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Abstract. We study the reachability problems in various nondetermin-
istic polynomial maps in Zn. We prove that the reachability problem for
very simple three-dimensional affine maps (with independent variables)
is undecidable and is PSPACE-hard for two-dimensional quadratic maps.
Then we show that the complexity of the reachability problem for maps
without functions of the form ±x + b is lower. In this case the reachabil-
ity problem is PSPACE-complete in general, and NP-hard for any fixed
dimension. Finally we extend the model by considering maps as language
acceptors and prove that the universality problem is undecidable for
two-dimensional affine maps.

1 Introduction

Many iterative maps can exhibit complex and unpredictable dynamics. They ap-
pear in various parts of mathematics and in particular they have been extensively
studied in the context of chaos theory [5, 7] and control theory [3, 4] where these
maps have been defined over rational, real or complex numbers. On the other
hand iterative maps over integers are also important in computer science as they
can be seen as the simplest form of computer programs describing updates on
integer counters or variables. The classical reachability problems (i.e., whether a
given set of values in the counters/variables can be reached via iterations in loops)
are in the core of verification procedures and the complexity of their solutions
could vary depending on several factors such as the type of iterative functions
(affine, linear, polynomial, elementary, etc.), the form of maps (i.e., deterministic,
nondeterministic), the number of variables (i.e., dimension of a system) and even
history dependence (i.e., when the next value depends on several previous values
of counters/variables) [14, 15].

In this paper we study the decidability of the reachability problem for simple
stateless systems of nondeterministic iterative polynomial maps defined on integer
valued vectors. The simplest form of a map with polynomial updates, i.e., where
the updates are of the form x := x + b, can be seen as a vector addition systems
(VAS) on Zn. If n = 1, the reachability problem in one-dimensional system (i.e.,
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with one variable/counter) for additive updates of the form x+ b can be reduced
to the solution of a single linear Diophantine equation over natural numbers and
generalization to multidimensional case which is in the form of the n-dimensional
vector addition system on Zn is known to be NP-complete [8].

A simple generalization to two-dimensional system of affine updates instead of
additive maps makes the reachability problem undecidable over rational numbers
Q2; see [1]. The affine transformations that can encode the Post correspondence
problem (PCP) are of a very restricted form p(x, y) = (q1x+ q2y + q3, q4y).

Taking it into account we are focusing on a natural generalization by defining
multidimensional system with n-variables over Zn, where each coordinate depen-
dent only on one variable and then we study the complexity of the reachability
problem for different types of the polynomial updates of the form

p(x1, . . . , xn) = (p1(x1), . . . , pn(xn))

for some univariate polynomials pi(x).
Our research is revealing many surprising complexity results. For example

even a simple increase from additive to affine updates where each variable is only
self-dependent leads to undecidability of the reachability problem in Z3. The
core element of the proof is in the construction of affine functions that simulate
a state structure and can be used to control the order of affine updates. Then
generalizing the construction to encode any graph structure in one dimension we
show that in two-dimensional system with quadratic polynomial functions the
reachability is at least PSPACE-hard while we do not know whether in this case
the problem is decidable or not; see Table 1.

dim.
degree

1 2 3 4
the leading coefficient
a1 = ±1 a1 ∈ Z

1
NP-c. [8]

NP-h. [8]/PSPACE [6] PSPACE-c. [12]

2 NP-h. [8]/? PSPACE-h./? PSPACE-h. [12]/?

3 undecid. undecid. [12]

Table 1. Complexity of reachability problems in nondeterministic polynomial maps
according to the degrees. Our results are on grey background.

Then we investigate the restrictions on the functions further by considering
maps without functions of the form ±x+ b. Surprisingly, already for affine maps,
this leads to PSPACE upper bound and NP-hardness for any fixed dimension as
well as PSPACE-hardness, and thus PSPACE-completeness, if the dimension is not
fixed. This heavily contrasts our knowledge on general maps, where most notably,
dimension two has no known upper bounds; see Table 2.

Finally, we take a more language-theoretic approach and consider maps as
language acceptors. To this end, we fix the initial and target values, z0 and zf ,
in the reachability problem for polynomial maps. Then, we attach a letter over
a finite alphabet Σ to each function. Then, a word w ∈ Σ is accepted if there
is a computation path from z0 to zf reading w in the map. From this point
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dim.
type affine polynomial

a1 6= ±1 a1 ∈ Z a1 6= ±1 a1 ∈ Z
1 NP-h. [8]/PSPACE [6] PSPACE-c. [12]
2 NP-h. [8]/? PSPACE-h. [12]/?

3

undecid. [12]
...

NP-h./PSPACE NP-h./PSPACE

n PSPACE-c.
undecid.

PSPACE-c.

Table 2. Complexity of reachability problems in affine and polynomial maps with respect
to inclusion of polynomials of the form ±x + b. Our results are on grey background.

of view, the reachability problem is the language emptiness problem. We study
another natural language-theoretic question known as the universality problem,
where we are asked whether all finite words are accepted by the map. We show
that for two-dimensional affine maps the universality problem is undecidable by
simulating an integer weighted automaton [9].

The research work on such systems with polynomial updates attracted visible
attention in verification community indicating the lack of understanding of even
such simple systems. In contrast to stateless systems (iterative maps) a model
of polynomial register machines which have additional state structure has been
studied in [6, 13]. The authors showed that the reachability problem is PSPACE-
complete for one-dimensional polynomials and undecidable for two-dimensional
polynomials, respectively. Following [6], it was shown in [12] that the reachability
problem is PSPACE-complete in polynomial maps of degree four, i.e., stateless
machines and it is undecidable for three-dimensional polynomial maps. In [12],
the state structure and state transitions were encoded as solutions to systems of
linear congruences, where the uniqueness of the solution was guaranteed by the
Chinese remainder theorem (similar to [6]). In our paper we give a new proof for
the undecidability of the reachability problem for three-dimensional maps where
the updates are of a much simpler form of affine polynomials.

Also our approach to look at the reachability from language-theoretic point
of view is in line with a very recent paper [2] on the complexity of the zeroness
problem for deterministic polynomial automata over rationals (i.e., a problem
whether a given automaton outputs zero on all words). Authors of [2] showed
that while this problem is non-primitive recursive in general, there is a subclass
of polynomial automata for which the zeroness problem is primitive recursive.

2 Preliminaries

We denote the set of natural numbers, integers and rational numbers by N, Z
and Q, respectively. The integers are assumed to be encoded in binary. For
z1 ≤ z2 ∈ Z, we denote the closed interval by [z1, z2] = {z ∈ Z | z1 ≤ z ≤ z2}.

We denote the ring of polynomials with integer coefficients over a variable x
by Z[x]. The multidimensional polynomials Z[x]n with independent variables
x = (x1, . . . , xn) are of the form p(x1, . . . , xn) = (p1(x1), . . . , pn(xn)) for some
univariate polynomials p1(x), . . . , pn(x) ∈ Z[x]. That is, dimensions are indepen-
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dent and do not affect the values in other dimensions. Throughout the paper, we
investigate the reachability problem for different classes of polynomials and in
order to simplify the terminology, we give names to the commonly used classes:

Additive polynomials: AddZ = {±x+ b | b ∈ Z},
Affine polynomials: AffZ[x] = {ax+ b | a, b ∈ Z},

Quadratic polynomials: QuadZ[x] = {ax2 + bx+ c | a, b ∈ Z}.

We also define the classes of polynomials without additive polynomials4, i.e.,
updates of form ±x+ b:

AffZ[x] \ AddZ = {ax+ b ∈ AffZ[x] | a 6= ±1},
Z[x] \ AddZ = {p(x) ∈ Z[x] | p(x) 6= ±x+ b, where b ∈ Z}.

The multidimensional variants AffZ[x]n and QuadZ[x]n are defined in the natural
way, while AffZ[x]n\AddZ is defined as (AffZ[x]\AddZ)× . . .×(AffZ[x]\AddZ) and
Z[x]n \AddZ is defined analogously. The class Z[x] \AddZ seems artificial at first
but, as we prove later, polynomials of the form ±x+ b play a vital role in whether
the reachability problem is decidable or undecidable. Indeed, we will show that
for Z[x]n \ AddZ, the reachability problem is in PSPACE, while the problem is
undecidable already for AffZ[x]3. Note that the identity function p(x) = x is also
classified as a function in Z[x] \ AddZ. The different classes of polynomials are
depicted below:

∈QuadZ[x]︷ ︸︸ ︷
anx

n + . . . + a2x
2 + a1x + a0 ∈ Z[x]︸ ︷︷ ︸

∈AffZ[x]

±x + a0 ∈ AddZ

An n-dimensional polynomial register machine (n-PRM) is a tupleR = (Q,∆),
where Q is a finite set of states and ∆ ⊆ Q×Z[x]n×Q is a finite set of transitions
labelled by polynomials with variable x ∈ Zn. A configuration of R is a tuple
[q,x] ∈ Q × Zn. A configuration [q′,y′] is reachable from a configuration [q,y]
by a transition (q, f(x), q′) if f(y) = y′. This is denoted by [q,y] →R [q′,y′].
The reflexive and transitive closure of →R is denoted by →∗R The reachability
problem is, given two configurations c and c′ of R, to decide whether c →∗R c′

holds. If an n-PRM R has only one state, then R is called a nondeterministic
polynomial map or a map over Z[x]n for short.

An n-PRM is called an n-dimensional affine register machine (n-ARM) if
every transition is labelled by an affine polynomial. A nondeterministic affine
map (a map over AffZ[x]n) is defined analogously.

A linear-bounded automaton (LBA) is a Turing machine with a tape bounded
by a linear function of the length of the input. In other words, an LBA can
be viewed as a Turing machine with a finite tape. We denote an LBA A by
a tuple (Q,Γ, δ), where Q is a finite set of states, Γ = {B,C, 0, 1} is a finite

4 In [6], additive polynomials were called counter-like as they are similar to updates in
counter machines and VASSs.
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tape alphabet, which includes two special symbols B and C serving as left and
right endmarkers of the tape. See for example [10] for more details on LBA. The
reachability problem of a given LBA A is to decide whether for given length of
the tape k, states q and q′, (q,B0kC, 0)→∗A (q′,B0kC, 0) holds and is well-known
to be PSPACE-complete.

In the next lemma, we give a function σ that outputs a number in tertiary
representation of the input word over the binary alphabet Σ. Since each natural
number has a unique tertiary representation, σ is clearly an injective function.
This function is commonly used in the literature in reductions from the PCP.
Recall that the PCP is undecidable for np = 5 pairs of words [11].

Lemma 1. Let Σ = {a, b} and w ∈ Σ∗. Let τ : Σ → N be defined as τ(a) = 1

and τ(b) = 2. The function σ : Σ∗ → N defined by σ(w1w2 · · ·wk) =
∑k
i=1 τ(wi) ·

3k−i and σ(ε) = 0 is an injective function.

3 Reachability in maps over AffZ[x]
3 and QuadZ[x]

2

In this section, we consider the reachability problem in multidimensional maps.
We will show undecidability for AffZ[x]3 and PSPACE-hardness for QuadZ[x]2 when
the coefficients of the functions are integers. That is, in the three-dimensional
variant, we are investigating functions of the form

x1 := a1x1 + b1

x2 := a2x2 + b2

x3 := a3x3 + b3

,

where ai, bi ∈ Z, and show that the reachability problem is undecidable by
encoding the PCP in the first two dimensions and using the third dimension to
make sure that only one word is constructed. It is important to note that the
reachability problem in maps over AffZ[x]3 is undecidable only in the case where
affine functions can be of the form ±x + b. As we will prove in the following
section, the reachability problem is decidable even for polynomials of any degree,
as long as none is of the form ±x+ b, i.e., for maps over Z[x]n \ AddZ for any
n. Finally, we will consider two-dimensional maps, where the polynomials are
quadratic and show that the reachability problem is PSPACE-hard.

Theorem 2. The reachability problem for maps over AffZ[x]3 is undecidable
with at least np + 2 = 7 affine functions over Z.

Proof. Let P = {(u1, v1), (u2, v2), . . . , (un, vn)} ⊆ Σ∗ ×Σ∗ be an instance of the
PCP. We define a set of three-dimensional affine functions to simulate the PCP.
We show that (0, 0, 1) is reachable from (0, 0, 0) if and only if the PCP has a
solution. For each pair (ui, vi) ∈ P , where 1 ≤ i ≤ n, we define the following sets
of affine functions in dimension three:

F1 = {(3|ui|x1 + σ(ui), 3
|vi|x2 + σ(vi), 2x3) | (ui, vi) ∈ P for all 1 ≤ i ≤ n},

F2 = {(3|ui|x1 + σ(ui), 3
|vi|x2 + σ(vi), 2x3 + 1) | (ui, vi) ∈ P for all 1 ≤ i ≤ n},

F3 = {(x1 − 1, x2 − 1, 2x3 − 1)},
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Fig. 1. An illustration of the behaviour of the register. State ⊥ corresponds to register
value being other than 0 or 1.

where σ is the embedding of Lemma 1.
Consider the two configurations (0, 0, 0) and (0, 0, 1). We prove the undecidabil-

ity of the reachability problem in affine map by showing that the configuration
(0, 0, 1) is reachable from the initial configuration (0, 0, 0) by applying affine
functions in F = F1 ∪ F2 ∪ F3 if and only if the PCP instance P has a solution.

First, we prove that a configuration (x, y, 1), for some x, y ∈ Z, is reachable
from (0, 0, 0) if and only if first functions from F1 are applied, then a function
from F2, and finally functions from F3 are applied. Observe first that affine
functions in the third components in the functions from F1, F2 and F3 have
fixed points 0, −1 and 1, respectively. Additionally, if x is not a fixed point of a
function p(x) from some Fi, then |p(x)| > |x|. Now it is easy to see that applying
the functions in the claimed order results in third component being 1. Indeed,
first 0 is fixed by applying functions from F1, then it is mapped to 2 · 0 + 1 = 1
by a function from F2, and finally is again fixed by functions from F3. If the
functions are applied in a different order, then, as the absolute value does not
decrease, value 1 cannot be reached. This is illustrated in Figure 1.

Now we are ready to prove that we can reach both zeros in the first and
second dimensions if and only if the PCP has a solution. It is possible to construct
an identical pair of words by concatenating the pairs in the PCP instance P if
and only if the PCP has a solution. In other words, we can reach a configuration
(y, y, 1) for some y ∈ N by applying the functions in F1 and F2 if and only if we
have a solution for the PCP instance P . Then, it is easy to see that the target
configuration (0, 0, 1) is reachable by applying the only affine function in F3 if
and only if the PCP has a solution. Recall that the PCP is undecidable for n = 5
pairs [11]. Note that |F | = 2n + 1 = 11. To achieve the claimed size of 7, we
observe that since a function from F2 is applied only once, we can consider a set

F i2 = {(3|ui| · x1 + σ(ui), 3
|vi| · x2 + σ(vi), 2 · x3 + 1)},

for each 1 ≤ i ≤ n. Now the reachability problem is undecidable for some
F1 ∪ F i2 ∪ F3 and there are 7 functions in the set. ut

In the previous proof, a state structure was simulated by affine functions.
Next we generalize the construction to simulate an arbitrary state structure. We
use this result in upcoming results of the paper to embed a state structure of an
automaton into affine functions. It will allow us to prove PSPACE-hardness for
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maps over QuadZ[x]2 and undecidability of the universality problem for maps
over AffZ[x]2.

Lemma 3. Let G = (V,E) be a directed graph with vertices v0, . . . , vm−1. There
exists a set of affine functions F such that for an edge (vi, vj) ∈ E, where
0 ≤ i, j ≤ m − 1, there exists a unique fij ∈ F such that fij(i) = j and
fij(x) /∈ [0,m− 1] for all x 6= i.

Proof (Sketch). Let G = (V,E) be a graph with V = {v0, . . . , vm−1}. For each
edge (vi, vj) (possibly i = j) ofG, we add an affine polynomial fij(x) = m(x−i)+j
to the map. The idea is for integers in [0,m − 1] to represent each vertex and
with the correct affine function, the value of the register changes according to
the graph. In the event of wrong affine function being chosen, the coefficient m
ensures that the resulting value of the register will be either larger than m or
less than zero. Further, in both cases, none of the subsequent functions result in
a value in [0,m− 1]. ut

Observe that Lemma 3 gives us a correspondence between an edge in a graph
and an affine function. It is easy to see that there is a one-to-one correspondence
between a path from vertex vi to vertex vj in the graph and a sequence of affine
functions transforming i into j. We can use Lemma 3 to embed a state structure
into a one-dimensional affine map. In the next theorem, we embed a 1-PRM of
[6] into a two-dimensional map, where the functions are at most quadratic.

Theorem 4. The reachability problem for maps over QuadZ[x]2 is PSPACE-hard.

Proof. LetR = (Q,∆) be a one-dimensional PRM with PSPACE-hard reachability
problem [6]. Denote Q = {q0, . . . , qm−1}. Note that the update polynomials of R
are quadratic [6]. For each transition (qi, p(x), qj) of R, we add two-dimensional
function (p(x),m · x+ j −m · i) to the map. It is clear that (0, k) is reachable
from (0, `) if and only if [q`, 0]→∗R [qk, 0]. That is, the reachability problem for
maps over QuadZ[x]2 is PSPACE-hard. ut

There are two main open problems for dimension two. Namely, whether the
reachability problem for maps over AffZ[x]2 or Z[x]2 are decidable.

4 Reachability in maps without additive updates

In this section, we consider a restricted class of maps over AffZ[x], in the sense
that every affine function in the map is not of the form ±x + b. It is easy to
see that the reachability problem for maps over AffZ[x]n is NP-hard starting
from dimension one as we can easily reduce the subset sum problem (SSP) to
the reachability problem in maps. The NP-hardness proof relies on the use of
polynomials of the form x+ b that correspond to integers in the SSP. Then, we
can easily reduce the SSP with a target integer s to the reachability problem for
maps over AffZ[x] with a target register s. If we further restrict ourselves to maps
where all polynomials are of the form ±x + b, then the reachability problem
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is NP-complete [8]. However, we do not have a tight complexity bound for the
reachability problem for maps over AffZ[x] to the best of our knowledge. The
best upper bound we know of is the PSPACE upper bound given by Finkel et
al. [6] following from the PSPACE-completeness of the reachability problem for
one-dimensional PRMs.

We consider a dual setting, where all polynomials of the form ±x + b are
excluded, i.e., maps over Z[x]n \ AddZ. First we prove that the reachability
problem for maps over Z[x]n \AddZ is in PSPACE for any dimension n. Then, we
establish the PSPACE-completeness for maps over AffZ[x]n \ AddZ, when n is not
fixed, by proving the hardness via a reduction of the reachability problem for
LBA. Let us first prove that the reachability problem for maps over AffZ[x]\AddZ
remains NP-hard. That is, we give an alternative proof for NP-hardness of the
reachability problem for maps over AffZ[x] that does not rely on additive updates.

Lemma 5. The reachability problem for maps over AffZ[x] \ AddZ is NP-hard.

Proof (Sketch). Let (S, s) be an instance of the SSP, where S = {s1, . . . , sk, }
and s is the target integer. We construct the set of affine functions F = {n · x+
ni−1 · si, n · x | 1 ≤ i ≤ k} with target nk−1, where n > max(S) · |S| is a prime.
We leave as an exercise to verify that the map reaches nk−1 if and only if there
is a subset of S such that its elements add up to s. ut

Like the case of maps over AffZ[x], we know that the reachability problem
for maps over AffZ[x] \ AddZ is decidable in PSPACE and is NP-hard. However,
unlike the general case of affine maps where the problem becomes undecidable in
higher dimensions, the reachability problem for maps over AffZ[x]n \ AddZ stays
in PSPACE for any dimension. The reachability problem remains in PSPACE even
if we do not impose a limit on the degree of polynomials, that is, for Z[x]n \AddZ.

Theorem 6. The reachability problem for maps over Z[x]n \ AddZ is decidable
in PSPACE for any n ≥ 1.

Proof. Consider first n = 1. We follow the reasoning of [6]. There exists a bound
b ∈ N such that every polynomial in Z[x] \ AddZ is monotonically increasing
or decreasing in Z \ [−b, b], i.e., |f(x)| > |x| for x ∈ Z \ [−b, b]. Note that b
is polynomial in size of the input. Let z be the target integer. If |z| ≤ b, we
can decide whether the integer z is reachable in PSPACE by applying the given
functions since we can store the current value and the computation path in space
polynomial in b which is again of size polynomial in the input. If z is outside the
interval [−b, b], due to monotonicity properties of Z[x] \ AddZ functions, we do
not need to consider the integers outside the interval [−z, z]. That is, still only
polynomial space in size of the input is required.

The PSPACE upper bound holds even if we consider n-dimensional case since
we can maintain the information of the current computation for each dimension
in space polynomial in the input. ut

By considering a larger domain, the undecidability for three-dimensional maps
remains, even without additive updates. ut
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Theorem 7. The reachability problem for rational maps over AffQ[x]3 \AddQ is
undecidable with at least 2np + 1 = 11 affine functions over Q.

Now we prove the PSPACE-hardness of the reachability problem for maps over
AffZ[x]n \ AddZ by reducing the reachability problem of LBAs to it. Note that
the dimension n is not fixed.

Lemma 8. The reachability problem for maps over AffZ[x]n \ AddZ is PSPACE-
hard.

Proof. Let A = (Q,Γ, δ), where Q = {q0, . . . , qm−1}, be an LBA with PSPACE-
hard reachability problem. Recall that in the reachability problem for LBAs,
we are asked whether (q0,B0kC, 0) →∗A (q′,B0kC, 0) holds. We reduce this
reachability problem to the reachability problem for maps over AffZ[x]k+1 \AddZ.
Let us define the set FA of affine functions that simulate the computation of A.

The main idea is that we store the tape content of the LBA A in the first k
dimensions of the affine map. Then, we maintain the information of the current
state and the head position in the final dimension using the construction of
Lemma 3.

Let (qj ,BwC, i) be the current configuration of A, where 0 ≤ j ≤ m− 1 and
1 ≤ i ≤ |w|. Denote w = w1w2 · · ·wk ∈ {0, 1}k. The corresponding register value
in the affine map is (w1, w2, . . . , wk, z), where z corresponds to the head being in
state qj in position i of the tape.

First, let us construct a state structure incorporating information on both
state and position of the head of A. That is, we construct a graph GA with
vertices (q, i) ∈ Q× [1, k] and with edges ((q, i), (q′, i− 1)) if there is a transition
(q, a, q′, b, L) ∈ δ, and ((q, i), (q′, i+ 1)) if there is a transition (q, a, q′, b, R) ∈ δ,
for any a, b ∈ Γ . Note that GA does not take the tape content into account. By
Lemma 3, the graph GA can be simulated by affine functions. We omit details
on the behaviour of A on the endmarkers B and C. These transitions can be
easily hardcoded into the graph.

Then, to simulate rewriting of a tape, we consider a graph GΓ with two
vertices, 0 and 1, and edges are (0, 0), (0, 1), (1, 0) and (1, 1). Intuitively, vertex
0 corresponds to the symbol being 0 and edge (0, 0) corresponds to the head not
rewriting the symbol, while (0, 1) means that the symbol was rewritten as 1. By
Lemma 3, there exists a set of affine functions simulating this behaviour.

We are now ready to combine the two sets in order to simulate A. Let us
consider the transition (qj1 , 0, qj2 , 1, L) ∈ δ and the current head position is i
where 1 ≤ i ≤ k. This transition switches the state from qj1 to qj2 if the tape
has 0 in the current head position while writing 1 and moving the head position
to the left. This implies that in GA constructed previously, we need to take
the edge ((qj1 , i), (qj2 , i− 1)) to successfully perform the transition. Further, in
the ith dimension, we apply edge (0, 1) of GΓ . Note that we apply the identity
function in the other dimensions unless explicitly mentioned. The affine function
corresponding to (qj1 , 0, qj2 , 1, L) is (x, . . . , x, 2x + 1, x, . . . , x, a · x + b), where
a · x+ b corresponds to the edge ((qj1 , i), (qj2 , i− 1)) in GA, and 2x+ 1 is in the
ith dimension. The transitions moving the head to right are defined analogously.
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Since we have proved that every transition of A can be simulated by an affine
function, it is clear that if (q,B0kC, 0) →∗A (q′,B0kC, 0) holds in A, then we
can reach the register in the affine map corresponding to (q′,B0kC, 0) from the
register corresponding to the initial configuration (q,B0kC, 0) of A. Therefore,
the reachability problem for maps over AffZ[x]n \ AddZ is PSPACE-hard. ut

Based on Theorem 6 and Lemma 8, we have the following main result:

Theorem 9. If the dimension n is not fixed, then the reachability problem for
maps over AffZ[x]n \ AddZ is PSPACE-complete.

It is not difficult to see that the PSPACE-completeness holds for multidimen-
sional ARMs and PRMs without additive updates as well.

Corollary 10. If the dimension n is not fixed, then the reachability problem for
n-ARMs and n-PRMs, where the update polynomials are not of the form ±x+ b,
is PSPACE-complete.

Corollary 11. If the dimension n is not fixed, then the reachability problem for
maps over Z[x]n \ AddZ is PSPACE-complete.

We consider a sort of dual of Lemma 3 by investigating PRMs, where the
state structure is induced by affine functions. Let F ⊆ (AffZ[x] \ AddZ) × Z[x]
and x0 and xf be the initial and target values respectively. Let m be the largest
coefficient in the first component. We construct a graph with m vertices where
the transitions are defined by the affine functions and consider it as a PRM. Since
the reachability problem for PRMs is in PSPACE, the reachability problem for
maps over (AffZ[x] \AddZ)×Z[x] is in EXPSPACE as there is exponential number
of states.

Theorem 12. The reachability problem for maps over (AffZ[x] \AddZ)×Z[x] is
in EXPSPACE.

5 Maps over AffZ[x]
2 as language acceptors

In this section, we extend our models to operate on words. Then it is natural to
consider the languages accepted by the maps. In this context, the reachability
problems of the previous sections can be seen as language emptiness problems.
Indeed, the language accepted by the map is empty if and only if the final
configuration is not reachable from the initial configuration. The complementary
problem to the emptiness problem is the universality problem, where we are
asked whether every word is accepted by the computational model. We show that
for maps over AffZ[x]2 the universality problem is undecidable. This contrasts the
known results on the emptiness problem as we showed that the emptiness problem
is undecidable for maps over AffZ[x]3 and NP-hard for maps over AffZ[x]2. The
model is connected to blind counter automata that have been extensively studied
in the past.
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In [2] the authors study the zeroness problem, which is essentially the univer-
sality problem we consider in this section. The main difference is that our model
is nondeterministic, while in [2] the automaton is deterministic. The authors
show that the zeroness problem is Ackermann-complete5.

Let us define the language acceptors more precisely. Given G ⊆ Σ×F , where
F ⊆ Z[x]n is an n-dimensional polynomial map, x0 and xf the initial and target
vectors, respectively, and Σ is an alphabet, a word ai1ai2 · · · aik is accepted by G,
i.e., is in L(G), if there exists π = ((ai1 , fi1), (ai2 , fi2), . . . , (aik , fik)) such that
fik(· · · fi2(fi1(x0)) · · · ) = xf .

Theorem 13. The universality problem for maps over AffZ[x]2 is undecidable.

Proof. Let Aγ be an integer weighted automaton over alphabet Σ for which the
universality problem is undecidable [9]. Let m be the number of states of Aγ
and let us enumerate them as q0, . . . , qm−1 such that q0 is the initial state and
qm−1 is the final state6. The idea is to encode Aγ into maps in such way that the
second dimension is used to simulate the state transitions of the automaton using
Lemma 3. Let (qi, a, qj , z) be a transition of Aγ with which the automaton reads
letter a ∈ Σ in state qi, changes its state to qj and adds z to the weight, i.e.,
applies function f(x) = x+ z. The corresponding two-dimensional affine function
is (a, (x1 + z,m · x2 + j −m · i)). Now, a word w ∈ Σ∗ is accepted by the map if
and only if the register values (0,m− 1) are reachable from (0, 0) while reading
word w. It is clear that the map accepts w if and only if the automaton accepts w.
That is, it is undecidable whether the map accepts every finite word. ut

We further investigate the properties of the reachability sets of different maps.
Let us first define a reachability set. Let F ⊆ Z[x]n be a map over Z[x]n and let
x0 ∈ Zn be the initial value. The reachability set of F is defined iteratively:

Reach0(F ) = {x0},
Reachi(F ) = {f(x) | x ∈ Reachi−1(F ), f ∈ F},

Reach(F ) =

∞⋃
i=0

Reachi(F ).

Next we show that the intersection non-emptiness problem is undecidable
for AffZ[x]2 using the PCP. That is, for F,G ⊆ AffZ[x]2 whether Reach(F ) ∩
Reach(G) 6= ∅. The idea is for F (resp. G) to construct tertiary representation of
words ui (resp. vi) in the first dimension and the corresponding indices in the
second. Then the intersection is non-empty if and only if it possible to construct
the same word, i.e., the PCP has a solution.

5 Ackermann is a complexity class containing decision problems solvable in time
bounded by Ackermann function, which is computable but not primitive-recursive.

6 The automata of [9] were defined without final states but the weighted automaton
with undecidable universality problem was constructed in such a way that a non-empty
word can be accepted only in a single state.
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Lemma 14. Let F and G be two-dimensional affine maps. It is undecidable
whether the intersection of the respective reachability sets is empty or not.

By modifying the proof idea of the previous lemma, we show that the language
intersection problem is also undecidable. The idea is to construct two maps each
accepting indices of one of the components of the PCP instance. Then the
intersection of the languages is non-empty if and only if there exists a sequence
of indices such that both maps store the same tertiary representations.

Theorem 15. Let F,G ⊆ Σ × AffZ[x]2 and x0F , x0G and xfF , xfG be the
respective initial and target values. It is undecidable whether the intersection of
the respective languages is empty, that is, whether L(F ) ∩ L(G) = ∅ holds or not.
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