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Abstract 

 

Accurate derivation of the psychophysical (a.k.a. transducer) function from just-noticeable 

differences requires accurate knowledge of the relationship between the mean and variance of 

apparent intensities. Alternatively, a psychophysical function can be derived from estimates 

of the average between easily discriminable intensities. Such estimates are unlikely to be 

biased by the aforementioned variance, but they are notoriously variable and may stem from 

decisional processes that are more cognitive than sensory. To circumvent minimise cognitive 

pollution, we used amplitude-modulated contrast. As the spatial or temporal (carrier) 

frequency increased, estimates of average intensity became less variable across observers, 

converging on values that were closer to mean power (i.e. contrast2) than mean contrast. 

Simply put, apparent contrast increases when physical contrast flickers. This result is 

analogous to Brücke's finding that brightness increases when luminance flickers. It implies an 

expansive transduction of contrast in the same way that Brücke's finding implies an 

expansive transduction of luminance.   
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Background 

No one questions the idea that visual salience increases with stimulus contrast. The question 

is how. Stevens [1] suggested a power-law relationship for all "prothetic" continua (of which, 

contrast is one). Thus, salience ψ, should be proportional to Sn, where S represents stimulus 

contrast and the exponent n is derived from psychophysical data. Stevens himself did not 

collect data on the power-law exponent for contrast, but many others adapted one of his 

"scaling" paradigms for this purpose. For example, Franzén and Berkeley [2] reported values 

of n between 0.6 (for low-frequency gratings) and 1.7 (for high-frequency gratings). Cannon 

[3], on the other hand, reported values near 1.0 for all spatial frequencies. Gottesman, Rubin, 

and Legge [4] championed 0.7, when near-threshold contrasts were ignored. 

 

The extreme variability in these findings is hard to ignore. Laming [5] argues that it is much 

too great to be attributed to sensory factors and must instead be attributed to procedural 

details that introduce "contextual" (i.e. non-sensory) biases. By way of contrast (no pun 

intended), there is significantly less inter-laboratory variability in estimates of the transducer 

function for contrast when those estimates are derived from suprathreshold contrast 

discrimination. With one notable exception [6], just-noticeable differences rise with the 0.6 or 

0.7 power of contrast (e.g. [7]). Legge and Foley [8] showed that this relationship implied a 

psychophysical exponent with a value near 0.4 (i.e., 1 – 0.6) if discrimination were limited by 

a source of constant noise, i.e. a noise whose variance was independent of contrast. 

 

Unfortunately, we seem to have very little evidence supporting the idea of constant noise. 

One experiment specifically designed to elucidate this issue [9] concluded in favour of a 

performance-limiting source of noise that increased with suprathreshold contrast. 

Consequently, it remains premature to accept contrast-discrimination data as evidence for 

compressive transduction (i.e. n < 1).  

 

Kulikowski [10] used the "fractionation" paradigm to evade the complication of sensory 

noise: observers adjusted one grating's contrast until it seemed to be exactly half that of 

another, otherwise identical grating. However, this method also produced large individual 

differences. Possible reasons for these differences include uncertainty regarding the definition 

of contrast and the lack of any perceptual experience corresponding to half contrast. 

Cognitive influences were unavoidable. 
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Wu, Burns, Reeves, & Elsner [11] were interested in the transduction from (physical) 

lightness to (perceived) brightness. Like Kulikowski [10], they used the method of 

adjustment to investigate transducer shape. However, unlike Kulikowski, they gave their 

observers a specific perceptual experience to report by means of a bipartite stimulus. One half 

of the stimulus was flickering. Its temporal (carrier) frequency was one of the independent 

variables. Nonlinear transduction creates a distortion product in flickering stimuli. Whereas a 

compressive transducer would disproportionately attenuate large input, high amplitude flicker 

looks, on average, disproportionately bright. This "Brücke-Bartley" effect implies an 

expansive transducer (i.e. n > 1), which disproportionately amplifies large input. Wu et al. 

sinusoidally modulated flicker amplitude at 0.5 Hz. The other half of their stimulus was an 

otherwise steady light, whose luminance was modulated at 0.5 Hz. Observers adjusted the 

latter modulation until it appeared to match the distortion product.  

 

For Experiment 1, we have adapted the procedure of Wu et al. (a similar method was used by 

Petrova, Henning, & Stockman [12]) for an investigation of contrast transduction. Before any 

data were collected, we created several stimuli (three of which have been included with the 

electronic supplementary material, www.staff.city.ac.uk/~solomon/pubs/RSOSESM.zip) 

demonstrating both the Brücke-Bartley effect and its contrast analogue. In Experiment 2, we 

investigated the effect of spatial modulations on average salience, to see if they too were 

consistent with the same power-law transducer.  

 

Methods 

Stimuli 

Our demonstration stimuli should work on any gamma-corrected monitor, but our data were 

collected using a Sony GDM-F520 connected to a MacBook Pro via Cambridge Research 

Systems' Bits#. Resolution was 640 x 480 x 120 Hz. Background luminance was held 

constant, midway between the maximum (i.e. graylevel 1: 153.8 cd/m2) and minimum (i.e. 

graylevel 0: 42.57 cd/m2) luminances. Consequently, no pixel could attain a Weber contrast 

C outside the range (–0.57, 0.57). 

 

The room was darkened, so that most of its light came from the stimulus monitor, although a 

minor contribution came from this light reflected off the laboratory’s other contents. The 

monitor’s viewable size was 19.8 inches. Viewing was binocular. We did not use artificial 

pupils nor did we enforce fixation. 
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All of our stimuli are defined as the product of a rather complicated angular modulator (Eq. 

1) and the Weber contrasts of a very simple spatial annulus. Prior to angular modulation, one 

of these annuli was uniformly bright (i.e. ), another was uniformly dark (i.e. 

), and in the third each 2×2 block of pixels was randomly assigned to one of these 

two values. Using 2×2 blocks of pixels (rather than individual pixels) helps to reduce any 

distortion products due to the Sony's limited bandwidth.1 At the observers' 1.6-m viewing 

distance (Experiment 1), the inner and outer radii of each annulus subtended 0.5 and 1.0 

degrees of visual angle, respectively. Larger viewing distances were used in Experiment 2: 

3.6 m and 10.9 m. The angular subtenses reduced proportionately. 

 

In separate conditions, one of the three basic annuli was scaled, such that its Weber contrasts 

became a function of time t and angle  (the latter of which was calculated anti-clockwise 

from the bottom or the top, in alternating blocks of trials):  

. (1) 

We will use the terms "standard" and "adjustable" to describe the two halves of each annulus, 

which meet at the horizontal meridian. The standard half underwent counterphasing 

modulation with temporal and angular wavelengths  and , respectively. To avoid a sharp 

discontinuity at the transition between the two regions, the envelope of the carrier's amplitude 

was defined by an angular sinewave, with period π, such that its peak occurs where  

(i.e., at the top or bottom). Contrasts in the adjustable half-annulus were also described by an 

angular sinewave with period π, but the amplitude of this sinewave (parameter a) was under 

the observer's control. We refer to this parameter as the "adjuster." Finally, parameter  

established the average amplification of Weber contrasts. In order to avoid Weber contrasts 

outside the range of our apparatus, parameters a and w were constrained, such that 

. In all the experiments reported below, we fixed w = 0.5. 

                                                        
1 On this monitor, vertical, squarewave, luminance gratings were darker than otherwise identically 
constructed horizontal gratings when their wavelength was 2 pixels. No such difference in luminance was 
detectable when wavelengths were increased to 4 pixels.  
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Fig. 1. Example stimuli from Experiment 1. Flickering between panels a and b produces the Brücke-Bartley effect (the bottom of this bright 
annulus appears brighter than its sides, even though they have the same average luminance). When the flicker was sinusoidal, with a frequency 
of 7.5 Hz, our observers judged the (static) top of this bright annulus to be a good match for the bottom's average brightness. Flickering between 
panels c and d makes the bottom of this dark annulus appear darker than its sides. Note: in both cases, flicker increases the average salience. In 
this paper, we report the analogous result with random texture. Flickering between panels e and f makes the bottom of this textured annulus more 
salient than the its sides. Each of the panels aʹ–fʹ contains two graphs of the function (solid curve) mapping angle to Weber contrast (or, in the 
cases of panels eʹ and fʹ, absolute Weber contrast) in the corresponding panels a–f. Panel aʹ illustrates the domains (bottom graph: [−# 2⁄ , # 2⁄ ]; 
top graph: [# 2⁄ , 3 # 2⁄ ]) and range (all graphs: [–0.43, 0.43]) common to all panels aʹ–fʹ. Dashed curves show otherwise identical functions 
with the parameter a fixed at the values 0 and 2. 
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Each online demo (a, b, and c) contains one of the three basic annuli (bright, dark and 

textured, respectively) with a = 0,  (more precisely, we set  ), and

. The Brücke-Bartley effect and its contrast analogue should be apparent with 

this frequency. For Fig. 1, we've adjusted a to match the averages of our observers' 

adjustments in Experiment 1 (i.e. with a carrier frequency of 7.5 Hz in Conditions 1–3). Fig. 

1 shows two frames from each stimulus: one with the largest product of carrier and modulator 

(e.g. ) and one with the smallest product (e.g. ). 

 

Observers and procedure 

Both authors confirmed the appearance of a distortion product, as described in the legend of 

Fig. 1. Author JAS and four other experienced psychophysical observers (ML, JF, MC, and 

PC) generated data. At the beginning of each trial, the adjuster (a in Eq. 1) was given a 

random value between –1 and 1. In Conditions 1 – 3 (corresponding to the three basic annuli: 

bright, dark, and textured) observers were instructed to adjust the adjuster until average 

salience (also called "brightness" in Condition 1, "darkness" in Condition 2, and 

"contrastiness" in Condition 3) at the bottom of the annulus was equal to that at the top.2 The 

adjuster decreased by 0.05 with each press of the "c" key and increased by the same amount 

with each press of "m". At no time were observers informed of the adjuster's value. When 

satisfied with their adjustment, observers initiated a new trial by depressing the space bar.  

 

Conditions 4 – 6 used the same stimuli, but different instructions. In these conditions, 

observers were instructed to adjust the adjuster until the maximum salience at the bottom of 

the annulus was equal to that at the top. The rationale behind Conditions 4 – 6 will be 

discussed below. Within each condition, five carrier frequencies were tested (see below). For 

each combination of condition and carrier frequency, each observer completed two 

successive blocks of three trials each; one with  at the top of the annulus (as in Fig. 1), 

and one with  at the bottom. 
                                                        
2 Explicit, written instructions were, "Use the keys c and m to reduce and increase 
visibility (brightness, darkness, or contrastiness) at the top or bottom of 
the annulus. Press the space bar when top and bottom have either equal 
average visibilities (Task 2) or equal maximum visibilities (Task 3), when 
fixating the centre." Task 2 is our Experiment 1. Each observer completed Task 2 
before beginning Task 3. Task 3 is our Experiment 2. There was no "Task 1." 

   c
−1
θ ≈ 0    cθ =106

   tc
−1 = 7.5 Hz

  t = 0   t = tc 2

 θ = 0

 θ = 0
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In Experiment 1 we tested temporal modulations; the carrier had an angular frequency ( )  

of zero and a temporal frequency ( ) of either 3.75, 7.5, 15, 30, or 60 Hz. This latter 

frequency is one-half the refresh rate of our monitor, and exceeds the critical fusion 

frequency of the visual system. In other words, 60 Hz flicker (around a mean luminance of 

98.2 cd/m2) is imperceptible. The white, black, and textured annuli appeared to be completely 

static.  

 

In Experiment 2 we tested spatial modulations in the same general format as for Experiment 

1; the carrier had a temporal frequency  ( ) of zero and angular frequencies of either π/3, 

π/6, π/12, π/24, or π/48, as illustrated in Fig. 2. The latter frequency was achieved using 

exactly 2 pixels per cycle on the inner edge of the annuli. As noted above, viewing distances 

were increased to ensure that the highest of these frequencies was beyond the spatial 

resolution of the visual system. Mirrors were employed so that light from the black and white 

annuli travelled 10.9 m to the observer's eyes. However, at this great distance, the textured 

annuli were too hard to see. Thus, for the textured annuli, we used a viewing distance of 3.6 

m, which proved sufficient to prevent detection of the highest frequency of contrast 

modulations. 

 

Fig. 2. Stimuli from Experiment 2. In each panel, w = 1 and a = 0. 

 θc
−1

  tc
−1

  tc
−1
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Experiment 1 Results 

Applying Bonferroni correction for multiple comparisons, we used Grubbs' statistic to test 

the (null) hypothesis of no outliers at the α = 0.05 level of significance. On this basis, none of 

the (6 trials per condition per frequency per observer × 6 conditions × 5 frequencies × 5 

observers) 900 trials were deemed to be outliers. Results are summarised in Fig. 3. 

(Corresponding figures for individual observers have been made available in the electronic 

supplementary material.) 

 

Whether bright, dark, or textured, at 60 Hz (i.e. ), all flickering annuli appeared to 

be steady. In all 6 conditions, the average adjustment at this frequency was not significantly 

different from zero, according to one-sample, two-tailed t-tests (p > 0.47 in all cases). After 

Bonferroni correction for multiple comparisons, one-way analyses of variance (ANOVA) at 

the α = 0.05 level of significance indicated no individual differences in any of the 6 

conditions at this frequency. 

 

 

 
Fig. 3. Summary of Experiment 1 results. Black curves connect average adjustments 
matching average salience (i.e. Conditions 1–3). Red curves connect average adjustments 
matching maximum salience (i.e. Conditions 4–6). Colour-coded error bars contain 2 SDs, 
when all observers' data were pooled (i.e. across observers). Blue error bars contain 2 average 
SDs (i.e. within observers, over trials).  
 

Condition 1 (Average Brightness) 

When queried, all observers reported that flicker was visible at 30 Hz. However, our data 

contain no evidence for a Brücke-Bartley effect at this frequency (i.e. adjuster settings were 

insignificantly greater than zero, both when individual observers' data and all data combined 

were subjected to one-sample, one-tailed t-tests; in all cases p > 0.05). This result is 

consistent with previous reports of the relatively narrow tuning of the Brücke-Bartley effect 

[11, 12].  
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The Brücke-Bartley effect was visible to both authors at 15 Hz. Consequently, observers 

were expected to set the adjuster at some positive value, effectively increasing luminance in 

the non-flickering, adjustable half of the annulus. Indeed, when all data are combined, the 

mean was significantly greater than zero, according to a one-sample, one-tailed t-test (p <   

10-7). However, some observers' adjustments were too variable for their data to pass the same 

t-test on an individual basis. 

 

Individual differences (i.e. between observers) were even more pronounced with 7.5-Hz 

flicker (p < 0.0005, according to a one-way ANOVA). However, when all data were 

combined their mean was even greater than that at 15 Hz. Data from 3.75 Hz mirrored those 

from 15 Hz: when all are combined, the mean is significantly greater than zero, (p < 10-4); 

however, there were significant differences between individuals' average settings (one-way 

ANOVA, p < 10-5). 

 

This pattern of results suggests that the Brücke-Bartley effect is maximal at frequencies near 

7.5 Hz under our observation conditions. Similarly, Bartley [13] reported the largest effects 

with frequencies between 8 and 9 Hz. However, Brücke's [14] original effect was obtained 

using 17.5 Hz modulation, and Wu et al. [11] obtained their maximum effect at 16 Hz. 

Consequently, it seems safe to conclude that the Brücke-Bartley effect is quite robust, but the 

flicker rate optimal for eliciting it seems subject to considerable individual differences and/or 

variations in the experimental conditions. Our stimuli for the brightness and darkness 

conditions, for example, were essentially foveal (within 1° eccentricity with central fixation, 

or 2.5° with fixation in the annulus) whereas Wu et al. employed a 10° field which would be 

expected to have substantially higher temporal resolution [15, 16] 

 

Condition 2 (Average Darkness) 

To a large extent, our observers' adjustments with respect to average darkness parallel their 

adjustments with respect to average brightness. At each frequency below 60 Hz, the average 

adjustment was significantly greater than zero (p < 10-7). (Online Demo b shows a 7.5-Hz 
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example with the adjuster fixed at 0.) One-way ANOVAs indicated significant (p < 0.01) 

individual differences for all carrier frequencies except 60 Hz.3 

 

Condition 3 (Average Contrastiness) 

To a large extent, our observers' adjustments with respect to average "contrastiness" parallel 

their adjustments with respect to average brightness and average darkness. At 30 Hz and 

below, the standard half of the annulus (where ) appeared to have greater contrast. This 

exaggerated salience, which we dub the "Brücke-Bartley effect for contrast", was reflected in 

the data. Average adjustments were largest with 7.5-Hz flicker, but significantly (p < 0.01) 

greater than zero for all frequencies except 60 Hz. 

 

As with average brightness and average darkness, the variance of adjustments (both within 

and between observers) was particularly large when the carrier frequency was 3.75 Hz (note 

the large error bars in Fig. 3). We hypothesised that our observers had no clear perceptual 

experience corresponding to the average salience of a slowly modulating stimulus. 

Conditions 4–6 were designed because some observers felt more comfortable deciding 

whether the top or bottom of any slowly flickering annulus attained greater "peak" or 

maximum salience than when deciding whether the top or bottom had a greater mean.  The 

results for these conditions, described in the next three sections, are shown by the red curves 

in Fig. 3. 

 

Condition 4 (Maximum Brightness) 

At all frequencies below 60 Hz, average adjustments in Condition 4 were higher than those in 

Condition 1. This was to be expected because flicker is visible at these frequencies, and the 

peak luminance of a flickering light must logically be brighter than its average luminance. 

Further comparisons between Conditions 1 and 4 revealed no other systematic effects. 

Although Condition 4 felt more natural than Condition 1 to at least 3 of the 5 observers, this 

feeling was not reflected in systematically lower SDs of adjustment. 

 

Condition 5 (Maximum Darkness) 

Observers' adjustments with respect to maximum darkness largely paralleled their 

adjustments with respect to maximum brightness. For the three lowest carrier frequencies, 
                                                        
3 Experiment 1, Conditions 2 and 5 produced the largest ratios of SD (pooled across observers : average within 
observers), i.e. the most egregious failures of consensus amongst our observers. We're not sure why. 

 θ = 0
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mean adjustments were higher than the corresponding adjustments in Condition 2 (p < 10-5 in 

all cases); and thus also significantly greater than zero. Furthermore, as in Condition 2, 

observers in Condition 5 were different in their average settings. One-way ANOVAs 

indicated significant (p < 10-5) individual differences at all frequencies except 60 Hz.  

 

Condition 6 (Maximum Contrastiness) 

For all carrier frequencies below 60 Hz, average adjustments were greater than the 

corresponding settings in Condition 5 (p < 0.01 in all cases), and thus also greater than zero. 

 

Experiment 2 Results 

Experiment 2 was similar to Experiment 1 except that the (static) carrier gratings were 

defined by their angular frequencies rather than by their temporal frequencies. Once again, 

applying Bonferroni correction for multiple comparisons, we used Grubbs' statistic to test the 

(null) hypothesis of no outliers at the α = 0.05 level of significance. On this basis, none of the 

900 trials could be deemed an outlier. Results are summarised in Fig. 4. (Corresponding 

figures for individual observers have been made available in the electronic supplementary 

material.) 

 
Fig. 4. Summary of Experiment 2 results. Black curves connect average adjustments 
matching average salience (i.e. Conditions 1–3). Red curves connect average adjustments 
matching maximum salience (i.e. Conditions 4–6). Colour-coded error bars contain 2 SDs, 
when all observers' data were pooled (i.e. across observers). Blue error bars contain 2 average 
SDs (i.e. within observers, over trials). 
 

Although no stripes were visible at the highest angular frequency (i.e. ), when all 

observers' data were pooled, the average adjustment in Condition 1 (Average Brightness) was 

0.21 ± 0.04, significantly different from zero according to a one-sample, two-tailed t-test (p < 

10-4). Indeed, after Bonferroni correction for multiple comparisons, only one of the black 

curves (the Darkness curve from Condition 2, at 48/π) deviated significantly (i.e. p < 0.05/15) 

from their shared average value (of 0.17).  
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At the highest angular frequency (i.e. ), mean adjustments (in Conditions 1 and 2) 

and maximum adjustments (in Conditions 4 and 5) were insignificantly different (in all cases, 

p > 0.3), according to a two-way ANOVA over factors Condition and Observer. At all other 

frequencies, mean and maximum adjustments were significantly different (p < 0.01 in all 

cases). 

 

Modelling 

Before adapting the methodology of Wu et al. [11] for an investigation of contrast 

transduction (i.e. in Condition 3), we first (in Experiment 1, Condition 1) ensured that these 

methods were suitable for measuring the traditional Brücke-Bartley effect. Accordingly, it 

seems sensible to review how the model of Wu et al. (also used by Petrova et al. [12]) applies 

to the traditional effect, before attempting to apply it to our contrast data. 

 

Adopting the original terminology of Spekreijse & Reits [17], Wu et al. [11] called their 

model a "sandwich." In such a model, incoming luminance is initially convolved with a 

temporal kernel that is responsible for the band limit on salience of the distortion product. 

The distortion product itself is caused by the middle of the sandwich: an instantaneous 

(expansive) non-linear transducer. Finally, the filtered, transduced signal is convolved with 

yet another kernel, whose relatively long time constant serves to erase high frequencies from 

salience. Like Wu et al., we did not systematically measure flicker fusion frequencies (cf. 

[12]), thus we can only make broad generalisations about the high-frequency cut-off of this 

second filter. Nevertheless, we know that it does not pass 60 Hz, because flicker at that 

frequency was completely invisible. 

 

To complete the psychophysical model, we need to establish adjustment criteria. Adjustments 

toward a perceptual average (as in Conditions 1–3) seem likely to minimise the root-mean-

square (RMS) difference between the top and bottom of the annulus, after sandwich filtering. 

Our stimulus was designed so that, given sandwich filtering, any adjustment that minimises 

the RMS difference between the top and bottom half-annuli also minimises their mean 

(unsigned) difference. Adjustments toward a perceptual maximum (as in Conditions 4–6) 

seem likely to equate the maximum filtered signals, originating from the top and bottom of 

the annulus. 

 

 θc
−1 = 48 π
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In order to observe the behaviour of this model, all that remains is to specify the shapes of the 

filters and nonlinearity. For the present, we will adhere to Stevens' [1] suggestion of a simple 

power law. (Had we collected data using more than one value of w, a more complicated 

transducer function might have been indicated.) For the power law, any exponent n > 1 will 

produce a positive distortion product (i.e. one with relatively high salience). Similarly, we 

will adopt the general forms for band-pass (early) and low-pass (late) filter used by Petrova et 

al. [12].  

 

In the (complex) frequency plane, the low-pass filter can be described by the equation 

  , (2) 

where the parameter fL may be interpreted as the filter's corner frequency, above which the 

gain rapidly diminishes. Similarly, the band-pass filter can be described by the equation 

  , (3) 

where the parameters fC and fS may be interpreted as the corner frequencies of this filter's 

excitatory centre and (divisively) inhibitory surround components. Model behaviour is 

illustrated in Fig. 5a. For this proof-of-concept, no attempt was made to optimize the fit of 

the model to the data, but the approximating parameter values were: n = 2, fL = 6 Hz, fC = 20 

Hz, and fS = 5 Hz. 

 

The parameter n controls the size of the distortion product. When n increases, the adjuster 

must increase accordingly. Thus, both curves (black for average salience; red for maximum 

salience) rise with n. As n decreases toward 1, both curves fall toward zero. (Illustrations of 

model behaviour with different parameter values can be found in the electronic 

supplementary material.) As fL increases, so too does the ratio of red-to-black heights (i.e., 

above zero) on the right side of the figure. That is because high-frequency flicker becomes 

more salient and thus its maximum and mean visibilities will differ more. Curves on the left 

side of the figure (i.e. for low carrier frequencies) are affected less by fL. As fC increases, so 

too does the high-frequency cut-off of the black curve (i.e. the frequency at which the model's 

adjuster drops to zero). Similarly, a low-frequency cut-off can appear with high values of fS, 

but the height of the black curve depends on how much DC (i.e., signal content at 0 Hz) is 
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passed by the band-pass filter–without any DC, the unmodulated half-annulus would be 

invisible–and that depends on the ratio fC /fS.  

 

 
Fig. 5.  Model behaviour. Black curves connect model adjustments matching average 
salience. Red curves connect model adjustments matching maximum salience. (a) Predictions 
of the sandwich model for Experiment 1. Parameter values were: n = 2, fL = 6 Hz, fC = 20 Hz, 
and fS = 5 Hz. (b) Predictions of a simplified model for Experiment 2. The spatial low-pass 
filter had parameter fx = 40 cycles per degree of visual angle. 
 

Note that this sandwich model of Wu et al. [11] was specifically designed to describe how the 

visual system processes temporal modulations of stimulus luminance. In our experiments all 

stimuli appeared against a uniform grey background of 98.2 cd/m2. Thus, any modulation of 

stimulus luminance was also a modulation of stimulus contrast. Consequently, when applying 

this model to the results of our experiments, even those from Experiment 1/Condition 1, it 

may be more appropriate to specify the input as modulations of stimulus contrast, rather than 

stimulus luminance per se. Moreover, the results from Experiment 1/Condition 2, in which 

average salience increased with luminance decrements from the grey background, suggest 

that an unsigned measure of contrast is the appropriate form of model input. Indeed, the 

average adjustments in these two conditions were qualitatively similar (e.g., the highest 

settings for average salience, made with relatively low carrier frequencies, were somewhere 

between 0.5 and 1; settings for average salience with high carrier frequencies were close to 

zero). The model behaviour illustrated in Fig. 5a shares these qualities with our results.  

 

Average adjustments in Experiment 1/Condition 3 were also similar to the model behaviour 

illustrated in Fig. 5a. This should not be surprising. In Condition 1 we saw that flicker makes 

bright things seem brighter than unmodulated stimuli of average luminance. In Condition 2 

we saw that flicker makes dark things seem darker than unmodulated stimuli of average 
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luminance. Since the textured annuli used in Condition 3 contained both bright spots and dark 

spots, its apparent contrast should naturally seem greater than that of an unmodulated texture 

of average contrast.  

 

Now consider the results of Experiment 2. None of the average settings (across observer) 

differed significantly from the mean of 0.17. This result actually fits nicely with notion that 

salience ("contrastiness") varies with MS contrast. Fig. 5b shows the behaviour of a 

simplified sandwich model (i.e., just a low-pass filter following a square-law transduction of 

contrast). In this case, however, the low-pass filter is specified in terms of its spatial cut-off 

frequency, rather than its temporal cut-off frequency.  One consequence of using angular 

gratings is that their spatial frequencies (in cycles per degree of visual angle) vary with 

distance from the centre of the annulus. The model used to create Fig. 5b used the output of a 

radial Gaussian filter, positioned half-way between the inner and outer radii of the annulus. In 

frequency space, the filter fell to half-height at 47 cycles per degree of visual angle; i.e., half-

height = 1.17 fx.) This filter affects only the discrepancy between the red and black curves in 

Fig. 5b. The height of the black curve is determined wholly by the exponent n, in the power-

function transducer.  When n = 2 (i.e. linear transduction of contrast power), model 

adjustments fall between 0.19 and 0.20 for all carrier frequencies. This is quite similar to (i.e., 

not significantly different from) the settings our observers actually produced.  

 

Discussion 

We asked our observers to adjust an unmodulated stimulus so that it matched the average 

salience of a (spatially or temporally) modulated one. This is not a natural task. Individual 

differences arose as soon as the modulation frequencies were low enough to be detected. 

Nonetheless, just as Brücke [14], Bartley [e.g. 13], and many others have reported, all 

observers tended to elevate the difference between the adjustable stimulus and its background 

to exceed the average difference between the standard stimulus and its background. Our 

Experiment 1 demonstrates that this Brücke-Bartley effect holds not only for positive (i.e. 

bright) luminance differences, but also for negative (i.e. dark) luminance differences, and for 

the contrast differences that are the main focus of the study. 

 

Furthermore, our modelling shows that all of our results can be fully accommodated by a 

sandwich model with an expansive non-linearity; specifically, with a psychophysical function 
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by which apparent contrast increases with the square of physical contrast (i.e. linearly with 

contrast power). 

 

Although we cannot rule out the possibility that transduction depends on variables (such as 

the background luminance) that we did not manipulate, it really shouldn't be surprising to 

find a concordance between average salience and average contrast power, especially with 

easily visible, spatial modulations in contrast. Although the contrasts in our textured annuli 

modulated around a mean value, high modulation amplitudes naturally correspond to greater 

RMS contrast (i.e. when the mean is calculated with respect to all phases of modulation). In 

other words, our observers in Experiment 2/Condition 3 behaved as though they were 

matching RMS contrast in the two halves of the annuli. Indeed, this behaviour couldn't be 

considered unreasonable, given their instructions to use "average contrastiness" as the basis 

of their responses. 

 

It may be surprising that observers seemed capable of computing RMS (or simply MS) 

contrast even in situations where the contrast modulations were invisible (i.e., when 

).4 If these high spatial and frequencies were incapable of passing an early visual 

filter, then contrast averaging (i.e. Weber-contrast averaging) should have equated RMS (or 

MS) contrasts in both halves of the annulus, and consequently there would seem to be no 

basis on which to set the adjuster on any value other than 0. Accordingly, there seems to be 

no alternative to the implication that the front-end filter has a spatial cut-off frequency that is 

higher than that of the "down stream" filter that is determining the final percept, which does 

not pass the carrier frequency.  

 

Previous evidence for the expansive transduction of contrast can be found in studies of 

contrast-defined motion perception. For example, Ukkonen and Derrington [19] noticed that 

the motion of appropriately masked contrast modulations (but not luminance modulations) 

disappear around 4 Hz if the overall contrast is low. They argued that motion processing 

neurones could be sensitive only to net luminance modulation, and that the distortion 

products of low-contrast, contrast-based translations were too weak to stimulate them; thus, 

                                                        
4 The reader is encouraged to place Fig. 2 at the distance (or just beyond it) where the 
carrier modulation in the lower right panel becomes invisible, and verify whether the 
bottom of the annulus does appear to have slightly greater salience than the top. 

 θc
−1 = 48 π
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the higher-order process of feature-tracking was required to reveal the contrast-defined 

motion.  

 

Moulden, Kingdom, & Gatley [20] found that different adaptors having the same RMS 

contrasts similarly affected a target's salience. Although this result strongly suggests that 

RMS contrast is an appropriate unit for the abscissa of the psychophysical function (i.e., 

Stevens's S) it does not constrain the shape of the psychophysical function in any way. 

Similar results would be expected if effective contrast (or contrastiness or whatever we're 

calling transduced contrast) were MS (not RMS) contrast. In other words, equal RMS 

contrast implies equal MS contrast (and vice versa). 

 

Pursuant to this logic, we must accept that contrast processing may involve further non-

linearities (compressive or normalising), which transform the visual signal after averaging 

has taken place. As both halves of our annuli would undergo any such transformation, its 

effects would not be seen in our data. Further non-linearities of this nature were proposed by 

Graham and Sutter [21], who made a compelling argument in favour of a filter-rectify-filter 

model for texture segmentation in which the rectifying non-linearity was expansive (a power 

function with an exponent ‘somewhat higher than 2’) and output of the second filter was 

subject to divisive normalisation. Graham & Sutter’s putative second filter effectively 

computed the sum or average of the transduced energies of different micropatterns (either 

squares of uniform luminance or grating patches). A similar filter could play a role in some 

of our experiments, where observers were asked to make decisions on the basis of the 

average salience of a stimulus with spatially or temporally modulated energy.  

 

Both our results and our conclusions resemble those of Meese, Baker, & Summers [22], 

whose observers were required to match the "overall" (or "global") contrast of heterogeneous 

texture elements with that of a homogeneous texture. Matches were made when the contrast 

of the uniform texture was perceived as somewhere between the average and maximum 

contrast of the heterogeneous texture, a result consistent with expansive transduction of 

contrast (with an exponent of 2.4) prior to the addition of heterogeneous signals. 

 

Despite some individual differences, all observers experienced the analogue of the Brücke-

Bartley effect for contrast. This was manifest in their positive adjustments, which were 

indicative of an expansive non-linearity's distortion product. At no time did any of our 
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observers ever produce adjustments that were significantly less than zero5, which would have 

suggested compressive transduction.  
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