

City, University of London Institutional Repository

Citation: Wood, J., Kachkaev, A. & Dykes, J. (2018). Design Exposition with Literate
Visualization. IEEE Transactions on Visualization and Computer Graphics,

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: http://openaccess.city.ac.uk/20081/

Link to published version:

Copyright and reuse: City Research Online aims to make research
outputs of City, University of London available to a wider audience.
Copyright and Moral Rights remain with the author(s) and/or copyright
holders. URLs from City Research Online may be freely distributed and
linked to.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Design Exposition with Literate Visualization

Jo Wood, Member, IEEE, Alexander Kachkaev and Jason Dykes

Fig. 1. Literate Visualization code (left) and output (centre and right) for a design exposition that elicits user feedback.

Abstract—We propose a new approach to the visualization design and communication process, literate visualization, based upon and
extending, Donald Knuth’s idea of literate programming. It integrates the process of writing data visualization code with description of
the design choices that led to the implementation (design exposition). We develop a model of design exposition characterised by four
visualization designer architypes: the evaluator, the autonomist, the didacticist and the rationalist. The model is used to justify the key
characteristics of literate visualization: ‘notebook’ documents that integrate live coding input, rendered output and textual narrative;
low cost of authoring textual narrative; guidelines to encourage structured visualization design and its documentation. We propose
narrative schemas for structuring and validating a wide range of visualization design approaches and models, and branching narratives
for capturing alternative designs and design views. We describe a new open source literate visualization environment, litvis, based on
a declarative interface to Vega and Vega-Lite through the functional programming language Elm combined with markdown for formatted
narrative. We informally assess the approach, its implementation and potential by considering three examples spanning a range of
design abstractions: new visualization idioms; validation though visualization algebra; and feminist data visualization. We argue that
the rich documentation of the design process provided by literate visualization offers the potential to improve the validity of visualization
design and so benefit both academic visualization and visualization practice.

Index Terms—storytelling, design, literate programming, theory

1 INTRODUCTION

Visualization both as an academic discipline and as a practice cannot
progress unless we have the means to build upon the lessons learned
from prior visualization work. In turn this requires us to be able to
capture and share the process of visualization design and rationales that
drive it. If the cost of doing this is too great, or the ways in which it
can be achieved are unclear, we risk stagnation as we repeat mistakes
or invest unnecessary effort in reinventing established good practice.
We propose a solution to address these concerns that involves commu-
nicating design and documenting design choices using the emerging
‘computational notebook’ paradigm.

Literate visualization is an approach to visualization design and
production that involves not only creating visual artifacts, but also
generating a narrative around the design process using light-touch
documentation in parallel with its production. It provides a high degree
of flexibility for doing so while allowing structure to be applied to
guide this process. The intent is to encourage a shift towards a deep

• All authors are at the giCentre, City, University of London. E-mail:
j.d.wood — alexander.kachkaev — j.dykes @city.ac.uk.

Author post-print. Manuscript received 31 Mar. 2018; accepted 11 July. 2018.
Date of Publication Jan. 2019; date of current version 11 July. 2018. For
information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org. Digital Object Identifier: xx.xxxx/TVCG.2019.xxxxxxx

coupling of coding process with the design process by integrating the
documentation of both simultaneously. We base the approach on that
of ‘literate programming’ proposed by Donald Knuth [15], but adapted
and extended to address the distinct needs of visualization construction.

The main contributions of the work reported in this paper are four-
fold:

• A theoretical framework for considering the paradigm of literate
visualization which provides researchers and practitioners a lan-
guage and ontology for considering how we conduct integrated
visualization design, description and implementation processes.

• A model for supporting branching narratives in visualization
design storytelling that links narrative and implementation.

• A set of extensible narrative schemas for supporting and validat-
ing a wide range of visualization design processes.

• A open source platform, litvis, which supports literate visual-
ization including live coding and linting, formatted narratives,
branching narratives and narrative schemas, all in a single editing
environment.

To illustrate the contributions of this work we describe a scenario
in which litivs might be used before developing a justification for the
approach and details of its implementation.

Carol is investigating changes in household income over time and
wishes to use visualization to identify patterns of inequality and then
communicate them to others. She opens up a new document in the Atom
editor and adds a one-line text header indicating it is a litvis document.
After copying the contents of a CSV file of household income data
from 1960 – 2016 into the document she adds a couple of lines of text
describing the data source and a single line that assigns the columns of
data to a named function. She creates a second document in Atom and
writes a header of two-lines, the first linking to the data document, the
second linking to a Socratic questioning schema (supplied with litvis).
She starts to code in Elm, generating the Vega-Lite specification to
create a series of timelines showing changes in household income for
various percentiles in the income distribution. Errors in her code are
flagged in the editor with messages as to the likely cause, helping her
to correct them. Because she is using the Socratic question schema, the
editor flags a warning that she has not yet stated why she has chosen
to use time series line charts to meet her objective. She adds a couple
of sentences after her code to do this, but in doing so it occurs to her
that there may be a more effective way to visualize the data. So she
creates a new document, again linking it to the original data document
and adding the Socratic questioning schema, but this time she codes
a connected scatterplot showing the change over time for the 5% and
95% income bands, adding brief statements justifying her design choice.
Carol can now switch between the two designs and their justifications
in Atom before eventually deciding to choose the connected scatterplot.
She creates a final document that links to the connected scatterplot
document, performs her analysis and adds an explanation of the income
patterns she observes. She shares the collection of four documents
with a colleague who is able to review her two alternative designs and
read her analysis of the data. Her colleague notes that there are new
household income data available including a correction to some of the
historic data. He updates the data in the first document adding a note
on the changes within the same document. The changes automatically
cascade through all other documents updating the visualization. He
notes the changes and confirms that the analysis text and conclusions
remain valid.

2 LITERATE PROGRAMMING AND LITERATE VISUALIZATION

Literate Visualization (LV) can be thought of as a form of storytelling
where the designers of some visualization specify not only its implemen-
tation, but also the rationale behind the design of the implementation.
It is therefore a tight coupling of textual narrative and more formal
implementation specification such as executable programming instruc-
tions. Importantly, that coupling should be seen as not simply expressed
retrospectively in a document, but as a shift in emphasis in the process
of working through a visualization design to its implementation. In
this sense, it can be seen as an extension of Knuth’s literate program-
ming (LP) [15] and its more recent data science framing as a form of
‘computational narrative’ [25].

Knuth proposed that LP should be considered primarily an approach
for communicating between people rather than a dialogue solely be-
tween programmer and computer. He proposed the writing of integrated
documents that contained both instructions for creating typeset text for
human consumption (weaving) as well as conventional source code to
be compiled into lower level machine instructions (tangling).

He did this by inverting the relationship between commented and
uncommented code in a source code document so that by default all
text is assumed to be natural language prose while program instructions
are delineated within special blocks. The approach was driven by a
number of principles and assumptions:

(i) Writing and reading code should afford all the nuance that comes
with writing and reading conventional literature.

(ii) The LP author should consider their document primarily to be a
narrative forming a dialogue between people, with compiled code
a secondary byproduct.

(iii) ‘Tangled’ source code should be deliberately obfuscated to en-
courage people to engage with the formatted ‘weave’.

(iv) The narrative structure of LP should be the one most natural for
communication with other people, not one determined by the
programming language.

(v) By forcing the programmer/author to contextualise their code, as-
sumptions are questioned and implicit knowledge is made explicit,
resulting in better quality code.

Later adaptations of Knuth’s LP approach have placed less impor-
tance on (iii) and developments in programming languages have made
it easier to follow (iv). In focussing on (iv), Taylor [35] recognised
three levels of narrative structuring: semi-literate programming where
‘comments’ are simply elevated to first class elements in a text doc-
ument (e.g. literate Haskell [11], or literate-mode coffeeScript [5]);
literate projection or symphonic programming where code blocks can
be named and cross referenced in any order; and artistic program-
ming that can mix multiple languages with arbitrary selections and
transformations of code segments. In the context of visualization, the
‘artistic programming’ model is an important one as it allows the trans-
formation of visualization coding instructions into rendered graphical
output. Arguably, ‘notebook’ environments, dating back at least as far
as Mathematica in 1988 [38], but more recently those such as Jupyter-
Lab Notebook [12], R-Markdown [29] and Observable [2] adopt many
elements of the artistic programming model.

In adapting the LP approach to visualization design, it is important
to consider the critiques of LP and why it has not been used more
widely since being proposed in 1984. Spinellis [34] argues that self-
documenting code, if designed well, is more valuable than the repetition
that results in explicit comments describing code and that modern pro-
gramming platforms with higher level abstractions implicitly satisfy the
aims of the LP approach. We argue that in the context of visualization,
a key characteristic of the narrative emphasis is not on describing an
implementation, but in documenting the detail of the design process
and contextualising the graphic – something not usually captured in a
programming language, whatever the level of abstraction.

Giuca [9], discussing literate Haskell, asserts that the additional
burden of writing a literate narrative on top of coding instructions is
too cumbersome to justify the effort. While Knuth argues that the
discipline of constructing such narratives saves effort in the long run
through better coding design, it does appear a credible argument that
the perceived initial extra effort required has been off-putting to most
programmers. In an analysis of 1.3 million Jupyter notebooks that
facilitate computational narratives, Rule et al. observe that 27% of
them contain no textual narrative at all and that the majority that do,
focus the narrative at the start of a document most probably in an
introductory context [30]. What emerges from these observations is
that any environment that supports LP or LV must make the process of
adding narrative as low-friction as possible and present the benefits of
doing so as early as possible. This may explain the recent emergence
of the ‘notebook’ approach of JupyterLab and Observable for example.
We address these concerns explicitly, including their unused potential
as observed by Rule et al., in Section 4.

Agaram [1] suggests the emphasis of Knuth’s approach to literate
programming, especially the use of his TEX typesetting program for
formatting narrative has resulted in people prioritising aesthetically
pleasing output over clear and persuasive narrative. While one can
argue this isn’t a problem with LP directly, but the way it has been
used (especially in the first few years of its uptake), there remains
a valid criticism that there are few pointers available to the literate
programmer to encourage effective narrative construction. Wolfram’s
model for the ‘computational essay’ provides some helpful guidance
[38], especially on the role of reasoning, but it remains somewhat
informal in its approach to narrative construction. LV, where a design
narrative may be further removed from the implementation details, may
be more vulnerable to this problem. We address the criticism with our
proposal for narrative schemas (Section 5) and show how these can be
used to support and enhance existing visualization design models.

The tension between effective narrative sequencing and the chronol-
ogy of development can mean that the story one tells at the start of a
project isn’t the same as one told at the end [3]. Writing the narrative

from the start makes it harder to change, while writing it from a position
of retrospection after a design project has completed risks failing to
capture how designs and assumptions changed over the project lifetime.
Related to this is the danger of the sunk cost fallacy where the extra
documentation effort during a project may make it harder to iterate de-
signs as designers become more defensive about what they have already
produced. The implications of this for an LV environment is that the
cost of providing a narrative must be minimised along with the ability
to capture and move between alternative designs. We address these
concerns with an emphasis on light-touch documentation (Section 4)
and our proposal for branching narratives (Section 6).

Capturing the design process as it happens allows designers to ac-
cumulate evidence supporting validity claims in visualization research.
This may be achieved by situating visualization design within process
and decision models [19,24,32,33] that provide actionable guidance on
effective visualization design. By articulating the rationale for design
choices [20] the aim is to ensure knowledge generated through visu-
alization is considered valid – a critical foundation for applied work
in our domain. Yet these models lack actionable guidance on how we
describe and document the designs that we create and the decisions that
we make during this process.

Easily generated textual narrative provides an opportunity to doc-
ument these activities. Structuring these narratives with schemas can
relate them to existing visualization process and decision models should
we wish, offering a mechanism for describing the designs that we create
through these frameworks. We see this as an opportunity to support
existing models with rich accounts of how and why a design has been
established as it is developed. These will enable others to make in-
formed validity judgments, develop critique and build upon the lessons
learned from the documented designs and design process. For exam-
ple, the Nested Blocks and Guidelines Model contributes a structure
that “strives to make explicit the design decisions and assumptions that
process models tend to omit” [22]. Through its schemas and narratives,
our software litvis, provides a flexible mechanism to support use of
this model through documenting decisions, assumptions and reactions
explicitly as part of the design process.

3 DESIGN EXPOSITION

A key distinction between LV and LP is that in the visualization context,
the narrative is often focussed on the visualization design, its rationale
and its effect rather than the mechanism of its implementation. This also
helps differentiate LV from the data science computational narrative
with its emphasis on data analysis and interpretation. Or to use the
language of the Design Activity Framework [20], the why is promoted
as a first class citizen along with the how.

Constructing a visualization involves a set of design choices and im-
plementations that follow those choices. Activities where those design
choices are articulated, whether by the designer to themselves, to other
designers, to potential users of the visualization or to wider communi-
ties, we refer to as design exposition (DE). DE may take many forms
and vary in degree, ranging from inline comments within programming
code, through informal conversations with colleagues, through hand-
written annotations and sketches of candidate visualizations (e.g. [28]),
to formal documentation of design choices and evaluation. Indeed the
notion of what constitutes an exposition of design is itself inherently
difficult to define as it may include informal and ambiguously expressed
ideas and implementations inseparable from their design abstractions
or data [18]. Nevertheless, exposition can assist in exploring design
spaces, developing arguments, informing evaluation and supporting
reflection. And yet there is likely great variation among practitioners in
the degree to which DE features in the development of visualization.
That may be in part due to the effort required to articulate, communicate
and justify design choices but also to the lack of established convention
for doing so.

Many conventions exist for structuring design processes, such as the
nine-stage model [32], multi-channel design [40], the design activity
framework [20] or even comprehensive design space evaluation [21]
for visualization and more generally, Design Rationale [23, 27] for
explaining design thinking. But they offer little guidance on how best

to express the results of these processes within a written narrative. This
deep engagement can provide valuable insight and documented design
thinking for others to build upon but may also be regarded as high
friction activity that can slow down the development process or even
discourage it entirely. The analysis of computational notebooks by Rule
et al. [30] suggests the tensions between exploration and explanation
and lack of guidance in resolving that tension adds to this friction.

To understand how DE may be incorporated into the visualization
design process we propose a number of designer architypes (see Fig-
ure 2) that reflect contrasting approaches. We characterise each by
considering the volume of effort put into design exposition (DE ampli-
tude) and how it varies over time. Two represent endpoints on a DE
spectrum (‘the autonomist’ with minimal DE and ‘the rationalist’ with
full DE) and two represent common practice in visualization design
and education (‘the evaluator’ and ‘the didacticist’). While DE may
be incorporated into the design process in other ways, these four archi-
types help to surface benefits and difficulties involved in articulating
and capturing thoughts on design.

DE
amplitude

time

paper prototype

user testing / evaluation

user feedback

The evaluator

shared design narrativeThe didacticist Capture phase

Argumentation phase

Evaluation phase

The rationalist

Continuous development, implicit exposition

The autonomist

Fig. 2. Four visualization designer architypes characterised by design
exposition effort over time.

3.1 The Evaluator

The evaluator adopts a model common in larger visualization projects
where development follows some prototyping phase exploring design
options before one or more periods of user testing and evaluation. Once
deployed there may be further more limited opportunities for design
options to be considered following user feedback.

3.2 The Autonomist

In contrast to the evaluator, the autonomist implements their visualiza-
tion without any need to be explicit about design choices. They rely on
their design skills and experience with a largely implicit consideration
of design options. There may be many small and frequent hints of
design exposition in, for example, source code comments or coding
style.

3.3 The Didacticist

The didacticist likes to explain their design choices after they have been
made. In contrast to the evaluator and autonomist, design exposition
is made post hoc in a reflective or didactic context. Examples include
academic design studies (e.g. [17, 32]), designers’ reflective blog posts
(e.g. [36]) or teachers’ deconstruction of existing visualizations and
students’ reflection on their visualization designs.

3.4 The Rationalist

The rationalist combines the benefits of frequent design exposition with
deeper consideration of design choices. They may adopt formal meth-
ods such as design rationale [23] in order to systematise requirements
gathering, design space exploration and evaluation. Here DE forms a
central part of the development process but also requires significant
effort and time.

3.5 The DE Frequency Domain
These architypes are not mutually exclusive and most projects will
adopt practices that contain elements of many of them. They can be
combined into a single model by treating DE over time as a signal and
transforming into the frequency domain (much as Fourier transform of
a wave signal). This allows us to consider the combined structure of DE
that may contain several levels of exposition with different magnitudes
and frequencies. And importantly, the trade-offs between DE depth and
frequency.

DE
amplitude

DE frequency

high effort bursts
 of deep
 exposition

low effort, fine grained, shallow expositioneffo
rt

evaluator
didacticist

autonomist

rationalist

Fig. 3. Design exposition frequency domain. What are the most efficient
approaches to making DE more frequent or deeper?

When considering DE options, moving either up or right in this space
involves more effort, which may explain why the top-right space is not
typically populated, and rationalist approaches like design rationale are
not adopted more widely. Greater insight can be gained by examining
this space in more detail, and in particular the friction involved in
moving up or right.

Consider the notion of a unit of effort e that we wish to deploy
either in increasing the magnitude m of some design exposition or
increasing the frequency f with which exposition is made. Let c be
some fixed cost in effort that is required before any exposition can be
made (for example, in shifting between visualization construction and
documentation environments, or in assembling a mechanism to gather
user feedback). We can therefore construct a curve of fixed effort in
the frequency domain that describes the trade-off between less frequent
deeper exposition and more frequent shallower exposition, which we
can consider as a Pareto front (see Figure 4).

Fig. 4. Pareto fronts of fixed effort assuming left: 10 units of effort and
a fixed DE cost c of 0.5 (m = 10e/ f −0.5 f); right: 1 to 20 units of effort
with a fixed cost c = 0.5

Analysis of the DE frequency space helps in defining an effective
design exposition strategy in a number of ways. Firstly the increasing
surface gradient (lines becoming closer together in Figure 4) demon-
strates that there are diminishing returns in simply putting more effort
in order to document design more frequently (assuming that there is
some fixed cost for every DE activity). Secondly it shows that it is pro-
hibitively expensive (exponentially so) to occupy the top-right region

of the space, suggesting effective DE improvements are best targeted at
‘little but often’ strategies. And thirdly, it allows us to explore the effect
of reducing that fixed cost, for example by reducing the indirection
between arriving at a design choice and articulating the rationale for
that choice.

The relative cost of more frequent exposition will depend on the
fixed cost of each exposition activity. We can see the effect of different
fixed costs by plotting a series of similar curves for various values of c
and various amounts of effort e. (see Figure 5)

Fig. 5. Pareto fronts for fixed costs of (top row) c= e, c= 0.5e and (bottom
row) c = 0.1e and c = 0. Each chart shows effort lines of 1e to 10e

This shows (not surprisingly) that the benefits of reducing the fixed
cost of DE, through, for example, a literate visualization environment,
are greatest in allowing higher frequency low magnitude exposition
activity (lowering fixed costs moves curves towards the bottom-right of
the space more than the top-left). It is here therefore where effort was
focussed in developing a literate visualization environment by reducing
the friction involved in creating frequent small DE activities.

4 IMPLEMENTATION

To support parallel exposition and rich visualization expression we de-
veloped litvis – a coding and narrative integrated development environ-
ment running as a plug-in for both the Atom (https://atom.io)
and Visual Studio Code (https://code.visualstudio.com)
editing environments (see Figure 6). Output can be exported as stand-
alone HTML or PDF documents and the architecture is such that it
could also be embedded within an online web tool. The software
and source code, written in TypeScript and Elm, is available from
http://litvis.org. The design of litvis was driven by our eval-
uation of literate programming (see Section 2) and the need to support
low friction design exposition. Specifically, a Literate Visualization
document authoring environment should:

• use live documents where code development and narrative hap-
pen together encouraging evolutionary documentation.

• be quick and easy to author, being no more effort to use than a
conventional programming environment.

• use affordances to encourage low-cost DE including prompts for
meaningful exposition; ease of exploration of alternative designs
and implementations; and non-linear exposition.

https://atom.io
https://code.visualstudio.com
http://litvis.org

• provide live feedback as a designer works to encourage reflec-
tion and iteration. This includes rendering of visualization, code
linting, formatted output, design validation feedback and repre-
sentation of branching narratives.

Textual narrative is added to a document using the lightweight
markup language Markdown, which can be optionally styled with
the addition of css in the ‘less’ styling language. This provides a low
friction means of constructing formatted prose with a large existing user-
base. Specification of visualizations can be made through fenced code
blocks in the pure functional language Elm (http://elm-lang.
org) and a statically typed wrapper for Vega and Vega-Lite [31] specif-
ically written for litvis (http://package.elm-lang.org/
packages/gicentre/elm-vega/latest). While JSON/-
JavaScript may be expressed directly, using Elm provides strict type
checking and friendly compile-time error reporting to ensure that only
valid JSON Vega/Vega-Lite specifications can be generated. Functional
Elm allows code reuse and parameterisation so improving development
speed and code clarity.

Vega-Lite and Elm were chosen to provide expressive visualization
because their declarative nature makes specifying a visualization some-
what self-documenting, freeing up narrative effort to focus on design
exposition. Vega-Lite, based on Wilkinson’s grammar of graphics [37],
enhanced with a parallel grammar of interaction and view composition
operators, provides both a model of visualization specification familiar
to many visualization designers and an expressiveness rich enough to
allow design options to be widely explored. Elm-vega’s functional
language provides a compact and composable interface to Vega and
Vega-Lite making the handling of code dependencies by litvis a rel-
atively straightforward task. The result of which is code execution
that is independent of the order in which code blocks are placed in
a litvis document, so satisfying the requirements for literate ‘artistic
programming’ [35].

4.1 Code Referencing and Code Dependencies
The litvis author can chose how code blocks are referenced and ren-
dered by parameterising code fencing blocks with display attributes.
For example, the code block below represents a single line of Mark-
down followed by code a block in the Elm language to create a simple
histogram.

Firstly we create a frequency histogram of vehicle horsepower:

‘‘‘elm {v}
barChart : Spec
barChart =

let
data =

dataFromUrl "https://vega.github.io/vega-lite/data/cars.json" []

enc =
encoding

<< position X [pName "Horsepower", pMType Quantitative]
<< position Y [pMType Quantitative, pAggregate Count]

in
toVegaLite [data, enc [], mark Bar []]

‘‘‘

The {v} attribute following elm indicating that in the formatted
output, the result of executing the code should be visualized. Table
1 shows the full range of attributes available. By default all code
blocks within a document share a common programming scope or
‘context’ implicitly named default. This enables full ‘symphonic
projection’ [35] so that code blocks can be presented in any order to
suit the narrative. Multiple contexts can be named each with their
own scope allowing parallel but independent program scopes within
the same document. This is useful when the litvis author wishes to
explore alternative designs in a single document or document collection
without the risk of name clashes. One common instance of controlled
scoping of contexts is to make a code block independent of all others,
and for this we provide the attribute s or siding which is simply
a shortcut for isolated follows=default. This allows us to
document designs continuously and chronologically (‘the autonomist’),
but also re-structure these documented records of activity to generate
non-chronological narratives from these same records (‘the didacticist’).
This is important if we are to avoid pitfall 31 of the Design Study

Methodology when in the writing phase of a design study: “the order
of presentation and argumentation ... should follow a logical thread
that is rarely tied to the actual chronology of events due to the iterative
and cyclical nature of arriving at full understanding of the problem
(PF-31)” [32].

Table 1. litvis code block and reference attributes

Parameter Long name Effect
v visualize Render graphical output
l literate Store and display formatted code. Display can be

optionally hidden with =hidden
j json Display JSON specification sent to Vega/Vega-Lite
r raw Display unformatted raw output sent from Elm
s siding Create an independent code block
c context Name a code scoping context

follows Share a code block with a named context
i isolated Make a code block isolated from all others
id Assign an id to a code block for later referencing

In addition to specifying attributes for code blocks, existing code
blocks may be referenced at any point in a document using a ˆˆˆ
notation with a similar set of attributes (equivalent to Knuth’s identifier
in his original WEB literate programming environment). This can be
particularly useful when a rendering function is parameterised, with
for example different views of a dataset, so that small multiples or
user-selected views can be generated. Code block references can be
made at any point in a document, so for example, the following could
be used to generate sparklines within a paragraph of text:

‘‘‘elm {l=hidden}
sparkline : String -> Spec
sparkline groupName =

let
config =

configure << configuration (coView [vicoStroke Nothing, vicoHeight 15,
↪→ vicoWidth 80])

data =
dataFromUrl "data/trends.csv"

trans =
transform << filter (fiExpr ("datum.group == " ++ groupName))

enc =
encoding

<< position X [pName "x", pMType Quantitative, pAxis []]
<< position Y [pName "y", pMType Quantitative, pAxis [], pScale [

↪→ scZero False]]
<< color [mStr "black"]

in
toVegaLite [config [], data [], trans [], enc [], line []]

‘‘‘

We note that over time price of the first group of products appears to fluctuate :
↪→ ˆˆˆelm v=(sparkline "1")ˆˆˆ while the second group shows a clear decline:
↪→ ˆˆˆelm v=(sparkline "2")ˆˆˆ

Together these code referencing attributes provide a high degree of
flexibility in the ordering of code blocks and the views of code pre-
sented in the formatted output. Combined with narrative branching (see
Section 6) this allows, for example, presentation of two parallel views
of the same visualization implementation, one focusing on rendered
output and design choices while another focusing on implementation de-
tails. It addresses the concern raised by Kery et al. [13] that embedding
alternative designs in conventional notebooks can lead to confusing
narratives and so deter experimentation. Equally, design elements, such
as opacity, shape and size encoding can be parameterised allowing al-
ternative designs to be explored at little cost. To return to the questions
we posed at the outset of this paper, a designer might document the
same graphics in different ways in different documents intended for
their design colleagues, collaborators and students.

5 NARRATIVE SCHEMAS

The criticism of LP that there is insufficient support in providing ef-
fective narrative, helps to motivate the use of narrative schemas to
structure narrative sequencing and content. Structuring narrative has
several distinct benefits. Primarily it is a form of scaffolding [39] to
direct design exposition, analogous to the use of rubrics and ‘fortune
cookies’ [16] in pedagogy. Additionally the act of constraining nar-
rative with enforceable rules may act as a driver for creativity and
clarity, as exemplified by the Oulipo movement of Queneau and Le

http://elm-lang.org
http://elm-lang.org
http://package.elm-lang.org/packages/gicentre/elm-vega/latest
http://package.elm-lang.org/packages/gicentre/elm-vega/latest

Fig. 6. The litvis software environment in the Atom editor. Code and narrative are typed in directly in the left panel and rendered output updates in
the right panel. ‘voiceA’ and ‘voiceB’ labels reference a Socratic questioning narrative schema (see Section 5).

Lionnais [26]. Within the context of LV, the use of narrative schemas
aims to provide guidance specifically targeted at visualization design
rather than the more general literate programming. While not unique
to visualization, providing narrative guidance is especially useful in a
visualization culture where sharing the outputs of a visualization design
is currently much more common than sharing the rationale behind the
design. Litvis is provided with a set of schemas for common approaches
to visualization design (described below and in Section 7). Most users
of the system would simply link their documents to one or more of
these existing schemas, which ensures, at little cost to the designer, that
their narrative follows the structure defined in the schema. If it does
not, the editor environment flags a warning with an appropriate error
message just as it would if there were errors in their code. This can be
considered analogous to unit and integration testing in software engi-
neering, providing a benefit to the designer in prompting a systematic
approach to design justification with minimal extra cost to the design
process. The intention of the litvis design is to integrate the validation
of visualization specification and narrative specification so they are
seen as a single deeply coupled process.

A narrative schema can be considered a set of labeled elements of a
narrative document accompanied by a set of rules that determine how
those labels and content are used. It can be thought of as an analogue of
schemas more usually found in declarative programming contexts such
as JSON and XML schema. By allowing documents to be validated
against a schema, we provide a more systematic and convenient way of
testing the validity of some written text.

To allow community development and sharing of new schemas,
they are designed to be stand-alone documents capable of being used
independently of litvis. They are defined in yaml (http://yaml.
org) documents comprising a set of labels, some rules that determine
how those labels may be used and css styling to determine how they are
rendered within an LV document.

Consider for example the writing of a literate visualization document
that uses Socratic questioning to explore design options and justifica-
tions. The intention of Socratic questioning is to stimulate critical
thinking in an accessible way [8], both directly by the designer(s) and
later by others reading the document. At its simplest level, Socratic
questioning can be considered a conversation between two voices using
the dialectical method. One voice takes the role of the innocent ques-
tioner (‘Socrates’), the other the defender of the design who responds

to the questioner.
A Socratic questioning schema, called ‘dialogue’ could be repre-

sented as follows:

labels:
- name: voiceA
paired:
htmlTemplate: <div class="voiceA">{{children}}</div>

- name: voiceB
paired:
htmlTemplate: <div class="voiceB">{{children}}</div>

rules:
- description: Dialogue should alternate between voices.
selector:
label: voiceA

notFollowedBy:
selector:

label: voiceA

- description: Dialogue should alternate between voices.
selector:
label: voiceB

notFollowedBy:
selector:

label: voiceB

styling:
css: |
.voiceA { font-weight: bold;
}
.voiceB { font-style: italic;
}

Once defined, labels are inserted into a standard markdown docu-
ment using {(labelName |} and {| labelName)} to fence
blocks of narrative. For example, some Socratic questioning markdown
can be specified as

narrative-schemas:
- ./schemas/dialogue

{(voiceA |}
But why are you showing these as a collection of small multiples and not overlaying

↪→ them in a single chart?
{| voiceA)}

{(voiceB |}
While a single (superposed) visualization would allow precise comparison of

↪→ differences between main trendlines, the purpose isn’t to allow comparison
↪→ of details (which fall within the error bounds of the data) but to
↪→ characterise the broad trends in each time period.

Small multiples also highlight the evolution of the trend over time that would be
↪→ lost in a single composite.

{| voiceB)}

Schemas may be arbitrarily combined through composition in order
to build new schemas with a more specific focus. For example, a more

http://yaml.org
http://yaml.org

structured form of Socratic questioning could be generated injecting
specific questions such as What are you trying to achieve with this visu-
alization?, Why have you chosen this data source and sample?, Why
have you made these visual mark design choices? and To what extent
does your visualization meet your original objectives?. It composes the
alternating voices of the dialogue schema with a set of ordering and con-
tent rules for the Socratic voiceA requiring an answer to each question
in order to be a valid document. The full schema specification along
with other examples can be found at http://litvis.org. Further
examples of narrative schema and their use with other visualization
design models are explored in Section 7.

While it has always been possible for visualization authors to cre-
ate documentation in any style, and litvis fully supports this level of
flexibility, there is often a lack of clear guidance on what might be an
appropriate approach to take, which may be one of the reasons for the
high proportion of undocumented code in notebook environments [30].
Where guidance on the decisions that should be taken is provided,
as is the case in important papers that structure visualization design
decisions [22, 24], what to document and how best to document it is
often less well specified. And even when the documentation process
is clear (e.g. [23, 27]), the act of documentation may be considered
too burdensome to follow routinely. What narrative schemas offer is a
flexible approach to document specification that can be light-touch or
more prescriptive depending on need.

6 BRANCHING NARRATIVES

Literate Programming and notebook environments ease the process of
integrating textual narrative with executable code and rendered output.
Yet in most cases, they do not address what is a common tension
between an imposed linear structure of a single document to be read
from top to bottom, and the non-linear way in which visualization
design, implementation and use can evolve [13]. Sedlmair et al. observe
that the linear chronology of development typically does not reflect
the narrative sequence assembled for the purposes of argumentation
and reflection [32]. Our approach to programming scope enables us to
address their recommendation to reassemble chronological narratives
in a reflective context through the use of branching narratives. In so
doing we reduce the indirection (and therefore effort) between the act
of designing and its articulation through design exposition. This also
contributes to our efforts to improve the accountability of a visualization
design by supporting the contemporaneous capture of design reflection
and evaluation [19].

Rather than constructing monolithic notebook documents, we pro-
pose routine use of parallel branching narratives that assemble and
structure document trees. This can be helpful in any narrative that
involves experimentation with alternative designs, and especially use-
ful in visualization design where this is commonplace. Each branch
in a tree can represent alternative potentially competing designs each
with their own rationale. Or different branches may represent different
views of a visualization and its surrounding narrative, for example with
one view designed to elicit user feedback while another focuses on
technical exposition. Parallel branches can fork from a common start
point and be developed by different members of a design team for
later comparison as part of the design process (e.g. [10, 20]). Selected
branches sharing common code blocks may then later be assembled to
form a synoptic reflection on some agreed final set of design choices,
more closely matching the narrative of an academic design study during
reflection and writing (as advocated by Sedlmair et al. [32]).

In addition to supporting incremental documentation and the syn-
thesis of evidence into reflective documents, we can take advantage
of branching narratives to produce specific reporting structures that
support and reflect particular visualization design decision models. As
Meyer et al. point out when introducing the Nested Blocks and Guide-
lines Model (NBGM), these offer different levels of formalism [22],
which can be captured in litvis through different schemas. Schema
authors determine the different degrees of detail and complexity of
rules required.

The NBGM itself is intended to capture the rationale and knowledge
associated with visualization design decisions at a more granular level

than the original Nested Model on which it is based [24]. It “strives to
make explicit the design decisions and assumptions that process models
tend to omit” [22]. We strive to support the documentation of those
decisions during design. The model’s blocks of knowledge and the
nesting and guidelines that associate them can be modelled in a simple
litvis narrative schema, allowing us to capture and communicate design
exposition through this terminology and structure. The schema can
be used to validate the reporting of the process should we wish. The
level, status and contribution of blocks can be recorded as required by
the model and elm-vega graphical output used within the documents
as part of the exposition – to visually assess algorithm performance
or encoding [24], or to describe and demonstrate abstractions. The
status, contribution and type of guideline can be recorded, along with
a description and the blocks that it links. A linear design exposition
might use a single document to describe blocks and guidelines (Figure 7,
left). But we can use branching narratives to capture guidelines’ more
complex relationships between blocks and guidelines through litvis,
implementing the model with some sophistication (Figure 7, right).

Design Exposition 2 - Branching NarrativeDesign Exposition 1

exposition1.md

domain 1

abstraction 1

technique 1

algorithm 1

exposition2.md

domain 2

exposition2a.md

abstraction 2a

technique 2a

algorithm 2a

exposition2b1.md

technique 2b1

algorithm 2b1

exposition2b.md

abstraction 2b

exposition2b2.md

technique 2b2

algorithm 2b2

Fig. 7. Schematic of NBGM analysis presented as a structured design
narrative in a single litvis file describing four linked blocks (left) and
as a branching narrative in multiple files (right). Outer grey rectangles
are separate systems analysed with the model. Inner grey rectangles
are litvis files used to capture the narratives that describe their design.
Adapted from Figure 4. of [22].

We can of course produce these structures as designs are developing
or do so retrospectively as guidelines may be established through the
writing process [32]. This approach affords powerful tools through
which we can describe and document “the formalisms afforded by the
NBGM for capturing and elucidating visualization design decision
rationale” [22].

Within litvis, document collections are represented as a directed
acyclic graph with separate branches each represented as their own
markdown file (Figure 7, right). Child branches are linked to a parent
with the follows keyword in the frontmatter of the document. Parent
documents are identified by their file name. This provides a simple
mechanism for document authors to link files into arbitrary tree struc-
tures. Code scoping and referencing (see Section 4.1) allows precise
control over the elements of code that are shared between branches.

7 EXAMPLES

In this section we consider some examples of different approaches to
using literate visualization to begin to assess the role that integrated
narrative and code execution can play in the visualization design pro-
cess. The examples range from light-touch prompts to reflect on design
choices (Section 7.1), through more formal design evaluation frame-
works (Section 7.2) to broader outlooks on visualization approaches
(Section 7.3). In all cases, the full litvis documents and schemas can be
found at http://litvis.org.

7.1 Visualization Idioms
Suppose a designer is considering a new technique (‘idiom’) for visu-
alising contingency (‘crosstab’) tables and wishes to be able to justify

http://litvis.org
http://litvis.org

and therefore validate the idiom [24] both to themselves and others.
To assist in that process of evaluation and justification, the designer
could link their document to the idiom narrative schema (available at
http://litvis.org). The cost of linking to the schema is min-
imal (one linking statement in the header of the document) and the
schema will generate four design prompts, Aim, Description, Architypes
and Limitiations. The editor environment will prompt the designer with
a warning message if any sections under each of these headings in the
document are left empty. The schema forces the designer to declare
the purpose of their proposed idiom, explain how to read the graphic
(‘description’ and ‘architypes’) and to consider the limitations of their
design. In this light-touch schema, there is no prescription as to what
should be said under each of these headings other than there must be
some content. In this context the schema acts simply a low friction
aide-mémoire encouraging routine good practice with minimal extra
documentation burden. This might prompt both internal reflection dur-
ing the design process and discussion between designers and others
at early stages of development. The part of the litvis document that
includes the designer’s response to these prompts (see Figure 8) can
form its own branch in the document tree structure in parallel with an-
other branch that reuses the implementation code and applies it to some
real-world data. This allows two distinct narratives to be generated
from the same design process, one focussing on the visualization design
rationale, the other on using the visualization to perform data analysis
(akin to the more conventional use of computational notebooks).

Fig. 8. Valid design exposition in litvis using the ‘idiom’ narrative schema

7.2 Visualization Algebra

Light-touch narrative evaluation through schemas need not mean infor-
mal validation. More formal models may be incorporated into literate
visualization practice such as those of project-wide scope [17, 22, 32]
or models focussed on parts of the visualization design [24].

In the case of encoding Munzner recommends justifying candidate
designs against known principles of perception and cognition [24]. This
could be structured against a checklist such as Zuk and Carpendale’s
potential heuristics [41], or key tasks such as Cleveland’s detection,
assembly and estimation [4].

Alternatively, Kindlmann and Scheidegger [14] provide a theoretical
framework for considering the relationship between data, its computa-
tional representation and its graphical expression. By representing the
transformations between these three stages algebraically, they provide
a mechanism for identifying both undesirable transformations (‘hallu-
cinators’ and ‘misleaders’) as well as data-insensitive transformations
(‘confusers’ and ‘jumblers’). Questions of the existence of these unde-
sirable transformations between the data and visualization spaces can
be expressed as logical predicates and so incorporated into the auto-
mated validation process. Figure 9 shows formatted litvis output based
on an ‘algebra’ schema that contains user-editable checkboxes for each
of these predicates. Documents that haven’t had all boxes checked

Fig. 9. Litvis document using the Kindlmann and Scheidegger visualiza-
tion algebra to validate mapping of the UK ‘Brexit’ referendum results.
Headings and algebraic expression text are generated automatically from
the schema specification. Note that only two of the three sets of tests
pass, suggesting this form of representation may not be suitable.

http://litvis.org

by the designer(s) fail the automated schema validation process in a
similar way to failing a test in a unit testing framework. While the
evaluation process may be more formal, the intention of the schema is
to minimise the documentation effort required to perform the evaluation
and so reduce the friction of design exposition.

7.3 Feminist Data Visualization
In contrast to the previous examples, branching narratives and narrative
schema can be used to reorientate the entire approach to visualization.
This is assisted by adopting some established or proposed methodology,
framework or philosophy. The manifesto for feminist visualization
outlined by D’Ignazio and Klein [7] represents one such perspective.
Their recommended approach is based upon critical perspectives drawn
from the digital humanities prompted by a set of reflective questions
in six broad categories: ‘rethink binaries’, ‘embrace pluralism’, ‘ex-
amine power’, ‘consider context’, ‘legitimise embodiment and affect’,
and ‘make labour visible’. A narrative schema to reflect this outlook
injects questions in each of these categories into the litvis document
(see http://litvis.org for the complete schema). Examples of
the questions automatically generated under ‘rethink binaries’ theme
include
Process: Do my data impose categorisations that deny the multiplicity
of the phenomena being visualized?
Process: How do I register characteristics that do not easily fall into
my classification?
Output: How do I communicate the limits of my categories in the final
representation?
Output: How do I allow the user to refactor categories presented for
view?

The cost of linking to the schema and providing text under each
question is minimal. The effort required in considering these questions
may be more significant though. But by at least reflecting on such
questions as part of the routine of the data visualization process, the
intention is to encourage new approaches to visualizaton design built
upon a sound theoretical foundation that may be shared with others.
The act of enriching some visualization production with narratives
reflecting these perspectives is itself an example of the ‘make labour
visible’ principle as those perspectives and the assumptions they may
embody are exposed for critical analysis.

8 CONCLUSION

By developing litvis, we have created a programming and documenta-
tion environment that embodies our ideas of literate visualization that
is compatible with the emergence of the ‘computational notebook’ as a
means to code and share narratives. While we frame the contribution
in terms of visualization study and practice, it could support any de-
sign process that is characterised by non-linear experimentation, that
benefits from capturing the design process as it happens and where
designers seek guidance in structuring the narratives that describe their
practice.

Litvis itself comprises a functional, declarative programming in-
terface to visualization specification (‘elm-vega’); pluggable literate
visualization modules for the widely used editors Atom and Visual
Studio Code; styled formatting of text and code; and live code and
document linting, branch linking and validation. Together they provide
a platform for supporting the process of literate visualization and de-
velopment of a rich corpus of design expositions and schemas. The
software and the concepts outlined in this paper are readily adaptable
to other visualization and notebook environments.

With emergence of notebook environments such as Observable,
Jupyter and R-Notebook we are seeing new opportunities being taken up
to integrate programming input, rendered output and narrative. Within
the academic visualization community we are also seeing a trend to-
wards people publishing their work not just as papers, but with code
and datasets in repositories such as GitHub. Together these allow us
to explain our visualization, enhancing the way visualization develops
as an academic discipline by providing richer and more accountable
descriptions of the rationale behind the approaches we take, the reason-
ing we adopt and the interpretation of the findings we generate. Such

descriptions are likely to be useful to academic colleagues, collabo-
rators in application domains, designers and students of visualization.
They offer important opportunities for achieving reliability, convinc-
ing colleagues, engaging with collaborators, exploring and improving
designs, transferring designs across contexts, and for education. This
goes beyond the more restrictive view of a ‘reproducibility crisis’ [6]
more suited to quantitative experimental sciences.

The need for a more formal consideration of how we may undertake
visualization in this context and what opportunities it offers has led to
our proposal for a literate visualization framework. It embraces not just
benefits of a richer narrative to accompany visual renderings as an out-
put, but provides assistance in the process of generating that narrative.
In particular it recognises that much visualization development is non-
linear, with parallel competing designs that need to be evaluated, and
alternative views of our designs that need to be managed concurrently.
It also recognises that we cannot rely solely on the ability of individuals
to author effective narrative without guidance. Scaffolding that process
with narrative schemas enables more structured approaches to be taken
and evaluated while also exposing the nature of such structures to eval-
uation and critique. And finally, and importantly, we must recognise
that previous attempts to formalise the documentation of design and
software development are often not taken up routinely because they are
perceived as too much of an extra burden that outweighs the benefit of
doing so. An effective literate visualization environment must therefore
make the cost of enriching the accounts of our visualization design low,
so that all are encouraged and able to do so. Our design is intended to
achieve this and that our own use of the system is positive, but this is
unproven. We have however developed a system that can be used and
evaluated to establish the extent to which we have lowered the friction
of the DE frequency domain and allow some under-supported areas of
that space to be explored.

There remain a number of challenges for future work in the field
of literate visualization. On a technical level we need to consider how
more of the environments in which people design and implement visu-
alization are adaptable to the literate visualization approach. We also
see value in enriching the interaction and instrumenting capabilities of
litvis so that richer forms of exposition may be captured and shared
both within and outside the litvis environment. And we need to con-
tinue to lower the cost of working in a literate visualization context.
For example, how might use of higher level visualization software
such as Tableau take advantage of a literate visualization approach?
How can a strongly collaborative working environment conduct literate
visualization?

The concept of the narrative schema may provide an opportunity
to benchmark particular approaches to design and its documentation,
but it is far from guaranteeing Knuth’s vision of literate programming
having all the depth and nuance of conventional literature. Future work
could consider how we might enhance the scaffolding that leads to rich,
effective and accountable visualization narrative. Translating some of
the existing models of visualization design into validatable schema
provides an interesting avenue for future research. There is work
to be done in developing schemas to support meta-analysis, in other
words to ease the process through which we can compare and build-
upon existing collections of literate visualization. We also see great
potential in an educational context, where both educators and students
have a framework within which to express and evaluate thoughts on
visualization design. By lowering the cost of design exposition, new
opportunities emerge for a multitude of shared dialogues between all
those with an interest in evolving the process of visualization.

ACKNOWLEDGMENTS

This research was in part supported by the EU under the EC Grant
Agreement No. FP7-IP-608142 to Project VALCRI. Influential discus-
sions with, and inputs from, the following colleagues have shaped this
work: Roger Beecham, University of Leeds; Miriah Meyer and Nina
McCurdy, University of Utah; Chris Rooney, Middlesex University;
Yiyi Wang, University of Illinois; Wes Willett, University of Calgary.

http://litvis.org

REFERENCES

[1] K. Agaram. Literate programming: Knuth is doing it wrong. http:
//akkartik.name/post/literate-programming. Accessed:
2018-03-19.

[2] M. Bostock. Observable. https://beta.observablehq.com.
Accessed: 2018-03-19.

[3] chipsy. Why did literate programming not catch on. https://news.
ycombinator.com/item?id=10069748. Accessed: 2018-03-19.

[4] W. S. Cleveland. A model for studying display methods of statistical
graphics. Journal of Computational and Graphical Statistics, 2(4):323–
343, 1993.

[5] CoffeeScript. Literate coffeescript. http://coffeescript.org/
#literatel. Accessed: 2018-03-19.

[6] O. S. Collaboration. An open, large-scale, collaborative effort to estimate
the reproducibility of psychological science. Perspectives on Psychologi-
cal Science, 7(6):657–660, 2012.

[7] C. D’Ignazio and L. F. Klein. Feminist data visualization. In Workshop
on Visualization for the Digital Humanities (VIS4DH), Baltimore. IEEE,
2016.

[8] L. Elder and R. Paul. The role of socratic questioning in thinking, teaching,
and learning. The Clearing House, 71(5):297–301, 1998.

[9] M. Giuca. Literate programming is a terrible idea.
https://unspecified.wordpress.com/2010/06/04/
literate-programming-is-a-terrible-idea/. Accessed:
2018-03-19.

[10] S. Goodwin, J. Dykes, S. Jones, I. Dillingham, G. Dove, A. Duffy,
A. Kachkaev, A. Slingsby, and J. Wood. Creative user-centered visu-
alization design for energy analysts and modelers. IEEE transactions on
visualization and computer graphics, 19(12):2516–2525, 2013.

[11] S. P. Jones. The haskell 98 report: Literate comments. https:
//www.haskell.org/onlinereport/literate.html. Ac-
cessed: 2018-03-19.

[12] JupyterLab. Jupyterlab notebook. http://jupyterlab.
readthedocs.io/en/stable/user/notebook.html. Ac-
cessed: 2018-03-19.

[13] M. B. Kery, M. Radensky, M. Arya, B. E. John, and B. A. Myers. The story
in the notebook: Exploratory data science using a literate programming
tool. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, p. 174. ACM, 2018.

[14] G. Kindlmann and C. Scheidegger. An algebraic process for visualiza-
tion design. IEEE transactions on visualization and computer graphics,
20(12):2181–2190, 2014.

[15] D. E. Knuth. Literate programming. The Computer Journal, 27(2):97–111,
1984. doi: 10.1093/comjnl/27.2.97

[16] C. Kulkarni, K. P. Wei, H. Le, D. Chia, K. Papadopoulos, J. Cheng,
D. Koller, and S. R. Klemmer. Peer and self assessment in massive online
classes. In Design thinking research, pp. 131–168. Springer, 2015.

[17] H. Lam, M. Tory, and T. Munzner. Bridging from goals to tasks with
design study analysis reports. IEEE transactions on visualization and
computer graphics, 24(1):435–445, 2018.

[18] D. Lloyd and J. Dykes. Human-centered approaches in geovisualization
design: Investigating multiple methods through a long-term case study.
IEEE Transactions on Visualization and Computer Graphics, 17(12):2498–
2507, 2011.

[19] N. McCurdy, J. Dykes, and M. Meyer. Action design research and visual-
ization design. In Proceedings of the Sixth Workshop on Beyond Time and
Errors on Novel Evaluation Methods for Visualization, pp. 10–18. ACM,
2016.

[20] S. McKenna, D. Mazur, J. Agutter, and M. Meyer. Design activity frame-
work for visualization design. IEEE Transactions on Visualization and
Computer Graphics, 20(12):2191–2200, 2014.

[21] W. Meulemans, J. Dykes, A. Slingsby, C. Turkay, and J. Wood. Small
multiples with gaps. IEEE transactions on visualization and computer
graphics, 23(1):381–390, 2017.

[22] M. Meyer, M. Sedlmair, P. S. Quinan, and T. Munzner. The nested blocks
and guidelines model. Information Visualization, 14(3):234–249, 2015.

[23] T. P. Moran and J. M. Carroll. Design rationale: Concepts, techniques,
and use. L. Erlbaum Associates Inc., 1996.

[24] T. Munzner. A nested model for visualization design and validation. IEEE
transactions on visualization and computer graphics, 15(6), 2009.

[25] F. Perez and B. E. Granger. Project jupyter: Computational narratives as
the engine of collaborative data science. http://archive.ipython.

org/JupyterGrantNarrative-2015.pdf. Accessed: 2018-03-
19.

[26] R. Queneau. Exercises in style, vol. 513. New Directions Publishing,
1981.

[27] W. C. Regli, X. Hu, M. Atwood, and W. Sun. A survey of design rationale
systems: approaches, representation, capture and retrieval. Engineering
with computers, 16(3-4):209–235, 2000.

[28] J. C. Roberts, C. Headleand, and P. D. Ritsos. Sketching designs using the
five design-sheet methodology. IEEE Transactions on Visualization and
Computer Graphics, 22(1):419–428, 2016.

[29] RStudio. R markdown. https://rmarkdown.rstudio.com. Ac-
cessed: 2018-03-19.

[30] A. Rule, A. Tabard, and J. Hollan. Exploration and explanation in com-
putational notebooks. In ACM CHI Conference on Human Factors in
Computing Systems, 2018.

[31] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-lite:
A grammar of interactive graphics. IEEE Transactions on Visualization
and Computer Graphics, 23(1):341–350, 2017.

[32] M. Sedlmair, M. Meyer, and T. Munzner. Design study methodology:
Reflections from the trenches and the stacks. IEEE transactions on visual-
ization and computer graphics, 18(12):2431–2440, 2012.

[33] B. Shneiderman and C. Plaisant. Strategies for evaluating information
visualization tools: multi-dimensional in-depth long-term case studies. In
Proceedings of the 2006 AVI workshop on BEyond time and errors: novel
evaluation methods for information visualization, pp. 1–7. ACM, 2006.

[34] D. Spinellis. Code documentation. IEEE software, 27(4):18–19, 2010.
[35] J. Taylor. Literate programming, md: How to treat and pre-

vent software project mess. https://leanpub.com/
literate-programming-md. Accessed: 2018-03-19.

[36] L. Tierney. How we made the ”Melting Antartica”. https://source.
opennews.org/articles/melting-antarctica. Accessed:
2018-03-19.

[37] L. Wilkinson. The grammar of graphics. Springer Science & Business
Media, 2006.

[38] S. Wolfram. What is a computational essay?
http://blog.stephenwolfram.com/2017/11/
what-is-a-computational-essay. Accessed: 2018-03-19.

[39] D. Wood, J. S. Bruner, and G. Ross. The role of tutoring in problem
solving. Journal of child psychology and psychiatry, 17(2):89–100, 1976.

[40] J. Wood, R. Beecham, and J. Dykes. Moving beyond sequential design:
Reflections on a rich multi-channel approach to data visualization. IEEE
transactions on visualization and computer graphics, 20(12):2171–2180,
2014.

[41] T. Zuk, L. Schlesier, P. Neumann, M. S. Hancock, and S. Carpendale.
Heuristics for information visualization evaluation. In Proceedings of the
2006 AVI workshop on BEyond time and errors: novel evaluation methods
for information visualization, pp. 1–6. ACM, 2006.

http://akkartik.name/post/literate-programming
http://akkartik.name/post/literate-programming
https://beta.observablehq.com
https://news.ycombinator.com/item?id=10069748
https://news.ycombinator.com/item?id=10069748
http://coffeescript.org/#literatel
http://coffeescript.org/#literatel
https://unspecified.wordpress.com/2010/06/04/literate-programming-is-a-terrible-idea/
https://unspecified.wordpress.com/2010/06/04/literate-programming-is-a-terrible-idea/
https://www.haskell.org/onlinereport/literate.html
https://www.haskell.org/onlinereport/literate.html
http://jupyterlab.readthedocs.io/en/stable/user/notebook.html
http://jupyterlab.readthedocs.io/en/stable/user/notebook.html
https://doi.org/https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
http://archive.ipython.org/JupyterGrantNarrative-2015.pdf
http://archive.ipython.org/JupyterGrantNarrative-2015.pdf
https://rmarkdown.rstudio.com
https://leanpub.com/literate-programming-md
https://leanpub.com/literate-programming-md
https://source.opennews.org/articles/melting-antarctica
https://source.opennews.org/articles/melting-antarctica
http://blog.stephenwolfram.com/2017/11/what-is-a-computational-essay
http://blog.stephenwolfram.com/2017/11/what-is-a-computational-essay

	Introduction
	Literate Programming and Literate Visualization
	Design Exposition
	The Evaluator
	The Autonomist
	The Didacticist
	The Rationalist
	The DE Frequency Domain

	Implementation
	Code Referencing and Code Dependencies

	Narrative Schemas
	Branching Narratives
	Examples
	Visualization Idioms
	Visualization Algebra
	Feminist Data Visualization

	Conclusion

