
              

City, University of London Institutional Repository

Citation: Yang, Y-F., Zhang, Z-C. & Fu, F. (2015). Experimental and numerical study on 
square RACFST members under lateral impact loading. Journal of Constructional Steel 
Research, 111, pp. 43-56. doi: 10.1016/j.jcsr.2015.04.004 

This is the draft version of the paper. 

This version of the publication may differ from the final published 
version. 

Permanent repository link:  http://openaccess.city.ac.uk/20053/

Link to published version: http://dx.doi.org/10.1016/j.jcsr.2015.04.004

Copyright and reuse: City Research Online aims to make research 
outputs of City, University of London available to a wider audience. 
Copyright and Moral Rights remain with the author(s) and/or copyright 
holders. URLs from City Research Online may be freely distributed and 
linked to.

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/159768212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


*Corresponding author. Tel.: 86-411-8470 8510; Fax: 86-411-8467 4141. 
E–mail address: youfuyang@163.com (Dr. You-Fu Yang). 

Experimental and numerical study on square RACFST members 

under lateral impact loading 

 
You-Fu Yang*,1, Zhi-Cheng Zhang1, Feng Fu2 

1) State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, China 

2) School of Mathematics, Computer Science & Engineering , Department of Civil Engineering, City University 

London, Northampton Square, London, UK 

 

Abstract: 

In this paper, experimental and numerical studies were carried out to investigate the performance of 

recycled aggregate concrete (RAC) filled square steel tubular members under lateral impact loading. 

A total of eleven specimens, including eight RAC filled steel tubular (RACFST) specimens and 

three normal concrete filled steel tubular (CFST) counterparts, were tested using drop-weight 

impact test rigs with fixed boundary conditions at both ends. The parameters studied were: recycled 

coarse aggregate (RA) replacement ratio, axial compressive load ratio and height of the drop-weight. 

The failure mode and local damages of the specimens were extensively investigated. The 

experimental results show that square RACFST specimens have the almost equivalent lateral impact 

resistance as normal CFST counterparts. Failure mode of steel tube is commonly indentation at the 

impacted area and buckling at the compression side of the section near the mid-span and the 

supports. Cracking under tension as well as crushed under compression of core concrete are 

observed at the mid-span and the location near the supports. A finite element analysis (FEA) model 

was also developed for simulating the performance of square RACFST members under lateral 

impact loading, and the predicted responses using the FEA model were in good agreement with the 

experimental results.  
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impact loading; Time history response; Impact load; Finite element analysis (FEA) 

Nomenclature 

B  external width of square steel tube 

CFST concrete filled steel tube 

h  height of the drop-weight 

L  total length of the specimen 

0L  clear length between two supports 

n axial compressive load ratio 

0N  axial compressive load 

NC normal concrete 

NA natural coarse aggregate  

P  impact load 

ek,P  experimental peak of impact load  

ps,P  predicted plateau of impact load  

es,P  experimental plateau of impact load  

r  recycled coarse aggregate replacement ratio 

RA recycled coarse aggregate 

RAC recycled aggregate concrete 

RACFST recycled aggregate concrete filled steel tube 

t  time 

ed,t  experimental duration from starting impacting to reaching the maximum displacement 

pd,t  predicted duration from starting impacting to reaching the maximum displacement 

st  wall thickness of steel tube 

W  initial kinetic energy of the drop-weight 

u  displacement 

mu  displacement at the mid-span 

emm,u  experimental maximum dynamic displacement at the mid-span 

pmm,u  predicted maximum dynamic displacement at the mid-span 
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mru  residual displacement at the mid-span 

1. Introduction 

In modern construction project, concrete filled steel tube (CFST) exhibits various advantages: 

steel tube can effectively constrain its core concrete, thus delay the longitudinal cracking of 

concrete under compression and improve the plastic deformation capability of core concrete; and at 

the same time core concrete can delay or prevent premature local buckling of steel tube. As a result, 

CFST has higher bearing capacity, better ductility and toughness, shorter construction time and 

better fire resistance compared with single steel tube or core concrete, and it has been widely used 

in construction practice (Zhao et al. 2010)[1]. However, CFST members may be subjected to 

accidental or intentional transverse impact loads such as the strike of vehicles and the impact of 

explosive events, which will seriously damage CFST members and even lead to the collapse of an 

entire structure. 

The behaviour of composite members with steel tube and fillings subjected to lateral impact 

loads has been experimentally and theoretically investigated by several researchers. Shan et al. 

(2007)[2] investigated the behaviour of CFST stub columns with the impact loads applied axially 

by a high-speed gas gun, and the impact responses from tests were used to evaluate the rationality 

of the analytical results using LS-DYNA. Bambacha et al. (2008)[3] presented an experimental and 

analytical study on steel hollow sections and CFST beams subjected to transverse impact loads, and 

a design procedure was proposed. Huo et al. (2009)[4] investigated the impact resistance of 

small-size micro-concrete-filled steel tubes at elevated temperatures up to 400 oC using a spilt 

Hopkinson pressure bar, and a simplified calculation method for the impact resistant capacity of 

CFST at elevated temperatures was proposed. Bambach (2011)[5] investigated the general 

behaviour of concrete filled carbon and stainless steel tubular columns under transverse impact 

loads using the finite element models validated by the tests, and then suggested a design procedure 

for such members. Based on the combination of experimental results, numerical simulation using 

LS-DYNA and theoretical analysis, Qu et al. (2011)[6] developed a simplified analytical model for 
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circular CFST columns with fixed-simple supported ends subjected to lateral impact loading, and 

the proposed model could well predict the maximum deflection of CFST specimen under lateral 

impacts. Remennikov et al. (2011)[7] presented the results of experimental and numerical studies 

on the behaviour of mild and stainless steel square hollow section filled with rigid polyurethane 

foam and concrete subjected to transverse impact loads. Deng et al. (2012)[8] investigated the 

failure modes and local damages of the simply supported CFST, steel post-tensioned CFST and 

steel fiber-reinforced concrete filled tube under lateral impacts, and the tests were carried out by an 

instrumented drop-weight impact facility. Furthermore, to evaluate the dynamic plastic moment 

capacity of circular CFST beams under lateral impacts, Deng and Tuan (2013)[9] developed an 

algorithm based on theoretical sectional analysis (TSA), and a procedure using TSA was finally 

proposed to assist engineers in designing simply supported circular CFST beams under lateral 

impacts. Yousuf et al. (2013)[10] presented the comparative results of the experimental and finite 

element modelling of hollow and concrete-filled stainless steel tubular columns under lateral static 

or impact loading. Wang et al. (2013)[11] reported the studies on the performance of circular CFST 

members under transverse impact loads, and both experimental and finite element analysis results 

were presented and analysed. Han et al. (2014)[12] experimentally and theoretically investigated the 

impact resistant behaviour of high strength concrete filled steel tubular members, and further 

developed a simplified model for predicting the flexural strength of CFST members under lateral 

impact loading. 

In recent years, recycled aggregate concrete (RAC) technology has become one of the effective 

measures to develop green concrete, achieve sustainable development of building, resources and 

environment and build a resource-saving society, considering that production of recycled aggregates 

by recycling of the waste concrete can promote the reuse of waste materials and further protect the 

natural aggregate resources. RAC filled steel tube (RACFST) can be considered as a new type of 

composite construction technique (Yang and Han 2006)[13]. There have been a number of studies 

on the static and cyclic behaviour of RACFST members (Yang and Han 2006; Yang et al. 2009; 
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Yang and Zhu 2009; Yang and Ma 2013)[13-16], and the results show that RACFST members 

generally have the similar properties as CFST members. The investigation on the behaviour of this 

type of member under impact loading is a very important issue for ensuring the safety of RACFST 

structures. However, little research on the behaviour of RACFST members subjected to accidental 

loads such as collisions, impacts, terrorist bombings, etc. has been done so far. 

Based on the aforementioned information, it is clear that the study on the performance of 

RACFST members under lateral impact loading is limited. This paper presents an experimental and 

theoretical investigation on the behaviour of square RACFST members subjected to lateral impact 

loading. In this study, the influence of recycled coarse aggregate (RA) replacement ratio, axial 

compressive load ratio and height of the drop-weight on the impact resistance behaviour of square 

RACFST members was experimentally investigated. Moreover, a finite element analysis (FEA) 

model was developed to predict the response of square RACFST members under lateral impact 

loading, and the accuracy of the model was evaluated by comparison with the experimental results.  

2. Experimental Program 

2.1. Material Properties 

The steel tube used in the tests was cut from a pre-fabricated cold-formed square hollow 

section with the average wall thickness ( st ) of 2.45 mm. The properties of steel were tested by 

using three tensile coupons randomly taken from the flat part of square hollow section. From the 

tests, the average yield strength, tensile strength, modulus of elasticity and Poisson’s ratio of steel 

were found to be 370.8 MPa, 446.5 MPa, 1.98×105 N/mm2 and 0.267, respectively. The average 

strain at rupture (elongation), which reflects the ductility of steel, is 18.7% with a standard deviation 

of 1.8%.  

RA was obtained by crushing the waste concrete in the laboratory using a small jaw crusher, 

and the cube compressive strength of the waste concrete was about 60 MPa. The maximum size of 

RA and natural coarse aggregate (NA) was 20 mm and 25 mm. The methods for determining the 

water absorption rate and crushing value in GB/T 14685-2011 [17] were adopted. The water 
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absorption rate of RA and NA was 8.49% and 0.78%, respectively and the crushing value of RA and 

NA was 29.4% and 11.5%, respectively. Three types of concrete, including one type of normal 

concrete (NC) with natural aggregates as a counterpart, two types of RAC with RA replacement 

ratio ( r ) of 50% and 100%, were produced in the tests, where r  was defined as the ratio of RA 

mass to the mass of all coarse aggregate. The mix design of all concrete was kept as the same, and 

the NC counterpart was designed with a mean cube compressive strength of approximately 40 MPa 

at 28-day. Furthermore, to ensure the workability of RAC, the RA was pre-wet to attain the 

saturated surface dry (SSD) condition before mixing concrete, considering that the water absorption 

of RA is higher than that of NA. To monitor the cube compressive strength ( cuf ) and elastic 

modulus ( cE ) of concrete, 150 mm cubes and 150 mm × 300 mm prisms were cast and cured in 

conditions similar to the tested specimens. The mix design and properties of fresh concrete are 

presented in Table 1, where cu,28f  and testcu,f  are the mean cube compressive strength at 28-day 

and when the loading tests conducted, respectively. It can be seen that the slump of RAC with r  of 

100% is more than twice that of NC and RAC with r  of 50%, which have the slump of 35 mm. 

This result may be caused by the additional water in RAC with r  of 100% because of the 

difficulty in accurately controlling the SSD condition. It can also be seen from Table 1 that cuf  and 

cE  of RAC are lower than those of the corresponding NC, and higher r  results in lower cuf  and 

cE . Similar results were reported by Yang and Han (2006)[13]. 

2.2. Specimens  

Eleven square specimens, including eight RACFST members and three CFST counterparts, 

were tested under lateral impact loading produced by an instrumented drop-weight impact tester and 

the tube of each specimen was welded to two square 12 mm thick steel base plates. The information 

of the specimens investigated in the tests is listed in Table 2, where B  is the external width of 

square steel tube, L  is the total length of the specimen, 0L  is the clear length between two 

supports, h  is the height of the drop-weight, 0N  is the applied axial compressive load, n  
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(= u0 / NN , where uN  is the stability bearing capacity of RACFST members (Yang and Hou 

2014)[18]) is the axial compressive load ratio, W  is the initial kinetic energy of the drop-weight, 

ed,t  is the experimental duration from starting impacting to reaching the maximum displacement, 

ek,P  is the experimental peak of impact load, es,P  is the experimental plateau of impact load, 

emm,u  is the maximum dynamic displacement at the mid-span during the tests, and mru  is the 

residual displacement at the mid-span after impacting. The main parameters considered in the tests 

include:  

 RA replacement ratio, r : from 0 (CFST) to 100%,  

 Axial compressive load ratio, n : from 0 to 0.33, and 

 Height of the drop-weight, h : from 2 m to 6 m. 

In Table 2, ‘NC’, ‘RAC1’ and ‘RAC2’ in the first part of specimen label denotes the filling 

concrete of NC, RAC with r  of 50% and RAC with r  of 100% respectively, the middle part of 

specimen label indicates the axial compressive load ratio, and the numbers in the last part of 

specimen label refer to the height of the drop-weight.  

2.3. Impact Tests  

The tests were carried out on an instrumented drop-weight impact tester. The effective height 

of the tester is 12.6 m and the corresponding maximum impact velocity is 15.7 m/s. Details of the 

tester were presented in Wang et al. (2013)[11]. The fluted H-shaped weight was made of ASTM 

1045 quality carbon structural steel. The impact head was made of chrome 15 with the hardness of 

64HRC, and the dimension of the effective contact surface is 30 mm×80 mm. The dynamic load 

cell was installed between the impact head and the weight to record the time history of impact loads. 

The drop-weight consists of the weight, the dynamic load cell and the impact head, which are 

connected to each other using high-strength bolts, and the mass of the drop-weight is 238.16 kg in 

the tests. The above instrumentation allows free fell of the drop-weight from different height to 

produce lateral impact on the tested specimens.  

The specimen was fixed supported at both ends, and the supports consisted of the upper and 
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lower half rings and the base plate fixed to a steel working platform. A schematic view of the test 

assembly is shown in Fig. 1. Meanwhile, to simulate the combined compression and bending of a 

structural member under lateral impact loading in reality, 100 kN or 200 kN axial compressive load 

was applied to the ends of six RACFST specimens and two CFST counterparts, as shown in Table 2. 

The device for applying axial compressive force was composed of close channel frame, load axle, 

load ring, linear bearings, disc springs, hydraulic jack, load transducer and other necessary 

components, and the linear bearings in the right support were used to restrict the displacement in 

lateral direction and permit deforming only in axial direction. The compressive load could be 

ensured less loss as far as possible during the lateral impacting by adoption of disc springs (Wang et 

al. 2013; Han et al. 2004)[11,12]. The monitored results showed that, the axial compressive load 

fluctuated and attenuated during the impact load tests and it is noticed that the maximum variation 

range was 20% of the applied constant axial compressive load. 

During the tests, the specimen was placed in the test assembly with the left end restricted in the 

longitudinal direction, and then the compressive load was applied to the right end of the axially 

loaded specimens. The drop-weight was released at different height to hit the specimen at the 

mid-span and the time history of impact load was recorded by the dynamic load cell installed in the 

drop-weight. Simultaneously, six displacement markers were set on the side surface of the 

specimens to trace the development of the lateral displacements and to obtain the final lateral 

displacement (residual displacement), as shown in Fig. 2. Moreover, an i-SPEED 3 high-speed 

video camera produced by OLYMPUS Company was used to record the specimen destruction 

process, and the digital video acquisition recorded the tests at a speed of 3000 frames per second.  

3. Test Results and Discussion 

The response of RACFST specimens and the CFST counterparts under lateral impact loading 

was initially dominated by a combination of local deformation and global bending, and 

subsequently, the lateral displacements increased quickly. During the impact loading tests, the 

responses of the tested specimens with both ends fixed showed the conventional plastic failure 
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mechanism due to bending, and three plastic hinges were formed along the span of the specimen, 

including one at each end and one at the mid-span. The remaining part of the specimen was still flat. 

The typical mechanism behaviour is shown in Figs. 3 and 4. Fig. 3 shows the displacement (u ) 

developments of specimen RAC2-0.165-6 with 1 ms interval till reaching the maximum dynamic 

displacement ( emm,u ), where x  is the distance away from the left support and the curves were 

traced over pictures taken from the video camera (Fig. 4). The failure proceeded from the initial 

contact between impact head and specimen to the time impact load basically reaching a stable stage. 

It can be found from the movement of displacement markers (white points in Fig. 4) that, the 

displacement of specimen becomes more and more evident with time ( t ) increasing. 

Fig. 5 shows the failure pattern of the specimens after the completion of impact tests. It can be 

seen that, in general, the indentation of steel tube appears at the impact position and the shape of the 

square cross section is no longer maintained. A final “V” shape of the specimens is produced within 

the clear span except for specimen RAC1-0.16-2. The steel tube buckles on both sides of the impact 

location and at the compression zone near the supports (position of the arrows), and the value and 

range of buckling deformation are obviously determined by the height of the drop-weight. 

Moreover, cracks at the tension zone near the impact location (position of the dashed oval) were 

observed on the steel tube of RACFST specimens without axial compressive load. This 

phenomenon may be due to the fact that core RAC in RACFST can not provide adequate restrain to 

the steel tube under lateral impact loading as the strength and elastic modulus of RAC are lower 

than those of NC.  

In general, the failure mode of RACFST specimens under lateral impact loading can be 

divided into three categories with variation of r , n  and h , as summarised in Table 1 and shown 

schematically in Fig. 6. It can be seen that, for axially loaded specimen with a small height of the 

drop-weight (i.e. h =2 m), only local buckling of steel tube were observed at the compression side 

of the section near the mid-span [Fig. 6(a)]. For axially loaded specimen with an increasing height 

of the drop-weight (i.e. h =4 m or 6 m), local buckling of steel tube also appears at the compression 
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side of the section near the supports [Fig. 6(b)] due to the increase of impact energy. However, for 

specimens without axial compressive load applied, tensile facture of steel tube at the tension side of 

the mid-span section is further developed [Fig. 6(c)], which is also different from the failure mode 

of the CFST counterparts. These can be explained that, while being subjected to lateral impact 

loading, the existence of axial compressive load can restrain the development of tensile strain in the 

tube and improve the plastic deformation capability of core RAC in RACFST specimens. 

After the impact tests, half of the steel tube of the specimens was cut open to inspect the failure 

pattern of core concrete inside, as shown in Fig. 7(a). It is shown that tensile cracks occur at the 

tension side of the sections near the supports [Fig. 7 (b) and (d)] and at the mid-span [Fig. 7 (c)]. At 

the same time, concrete core is commonly crushed at the mid-span and the location near the 

supports. The concrete core between mid-span and the supports is remained fairly intact, and there 

is no evident shear crack observed in the core concrete due to the effective confinement provided by 

steel tube. It can also be found from Figs. 5 and 7 that, shear failure including punching shear 

failure of steel tube and core concrete at the mid-span occurs as the dimensions of the effective 

contact surface of the drop-weight are smaller than those of the upper surface of the specimens and 

as the elastic modulus of core concrete is lower than that of the outer steel tube. Moreover, the shear 

failure including punching shear failure becomes more evident for specimens with larger axial 

compressive load ratio and height of the drop weight. This can be attributed to the difference in the 

stress state because of the axial compressive load applying and the increase of impact energy.  

The most important data recorded during the impact tests are the time history of impact load 

( P ) applied on the specimen, and the typical time history of impact loads of a specimen is shown in 

Fig. 8. It can be seen that, the impact load ( P ) versus time ( t ) history curve can be generally 

divided into three phases, namely oscillation stage (point O to A), stabilization stage (point A to B) 

and attenuation stage (point B to C). The determination of stabilization stage (points A and B) is 

based on that the variation range of P  is less than 5 kN within 1 ms after point A and at point B 

the sudden change happens to slope of tP   curve. The impact load reaches the maximum value 
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in a short time and then fast decays in the oscillation stage, and the impact load is generally constant 

in the stabilization stage. Finally, the impact load is gradually reduced to zero in the attenuation 

stage when the impact energy is mostly dissipated. For all specimens, the experimental peak of 

impact load ( ek,P ) is determined as the maximum force recorded in the tests. The average force 

within the first 5 ms of stabilization stage of tP   history curve is treated as the plateau of impact 

load ( es,P ) considering that the fluctuation of P  is small within this period and the impact load 

starts to attenuate after this period due to the influence of potential interference factors. Both ek,P  

and es,P  are presented in Table 2.  

The impact load ( P ) versus time ( t ) history curve of the specimens is illustrated in Fig. 9. It is 

shown that, in general, the difference in the oscillation stage of tP   history curves is not evident. 

However, significant difference was observed in the stabilization stage and attenuation stage, and 

the forces in the stabilization stage and the duration from point A to C (see Fig. 8) change with the 

variation of r , h  and 0N .  

The time histories of mid-span displacement ( mu ) of RACFST specimens and the CFST 

counterparts are shown in Fig. 10. The experimental maximum dynamic displacement ( emm,u ) at the 

mid-span is listed in Table 2. It can be seen that, under the same 6-m height of drop-weight ( h ), 

RACFST specimens and their CFST counterparts almost have the same responses when the time is 

less than 0.008 s, and then the tu m  curves change with the changing of r  and n . However, 

the more difference was observed in tu m  curves for specimens without axial compressive load 

than that in axially loaded specimens. For the specimens without axial compressive load, the 

tu m  curve of RACFST specimens is higher than that of the corresponding CFST specimen due 

to the fracture of their steel tube at the tension side of the mid-span section (see Fig. 5(a)); however, 

for axially loaded specimens with the same h , the tu m  curve of RACFST specimens is 

generally lower than that of the CFST counterparts, i.e. RACFST specimens have a better 

deformation-resistant capability. This result may be explained by the fact that, the surface of RA is 
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coarser than that of NA (Hansen 1992)[19], and meanwhile the bond action between RA and 

hydration products of RAC is further improved because of the existence of axial compressive load. 

It can also be found that, the axially loaded RACFST specimens have a higher tu m  curve than 

RACFST specimens without axial compressive load; however, for CFST specimens the axial 

compressive load dramatically increases its mid-span displacement. This phenomenon may be due 

to the fact that the influence of the second-order effect on CFST specimens is more significant than 

that on RACFST specimens since core concrete in RACFST specimens has a coarser surface 

between RA and hydration products than that in CFST specimens. Moreover, Fig. 10(d) shows that, 

for RACFST specimens under the same axial compressive load ratio ( n ), the tu m  responses 

increase obviously with increase of h  owing to the increase of impact energy.  

The effect of RA replacement ratio ( r ), axial compressive load ratio ( n ) and height of the 

drop-weight ( h ) on the measured peak and plateau of impact load ( ek,P  and es,P ) is demonstrated 

in Fig. 11. It can be seen that, except for ek,P  of CFST specimens, ek,P  of RACFST specimens 

and es,P  of all specimens decrease with increase of n  because of the existence of second-order 

effect of axial compressive load. Due to the lower compressive strength and elastic modulus of 

RAC compared with NC, ek,P  and es,P  of RACFST specimens are 5.4-28.9% and 1.0-11.2% 

lower than those of the corresponding CFST specimens, respectively. In general, ek,P  increases 

with increase of h  due to the increase of impact energy; however, similar to CFST specimens in 

Wang et al. (2013)[11] and Han et al. (2014)[12], h  has little effect on es,P  of RACFST 

specimens owing to the fact that the time history responses of P  at the stabilization stage is little 

related to h .  

Figs. 12 and 13 show the effect of typical parameters on the residual displacement at the 

mid-span ( mru ) and the experimental duration from starting impacting to reaching the maximum 

displacement ( ed,t ). It can be seen that, h  has a significant influence on mru  and ed,t  of the 

specimens due chiefly to its determination on the impact energy; however, r  and n  do not have 
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consistent effect on mru  and ed,t  of RACFST specimens and the CFST counterparts under the 

same h  value. As mentioned above, the existence of axial compressive load will affect the 

transition zone and bond action between RA and hydration products of RAC in RACFST specimens 

and this will determine the performance of RACFST specimens under lateral impact loading.  

4. Finite element analysis (FEA) model 

4.1. General description of the FEA model 

To simulate the responses of square RACFST members subjected to lateral impact loading at 

the mid-span, a nonlinear finite element analysis (FEA) model was developed using ABAQUS 

software [20]. In the simulation, applying axial compressive loads was modelled by 

Abaqus/Standard solver, and then the explicit solver was used to model the performance under 

lateral impact loading.  

In this study, the relevant static and strain rate properties of steel were same as those presented 

in Wang et al. (2013)[11]. The damaged plasticity model in ABAQUS was adopted to simulate the 

complicate nonlinear behaviour of core concrete. The static stress–strain relationship of RAC under 

compression was derived from the model of NC presented in Han et al. (2007) [21] by considering 

the effect of r  on the peak stress and the peak strain (Zhang 2014)[22]: 

)08.028.01( 2
,0,0 rrnr                             (1) 

)]989.4843.109715.65/(1[ 2
,0,0  rrrnr               (2) 

where, r,0  ( r,0 ) and n,0  ( n,0 ) are the peak stress (strain) of RAC and the corresponding NC, 

respectively. The static stress–strain relationship of NC under tension given in Shen et al. (1993)[23] 

was adopted as the model for core RAC, i.e. the effect of r  was not considered. Till now, there is 

no model for considering the effect of strain rate on RAC. Thus, the method with the effect of strain 

rate on NC considered in CEB-FIP (1993)[24], which had been successfully used in the modelling 

of CFST members under lateral impacting loading (Han et al. 2013, 2014)[11][12], was temporally 

adopted in this study.  
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In the model, the steel tube and core concrete were simulated by 4-node reduced-integration 

three-dimensional shell elements (S4R) and 8-node reduced-integration three-dimensional brick 

elements (C3D8R), respectively. The detailed information of the interface between the steel tube 

and core concrete could be found in Han et al. (2007) [21]. The disc springs in the tests were 

simulated by a spring element with two point connection, and the stiffness used for the spring 

element was 6×106 N/mm. The drop-weight was modelled by 4-node three-dimensional rigid 

elements (R3D4). Moreover, the drop-weight was simplified to be a rigid surface with the same 

dimensions as the impacted surface since the shape of the drop weight almost unchanged during the 

impacting tests. The mesh convergence studies showed that, local mesh encryption was necessary in 

the range of contacting between the drop-weight and the member to ensure the computational 

efficiency and to improve the accuracy of prediction. The boundary conditions at one end were 

‘fixed’ with all degree of freedoms restricted, and at the other end all degree of freedoms was 

restricted except for the longitudinal direction. Furthermore, the geometric nonlinearity (large 

deformation) is assumed in the proposed model to include the second-order effect. The adopted 

meshing and boundary conditions for a typical RACFST member is demonstrated in Fig. 14. The 

Initial velocity ( 0v ) considered in the tests was defined for the drop-weight, and the responses of 

RACFST members under lateral impact loading after each step could be obtained from the 

equilibrium equations.  

4.2. Verifications of the FEA model 

Fig. 15 shows the predicted failure patterns of the tested specimens. It can be seen from Fig. 15 

and Fig. 5 that, in general, the FEA model can well predict the deformation of RACFST specimens 

and the local buckling of steel tube. The comparison between the predicted and tested tP   and 

tu m  curves is illustrated in Fig. 16 and Fig. 17, respectively. It can be found that a reasonably 

good agreement is obtained between both results. However, the predicted tP   history curve of 

specimens RAC1-0-6 and RAC2-0-6 has a short duration time as the tensile fracture of steel is not 

considered in the FEA model. In general, the predicted mu  are slightly larger than the test results 



 15

after reaching the maximum dynamic displacement. This can be attributed to the fact that the FEA 

model can not simulate the effect of air resistance, frition between devices and environmental 

interference. The comparisons of sP , dt  and mmu  between the predicted and experimental results 

are demonstrated in Fig. 18, where ps,P , pd,t  and pmm,u  are the predicted plateau of impact load, 

duration from starting impacting to reaching the maximum displacement and maximum dynamic 

displacement at the mid-span, respectively, and MV and SD represent mean value and standard 

deviation, respectively. As could be found, the mean values of es,ps, / PP , ed,pd, / tt  and emm,pmm, /uu  

are respectively 0.853, 1.049 and 1.085 and the corresponding standard deviations are respectively 

0.130, 0.098 and 0.054. In general, a good agreement between the predicted and experimental 

results was attained.  

5. Conclusions 

An experimental and numerical investigation on the performance of square RACFST members 

under lateral impact loading is presented in this study. Based on the observations and analytical 

results, the following conclusions can be drawn:  

(1) RACFST members have the similar lateral impact resistance as CFST counterparts and 

three stages are observed in the time history curve of impact loads. However, under the same h , 

the effect of n  on the performance of RACFST specimens is different from that of the CFST 

counterparts. 

(2) Failure mode of steel tubes is commonly concave at the impacted area and buckling at the 

section near the mid-span and the supports, and core concrete is crushed and cracking at the 

mid-span section and the section near the supports. Moreover, shear failure including punching 

shear failure of steel tube and core concrete are also observed. 

(3) ek,P  and es,P  of RACFST specimens are lower than those of the CFST counterparts. For 

RACFST specimens, ek,P  decreases with increase of n  and decrease of h , and es,P  decreases 

with increasing n  while h  has a moderate effect on es,P . Moreover, r  and n  have no 



 16

consistent effect on rm,u  and dt  of RACFST specimens and the CFST counterparts. 

(4) The predicted responses of RACFST members under lateral impact loading by the FEA 

model developed in this study are in good agreement with the experimental observations. 

It is clear that the plastic deformation of RACFST members mainly concentrates on the impact 

position. As a result, the strengthening of the impact parts (e.g. jacket pipe and inner stiffener) is 

necessary to improve the impact resistance capacity of RACFST members. 
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Fig. 1. A schematic view of the test assembly. 
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Fig. 2. Distribution of displacement markers and strain gauges. (unit: mm) 
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Fig. 3. Typical displacement developments with 2 ms interval. 
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(a) t=0 s (contact)                                                (b) t=0.003 s 

   

(c) t=0.006 s                                                                    (d) t=0.009 s 

   

(e) t=0.012 s                                                                (f) t=0.016 s 

Fig. 4. Failure process of specimen RAC2‐0.165‐6. 
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(b)   

Fig. 5. Continued 
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(d)   

Fig. 5. Failure pattern of the specimens. 
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(a) Type A 

 

 

 

(b) Type A+B 

 

 

 

(c) Type A+B+C 

 

Fig. 6. Failure mode of RACFST specimens under lateral impact loading. 
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(a) Overall pattern 

 

(b) Zone I 

 

(c) Zone II 

 

(d) Zone III 

Fig. 7. Typical failure pattern of core concrete. 
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Fig. 8. Typical time history of impact loads. 
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(c)                                                                          (d)   

Fig. 9. Impact load‐time history curve of the specimens. 

 

 

 

 

 



 31

 

0

30

60

90

120

0 0.01 0.02 0.03 0.04 0.05
t  (s)

u
m
 (m

m
)

NC‐0‐6
RAC1‐0‐6
RAC2‐0‐6

0

30

60

90

120

0 0.01 0.02 0.03 0.04 0.05
t (s)

u
m
 (m

m
)

NC‐0.15‐6
RAC1‐0.16‐6
RAC2‐0.165‐6

 

(a)                                                                          (b)   

0

30

60

90

120

0 0.01 0.02 0.03 0.04 0.05
t  (s)

u
m
 (m

m
)

NC‐0.3‐6
RAC1‐0.32‐6
RAC2‐0.33‐6

0

30

60

90

120

0 0.01 0.02 0.03 0.04 0.05
t  (s)

u
m
 (m

m
)

RAC1‐0.16‐2
RAC1‐0.16‐4
RAC1‐0.16‐6

 

(c)                                                                          (d)   

Fig. 10. Time histories of mid‐span displacement. 
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(b) 

Fig. 11. Variation of  ek,P   and  es,P . 
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Fig. 12. Effect of typical parameters on  mru . 
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Fig. 13. Effect of typical parameters on  ed,t . 
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Fig. 14. Meshing and boundary conditions. 
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Fig. 15. Predicted failure patterns. 
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Fig. 16. Comparison between the predicted and tested  tP −   history curves. 
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Fig. 17. Comparison between the predicted and tested  tu −m   curves. 



 39

 

0

50

100

150

200

0 50 100 150 200
P s,e (kN)

P
s,
p (
kN

)

0

10

20

30

40

0 10 20 30 40
t d,e (ms)

t d
,p
 (m

s)
 

          (a)                                                                    (b) 

0

50

100

150

200

0 50 100 150 200
u mm,e (mm)

u
m
m
,p
 (m

m
)

 

        (c) 

Fig. 18. Comparisons of sP ,  dt   and  mmu   between the predicted and experimental results. 

AV=0.853 
SD=0.130 

AV=1.049 
SD=0.098 

AV=1.085 
SD=0.054 



 19

Tables: 

Table 1. Mix design and properties of fresh concrete. 

Type 
Cement 
(kg/m3) 

Sand 
(kg/m3) 

Coarse aggregate 
(kg/m3) Water 

(kg/m3) 

r  

(%) 
Slump 
(mm) 

cu,28f  

(MPa) 

testcu,f  

(MPa) 

cE  

(N/mm2) Nature Recycled 

NC 473 636 1072 0 236.5 0 35 40.2 53.9 3.29×104 

RAC 
473 636 537 537 236.5 50 35 35.9 48.1 2.92×104 

473 636 0 1072 236.5 100 85 33.7 45.7 2.64×104 
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Table 2. Information of the specimens.  

No. Specimen 
label

B×ts×L 
(mm) 

L0 

(mm)
r 

(%)
h 

(m)
N0 

(kN)
n 

W 
(J)

td,e 

(ms)
Pk,e 

(kN)
Ps,e 

(kN)
umm,e 

(mm)
umr 

(mm)
Failure 
mode* 

1 NC-0-6 100×2.45×1800 1200 0 6 0 0 14018.1 16.85 884.6 159.6 82.4 71.0 A+B 

2 RAC1-0-6 100×2.45×1800 1200 50 6 0 0 14018.1 20.00 836.5 141.8 97.0 84.4 A+B+C 

3 RAC2-0-6 100×2.45×1800 1200 100 6 0 0 14018.1 26.50 871.0 144.1 105.0 92.8 A+B+C 

4 NC-0.15-6 100×2.45×1800 1200 0 6 100 0.15 14018.1 19.16 933.3 145.7 95.7 84.3 A+B 

5 RAC1-0.16-6 100×2.45×1800 1200 50 6 100 0.16 14018.1 21.50 788.6 136.9 93.7 84.1 A+B 

6 RAC2-0.165-6 100×2.45×1800 1200 100 6 100 0.165 14018.1 18.16 780.3 143.1 89.4 76.3 A+B 

7 NC-0.3-6 100×2.45×1800 1200 0 6 200 0.3 14018.1 22.00 945.0 135.3 100.7 90.3 A+B 

8 RAC1-0.32-6 100×2.45×1800 1200 50 6 200 0.32 14018.1 18.67 801.6 137.2 94.3 82.4 A+B 

9 RAC2-0.33-6 100×2.45×1800 1200 100 6 200 0.33 14018.1 20.33 672.2 133.9 98.4 88.4 A+B 

10 RAC1-0.16-2 100×2.45×1800 1200 50 2 100 0.16 4672.7 11.33 473.1 138.9 34.3 22.5 A 

11 RAC1-0.16-4 100×2.45×1800 1200 50 4 100 0.16 9345.4 16.00 800.6 134.6 67.2 56.4 A+B 

*A: buckling of steel tube at the compression side of the section near the mid-span; B: buckling of steel tube at the compression side of the section near the supports; and C: 

tensile facture of steel tube at the tension side of the mid-span section. 
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