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DEEP FMRI: AN END-TO-END DEEP NETWORK FOR CLASSIFICATION OF FMRI DATA

Atif Riaz Muhammad Asad S M Masudur Rahman Al Arif
Eduardo Alonso Danai Dima Philip Corr Greg Slabaugh

City, University of London, UK

ABSTRACT

With recent advancements in machine learning, the research
community has made tremendous advances towards the clas-
sification of neurological disorders from time-series func-
tional MRI signals. However, existing classification tech-
niques rely on hand-crafted features and classical machine
learning models. In this paper, we propose an end-to-end
model that utilizes the representation learning capability of
deep learning to classify a neurological disorder from fMRI
data. The proposed DeepFMRI model is comprised of three
networks, namely (1) a feature extractor, (2) a similarity net-
work, and (3) a classification network. The model takes fMRI
raw time-series signals as input and outputs the predicted
labels; and is trained end-to-end using back-propagation.
Experimental results on the publicly available ADHD-200
dataset demonstrate that this innovative model outperforms
previous state-of-the-art.

Index Terms— Deep learning, end-to-end model, fMRI
classification

1. INTRODUCTION

In recent years, functional magnetic resonance imaging
(fMRI) has emerged as a popular neuroimaging modality
for classification of neurological disorders. Specifically, rest-
ing state fMRI has emerged as a powerful tool to study the
functional organization of the brain. Many studies [1–3] have
shown promising outcomes in the classification of brain dis-
orders like attention deficit hyperactivity disorder (ADHD),
schizophrenia and Alzheimer’s disease by studying brain
functional networks in resting state fMRI. fMRI data can be
viewed as a 4D tensor such that the 3D volume of the brain is
divided into small voxels or regions and the activity of each
region is recorded for a certain duration. Two brain regions
that show synchronous functional activity are assumed to be
functionally connected. Functional connectivity is viewed
as a pair-wise connectivity measurement that describes the
strength of temporal coherence between the brain regions. A
number of recent studies have shown functional connectiv-
ity as an important biomarker for discrimination of different
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brain disorders like ADHD [1], schizophrenia [3] and many
more.

ADHD is one of the most common neuro-developmental
and mental disorders affecting 5-10% of school going chil-
dren [2], contributing to lifetime impairment [4], poor quality
of life [5] and long-term burden on affected families [4, 5].
Like many other neurological disorders, the underlying mech-
anism of ADHD is still unknown [2]. As there is no single
confirmed diagnostic method available for ADHD, diagnosis
is dependent upon observations conducted by medical practi-
tioners or parents, typically over a period of months.

Several techniques have applied hand-crafted features for
classification of ADHD from fMRI data, such as correlation
[3], clustering [1] and graph [2] measures of functional con-
nectivity. Discriminant features are selected and presented
to a classical machine learning classifier for final prediction.
However, in the machine learning literature, deep learning has
proved to be a powerful paradigm to simultaneously learn dis-
criminant features and a classifier [6].

End-to-end deep learning networks have been shown to
outperform classical machine learning models in a number of
domains like image classification, image segmentation and
object recognition [6]. Generally speaking, an end-to-end
trainable network refers to a single learning system where
the predicted label of a machine learning process is predicted
directly from the raw input, with all weights learned through
back-propagation. Recently, a deep learning method named
FCNet [7] has been proposed for classification of ADHD
from fMRI data. The method uses a convolutional neural
network (CNN) to predict functional connectivity of brain
regions. However, after predicting functional connectivity
using deep learning, the method uses classical machine learn-
ing methods to extract discriminant features and an SVM
classifier to predict classification labels.

To our knowledge, this paper presents the first end-to-end
deep learning model for classification of a neurological disor-
der from fMRI data. Particularly, we are interested to see if a
deep learning model can be designed for the classification of
a neurological disorder and if it is able to outperform classical
machine learning models.

The architecture of DeepFMRI is illustrated in Fig. 1. The
proposed model is inspired by the FCNet [7] and uses a pre-
trained FCNet for some of the initial layers to extract features
from the raw fMRI time-series signals. Unlike FCNet, these



layers are fine-tuned during training to learn the features of in-
dividual brain regions. During training, the end-to-end model
learns weights to distinguish between the healthy control and
ADHD subjects. Once the model is trained, unseen data is
provided and the model predicts the classification label.

The contributions of this paper include: 1) a novel deep
learning end-to-end model that simultaneously learns the
most discriminant features and a classifier to classify fMRI
data, and 2) an improved classification accuracy over the
state-of-the-art on the ADHD-200 dataset.

2. METHODS

2.1. Data and preprocessing

The resting state fMRI data used in this work is provided by
the ADHD-200 consortium [8]. The dataset is acquired by
different imaging sites and is comprised of resting state fMRI
data, MRI data, as well as phenotypic information. The con-
sortium has provided a training dataset, and an independent
testing dataset separately for each individual imaging site. In
this work, we have used resting state fMRI data from three
sites: NeuroImage (NI), New York University Medical Cen-
ter (NYU) and Peking University (Peking). All imaging sites
in the consortium have a different number of subjects. Ad-
ditionally, imaging sites have different scan parameters and
equipment, which makes the dataset complex and diverse for
building any machine learning model. This data has been pre-
processed as part of the connectome project1. The preprocess-
ing involved different steps where the brain is segmented into
90 regions using the automated anatomical labeling (AAL)
atlas [9]. A more detailed description of the data and prepro-
cessing steps appears on the connectome website. Each seg-
mented region is represented by a time-series signal that cap-
tures the level of blood oxygenation (BOLD signal). These
90 time series signals are the input to DeepFRMI.

2.2. End-to-end model

In this paper, we propose an end-to-end deep learning model
for classification of ADHD that takes fMRI signals as input
and predicts a label (1 for ADHD subject and 0 for healthy
control) as output. The proposed work is motivated by a re-
cently published method called FCNet [7]. FCNet is used
to extract functional connectivity from fMRI time-series sig-
nals, but it suffers from the following drawbacks: i) it is not an
end-to-end model, and ii) it relies on classical machine learn-
ing methods like feature selection using elastic net and a sup-
port vector machine for classification. Our DeepFMRI model
architecture can be divided into three modules: i) feature ex-
tractor, ii) similarity measure, and iii) classification network.
DeepFMRI employs multiple FCNets (with shared parame-
ters) for calculating functional connectivity for any pair of

1www.preprocessed-connectomes-project.org/adhd200/
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Fig. 1. The architecture of the proposed end-to-end model. a)
represents a set of 90 feature extractor networks where each
network is applied to each individual region R. All networks
share same parameter set. b) represents a set of 4005 simi-
larity measure networks. Each network’s input contains ab-
stracted features of two brain regions. All networks share the
same parameter set. c) is the classification network compris-
ing of fully connected layers and a softmax layer. d) repre-
sents the details of layers in feature extractor network. Sim-
ilarly, e) represents layer architecture of similarity measure
network, and f) represents the detail of layers of the individ-
ual block in the classification network (the two blocks in the
classification network do not share parameters).

brain regions. The FCNets are fine-tuned and combined with
a classification network to provide a fully end-to-end model
that can be trained using back-propagation. We describe the
details of each individual network below.

2.2.1. The feature extractor

This convolutional neural network extracts features from in-
dividual brain region time-series signals and is comprised of
multiple layers that are common in CNN models to learn ab-
stract representations of the individual time-series signal. The
network is designed to accept time-series signals of length
172 and is comprised of multiple layers (presented in Fig.
1c). For all convolutional layers, a kernel size of 3 is used
and the number of filters are 32, 64, 96, 64, 64 for layers
Conv1, Conv2, Conv3, Conv4, Conv5, respectively. All
pooling layers pool temporally with pool length of 2. The last
fully connected layer in the network has 32 nodes.

2.2.2. The similarity measure network

This Siamese-inspired neural network determines the similar-
ity between pairs of extracted features from two brain regions.
The output of this network describes the degree of functional
connectivity between the two regions. The input to this net-
work is the abstracted features extracted for the two regions
through the feature extractor network. The similarity measure
network is comprised of three fully connected layers, where



the last layer is connected to a softmax layer with dense con-
nections. These layers are presented in Fig 1e.

Similarity measures are fed to a mapping layer with fol-
lowing operation:

M(i) = w1v
i
1 + w2v

i
2, (1)

where vi1 and vi2 are the outputs of ith similarity measure net-
work, w1 and w2 are the weights such that w1+w2 = 1, here
we use w1 = 1 and w2 = 0. Instead of initializing weights of
the feature extractor network and similarity measure network
randomly, we use weights of a pre-trained FCNet [7].

2.2.3. Classification network

This neural network produces the final classification results.
The input to this network is the output of the mapping layer
features (M ) representing functional connectivity. The net-
work is comprised of multiple layers where the last layer is
connected to a softmax classifier with fully connected layers.
The network produces the final prediction. Next, we describe
architectural considerations and training of DeepFMRI.

2.2.4. Shared parameters architecture

The architecture of the feature extractor network and simi-
larity measure network is the same as FCNet. However, the
FCNet architecture cannot be applied directly to construct an
end-to-end network as it is designed to work on only two brain
regions. In DeepFMRI, the same feature extraction steps are
applied to individual brain regions, and all pairs of brain re-
gions are passed through the same similarity measure net-
work. This is realized by employing nf feature extractor net-
works and ns similarity measure networks. Each feature ex-
tractor network is applied to an individual brain region (nf =
90), converting individual time-series data into an abstract
representation. All the feature extractor networks share the
same parameters and updates are applied to these shared pa-
rameters during training. The similarity measure network
is applied to all combinations of pairs of brain regions, so
ns = 4005 (nf ×(nf −1)/2). All the similarity measure net-
works are implemented with the constraint that the networks
share the same parameters and updates are applied to these
shared parameters. The approach is similar to a Siamese net-
work [10], however, typically Siamese networks are designed
to work on image pairs.

3. EXPERIMENTS AND RESULTS

The proposed DeepFMRI model is evaluated on the ADHD-
200 dataset. The dataset was contributed by different imaging
sites. Each imaging site provided separate training and test-
ing dataset. For evaluation of our method on individual site,
we train our end-to-end model on the training dataset of each
imaging site and test on the corresponding test dataset of
that individual site. There are four categories of subjects

Table 1. Results from the proposed end-to-end network
showing classification accuracy, specificity and sensitivity.

Classification
accuracy Specificity Sensitivity

NYU 73.1% 91.6% 65.5%
NI 67.9% 71.4% 63.6%
Peking 62.7% 79.1% 48.1%

in the dataset: healthy control, ADHD combined, ADHD
hyperactive-impulsive and ADHD inattentive. Here, we
combine all ADHD types in one category to investigate clas-
sification between healthy control and ADHD.

The network is trained end-to-end. For initialization of
the feature extractor and similarity measure networks, we use
weights from a pretrained FCNet in our work [7], and these
weights are updated through fine-tuning. The end-to-end
model is trained with the following loss:

L = − 1

n

n∑
1

[yilog(ŷi) + (1− yi)log(1− ŷi)], (2)

where n is the number of training samples, yi is the ground
truth label of subject (1 for ADHD subject and 0 for healthy
control) and ŷi is the prediction by the proposed network.

As the feature extraction and similarity measure networks
are initialized with a pre-trained FCNet, we employ different
learning rates for i) feature extraction and similarity measure
networks (10−5), and ii) the classification network (10−4).
We evaluate DeepFMRI with data from three imaging sites
(NYU, NI and Peking). The number of training subjects in
each sites are 226, 48 and 85 respectively. The results are
presented in Table 1. The results show that NYU yields the
best result. Table 2 compares our results with the state-of-
the-art. The results show that our method outperforms the
average accuracy results of competition teams (data from the
competition website), highest accuracy for any individual site
(from [11]), correlation-based functional connectivity results
and clustering based results. Our method also performs well
in comparison with the state-of-the-art FCNet method [7].
For correlation results, functional connectivity is calculated
through correlation, followed by the elastic net as feature se-
lection and an SVM as the classifier.

Finally, in order to study the differences between the
healthy control group and the ADHD group, we visualize
their respective functional connectivity difference patterns
using the NYU dataset and present the results in Fig. 2.
The results show that in ADHD, the frontal lobe functional
connectivity is altered the most in ADHD in this dataset.

4. CONCLUSIONS

In this paper, we have proposed an innovative end-to-end
convolutional neural network-based deep learning model for
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Fig. 2. Visualization of connectivity difference between
healthy control and ADHD group for NYU dataset. For the
sake of the clarity, only the top 200 connections (based on the
connectivity strength) are presented.

Table 2. Comparison of the proposed DeepFRMI method
with the average results of competition teams, the highest
accuracy achieved for the individual site, correlation based
functional connectivity method, clustering based results [1]
and state-of-the-art FCNet method [7]. The highest accuracy
for NI was not quoted by [11].

NI Peking NYU

Average accuracy [8] 56.9% 51.0% 35.1%
Highest accuracy [11] – 58% 56%
Clustering method [1] 44% 58.8% 24.3%
Correlation 52.0% 52.9% 56.1%
FCNet [7] 60.0% 62.7% 58.5%
DeepFMRI 67.9% 62.7% 73.1%

classification of ADHD from fMRI data. The proposed model
takes raw time-series signals of fMRI as input and learns to
predict the classification label directly from the raw input
values. We were interested to see if the classification task
in fMRI can be solved by an end-to-end network. Accord-
ing to our literature study, it is the first attempt to apply an
end-to-end network for classification of a neurological disor-
der. The proposed end-to-end network contains several layers
common in deep learning literature. Experimental results on
the ADHD-200 dataset demonstrate that utilizing such model
outperforms the current state-of-the-art.
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