. Skrutskie et al.

(2006), 2. Gaia Collaboration et al. (2016), 3. Henden & Munari

(2014), 4.Cutri & et al. (2014), 5. Martin et al. (2005), 6. Boller
et al. (2016) , 7. Zacharias et al. (2017) NUV , FUV , i′, r′, g’ are

AB magnitudes. Proper motions are in mas/yr.

In this paper we present the first ground based CCD de-
tections of superflares from a G type star. These are some of
the most well resolved superflares to date, with a higher ca-
dence than all Kepler measurements and most ground based
observations. We present our measurements of the stellar
and flare parameters and make comparisons with previously
detected G star flares. We also present our modelling of each
flare using a solar inspired general flare model.

2 OBSERVATIONS

The data presented in this paper were collected with the
Next Generation Transit Survey (NGTS; Wheatley et al.
2017) over 80 nights between 2015 November 4th and 2016
February 25th. The two flares in this paper were detected
on the nights of the 2015 December 17th and 2016 January
3rd. NGTS is a ground based transiting exoplanet survey,
operating at Paranal. It has 12, 20 cm f/2.8, optical tele-
scopes, each with a 520-890nm bandpass and exposure times
of 10 seconds. Each single camera has a field of view of '
8 deg2. NGTS is designed to monitor bright (I≤16) K and
M stars in the search for exoplanet transits (Wheatley et al.
2017). Unlike Kepler, NGTS observes without a set target
list, meaning that all stars in our field of view that are bright
enough can be studied. Each NGTS field is observed inten-
sively whenever visible, and 3–4 fields are observed per tele-
scope each year. With a total instantaneous field of view of
96 deg2, and 10 s exposures, it is evident that NGTS is well
suited to measure flare statistical distributions along with
temporal morphology.

MNRAS 000, 1–11 (2015)



G star superflares with NGTS 3

0.02

0.00

0.02

0.04

0.06

0.08

F
ra

ct
io

n
a
l 

F
lu

x

0.03 0.00 0.03 0.06
0.02

0.00

0.02

0.04

0.06

0.08

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time Since Flare Start (Hours)

0.03
0.02
0.01
0.00
0.01
0.02
0.03

R
e
si

d
u

a
ls

Figure 1. The superflare observed on NGTS J0308-2113 on 2016 January 3rd with best fitting model overlaid in red. The inset panel

shows a zoomed in view of the data comprising the flare rise and peak, showing how the high cadence of NGTS has enabled us to resolve

and fit to these regions. The bottom panel shows the residuals from our fitting. We note potential substructure in the flare decay around
0.7 hours and discuss this in Sect. 4.

3 DATA ANALYSIS AND RESULTS

3.1 Flare search algorithm

When searching for flares, we started from the raw NGTS
lightcurves and detrended them using a custom version of
the sysrem algorithm (Mazeh et al. 2007). The full NGTS
detrending is described by Wheatley et al. (2017). For these
detrended lightcurves, we applied an additional filter to re-
move frames which showed excess variance above an em-
pirically defined limit, primarily to remove data adversely
affected by clouds. The timescale of stellar flares is minutes
to hours (e.g. Poletto 1989), so most flares will have dura-
tions less than one night, and we searched for flares on a
night-by-night basis.

In order to find flares in each night, we searched for 3
consecutive points greater than 6 M AD from the median of
the night, where M AD is the median absolute deviation. We
have chosen M AD as it is a robust measure of the varia-
tion within a night, and it is typically not strongly biased
by the flare itself (a separate search is also carried out for
flares that dominate the whole night). We applied no bin-
ning to the data, in order to fully utilise the time resolution
of NGTS. Once the automated flagging procedure was com-
plete, we inspected each flagged night visually and removed
false positives. Examples of events which resulted in false

positive flags include satellites passing through our aperture
and high amplitude variable stars (e.g. RR Lyrae).

3.2 Flare detection

Using the method from Sect. 3.1 we detected a single flare,
shown in Fig. 1, from the star NGTS J030834.9-211322
(NGTS J0308-2113). This star has also previously been iden-
tified as 2MASS J03083496-2113222. After identifying this
flare we visually inspected each night to search for lower
amplitude flares which were not flagged. From this, we iden-
tified a second flare, shown in Fig. 2.

To confirm the flares were not from a neighbouring
source, we checked individual NGTS images from before and
during the large flare, along with the positions of nearby
stars from Gaia and 2MASS. The nearest source identified
is from Gaia, a 20.658 magnitude star 10.5 arcseconds (2.1
pixels) away, placing it within our aperture. However, NGTS
images reveal no shift in centroid position during the flare,
and no light entering from outside the aperture, making us
confident the flares are from NGTS J0308-2113.

MNRAS 000, 1–11 (2015)
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3.3 Stellar Properties

To determine the stellar parameters for NGTS J0308-2113
we performed SED fitting using the broadband photometry
listed in Tab. 1. These photometric values were obtained as
part of the standard NGTS cross-matching pipeline (Wheat-
ley et al. 2017). We use the SED modelling method described
in Gillen et al. (2017), with the BT-SETTL and PHOENIX
v2 model atmospheres. The SED fit is shown in Fig. 3. We
see no IR-excess that might indicate NGTS J0308-2113 is a
pre-main sequence star. From the SED fit we determine the
effective temperature Teff = 5458 +108

−85 K. We then use the in-
formation presented in Table 5 of Pecaut & Mamajek (2013)
to identify the spectral type as G8. As a check on the spectral
type we can also use the stellar colours with Tables 3 and 4
of Covey et al. (2007), which confirm the G8 spectral type.
To determine the stellar radius, we assume the star is main
sequence and use the empirical radius-temperature relation
from equation 8 of Boyajian et al. (2012, 2017), determined
from mass-radius calculations for 33 stars of spectral type
between G5V and M5.5V. We calculate our stellar radius
as 0.81 ± 0.04 R�. To estimate the uncertainty on the ra-
dius we use the median absolute deviation of 0.031 R� from
the Boyajian et al. (2012) fit and combine it with the upper
error for our stellar temperature.

To check this source was not a giant star we compared
the reduced proper motion, HJ against J − H colour (e.g.
Gould & Morgan 2003). Using the proper motion values from
Tab. 1, we calculate HJ= -0.78 and J −H= 0.35. We use the
criteria for dwarf/giant classification from Collier Cameron
et al. (2007) to rule out the possibility this star is a giant.

We also note that this star was detected in X-rays with
ROSAT. The detection of X-rays from this source is a sign
of an active stellar corona (Boller et al. 2016).

3.4 Stellar Rotation

The NGTS lightcurve of NGTS J0308-2113 shows periodic
flux variations, which we attribute to starspots moving
across the visible disc of the star. We use this behaviour
to determine the rotation period of the star, using a Lomb-
Scargle periodgram. To do this, we use the astropy package
LombScargle (Astropy Collaboration et al. 2013) and test
for 20000 periods spaced between 13 seconds and 80 days.
We mask the flares from our lightcurve when performing
this analysis. Our periodogram for the whole time series of
NGTS J0308-2113 is shown in Fig. 4, from which the period
of the main peak is 59.09±0.01 hours (0.41 d−1). We calcu-
late the uncertainty on this period by fitting a sine wave to
the data. Using the analysis from Baluev (2008) we deter-
mine the false alarm probability (FAP) of this peak to be
negligible, a result of the high amount of data. We also note
a second peak at 40 hours, which we found to be an alias
by performing an identical Lomb Scargle analysis on a sine
wave of period 59 hours with the same time sampling as our
lightcurve.

This short spin period implies that NGTS J0308-2113
must be a relatively young star, most likely less than ∼600
Myr old, through comparing to the observed spin-age rela-
tions of open clusters (e.g. Sadeghi Ardestani et al. 2017;
Douglas et al. 2017; Stauffer et al. 2016).

The amplitude of the observed spin modulation evolves
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Figure 2. A lower amplitude flare, from 2015 December 17th.

The best fitting model is overlaid in red. We note the appearance

of substructure at the flare peak and at 1.5 hours and discuss this
in Sect. 4. The flare start time is given here by where the fit goes

above 1σ above the quiescent flux, as discussed in Sect. 3.6.1
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Figure 3. SED fit of NGTS J0308-2113 using the magnitudes

listed in Tab. 1, matching best to a G8 spectral type.

with time. We split the lightcurve into three regions of activ-
ity, corresponding to an initial active portion, a secondary
quiet portion and a final region where the amplitude in-
creases once more. The 59 hour period phase folded data for
these regions can be seen in Fig. 5. These regions are plot-
ted in phase relative to the beginning of the lightcurve. The
third region has a similar but slightly offset phase from the

MNRAS 000, 1–11 (2015)
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Figure 4. Lomb-Scargle periodogram for our full lightcurve. Here
we show frequencies between 0 and 2 day−1. Note the 1 day alias

of the peak groups. The largest peak corresponds to our detected
59 hour period.

Figure 5. Phase folded data for the three regions of flux variation.

Top is the initial active portion, middle is the quiet region and
bottom is the following increase in activity. Overlaid in red is the
sinusoidal fit for a 59 hour period. The black lines indicate the
location of the small flare (top section) and the large flare (middle
section).

first, as well as less complete phase coverage due to a shorter
duration. The durations of each region in the lightcurve are
40, 23 and 17 days respectively. The change in phase, along
with the changing flux variation, can be explained by the
decay of the original set of star spots and the formation
of new ones. Starspot lifetimes have been studied by Brad-
shaw & Hartigan (2014) and for main sequence stars are
on month timescales. One example is CoRoT-2, which has
a starspot evolution timescale of 31±15 days (Silva-Valio
& Lanza 2011). Consequently we attribute our changing
lightcurve modulation to starspot evolution.

We also searched for periodic signals separately in the
three light curve regions. The three Lomb-Scargle peri-
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Figure 6. Lomb-Scargle periodograms for each section shown in
Fig. 5. Note the lack of a period detection in the quiescent region.

odograms are presented in Fig. 6. In the second, quiet, period
of the light curve we see no evidence for periodic modulation.
Calculating the modulation period of the third region gives
a significantly longer rotation period of 60.87±0.04 hours
(0.39 d−1). This offset period suggests that the star exhibits
differential rotation and that the new set of starspots are
formed at a different latitude to the original active region.

We also check where each flare occurs in phase, to search
for any relation to the location of the active region. The
smaller flare occurs towards the end of the first region, close
to maximum optical brightness, while the larger flare occurs
in the second, quiet region at similar rotation phase (see
Fig. 5). For the smaller flare, this is opposite in phase to the
dominant active region. Neither flare seems to be located at
a rotation phase where a large star spot group is obviously
visible, and we discuss this further in Sect. 4.

3.5 X-ray Activity

As noted in Sect. 3.3, NGTS J0308-2113 has been detected
in X-rays with ROSAT. The detection was made during
the ROSAT all sky survey, and we adopt count rates
and hardness ratios from the 2RXS catalog (Boller et al.
2016). The ROSAT PSPC count rate was 0.042 ± 0.018 s−1

and the hardness ratios in the standard ROSAT bands
were HR1=1.000 ± 0.325 and HR2=−0.428 ± 0.243. The HR1
value indicates that the source was detected only in the
ROSAT hard X-ray band (0.5–2.0 keV) and not in the soft
band (0.1–0.4 keV).

The ROSAT PSPC count rate of NGTS J0308-2113
corresponds to a 0.1–2.4 keV energy flux of 5.7 ×
10−13 erg s−1cm−2, using energy flux conversion factors de-
termined for coronal sources by Fleming et al. (1995). This
flux conversion uses the HR1 hardness ratio to account of
the characteristic temperature of corona, and it has been
applied to large samples of stars from the ROSAT all sky
survey by Schmitt et al. (1995) and Huensch et al. (1998).

This X-ray flux corresponds to a 0.1–2.4 keV X-ray lu-
minosity of LX = 1.7 × 1030 erg s−1 assuming a distance to
NGTS J0308-2113 of 156 pc that we estimate using the ap-

MNRAS 000, 1–11 (2015)
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parent V magnitude and the expected absolute V magnitude
for a G8V star (Gray & Corbally 2009). Using the values for
Teff and R∗ from Sect. 3.3 we find the bolometric luminos-
ity of the star to be LBol = 1.8 × 1033 erg s−1 and hence
log LX/LBol = −3.1, which corresponds to saturated X-ray
emission (Pizzolato et al. 2003; Wright et al. 2011).

Combining this X-ray luminosity with our measure-
ment of the stellar rotation period (Sect. 3.4), we can place
NGTS J0308-2113 on the rotation-activity relation of Wright
et al. (2011). This is shown in Fig. 7 where NGTS J0308-2113
can be seen to reside close to the break point between satu-
rated X-ray emission and the power law decrease in activity
to slower rotation. The Rossby number of 0.18 was calcu-
lated using our rotation period and the relation for convec-
tive turnover time from Wright et al. (2011).

Using the relation between the X-ray surface flux and
average coronal temperature from Johnstone & Güdel (2015)
we estimate an average coronal temperature of 10 MK. This
is similar to the coronal temperature of 7.5 MK predicted
from the rotation period using the relation by Telleschi et al.
(2005).

The lack of detection of NGTS J0308-2113 in the
ROSAT soft band, as well as its relatively large distance,
suggests that it may be subject to stronger interstellar ab-
sorption than the sample of stars used to determine the
flux conversion factors of Fleming et al. (1995). We there-
fore double checked our flux estimation using webpimms.1

We assumed a characteristic coronal temperature of 7.5 MK
and an interstellar column density equal to the total Galac-
tic columnn the direction of NGTS J0308-2113, which is
NH = 2 × 1020 cm−2 (Dickey & Lockman 1990; Kalberla
et al. 2005). The measured ROSAT PSPC count rate then
corresponds to an unabsorbed 0.1–2.4 keV energy flux of
4.9×10−13 erg cm−2 s−1, which is within 20 percent of our cal-
culation using the flux conversion factors of Fleming et al.
(1995).

3.6 Flare Modelling

We model our flares following a similar method to Gryciuk
et al. (2017), who fitted solar flares in soft X-rays. For both
flares, we use the convolution of a Gaussian with a double
exponential. A Gaussian is used to account for the heating
in the flare rise, which has been found to be appropriate for
solar flares (e.g. Aschwanden et al. 1998). A double exponen-
tial is used for the decay, accounting for thermal and non-
thermal cooling processes, which has been used previously
for the decay of stellar flares (e.g. Davenport et al. 2014).
A convolution of these Gaussian and exponential functions
is then analogous to the heating and cooling processes oc-
curring during the flare (Gryciuk et al. 2017). With this
physically motivated model we can utilise the high cadence
of NGTS, in particular the flare rise which in the past has
been fit using a polynomial or disregarded due to a lack of
data points (e.g. Davenport et al. 2014; Pugh et al. 2016).

Before performing fitting, we inspected the full
lightcurve and noted that several nights exhibited behaviour
consistent with atmospheric extinction. We identified this

1 https://heasarc.gsfc.nasa.gov/cgi-

bin/Tools/w3pimms/w3pimms.pl

trend by using the full lightcurve to fit for a first order at-
mospheric extinction term. This trend was then removed
from the lightcurve, including the nights showing our flares.
The nights before and after each flare were used to check the
quality of this fit and were found to have the atmospheric
extinction successfully removed. We also account for the flux
modulation effects from starspots. To do this we use the pre-
ceding two and subsequent two nights and fit a sinusoid at
the calculated 59 hour stellar rotation period. With this si-
nusoid we are able to remove any gradient due to rotation
from the night. This is required most for the smaller flare,
which sits in the first, more active region of the lightcurve
(Sect. 3.4).

For both flares we perform fitting using an MCMC anal-
ysis with the python package emcee (Foreman-Mackey et al.
2013), using 500 walkers for 2000 steps and discarding the
first 500 as a burn-in. During modelling we have increased
our error bars to account for scintillation using the mod-
ified Young’s approximation with the empirical coefficient
for Paranal (Young 1967; Osborn et al. 2015). The best fit-
ting models for the two flares are overlaid on Figs. 1 & 2. The
best fitting parameters presented in Tab. 2.

3.6.1 Flare Amplitude and Duration

To determine the amplitude of each flare we use the maxi-
mum value of our fit. For the larger flare this gives a frac-
tional amplitude of 6.9 per cent. For the smaller flare, using
the value from the fit gives a fractional amplitude of 1.2 per
cent. Inspecting Fig. 2, there appears to be impulsive sub-
structure at the flare peak, which is not accounted for in our
model. Taking the average of the five data points around the
peak gives an peak amplitude of 2.0±0.3 per cent.

To obtain a measure of the full duration of the flare, we
again make use of our fit. We define the start and end of
the flare as the points where the model rises and then falls
more than 1σ above the background flux level, as in Gryciuk
et al. (2017). Here σ is determined from the quiescent flux
before the flare. From this, we determine the flare duration
of the larger flare to be 55 minutes. Due to the decreased
amplitude to error ratio of the smaller flare, we do not cal-
culate the full flare duration using this method. However, we
also calculate the flare duration with two additional methods
- using its e-folding timescale (as performed in Shibayama
et al. 2013) and its scale time (the duration where the flare
is above half the maximum flux value). Again, we use our
fit for these. For the large and small flare, we calculate the
e-folding timescale as 16 and 55.5 minutes respectively, and
the scale time as 11 and 42 minutes respectively. With our
fit we can also calculate the timescale of the flare rise, using
the time from the flare start to the peak of the model. Using
this, we calculate the flare rise time as 2.5 minutes for the
larger flare. If we use the 1σ start limit for the smaller flare,
we estimate the flare rise as at least 7.4 minutes.

3.7 Flare Energy

The method used to calculate the flare energy is based on
that described by Shibayama et al. (2013), and makes the as-
sumption that the flare and star act as blackbody radiators,
with the flare having a blackbody spectrum of temperature
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Figure 7. Left: Stellar X-ray to bolometric luminosity ratio vs rotation period for NGTS J0308-2113 with the data from Wright

et al. (2011). Right: Same, but for Rossby number. We have also overlaid the power law fit from Wright et al. (2011), with β=-2.18.
NGTS J0308-2113 is shown here with a red star.

Property Large Small

Energy (erg) 5.4+0.8
−0.7 × 1034 2.6+0.4

−0.3 × 1034

Fit Amplitude (per cent) 6.9 1.2
Full Duration (min) 55 N/A

e-folding duration (min) 16 55.5
Scale time (min) 11 42

Flare rise (min) 2.5 >7.4

Table 2. Properties of each superflare detected from
NGTS J0308-2113.

9000 ± 500 K in order to estimate the flare luminosity. Using
the stellar effective temperature and radius from Sect. 3.3,
we calculate the bolometric energy of the larger and smaller
flare to be 5.4+0.8

−0.7 × 1034 erg and 2.6+0.4
−0.3 × 1034 erg respec-

tively. It is striking that the smaller flare is only a factor two
less energetic despite having an amplitude around six times
lower. Comparing to the Carrington event energy of ≈ 1032

ergs (Tsurutani et al. 2003), we can see that each flare had a
bolometric energy several hundred times greater than this.

From a total of 422 hours of observation for this star,
we have detected two flares. We can use this measurement
to estimate the flaring rate for flares above 2.6+0.4

−0.3 ×1034 erg
as approximately 40 per year.

4 DISCUSSION

4.1 Flare Properties

We have detected two superflares from the G star
NGTS J0308-2113 with high-cadence NGTS optical photom-
etry. These are the first ground-based CCD detections of su-

perflares from a G star. Our NGTS observations have much
higher cadence than the Kepler flare detections, allowing us
to resolve the flare rise and substructure.

The larger flare is shown in Fig. 1 and was calculated to
have a bolometric energy of 5.4+0.8

−0.7×1034erg and a fractional
amplitude of 6.9 per cent. Due to the increased time resolu-
tion of our measurements compared to almost all previous
superflare detections, we have been able to fit this flare with
a physically-motivated model that includes a Gaussian pulse
to describe the impulsive flare rise (as employed previously
for solar flares). For the decay, our data require two expo-
nential components. Separate impulsive and gradual decay
components been seen previously in some stellar flares, and
attributed to decay of blackbody-like emission and chromo-
spheric emission respectively (Hawley et al. 2014; Kowalski
et al. 2013). We can also see that this flare displays a flat-
tening around the peak, or a “roll-over”. Similar flare peak
behaviour has been seen by Kowalski et al. (2011) from UL-
TRACAM observations of the dM3.5e star EQ Peg A. This
behaviour is captured in the fitted model as a result of the
observed combination of Gaussian heating and exponential
cooling. Further, we can identify smaller peaks in the decay
of the flare, located at approximately 0.7 and 1.0 hour after
the flare start in Fig. 1. Structure, or “bumps”, such as this
have been previously identified in flare decays with Kepler
(e.g Balona et al. 2015).

Our model has also been used to fit the smaller flare
of NGTS J0308-2113, shown in Fig. 2. This flare has a much
lower relative amplitude of just 1.2 per cent, making it the
lowest-amplitude G star flare to have been detected from
the ground. Despite its low amplitude, this smaller flare has
a much slower rise and longer duration than the larger flare
(by factors of 3–4) so that it has a high total energy of
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2.6+0.4
−0.3×1034erg, which is only a factor 2 lower than the larger

flare. When fitting this smaller flare it became apparent that
there was additional structure at the flare peak. This can
be seen in the residuals of Fig. 2, as a small spike lasting
approximately one minute. This is a sign of an additional
heating pulse at the end of the initial flare rise. In this flare
we also detect subtructure around 1.5 hours after the flare
start (visible in the residuals). The amplitude of the peak at
this time is approximately 1 per cent, which is comparable
with the amplitude of the main flare. Considering the timing
of this substructure relative to the main flare peak, it is likely
an example of sympathetic flaring (e.g. Moon et al. 2002).

One advantage of our flare model, combining a Gaus-
sian heating pulse with exponential cooling, is that it avoids
an arbitary discontinuity between the end of the rise and
the beginning of the decay. This has generally not been the
case with previous stellar flare models, which have tended
to include an instantaneous transition between functions de-
scribing the rise and decay (e.g. Davenport et al. 2014).
Our model also provides a well-defined measure of the rise
timescale, allowing for studies of how the flare rise time
changes between flares. In this case we see the lower am-
plitude flare rising much more slowly than the high ampli-
tude example. This highlights how wide-field high-cadence
surveys such as NGTS can contribute to the quantitative
characterisation of stellar flares.

4.2 Starspots and Flare Phases

Our analysis of the NGTS light curve of NGTS J0308-2113
revealed a 59.09±0.01 h periodic modulation that we inter-
pret the changing visibility of starspots on the stellar rota-
tion period (Sect. 3.4). The initial set of starspots appear to
decay during the observations, and no spin modulation is
detected for an interval of around 23 d. Periodic modulation
begins again towards the end of the NGTS observations, and
at a slightly longer period, suggesting that the star exhibits
differential rotation and that new starspots have emerged at
a different latitude.

Checking where the flares occur in rotation phase re-
veals that the smallest flare occurs in antiphase to the dom-
inant starspot group, while the larger flare occurs during the
quiescent interval of the lightcurve (at a similar spin phase to
the first flare). These flare timings are perhaps surprising, as
we might expect to see superflares when large active regions
are present and visible. Instead, our results suggest that the
observed superflares do not emerge from the dominant ac-
tive regions on the stellar surface. Such behaviour is not un-
precedented, as observations of the M dwarfs AD Leo and
GJ 1243 showed no correlation between stellar flare occur-
rence and rotational phase (Hunt-Walker et al. 2012; Haw-
ley et al. 2014). A similar result was found for the K dwarf
KIC 5110407, with all but the two strongest flares showing
no correlation with the most active regions (Roettenbacher
et al. 2013). In these cases it was suggested that the domi-
nant active region might be located at the pole, such that it
is always in view and flares can be seen at any spin phase.
An alternative is that the majority of flares originate from
smaller spot groups that do not cause the dominant flux
modulation.
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magnitude of our flares from NGTS J0308-2113 (red stars) with G

star superflares detected in short cadence (black squares) and long
cadence (black crosses) Kepler data. When comparing fractional

amplitudes between NGTS and Kepler it should be noted that

the Kepler bandpass extends blueward of NGTS.

4.3 Comparison with Kepler

In Fig. 8 we compare the superflares of NGTS J0308-2113
with G star superflares detected with Kepler. We use the
samples from Shibayama et al. (2013) and Maehara et al.
(2015) for the long and short cadence Kepler data respec-
tively. NGTS J0308-2113 has a Kepler magnitude of 11.4,
calculated using the stellar g’ and r’ magnitudes and Eqn. 2a
from Brown et al. (2011). This magnitude makes it one of
the brightest G stars seen to exhibit a superflare (see Fig. 8).
The larger flare from NGTS J0308-2113 also has a greater
amplitude than all but one of those detected in short ca-
dence Kepler data. This flare also has a shorter duration
than most detected with Kepler. This comparison demon-
strates that NGTS has a sufficiently wide-field of view and
high photometric precision to detect rare and interesting
stellar flares from bright stars. Each flare is also observed
with higher cadence than has previously been possible.

4.4 X-ray Activity

Thanks to the relative proximity and hence brightness of
NGTS J0308-2113 we were able to measure its X-ray lumi-
nosity using archival ROSAT data (Sect. 3.5). We found that
the star is in the saturated X-ray regime, with log LX/LBol =

−3.1, and that its X-ray emission is consistent with the ro-
tation activity relation of Wright et al. (2011). It was not
detected in the ROSAT soft X-ray band, likely due to inter-
stellar absorption. Using our measured spin period and the
relation for convective turnover time by Wright et al. (2011)
we estimated the Rossby number of NGTS J0308-2113 to
be 0.18. Interestingly, this places the star close to the peak

MNRAS 000, 1–11 (2015)



G star superflares with NGTS 9

of superflare occurrence rates found by Candelaresi et al.
(2014).

We can also compare the X-ray luminosity of
NGTS J0308-2113 with that of other G stars exhibiting su-
perflares. Yabuki et al. (2017) found nine stars with X-ray
detections from the Kepler superflare sample of Shibayama
et al. (2013). Using these nine X-ray detections they iden-
tified a correlation between the largest white-light flare en-
ergies (estimated from Kepler data) and quiescent LX with

EBol ∝ L
1.2±0.3

0.4
X

. (1)

Based on this relation, we would expect NGTS J0308-2113
to exhibit flares of energies up to approximately 8×1035 erg.
This is around 13 times greater than the energy of our larger
flare, suggesting NGTS J0308-2113 sometimes exhibits even
more energetic flares than the examples we have detected
with NGTS.

4.4.1 Maximum Flare Energy

An alternative method to estimate the potential maximum
flare energy is to use the starspot activity. This is done using
equation (1) from Shibata et al. (2013),

E f lare ≈ 7 × 1032(erg)
(

f
0.1

) (
B

103G

)2 ( Aspot

3 × 1019cm2

)3/2
(2)

where f , B and Aspot are the fraction of magnetic energy
that can be released as flare energy and the magnetic field
strength and area of the starspot respectively. We estimate
the starspot area from the lightcurve modulation normalised
by the average brightness, following the method of Notsu
et al. (2013). We use the region of greatest brightness varia-
tion to estimate the area, obtaining a value equivalent to 0.04
of the visible stellar surface. We assume f =0.1 (Aschwanden
et al. 2014) and B=1000 - 3000G (typical comparison values
for solar-type stars e.g. Solanki 2003; Maehara et al. 2015)
and calculate E f lare = 0.9 − 8.5 × 1035erg. This estimated
value is the same order of magnitude as that calculated from
the X-ray data, predicting a flare of greater energy than our
largest event.

4.5 Implications For Exoplanet Habitability

Understanding the properties of superflares from G stars is
important when considering the habitability of Earth-like
exoplanets, including those expected to be detected with
PLATO (Rauer et al. 2014). Stellar flares are known to
be associated with intense ultraviolet radiation (e.g. Stelzer
et al. 2006; Tsang et al. 2012), which can reduce levels of
atmospheric ozone (e.g. Lingam & Loeb 2017) and damage
the DNA of biological organisms (e.g. Castenholz & Garcia-
Pichel 2012). Associated X-ray and extreme-ultraviolet radi-
ation can also erode the planetary atmosphere and drive wa-
ter loss. Stellar flares are also associated with Coronal Mass
Ejections (CMEs), and while planetary magnetospheres may
protect against the quiescent stellar wind, CMEs can act to
compress the magnetosphere and expose the planetary at-
mosphere to further erosion and dessication (e.g. Kay et al.
2016; Lammer et al. 2007).

The detections of superflares presented in this paper

demonstrate that wide-field ground-based surveys such as
NGTS are capable of characterising the rates and energies
of superflares from G-type stars, despite their relatively low
fractional amplitude. Since flare detections with ground-
based telescopes can be made and announced in real time it
may also be possible to trigger immediate follow up of super-
flares with larger narrow-field telescopes while the flares are
still in progress. This has not been possible to date due to the
unpredictable nature of superflares and inevitable delays in
downlinking and processing data from space telescopes such
as Kepler. Real-time follow up of NGTS flares might then
provide the multi-wavelength observations needed to assess
the impact of superflares on potentially habitable exoplanet
atmospheres.

5 CONCLUSIONS

In this work we have presented the detection of two su-
perflares from the G8 star NGTS J030834.9-211322 using
NGTS. These are the first G star superflares detected from
the ground using a CCD, and they are among the highest ca-
dence measurements of any superflares to date. We fit both
flares with a model that incorporates a Gaussian heating
pulse, as seen previously in solar flares, and exponential de-
cay on two timescales. The model fit provides the amplitude,
energy and duration of each flare, and we find the two flares
have similar total energies despite their different amplitudes
and durations. The larger flare has an unusually high ampli-
tude and short duration for a G star superflare. Our model
also allows us to measure the timescale of the flare rise, an
interval that has been undersampled in previous studies, and
we find the longer duration flare has a slower rise. We have
also detected substructure in both flares.

The stellar rotation period of NGTS J0308-2113 was
measured to be 59 hours, and we found evidence for differen-
tial rotation. The X-ray luminosity of the star was calculated
to be 1.7 × 1030 erg s−1, with log LX/LBol = −3.1 implying
saturated X-ray emission, as expected for a G8 star with
such a short spin period. The Rossby number of 0.18 places
NGTS J0308-2113 close to the peak of the occurence rate
distribution implied by previous flare detections.

Our results highlight the potential for wide-field ground-
based surveys such as NGTS to determine the rates, energies
and morphologies of superflares from G stars, despite the
modest white-light amplitudes of such flares. Further detec-
tions and real-time multi-wavelength follow up will be im-
portant in assessing the habitability of Earth-like exoplanets
around G stars, including those to be found with PLATO.
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