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Abstract: A dark-bright soliton conversion is used to perform the two arithmetic logic unit(ALU) operations namely 

adder and subtractor operations. The advantage of the system such as power stability, non-dispersion and the dark-bright 

soliton phase conversion control can be obtained. The input source into the circuit is the bright soliton pulse, with the 

pulse width of 35 ps, the peak power at 1.55 µm is 1 mW. By using the dark-bright soliton conversion pair, the generated 

logic bits can be controlled, and the secure bits can be achieved. The simulation results show the output signal with a 

minimum loss of only 0.1% with respect to a low input power of 1 mW, and ultra-fast response time of about 0.30 ps can 

be achieved. It gives the ultra-high bandwidth of more than 40 Gbits
-1

. The circuit composes 6 microring resonators made 

of InGaAsP/InP material with smaller ring radii of 1.5 µm, and the total physical scale of the circuit less than 100  𝜇𝑚2. 
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1. Introduction 
By reason of the rapid improvements in optical or photonic computing for higher computation, processing speeds and 

minimal transmission losses are desirable. For decades, most research and investigation is on replacing current computer 

component redundancy with the equipment, resulting in the optical digital computing systems for processing optical 

binary data [1-4]. All-optical adders are important elements in any all-optical arithmetic and logical units, many 

researchers have demonstrated various techniques to perform all-optical arithmetic and logical operations [5-10]. 

Furthermore, the increasing demand on miniaturizing quantum computers requires an improvement in power 

consumption. However, most of the previous works need the use of optoelectronic devices in which 30% loss in electro-

optic conversion is observed in addition to the decrease in transmission speed.. However, such problems are overcome by 

the use of another form of the input data source, which is known as the optical soliton pulse [11-12] propagating within 

nonlinear material i.e., InGaAsP/InP [13]. It can provide optical-electrical-optical (OEO) conversions, thus lessening the 

need for electrical power and reduce the transmission loss.  This paper presents a 1-bit all-optical full-adder and 

subtractor circuit which can be used to design 1-bit all-optical arithmetic unit (AU) to perform 4 arithmetic operations i.e. 

addition, subtraction, increment and decrement based on microring resonator device with a scale of 1.5 µm radius [14], 

which has been fabricated and demonstrated in various applications [15-19]. The design circuit can offer the advantage of 

dark-bright soliton conversion control technique within the ring resonator [20-21], in which the optical logic “0” and 

logic “1” are represented by optical dark soliton “D” and bright soliton “B” pulses, respectively. In this paper, the 

advantage of the dark-bright soliton conversion signal is employed, from which the generated codes can be used for 

security purpose. In addition, the ultrafast switching of the soliton pulse property can speed up the process of code 

generation.  The combination of the bit operation is obtained by the cascaded mirroring circuits, which are six GaAsInP/P 

microring devices in the design.   Simulations show that the proposed full-adder and full subtractor achieved high-speed 

operation with and small time-delay compared to other 1-bit conventional adders [22-23], and the experimental results of 

ring resonator [24] show high-quality factors (Q), free spectral range (FSR), obtainable from ring resonator. 
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2. Operating Principle 
An arithmetic unit (AU) is a combinational circuit integrated into an arithmetic logic unit (ALU) that performs arithmetic 

operations on integer binary numbers. This is in contrast to an (FPU), which operates on floating point numbers. An AU 

is a fundamental building block of many types of computing circuits, including the central processing unit (CPU) of 

computers, the floating-point unit (FPUs), and graphics processing units (GPUs). A single CPU, FPU or GPU may 

contain multiple ALUs. The addition and subtraction are the basis for many important operations such as address 

generation, multiplication, division which are commonly used in ALUs. In the 1-bit arithmetic unit with two selected 

inputs can perform 4 arithmetic operations such as addition, subtraction, increment and decrement based on a full-adder 

circuit. Several designs of adders have been proposed. In [22], all-optical half-adder using Terahertz optical asymmetric 

demultiplexer (TOAD) switch is proposed. The proposed model is attractive since no additional input beam is used in a 

half-adder unit and also the numerical simulation is done at 11.11 Gbps in order to investigate the suitable operating 

condition. However, due to their slow processing speed is quite low compared to other state-of-art designs.  In [23], the 

authors show a new and potentially integrable scheme for the realization of an all-optical binary full adder, using a Mach-

Zehnder interferometer (MZI) based on a semiconductor optical amplifier (SOA). The designed system has a successful 

operation of at 10 Gb/s with return-to-zero modulated signals. But due to a lot of circuit elements may result in the large 

physical size of the full adder, which inhibits integration. Therefore, in this paper present the new technique that can 

implement the logic operation with ultra-fast switching time, and can reduce the physical size of the overall system, 

which is useful for further photonic integration. In our previous work [15] shows the illustration of the dark-bright soliton 

conversion signal that can form an all-optical half-adder which is very simple and flexible system. In operation, an 

optical channel dropping filter (OCDF) based microring resonator (MRR) is made up of two straight waveguides coupled 

with a ring-type waveguide, which is given in the following section. Here Fig. 1 (a) is represented by Fig. 1 (b) for 

consistency. 

The coupling equation outlined in the reference [25, 26] demonstrates a relative phase of between the input signal at 

the input port and the signal coupled into the ring. Likewise, the signal coupled into the drop and through ports, where 

both are acquired a phase of 𝜋 2⁄  regarding the signal in the input port. From Fig. 2, we can obtain the electrical fields of 

MRR as following equations. 
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Where inE  is the input electric field, adE  is the add (control) electric field, thE  is the output electric field at through 

port, drE  is the output electric field at drop port, raE  and rbE  are the electric fields circulating inside the ring at point a 

and b, respectively. 1  is the field coupling coefficient between the input and the ring, 2  is the field coupling 

coefficient between the ring and the output bus, L  is the circumference of the ring ( 2L R ), here R  is the radius of 

the ring measured from the center of the ring to the center of the waveguide. T  is the field propagation time taken for 

one roundtrip inside the ring ( effT Ln c ), and   is the power loss in the ring per unit length. We assume that lossless 

coupling, i.e. 
2

1,2 1,21   . The transfer function of output power/intensities at through port and drop port is given by 

(5) and (6), respectively. 
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Where  1 2 exp 4A L   is the half-roundtrip amplitude (
2

1 2A A ),  1 2 exp 2j T   is the half-roundtrip 

phase contribution (
2

1 2  ).  
2

1,2 1,21   , 𝜅1 and 𝜅2 are the coupling constants. 

The input and control electric fields at the input port and drop port are formed by optical dark soliton (  in D
E ) and 

bright soliton (  in B
E ) as given in (7) and (8), respectively. 
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Where A is the optical field amplitude and z is the propagation distance. T  is the soliton propagation time in the frame 

moving at the group velocity ( 1T t z  ), here 1  and 2  are the coefficients of the linear and second-order terms of 

Taylor expansion of the propagation constant. dL  is the dispersion length of the soliton pulse (
2

0dL T  ). 0T  is the 

initial soliton pulse width, where t  is the soliton phase shift time, and 0  is the frequency of the soliton.  

The above solutions describe a pulse that keeps its temporal width invariance as it propagates and thus is called a 

temporal soliton. When a soliton peak intensity is (
2

0T  ), then 0T  is known. In case of the soliton pulse in the micro 

(or nano) ring device is applied, a balance length should be achieved between dispersion length ( dL ), where the 

nonlinear length is ( 1nl nlL   ), where   is the length scale over which dispersive or nonlinear effects make the 

beam become wider or narrower ( 2 0n k  ). There is a balance between dispersion and nonlinear lengths, hence, 

d nlL L . When light propagates within the nonlinear material (medium), the refractive index ( n ) of light within the 

medium is given by  0 2 0 2 effn n n I n n P A    , where 0n  and 2n  are the linear and nonlinear refractive indexes, 

respectively. I  is the optical intensity and P  is the optical power. effA  is the effective mode core area of the device. For 

micro/nano ring resonator, the effective mode core areas range from 0.1 to 0.5 
2m  [15]. The resonant output of the 

light field is the ratio between the output field ( ( )outE t ) and input field ( ( )inE t ) in each roundtrip. 
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Fig. 1: A schematic of a micro-ring resonator (MRR) system, where 𝐸𝑖𝑛, 𝐸𝑡ℎ, 𝐸𝑑𝑟and 𝐸𝑎𝑑𝑑 are the optical field at the input, through 

and drop ports, respectively. IN, TH, DR and AD are the microring circuit at the input, through and drop ports, respectively. 

 



3. Design of All-optical ALU 
In order to design the all-optical circuit of the arithmetic logic unit (ALU) for operating two arithmetic operations i.e., 

full-addition (FA) and full-subtraction (FS) with three binary inputs (XYZ), we relied on the truth table of binary 

arithmetic operation as illustrated in Table 1, where we can get simplified Boolean’s equations obtained as a sum of 

product for each output as shown in Table 1, we can design an ALU circuit for performing FA and FS by combining the 

summation of FA (Sum) and difference of FS (Diff) together as illustrated in Fig. 2. In the design, a circuit consists of 6 

microring resonator (MRRs), 5 beam splitters (B.S.) and 5 beam combiners (B.C.). Here the approximate physical size of 

the MRR is 6 µm wide, 8 µm long, 250 nm thick, has 290-440 nm of waveguide width and ~1.5 µm of ring radius [14].  

The proposed scheme of all-optical ALU is shown in Fig. 2. Initially when the input pulse train and control pulse is input 

into the first microring (MRR1) using dark soliton (logic 0) or bright soliton (logic 1), then the optical soliton is 

converted to be dark and bright via MRR1 which can be seen at the through port and drop port with   phase shift [28], 

and MRR1 then functions as an inverter gate like. Hence, the outputs of MRR1 can be written as TH1= X  and DR1=X. 

Subsequently, the output signals from MRR1 are applied into input-ports of MRR2 and MRR3. Next, the input data “Y” 

with logic “0” (Dark) or logic “1” (Bright) are added into both add-ports and then the dark-bright soliton conversion with 

  phase shift is operated again by using MRR2 and MRR3. The results obtained are simultaneously seen at the output 

ports of MRR2 and MRR3 for optical logic operation and can be written as TH2= XY , DR2= XY , TH3=XY, DR3= XY

which can be used to perform half-addition (HA) and half-subtraction (HS) as SHA=DHS= XY XY , CHA=XY, and BHS=

XY . To operate the all-optical HA and HS [15] can be easily done by using beam splitters (B.S) and beam combiners 

(B.C) e.g., a fiber coupler or optical Y-branch. The beam splitters used in the system are not polarizing. The ratio of 

reflection-transmission is 50:50 (or 50%) for all polarizations of the incident light. Then the operation of full-adder (FA) 

and full-subtractor (FS) can be performed by using MRR4, both input signals are generated by the first HA state (SHA), 

then the dark-bright soliton conversion is operated again and generate the output at output-port TH4=SHA, DR4= HAS  . 

Both output signals are applied to be the input signals of MRR5 and MRR6, respectively. This state, an optical input 

pulse “Z” with logic “0” or logic “1” is input into both add-ports (MRR5 and MRR6) then the last operation of dark-

bright conversion is done again by MRR5 and MRR6. The results are obtained simultaneously at output-ports as TH5=

HAS Z , DR-5= HAS Z , TH6=SHAZ and DR6= HAS Z .  

Table 1 – Truth table of binary arithmetic operation 

Inputs Addition Subtraction 

X Y Z Sum Carry Diff Borrow  

0 0 0 0 0 0 0 

0 0 1 1 0 1 1 

0 1 0 1 0 1 1 

0 1 1 0 1 0 1 

1 0 0 1 0 1 0 

1 0 1 0 1 0 0 

1 1 0 0 1 0 0 

1 1 1 1 1 1 1 

 

Finally, the full-addition/subtraction is done by combining the optical signal from output-ports of MRR2, MRR3, 

MRR5 and MRR6, where the full-addition and full-subtraction are expressed by equations (9) – (12). 
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Fig. 2. A schematic of the designed circuit for all-optical ALU circuit, where Y and Z: the tnput soliton pulse, MRR: Mircoring circuit, 

IN, TH, DR and AD are the microring circuit at the input, through, drop and add ports, respectively. 

 

 

4. Simulation Results and Discussion 

In a simulation, in order to perform optical switch with an optimum result, the parameters are fixed for all MRR as 

shown in Table 2. The input power for dark and bright soliton pulses is 1 mW, soliton pulses width is 35 ps and the 

center wavelength is 0=1.55 µm, and the ring radius is 1.55 µm. The transmission characteristic of MRR is as shown in 

Fig. 5, where the on-off ratio is 47.99 dB, the free spectral range (FSR) is 70 nm, and the full-width at half maximum 

(FWHM) is 7 nm. The suitable parameters used in our simulation in concluded in Table 2. Base on nonlinear optical 

effect cross-phase modulation (XPM) is applied in this mechanism in order to reduce or change the refractive index of 

MRR. The optical signals at through-port and drop-port can be controlled, which can perform the optical switching in 

InGaAsP/InP material based [28], and represented the logic NOT gate as illustrated in Fig. 4. The optical logic switching 

can be concluded that, when there is no control signal (the signal at add-port), the input signal will be transmitted to 

drop-port (DR). In another side, when the control signal is applied, then the refractive index of the waveguide is changed 

and causes the change of resonant wavelength, thus the input signal will be transmitted to through-port (TH). The 

operations of all-optical simultaneous full adder/subtractor are concluded in Table 3 and Fig. 5. Fig. 5(a) shows the 

transmitted signal at output-ports of ALU circuit for the first case where control input “XYZ” is “000”. Initially, the 

continuous input signal is input into MRR1 via the input port and there is no control signal (X=0), hence the optical 

signal is transmitted drop-port (DR1) due to resonance condition. Subsequently, the optical signal from DR1 is input into 

MRR2 via an input port and there no control input (Y=0) is applied to MRR2), therefore, the optical signal will be 

appeared at drop-port (DR2) to be optical logic “1”. The optical signal from DR2 is then used to be input signal of MRR4 

via input-port and appear at the drop-port (DR4) due to the resonance condition. The signal is then input into input-port 

of MRR5 and then no control input (Z=0) is applied to MRR5, hence, the optical signal is again transmitted to drop-port 

(DR5) due to resonance condition and represents the optical logic “01000100” at output-ports “TH2-DR2-TH3-DR3-

TH5-DR5-TH6-DR6”, respectively. Fig. 5(b) shows the transmitted signal when the input XYZ is “001”, for in this case 



at the initial state is the same as the previous case where control input (XY=00). Therefore, the input signal is transmitted 

to drop-ports (DR2 and DR4) and later on input into MRR5 via input-port. For this state, the control input is applied 

(Z=1), thus, the optical signal is switched from drop-port (DR5) to through-port (TH5) and represents the optical logic 

“01001000” at output-ports “TH2-DR2-TH3-DR3-TH5-DR5-TH6-DR6”. Fig. 5(c) shows the output signal when the 

input XYZ is “010”. This case, there is no control input (X=0) is applied to MRR1, thus the input signal is transmitted 

into drop-port (DR1) again. Next, the signal from DR1 is input into MRR2 via input-port and control input (Y=1) is 

applied to MRR2 via add-port, therefore, the optical signal is switched from drop-port (DR2) to through-port (TH2) as 

optical logic “1”. The signal from TH2 is later on used as the input signal of MRR4 via add-port and appear at the 

through-port (TH4) due to the resonance condition, and then applied to MRR6 via input-port. For this state, control input 

(Z=1) is applied to MRR6 via add-port, thus, the optical signal is transmitted to drop-port (DR6) and represents the 

optical logic “10000001” at output-ports “TH2-DR2-TH3-DR3-TH5-DR5-TH6-DR6”. 

 

Table 2:  Ring resonator parameters used in simulation for optimum outputs 

Parameter variables Explanation values 

R 
Radius of the ring waveguide 

(measured from the center of the ring to the center of the waveguide) 
1.55 m 

W Width of the waveguides  ~290 to ~440 nm 

H Height of the waveguides 250 nm 

L Circumference of the ring waveguide (optical path lengths in a ring) 9.74 m 

Aeff Effective mode core area 0.25 m
2
 

 Coupling coefficients 0.25 

 Coupling loss 0.01 

 Intensity attenuation loss inside the ring 0.05 dB𝑚𝑚−1 

neff Effective refractive index of the ring (InGaAsP/InP) 3.34 

n Change of refractive index when control is applied (Bright soliton) 3.510
-3

 

R Resonance wavelength 1.55 µm 

R Resonance wavelength after control is applied (Bright soliton) 1.54 m 

 

 
 

Fig.3: Transmission characteristics of bright soliton pulse within the MRR when the ring radius is 1.55 µm, =0.25, m=21 and 

R=1.55 µm, where the dark-bright soliton pair is processed as the “On-Off” signals. 

 



Fig. 5(d) shows the output when the input XYZ is “011”. This case is the same as the previous case for the first 

and second states where (XY=01), and the optical is transmitted to through-port (TH2) as optical logic “1”. The signal 

from TH2 is then used to be input signal of MRR2 via add-port and appear at the through-port (TH4) due to the 

resonance condition and applied to MRR6. Where in this state, the control input is applied (Z=0), thus, the optical signal 

is appeared at through-port (TH6) and represents the optical logic “10000010” at output-ports “TH2-DR2-TH3-DR3-

TH5-DR5-TH6-DR6”. Fig. 5(e) shows the output when the input XYZ is “100”. This case, the control pulse is applied to 

MRR1 (X=1), thus the input signal is transmitted to through-port (TH1). Next, the signal from TH1 is input into MRR3 

via input-port and control input (Y=1) is applied to add-ports (AD2), therefore, the optical signal is appeared at through-

port (TH3) to be optical logic 1. The signal from TH3 is then used to be input signal of MRR4 via input-port and appear 

at the drop-port (DR4) due to the resonance condition. The signal is then inputted into MRR6. For this state, no control 

input (Z=0) is applied, thus, the optical signal is appeared at drop-port (DR6) and represents the optical logic “00010001” 

at output-ports “TH2-DR2-TH3-DR3-TH5-DR5-TH6-DR6”. Fig. 5(f) shows the output when the input XYZ is “101”. 

This case is the same as the previous case for the first and second states where (XY=10), and the optical signal is 

transmitted to drop-port (DR3) as optical logic “1”. Where in this state, the control input is applied (Z=1), thus, the 

optical signal from MRR4 is appeared at through-port (TH6) and represents the optical logic “10000010” at output-ports 

“TH2-DR2-TH3-DR3-TH5-DR5-TH6-DR6”. Fig. 5(g) shows the output when the input XYZ is “110”. This case, the 

control pulse is applied to MRR1 (X=1), thus the input signal is transmitted to through-port (TH1). Next, the control 

input (Y=1) is applied to MRR3, thus the signal from MRR1 (TH1) is through-port (TH3) to be optical logic 1. The 

signal from TH3 is again used as the input signal of MRR4 via input-port and appear at the drop-port (DR4). The signal 

is then transmitted into MRR5. For this state, no control input (Z=0) is applied, thus, the optical signal is appeared at 

drop-port (DR5) and represents the optical logic “00100100” at output-ports “TH2-DR2-TH3-DR3-TH5-DR5-TH6-

DR6”. Lastly, Fig. 5(h) shows the output when the input XYZ is “111”. This case is the same as the previous case for the 

first and second states where (XY=11), and the optical signal is transmitted to through-port (TH3) as optical logic “1”. 

Where in this state, control input (Z=1) is applied to MRR5, thus, the optical signal from MRR4 (DR4) is appeared at 

through-port (TH5) and represents the optical logic “00101000” at output-ports “TH2-DR2-TH3-DR3-TH5-DR5-TH6-

DR6”. In Table 3, we conclude the optical logic of all-optical ALU circuit obtained from output-ports TH2, DR2, TH3, 

DR3, TH5, DR5, TH6, DR6 of MRR2, MRR3, MRR5, MRR6, respectively. Where the output signal can be used to 

perform all-optical full-adder/half adder. The arithmetic operation can be done by using beam-splitter and beam 

combiner to split and combine optical output intensity such as the SUM=TH5+DR6; CAR=TH3+TH6 for summation and 

carry out of full-addition, DIF=TH5+DR6; BOR=TH2+TH5 for difference and borrow of full-subtraction, respectively. 

This output logic can be implemented in other arithmetic and logic operation such as XOR gate, XNOR gate, increment 

and decrement. 

 

 

 
 

(a) No control signal is applied (b) Control signal is applied 

 

Fig. 4: Transmission signal at through-port (TH) and drop-port (DR) of MRR, when the peak output intensity represented to be logic 

“1” and the weak output intensity is represented to be logic “0”, the secure signal can be obtained by the applying the control input 

signal.  

 



 

  
(a) output logic is “01000100” (b) output logic is “01001000” 

 
 

(c) output logic is “10000001”  (d) output logic is “10000010” 

  

(e) output logic is “00010001” (f) output logic is “00010010” 

 
 

(g) output logic is “00100100” (h) output logic is “00101000” 

 
Fig. 5: Transmitted signals at output-ports of MRR2, MRR3, MRR5 and MRR6 when input logic “XYZ” is (a) “000”, (b) “001”, (c) 

“010”, (d) “011”, (e) “100”, (f) “101”, (g) “110”, (h) “111” 



 

Table 3: Conclusion of all-optical full-adder/subtractor 

Inputs Output Ports Results 

X  Y  Z TH2 DR2 TH3 DR3 TH5 DR5 TH6 DR6 CAR BOR SUM DIF 

D D D D B D D D B D D D D D D 

D D B D B D D B D D D D B B B 

D B D B D D D D D D B D B B B 

D B B B D D D D D B D B B D D 

B D D D D D B D D D B D D B B 

B D B D D D B D D B D D D D D 

B B D D  D B D D B D D B D D D 

B B B D D B D B D D D B B B B 
Logic “0” is Dark soliton (D); logic “1” is Bright soliton (B).  

 

5. Conclusion 

We have proposed the design circuit of the ALU that can be used to perform the two arithmetic operations which are full-

addition and full-subtraction using the semiconductor (GaAsInP/P) microring resonator circuits. By using the bright 

soliton input signal, the operation can be successfully achieved by dark-bright soliton conversion within microring 

resonator, which can be used to represent optical logic NOT gate (optical switching). This dark-bright soliton conversion 

can be controlled, where the high-security communication in long distance using such concept has been reported and 

confirmed [29, 30]. The simulation shows that the ultrafast-optical switching time of (𝜏𝑠𝑤=0.14 ps), an on-off ratio of 

~47.99 and propagation time of ~0.30 ps are obtained. This design circuit is also the small in physical size, which is 

flexible in order to demonstrate in the larger amount of bits processing and considering for experimentation and 

fabrication. 
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