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Abstract. We study the computational complexity of finding stable outcomes in hedonic
games, which are a class of coalition formation games. We restrict our attention to symmetric
additively-separable hedonic games, which are a nontrivial subclass of such games that are
guaranteed to possess stable outcomes. These games are specified by an undirected edge-
weighted graph: nodes are players, an outcome of the game is a partition of the nodes into
coalitions, and the utility of a node is the sum of incident edge weights in the same coalition. We
consider several stability requirements defined in the literature. These are based on restricting
feasible player deviations, for example, by giving existing coalition members veto power. We
extend these restrictions by considering more general forms of preference aggregation for
coalition members. In particular, we consider voting schemes to decide if coalition members
will allow a player to enter or leave their coalition. For all of the stability requirements we
consider, the existence of a stable outcome is guaranteed by a potential function argument,
and local improvements will converge to a stable outcome. We provide an almost complete
characterization of these games in terms of the tractability of computing such stable outcomes.
Our findings comprise positive results in the form of polynomial-time algorithms, and negative
results in the form of proofs of PLS-hardness. The negative results extend to more general
hedonic games.

1 Introduction

Hedonic games were introduced in the economics literature as a flexible model of
coalition formation [24]. In a hedonic game, each player has preferences over coalitions
and an outcome of the game is a partition of the players into coalitions. The defining
feature of a hedonic game is that for a given outcome each player cares only about the
other players in the same coalition. It is natural to judge the quality of an outcome
by how stable it is with respect to the players’ preferences. Many different notions of
stability appear in the literature. The survey by Aziz and Savani [5] gives detailed
background on hedonic games and outlines their applications. This paper studies the
computational complexity of finding stable outcomes in hedonic games.

In this paper, we consider and extend the stability requirements for hedonic games
introduced in the seminal work of Bogomolnaia and Jackson [17]. An outcome of a
hedonic game is called Nash stable if no player prefers to be in a different coalition.
For Nash stability, the feasibility of a deviation depends only on the preferences of the
deviating player. Less stringent stability requirements restrict feasible deviations: a
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coalition may try to hold on to an attractive player or block the entry of an unattrac-
tive player. In [17], deviations are restricted by allowing members of a coalition to
“veto” the entry or exit of a player. Bogomolnaia and Jackson [17] introduce individ-
ual stability, where every member of a coalition has a veto that can prevent a player
from joining (deviating to) this coalition, i.e., a player can deviate to another coali-
tion only if everyone in this new coalition is happy to have her. They also introduce
contractual individual stability, where, in addition to a veto for entering, coalition
members have a veto to prevent a player from leaving the coalition – a player can
deviate only if everyone in her coalition is happy for her to leave.

The case where every member of a coalition has a veto on allowing players to enter
and/or leave the coalition can be seen as an extreme form of voting. This motivates
the study of more general voting mechanisms for allowing players to enter and leave
coalitions. In this paper, we consider general voting schemes, for example, where a
player is allowed to join a coalition if the majority of existing members would like the
player to join. We also consider other methods of preference aggregation for coalition
members. For example, a player is allowed to join a coalition only if the aggregate
utility (i.e., the sum of utilities) of the existing members does not decrease. These
preference aggregation methods are also considered in the context of preventing a
player from leaving a coalition. We study the computational complexity of finding
stable outcomes under stability requirements with various restrictions on deviations.

1.1 The model

In a general hedonic game, a player’s preferences depend only on the members of
this player’s coalition. In this paper, we study a subclass of hedonic games with
symmetric additively-separable utilities, which allow a succinct representation of the
game as an undirected edge-weighted graph G = (V,E,w), where V corresponds to the
set of players and the weight of an edge defines the utility that the incident players
receive for being in the same coalition. The following definitions in this section are
for symmetric additively-separable games. We assume that the graph G has no self-
loops, which corresponds to a player getting payoff 0 from being alone in a singleton
coalition. For clarity of our voting definitions, we assume without loss of generality
that we 6= 0 for all e ∈ E (an edge with weight 0 can be dropped). Every node i ∈ V
represents a player. An outcome is a partition p of V into coalitions. Denote by p(i)
the coalition to which i ∈ V belongs under p.

The utility of i ∈ V under p is the sum of the weights of edges to others in the
same coalition, i.e., ∑

{i,j}∈E | j∈p(i)
w({i, j}).
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Each player wants to maximize her utility, so a player wants to deviate if there exists
a coalition c that is either in p or is empty where∑

{i,j}∈E | j∈p(i)
w({i, j}) <

∑
{i,j}∈E | j∈c

w({i, j}).

We consider different restrictions on player deviations. They restrict when players are
allowed to join and/or leave coalitions. A deviation of player i to coalition c (either
in p or empty) is called

– Nash feasible if player i wants to deviate to c.
– vote-in feasible with threshold Tin if it is Nash feasible and either at least a Tin

fraction of i’s edges to c are positive or i has no edge to c.
– vote-out feasible with threshold Tout if it is Nash feasible and either at least a Tout

fraction of i’s edges to p(i) are negative or i has no edges within p(i).
– sum-in feasible 1 if it is Nash feasible and∑

{i,j}∈E | j∈c
w({i, j}) ≥ 0.

– sum-out feasible if it is Nash feasible and∑
{i,j}∈E | j∈p(i)

w({i, j}) ≤ 0.

Outcomes where no corresponding feasible deviation is possible are called Nash sta-
ble, vote-in stable, vote-out stable, sum-in stable, and sum-out stable, respectively.
Outcomes which are vote-in (resp. vote-out) stable with Tin = 1 (resp. Tout = 1) are
also called veto-in (resp. veto-out) stable. Note that an outcome is veto-in stable iff it
is an individually stable outcome; and an outcome is both veto-in and veto-out stable
iff it is a contractually individually stable outcome (we use the terms individually sta-
ble and contractually individually stable since they are commonly used and known
in the economics literature following their definition in [17]).

While we have introduced these stability notions in the context of symmetric
additively-separable games, the following notions can also be stated for general he-
donic games. A deviation of player i to coalition c is

– Nash feasible if it improves the utility of a player i.
– vote-in feasible with threshold Tin if it is Nash feasible and, of those players in c

that are not indifferent to i joining, at least a Tin fraction of them will gain utility
by i joining c.

– vote-out feasible with threshold Tout if it is Nash feasible and, of those players in
p(i) that are not indifferent to i leaving p(i), at least a Tout fraction of them will
gain utility by i leaving p(i).

1 By the symmetry of preferences, sum-in feasibility only restricts a player from joining a coalition that
gives her negative utility.
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The two notions that do not make sense for general hedonic games are sum-in and
sum-out feasibility, since preferences in a general hedonic game are specified by a
weak order over possible coalitions.

1.2 An example

Figure 1 gives an example of an additively-separable symmetric hedonic game that
we use to illustrate some of the stability requirements that we have defined. Con-
sider the outcome {{a, b, d}, {c, e, f}}. The utilities of the players a, b, c, d, e, f are
10, 5,−1, 5, 1, 4, respectively.

a b c

d e f

1

33

5

5 6

−1

−2−2

Fig. 1. An example of an additively-separable symmetric hedonic game.

Players a, b, d, f have no Nash feasible deviations, c has a Nash feasible deviation
to go alone and start a singleton coalition, and e has a Nash feasible deviation to
join the other coalition. The deviation of c is not veto-out feasible, since f prefers c
to stay, however it is vote-out feasible for any Tout ≤ 0.5. It is also sum-out feasible.
The deviation of e is not veto-in feasible, but is vote-in feasible for any Tin ≤ 2/3.
Since there are no deviations that are both veto-in and veto-out feasible, this is a
contractually individually stable outcome. The outcome {{a, b, d}, {c}, {e, f}} is an
individually stable outcome, and {{a, b, d, e, f}, {c}} is Nash stable.

1.3 Justification of the model

The computational complexity of a problem is measured in terms of the size of its
input and therefore depends on the representation of the problem instance. For coali-
tion formation games, the number of players n is a natural parameter of the game.
We desire succinct representations, where the size of the input is polynomial in n,
otherwise, as the number of players grows it may become infeasible even to write
down the game.

For succinct representations of hedonic games such as hedonic nets [25], it is
NP-hard to decide whether there exists a Nash stable outcome. Indeed, this also
holds for non-symmetric additively-separable games, which are represented by an
edge-weighted directed graph [12, 17]. This implies that such a game may not have
a stable outcome. We study a more restrictive model where stable outcomes (for
all of the stability requirements we consider) are guaranteed to exist, noting that
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our hardness results extend to all more general models where existence of stable
outcomes is either guaranteed or promised, i.e., instances are restricted to those
possessing stable outcomes. In a symmetric additively-separable hedonic game, for
each of the stability requirements we consider, a stable outcome always exists. Define
total happiness as the sum of the players’ utilities. Then existence of a stable outcome
is guaranteed by the following potential function argument:

Observation 1 Total happiness is a potential function for symmetric additively-
separable hedonic games.

More precisely, if a player unilaterally improves her utility by some additive α, then
the total happiness increases by 2α. This follows directly from the fact that two
players are incident to each edge. The existence of a potential function implies that,
for all our considered stability requirements, local improvements will find a stable
outcome. Moreover, all the problems we consider are in the complexity class PLS

(polynomial local search) [32], which we introduce next.

1.4 Local search and the complexity class PLS

Local search is one of few general and successful approaches to difficult combinatorial
optimisation problems. A local search algorithm tries to find an improved solution
in the neighborhood of the current solution. A solution is locally optimal if there is
no better solution in its neighborhood. Johnson et al. [32] introduced the complexity
class PLS (polynomial local search) to capture those local search problems for which
a better neighboring solution can be found in polynomial time if one exists, and a
local optimum can be verified in polynomial time.

A problem in PLS comprises a finite set of candidate solutions. Every candidate so-
lution has an associated non-negative integer cost, and a neighbourhood of candidate
solutions. In addition, a PLS problem is specified by the following three polynomial-
time algorithms that:

1. construct an initial candidate solution;
2. compute the cost of any candidate solution in polynomial time;
3. given a candidate solution, provide a neighbouring solution with lower cost if one

exists.

The goal in a PLS problem is to find a local optimum, that is, a candidate solution
whose cost is no more than the cost of any neighbouring candidate solution.

Suppose A and B are problems in PLS. Then A is PLS-reducible to B if there
exist polynomial-time computable functions f and g such that f maps an instance
I of A to an instance f(I) of B, and g maps the local optima of instance f(I) of
B to local optima of instance I. A problem in PLS is PLS-complete if all problems
in PLS are PLS-reducible to it. Prominent PLS-complete problems include finding a
locally optimal max-cut in a graph (LocalMaxCut) [45], or a stable solution in a
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Hopfield network [32]. PLS captures the problem of finding pure Nash equilibria for
many classes of games where pure Nash equilibria are guaranteed to exist, such as
congestion games [28], for which it is also PLS-complete to find a pure equilibrium.

On the one hand, finding a locally optimal solution is presumably easier than
finding a global optimum; in fact, it is very unlikely that a PLS problem is NP-hard
since this would imply NP =coNP [32]. On the other hand, a polynomial-time algorithm
for a PLS-complete problem would resolve a number of longstanding open problems,
e.g., it would show that simple stochastic games can be solved in polynomial time [50].
Thus, PLS-complete problems are believed not to admit polynomial-time algorithms.

1.5 Computational problems

We define the search problems, NashStable, IS (individually stable), CIS (contrac-
tually individually stable), VoteIn, and VoteOut of finding a stable outcome for
the respective stability requirement. We introduce VoteInOut as the search prob-
lem of finding an outcome which is vote-in and vote-out stable. All voting problems
are parametrized by Tin and/or Tout . We recall that outcomes which are vote-in (resp.
vote-out) stable with Tin = 1 (resp. Tout = 1) are also called veto-in (resp. veto-out)
stable, so IS is the computational problem of finding a veto-in stable outcome, and
CIS is the problem of finding an outcome that is both veto-in and veto-out stable.
We also introduce sumCIS as the problem of finding an outcome which is sum-in
and sum-out stable.

Symmetric additively-separable hedonic games are closely related to party affil-
iation games [11], which are also specified by an undirected edge-weighted graph.
In a party affiliation game each player must choose between one of two “parties”; a
player’s happiness is the sum of her edges to nodes in the same party; in a Nash stable
outcome no player would prefer to be in the other party. The problem PartyAf-
filiation is to find a stable outcome in such a game. If such an instance has only
negative edges then it is equivalent to the problem LocalMaxCut, which is to find
a Nash stable outcome of a local max-cut game. Note that for LocalMaxCut all
edges in the underlying graph are non-negative. In party affiliation games there are
at most two coalitions, while in hedonic games any number of coalitions is allowed.
Thus, whereas PartyAffiliation for instances with only negative edges is PLS-
complete [45], NashStable is trivial in this case, as the outcome where all players
are in singleton coalitions is Nash stable. Both problems are trivial when all edges are
non-negative, in which case the grand coalition of all players is Nash stable. Thus,
interesting hedonic games contain both positive and negative edges.

We define a restricted version of PartyAffiliation, called OneEnemyParty-
Affiliation, in which each player dislikes at most one other player, i.e., each node
is incident to at most one negative edge. We use the following variant of this problem
as a starting point for several of our reductions.
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Definition 1. We define the problem OneEnemyPartyAffiliation* as a re-
stricted version of OneEnemyPartyAffiliation which is restricted to instances
where no player is ever indifferent between the two coalitions.

In other words, in an instance of OneEnemyPartyAffiliation*, for every
possible partition of the players into two coalitions, every player has a strict preference
over the two coalitions.

1.6 Our results

In this paper, we examine the complexity of computing stable outcomes in symmetric
additively-separable hedonic games. We observe that NashStable, i.e., the problem
of computing a Nash stable outcome, is PLS-complete (Observation 2). Here, we give
a simple reduction from PartyAffiliation, which was shown to be PLS-complete
in [45]. Our reduction relies on a method to ensure that all stable outcomes use
exactly two coalitions (while in general there can be as many coalitions as players).

We then study IS, i.e., the problem of finding an individually-stable outcome.
We show that if the outcome is restricted to contain at most two coalitions, an
individually-stable outcome can be found in polynomial time (Proposition 1). This
suggests that a reduction showing PLS-hardness for IS cannot be as simple as for
NashStable: one needs to construct hedonic games that allow three or more coali-
tions. In order to prove that IS is PLS-complete, we first show that OneEnemy-
PartyAffiliation* is PLS-complete (Theorem 3 and Corollary 1). The reduction
to OneEnemyPartyAffiliation* is from CircuitFlip. It is rather involved and
is our main technical result. We then reduce OneEnemyPartyAffiliation* to IS.
For this reduction, we replace every negative edge with a gadget, with the rest of the
instance remaining intact. The internal nodes of the gadgets are restricted to belong
to one of five coalitions, with all original nodes restricted to be in one of two coalitions
as in OneEnemyPartyAffiliation*. The “one enemy” property ensures that the
gadgets do not interfere with each other and can be analysed in isolation. The “no
indifference” property is needed for the gadgets to operate correctly.

Perhaps surprisingly, given the apparently restrictive nature of the stability re-
quirement, we show that sumCIS is PLS-complete (Theorem 5). In contrast, we show
that the problem CIS of finding a contractually individually stable outcome can be
solved in polynomial time. We make explicit two conditions in Propositions 2 and 3,
both met in the case of CIS, that (individually) guarantee that local improvements
converge in polynomial time. We use these propositions to give further positive results
for other combinations of restrictions, where either the entering or leaving restriction
is veto based.

Finally, we study the complexity of finding vote-in and vote-out stable outcomes.
Using a different argument to the polynomial-time cases mentioned previously, we
show that local improvements converge in polynomial time in the case of vote-in-
stability and vote-out-stability with Tin , Tout > 0.5 (Theorem 8). We show that if we
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PPPPPPPLeave
Enter

1: 2: 3: 4:

no restr. sum-in veto-in vote-in

A: NashStable IS VoteIn

no restr.
PLS-complete PLS-complete PLS-complete PLS-complete
Observation 2 Observation 2 Theorem 4 Theorem 6

B: sumCIS

sum-out
PLS-complete PLS-complete P ?
Theorem 5 Theorem 5 Proposition 2

C: CIS

veto-out
P P P P

Proposition 3 Proposition 3 Proposition 2 or 3 Proposition 3

D: VoteOut VoteInOut

vote-out
? ? P P (Tin , Tout > 0.5)

(see Theorem 7) (see Theorem 7) Proposition 2 Theorem 8

Table 1. Table showing the computational complexity of the search problems for different entering and
leaving deviation restrictions. Note that columns 1 and 2 are essentially equivalent, since if a player has a
Nash feasible deviation that results in a negative payoff, she also has a sum-in feasible (and hence also Nash
feasible) deviation, namely to form a singleton coalition.

require vote-in-stability alone, we get a PLS-complete search problem (Theorem 6).
The problem of finding a vote-out stable outcome is conceptually different (e.g., we
can find a veto-out-stable outcome in polynomial time, whereas it is PLS-complete
to find a veto-in-stable outcome). The technical difficulty in proving a hardness re-
sult for VoteOut is restricting the number of coalitions. Ultimately, we leave the
complexity of VoteOut open, but do show that k-VoteOut, which is the problem
of computing a vote-out stable outcome when at most k coalitions are allowed, is
PLS-complete (Theorem 7).

Our results are summarized in Table 1, which gives an almost complete charac-
terization of tractability.

1.7 Related work

Stability concepts and existence of stable outcomes. Many different stability concepts
for hedonic games have been considered. Bogomolnaia and Jackson [17] first for-
mulated Nash stability, individual stability, and contractual individual stability for
hedonic games. We study all three of these concepts in this paper, and these concepts
motivated us to introduce definitions of stability based on voting and aggregation.
Many other related stability concepts for hedonic games have also been considered,
including core stability [17], contractual Nash stability [47], strong Nash stability
[33], perfect partitions [6], and strict strong Nash stability and strong individual
stability [4]. A large body of work has studied conditions on hedonic games, such
as restrictions on players’ preferences, that guarantee the existence of these differ-
ent types of stable outcomes [2, 4, 13, 17, 17, 19, 22, 23, 33]. Aziz and Savani [5]
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provide a detailed overview of many of these solution concepts and related existence
results; Sung and Dimitrov [47] provide an alternative classification of these concepts.

Computational complexity of stable outcomes. Ballester [12] was one of the first to
study stable outcomes for hedonic games from the perspective of computational com-
plexity. He showed that for hedonic games represented by an individually rational list
of coalitions, the complexity of checking whether a core stable, Nash stable, or indi-
vidually stable outcome exists is NP-complete. Elkind and Wooldridge [25] studied the
computational complexity of problems related to stable outcomes of hedonic games
that are represented by hedonic nets, a succinct, rule-based representation based on
marginal contribution nets (which were introduced by Ieong and Shoham [31]). Sung
and Dimitrov [48] showed NP-hardness of deciding whether a stable outcome exists
in an additively-separable hedonic game for core stability, strict core stability, Nash
stability, and individually stability. For core stability and strict core stability, those
NP-hardness results have been extended by Aziz et al. [7] to the case of symmet-
ric player preferences; as discussed in the introduction, Nash stable and individually
stable outcomes always exist in symmetric additively separable games, so the cor-
responding decision problems are trivial. Woeginger [49] showed that deciding if a
core stable outcome exists in an additively-separable hedonic game is actually not
just NP-hard, but complete for the second level of the polynomial hierarchy; Peters
[42] extended this result to show that the same tight complexity bound applies for
deciding whether a strict core stable exists, even in symmetric additively-separable
hedonic games.

Peters and Elkind [43] unified and extended several of these complexity results.
They identify simple conditions on the expressivity of hedonic games formalism, which
if met, imply that the problem of checking whether a given game admits a stable
outcome is computationally hard. Their results cover a variety of stability concepts,
such as core stability, individual stability, and Nash stability, and different hedonic
game models, including additively-separable games and fractional hedonic games,
discussed below. On the positive side, Peters [41] showed that the existence of several
types of stable outcome can be decided in linear time for hedonic games that satisfy
a notion of bounded treewidth and bounded degree.

Fractional hedonic games. In this paper we study additively separable hedonic games,
where a player’s utility is defined as the sum of weights of edges between that player
and the other members of that player’s coalition. Aziz et al. [8] introduced fractional
hedonic games, where this sum is replaced by the average, i.e., the sum divided by the
cardinality of the coalition. Aziz et al. [10], in an extended version of [8], propose a
number of conditions under which the core of fractional hedonic games is non-empty
and provide algorithms for computing a core stable outcome. By contrast, they show
that the core may be empty in other cases, and that it is computationally hard in
general to decide non-emptiness of the core. Bilò et al. [15] consider Nash stability in
symmetric fractional hedonic games. They show that Nash stable outcomes cannot
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be reached by best response dynamics in symmetric fractional hedonic games. The
also prove that the problems of computing a best Nash stable coalition structure
and an optimal one (not necessarily stable) are NP-hard. Aziz et al. [9] studied the
computational complexity of computing welfare maximizing outcomes for fractional
hedonic games, providing both hardness and approximation results.

In a modified fractional hedonic game, the utility of a player is the sum of weights
of edges to players in the same coalition divided by the cardinality of the coalition
minus one, i.e., ignoring the player itself. It turns out, that this small modification
actually has quite a dramatic effect on the set of Nash stable outcomes. Modified
fractional hedonic games were first studied by Olsen [39]. Monaco et al. [36] studied
strong equilibria and core stable outcomes in modified fractional hedonic games.
Bilò et al. [15] and Monaco et al. [36] discuss differences between modified and non-
modified fractional hedonic games.

Quality of stable outcomes. In the field of algorithmic game theory, much attention
has been paid to the quality of equilibria, as captured by measures such as the
Price of Anarchy [34] and Price of Stability [3], which compare the welfare under
worst or best-case Nash equilibria, respectively, with the optimal welfare over all
possible outcomes. For hedonic games, analogous measures can be defined with Nash
equilibrium replaced by an appropriate stability concept such as Nash or core stability.
In this spirit, Brânzei and Larson [18] studied the trade-off between core stability and
social welfare in additively-separable hedonic games. Elkind et al. [26] provided lower
and upper bounds on the Price of Pareto Optimality in additively separable hedonic
games, fractional hedonic games, and modified fractional hedonic games. Bilò et al.
[15] study an analogue of the price of stability for fractional hedonic games, also for
restricted graph topologies.

Bargaining approaches to coalition formation. Bloch and Diamantoudi [16] study a
bargaining procedure for coalition formation in the setting of hedonic games: Given an
order of the players, each player can propose an outcome, and the next player accepts
the current proposal or vetos it and make a counter-proposal. Chalkiadakis et al.
[20] consider a deterministic bargaining process that produces coalition structures in
coalitional games, with a focus on weighted voting games.

Related work on PLS-completeness. For surveys on the computational complexity of
local search, see [1, 38]. Given the PLS-completeness of solving local max cut and
party affiliation games, algorithms for finding approximate solutions have been stud-
ied [14, 21]; see also [40]. Our PLS-hardness results use ideas from Krentel [35], Monien
and Tscheuschner [37], Schäffer and Yannakakis [45], and in particular Elsässer and
Tscheuschner [27]. We use the PLS-completeness of LocalMaxCut which was shown
by Schäffer and Yannakakis [45].
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1.8 Outline of the paper

In Section 2, we show that NashStable is PLS-complete. In Section 3, we prove our
main technical result: OneEnemyPartyAffiliation is PLS-complete. OneEnemy-
PartyAffiliation is the starting point for our reduction to IS (i.e., VetoIn) in
Section 4, which shows that IS is PLS-complete. In Section 5, we show that the re-
maining veto-based problems, namely all those (except for IS) in row C and column
3 in Figure 1, can be solved in polynomial time. In Section 6, we show that the
problem sumCIS is PLS-complete. In Section 7, we give both positive and negative
results for computing stable outcomes under various voting-based stability require-
ments. Finally, in Section 8, we conclude with open problems.

2 Nash stability and restricting the number of coalitions

In this section, we show that NashStable is PLS-complete via a reduction from
PartyAffiliation. Recall that in Nash stable outcomes for hedonic additively sep-
arable games, players might form more than two coalitions, while party affiliation
games are restricted to two coalitions. To deal with this we use a mechanism, called
supernodes, which can restrict the number of coalitions that will be non-empty in
stable outcomes. In the reduction in this section we use two supernodes to restrict to
two coalitions; later in the paper we will use a variable number of k supernodes to
restrict the number of coalitions to k.

Observation 2 NashStable is PLS-complete.

Proof. Consider an instance of PartyAffiliation, represented as an edge-weighted
graph G = (V,E,w). We augment G by introducing two new players, called super-
nodes. Every player i ∈ V has an edge of weight W >

∑
e∈E |we| to each of the

supernodes. The two supernodes are connected by an edge of weight −M , where
M > |V | ·W . By the choice of M the two supernodes will be in different coalitions
in any Nash stable outcome of the resulting hedonic game. Moreover, by the choice
of W , each player will be in a coalition with one of the supernodes. So, in every Nash
stable outcome we have exactly two coalitions. The fact that edges to supernodes
have all the same weight directly implies a one-to-one correspondence between the
Nash stable outcomes in the hedonic game and in the party affiliation game. ut

3 Key technical result: OneEnemyPartyAffiliation is
PLS-complete

In this section, we prove our key technical result, that OneEnemyPartyAffi-
liation is PLS-complete. The instances that we produce have the useful property
that no player is ever indifferent between two coalitions, which we make explicit in
Corollary 1. We use these special instances for other reductions in this paper.
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The starting point for our reduction to OneEnemyPartyAffiliation is the
prototypical PLS-complete problem CircuitFlip, introduced and shown to be PLS-
complete in [32].

Definition 2. An instance of CircuitFlip is a boolean circuit with n inputs and
n outputs. A feasible solution is an assignment to the inputs and the value of a
solution is the output treated as a binary number. The neighbourhood of an assignment
consists of all assignments obtained by flipping exactly one input bit. The objective is
to maximise the value of the output.

High-level overview of proof. The following natural algorithm exists for solving Cir-
cuitFlip: Start with a arbitrary bit-string c of length n; search the neighbourhood
c for a candidate solution with better value; if a better solution is found repeat,
otherwise return the current solution, which is a local optimum.

In order to prove PLS-hardness of OneEnemyPartyAffiliation with a reduc-
tion from CircuitFlip, we need to be able to turn an instance F of CircuitFlip
into an instance G of OneEnemyPartyAffiliation, so that any stable solution of
G can be mapped in polynomial time to a local optimum of F . In essence, the way
we will achieve this is as follows. Our reduction from an instance F of CircuitFlip
to an instance G of OneEnemyPartyAffiliation, will have the property that
when better response dynamics is run on G it will simulate running the “natural
algorithm” on F . A major complication is that we require that this works for any
initial bi-partition that we start better response dynamics from in G, however in gen-
eral an arbitrary bi-partition will not correspond to an obvious step of the natural
algorithm applied to F . Our construction has a built-in “correction mechanism”, so
that, after some initial phase, we will indeed have a direct correspondence between
better response dynamics in G and the natural algorithm in F .

In more detail, we will use the following idea of Schäffer and Yannakakis [45].
Firstly, we extend the circuit in CircuitFlip by adding extra outputs; the extended
circuit computes the value of a bit-string as before, and also a canonical better solution
if one exists, or the input if the current input is locally optimal. In our construction,
there will be two copies of this extended circuit in the CircuitFlip instance. The
two circuit copies will alternate roles: One circuit will compute the output value of
the current solution (c in the description above) and the next better solution c′.
Then c′ will be fed into the other circuit copy, which will compute the value of c′

and a next better solution. Then the value of c and c′ are compared, and if the value
of c′ is better, the two circuit copies swap roles, which starts the next iteration of the
natural algorithm.

For each of these circuit copies, we will build gadgets in our OneEnemyParty-
Affiliation instance that represent the gates of the circuit. Parts of the construction
will monitor when one of the circuit copies is correctly computing its output, and
only under appropriate conditions the roles of the two circuit copies will be swapped.
Gates in our construction can be in one of two regimes: the FIX GATES regime,
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which makes sure gates are computing correctly, and the RESET GATES regime,
which gets gates ready for the two circuits to swap roles. During the initial phase of
better response dynamics applied to the G, the gates will be fixed if required and at
some point the current bi-partition will directly correspond to a correct intermediate
state of the natural algorithm applied to F .

Theorem 3. OneEnemyPartyAffiliation is PLS-complete.

Proof. We reduce from CircuitFlip. Let C be an instance of CircuitFlip with
inputs V1, . . . , Vn, outputs C1, . . . , Cn, and gates G1, . . . , GN . We make the following
simplifying assumptions about C:

(i) The gates are topologically ordered so that if the output of Gi is an input to Gj

then i > j.
(ii) All gates are NOR gates with fan-in 2.

(iii) G1, . . . , Gn is the output and Gn+1, . . . , G2n is the (bitwise) negated output of C
with G1 and Gn+1 being the most significant bits.

(iv) G2n+1, . . . , G3n outputs a (canonical) better neighbouring solution if V1, . . . , Vn is
not locally optimal, and otherwise returns the locally optimal input V1, . . . , Vn.

We use two complete copies of C. One of them represents the current solution
while the other one represents the next (better) solution. Each copy gives rise to a
graph. We will start by describing our construction for one of the two copies and later
show how they interact. Given C construct a graph GC as follows:

We have nodes v1, . . . , vn representing the inputs of C, and nodes gi representing
the output of the gates of C. We will also use gi to refer to the whole gate. For i ∈ [n],
denote by wi := g2n+i the nodes representing the better neighbouring solution. Recall
that g1, . . . , gn represent the output of C while gn+1, . . . , g2n correspond to the negated
output.

In our party affiliation game we use 0 and 1 to denote the two coalitions. We
slightly abuse notation by using u = κ for κ ∈ {0, 1} to denote that node u is in coali-
tion κ. In the construction, we assume the existence of nodes with a fixed coalition.
This can be achieved as in the proof of Observation 2 with the help of supernodes.
We use 0 and 1 to refer to those constant nodes. In the graphical representation (cf.
Figure 4), we represent those constants by square nodes. Square nodes with the same
number represent the the same supernode and are only shown separately to make the
figures nicer.

We follow the exposition of both Schäffer and Yannakakis [45] and Elsässer and
Tscheuschner [27] and use types of gadget to describe our construction. Nodes may
be part of multiple types. We introduce 8 numbered types. In general, the higher
the number of the type, the smaller the edge weights, so earlier types are “more
important”. Different types will serve different purposes.

As in [27, 37], we use a mechanism for biasing nodes based on the coalitions of
other nodes, as described by the following lemma and definition.
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Lemma 1. For any polynomial-time computable function f : {0, 1}k 7→ {0, 1}m one
can construct a graph Gf = (Vf , Ef , w) having the following properties: (i) there exist
s1, . . . , sk, t1, . . . , tm ∈ Vf with no negative incident edge, (ii) each node in Vf is only
incident to at most one negative edge, (iii) f(s1, . . . , sk) = (t1, . . . , tm) in any Nash
stable solution of the party affiliation game defined by Gf .

Proof. It is well known that for any polynomial-time computable function f : {0, 1}k 7→
{0, 1}m one can construct a circuit C with polynomial many gates that implements
this function [46, Theorem 9.30]. Clearly, we can also restrict C to NOR gates with
fan-in and fan-out at most 2. Organize the gates in levels according to their distance
to C’s output; output gates are at level 1.

We replace each gate gi at level ` with the gadget in Figure 2. Nodes a, b are
inputs and d is the output of gate gi.

a

b

dc

1

≤ 3`−1

≤ 3`−1
−(3` − 1)

3`

3` 3`

Fig. 2. NOR gate

Note that a and b are also either output nodes of some other gates of the circuit,
or they correspond to inputs of the circuit. In the latter case we connect a or b to the
corresponding input s-node by an edge of weight 3`+1.

If ` = 1, i.e., gi is an output gate, then we connect d to the corresponding output
t-node with an edge of weight 1. Otherwise (` > 1), d is also the input to at most 2
lower level gates. The corresponding edges have weight at most 3`−1.

In any Nash stable solution, d = 1 if and only if a = b = 0. In other words
d = NOR(a, b). The claim follows since our construction fulfils properties (i), (ii) and
(iii). ut

Definition 3. For a polynomial-time computable function f : {0, 1}k 7→ {0, 1}m we
say that Gf as constructed in Lemma 1 is a graph that looks at s1, . . . , sk ∈ Vf and
biases t1, . . . , tm ∈ Vf according to the function f .

We are now ready to introduce the types of gadgets.

Type 1: Check Gates. For each gate gi we have a three-part component as depicted in
Figure 4(a). The inputs of gi, denoted I1(gi) and I2(gi), are either inputs of the circuit
or outputs of some gate with larger index. The main purpose of this component is to
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check if gi is correct, i.e., gi = ¬(I1(gi)∧I2(gi)), and to set zi = 1 if gi is incorrect. The
nodes α, β, γ, δ and λ are local nodes for the gate. A gate can be in two operational
modes, called gate bias regimes. Type 7 will determine in which of the following bias
regimes a gate is.

Definition 4 (Gate bias regimes). In the RESET GATE regime αi,1, αi,2, γi,1
and γi,2 get a bias towards 1 while λi,1, λi,2, βi,1, βi,2, βi,3, δi,1, δi,2 and γi,3 get a bias
towards 0. In the FIX GATE regime we have opposite biases.

When we define Type 7 we will specify a function as needed for Definition 3.
This function looks at a single node, whose current coalition (0 or 1) determines
which regime we are in. The function biases the internal nodes of the Type 1 gadget
according to Definition 4.

Type 2: Propagate Flags. In order to propagate values for the z variables we intercon-
nect them as in Figure 4(b) by using the topological order on the gates. Observe that
for any locally optimal solution zi = 1 enforces zj = 1 for all j < i. This component
is also used to (help to) FIX the gates in order and to RESET them in the opposite
order. Node zN+1 is for technical convenience.

Note that the three edges from each zi node to the three nodes γi,1, γi,2, and γi,2
are part of the type 1 gadget.

Type 1 and 2 components are the same for both copies. In the following we
describe how the copies interact. We denote the two copies of C by C0 and C1 and
also use superscripts to distinguish between them for nodes of type 1 and 2.

Type 3: Set/Reset Circuits. The component of type 3 interconnects the z-flags from
the two circuits C0, C1, using the nodes z10 , z

1
0 , z

0
1 , z

1
1 . This component is depicted in

Figure 4(c) and has multiple purposes. First, it ensures that in a local optimum d0

and d1 are not both 1. Second, when certain conditions are met, it triggers to reset
the circuit with smaller output. And third, it locks d0 or d1 to 1 and resets them back
to 0 when certain conditions are met.

The z and y nodes can also be in two different operational modes called COM-
PUTE regime and RESET regime which is determined by Type 6.

Definition 5 (Circuit bias regimes). Let κ ∈ {0, 1}. In the COMPUTE regime
for zκ all zκi get a bias to 0 for all 0 ≤ i ≤ N + 1 and yκ gets a bias to 1. In the
RESET regime for zκ we give opposite biases.

When we define Type 6 we will specify a function that looks at several nodes and
biases the z and y nodes according to Definition 5.

Type 4: Check Outputs. This component compares the current output of the two cir-
cuits and gives incentives to the nodes d0 or d1 accordingly: If C0 has a smaller output
than C1 then d0 is incentivized to be 1; otherwise d1 is incentivized to be 1. For all i ∈
[n], we have edges (d0, g0n+i), (d

0, g1i ), (d
1, g1n+i), (d1, g0i ) and (0, g0n+i), (1, g

1
i ), (0, g

1
n+i), (1, g

0
i )

of weight 22n+1−i. To break symmetry we have edges (0, d0), (1, d1) of weight 2n.
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Type 5: Feedback Better Solution. This component is depicted in Figure 4(d). It is
used to feedback the improving solution of one circuit to the input of the other circuit.
Its operation is explained in Lemma 2.

Figure 3 shows how the two circuit copies are constructed of type 1 gadgets and
connected via types 2 to 5.

Circuit C (graph of type 1
NOR gate gadgets)

Circuit 0

Circuit C (graph of type 1
NOR gate gadgets)

Circuit 1

Inputs:
v01 , . . . , v

0
n

Outputs:
g01 , . . . , g

0
2n

Outputs:
w0

1, . . . , w
0
n

Inputs:
v11 , . . . , v

1
n

Outputs:
g11 , . . . , g

1
2n

Outputs:
w1

1, . . . , w
1
n

Type 2 gadget

Type 2 gadget

Type 3 gadget Type 4 gadget

n type 5
gadgets

n type 5
gadgets

z01 , . . . , z
0
N

z11 , . . . , z
1
N

z10 , z
1
0 , z

0
1 , z

1
1

z10 , z
1
0 , z

0
1 , z

1
1

g0n+1, . . . , g
0
2n

g1n+1, . . . , g
1
2n

d0, d1

Fig. 3. Overview of construction. Shared nodes are shown on edges (except for type 5).

In the final three types we look at and bias nodes (as in Definition 3) from the
lower types already defined. For the final types we do not give explicit edge weights.
In order that the “looking” has no side-effects on the operation of the lower types,
we scale edge weights in these types so that any edge weight of lower type is larger
than the sum of the edge weights of all higher types. More precisely, for j ∈ {5, 6, 7},
the weight of the smallest edge of type j is larger than the sum of weights of all edges
of types (j + 1), . . . , 8.

In the following, denote by C(v) the value of circuit C of the CircuitFlip in-
stance on input v = (vi)i∈[n] and w(v) the better neighbouring solution. Both are
functions as in Definition 3.
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0

0 0

0

1

gi zi

I1(gi)

αi,1

λi,1

γi,1

βi,1

26
26

25

−25

24

24

24

−23

23
23

22

22

0

0 0

0

1

gi zi

I2(gi)

αi,2

λi,2

γi,2

βi,2

26
26

25

−25

24

24

24

−23

23
23

22

22

1

0

1

0

1

gi zi

I1(gi) I2(gi)

γi,3

δi,1 δi,2

βi,3

25
25

25

25
25

25
24

24

−24

−23
23

23

−22

22

(a) Type 1. Extra factor: 22n+5i

11 110 1

zi zi−1zi+1zNzN+1 z1

γ1,1 γ1,2 γ1,3γi,1 γi,2 γi,3γN,1 γN,2 γN,3

25N+2 −25N+2

25N+6

25N+6

25N+6 + 3(25N+2)− 25(N−1)+6

25i+2 −25i+2

25(i−1)+6

25i+6 + 3(25i+2)− 25(i−1)+6

211 + 3(27)− 26

25(N−1)+6 25i+6 211 26

27 −27

(b) Type 2. Extra factor: 22n

1

1

0

0

0

0

d0 d1

)−

−24

−24

24

24

23

23

23

23 25

25

26

26

z01 z00

z11
z10

y0

y1

−27 27 − 25 + 2327 − 25 + 23

(c) Type 3. Extra factor: 22n

11
vκ̄i

dκ̄dκ̄ wκ
i

θκi,1 θκi,2

µκ
i

ηκi

4

4

4

4
4 −4

−2

2

1

1
1

(d) Type 5. No extra factor

Fig. 4. Components of type 1,2,3, and 5. Edge weights have to be multiplied by the factors given above.
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Type 6: Change Bias Regimes for z. The component of type 6 looks at v0, v1, d0, d1,
η0 and η1 (type 5) and biases z0i , z

1
i , y

0 and y1 according to Definition 5 as follows.
z0 is put in the COMPUTE regime if at least one of the following 3 conditions is
fulfilled: (i) C(v0) ≥ C(v1), (ii) w(v1) = v0, or (iii) w(v1) 6= η1 ∧ d0 = 1. Else z0 is
put into the RESET regime. Likewise z1 is put in the COMPUTE regime if at least
one of the following three conditions is fulfilled: (i) C(v0) < C(v1), (ii) w(v0) = v1, or
(iii) w(v0) 6= η0∧d1 = 1. Else z1 is put into the RESET regime. Note that conditions
(i) and (ii) are important for normal computation, while (iii) is needed to overcome
bad starting configurations.

Type 7: Change Bias Regimes for Gates. For each i ∈ [N ] and κ ∈ {0, 1}, if zκi+1 = 0
we put the internal nodes of gκi in the FIX GATE regime and in the RESET GATE
regime otherwise. We do this by looking at zκi+1 and biasing the internal nodes of the
corresponding type 1 gadget as in Definition 4.

Type 8: Fix Incorrect Gate. For each i ∈ [N ] and κ ∈ {0, 1}, the components of
type 8 give a tiny bias to gκi for computing correctly. In detail, for each gate gκi we
look at ακi,1, α

κ
i,2 and bias gκi to ¬(ακi,1 ∧ ακi,2).

This completes our construction. We proceed by showing properties of Nash stable
outcomes. Each of the following six lemmas should be read with the implicit clause:
“In every Nash stable outcome.”

The following lemma explains the operation of type 5 gadgets. Depending on d0

(d1) it gives the inputs v1 (v2) an incentive to copy the better solution w1 (w0) of
the other circuit or it makes sure that w1 (w0) are indifferent with respect to type 5
edges.

Lemma 2. Let κ ∈ {0, 1}, then the following holds for all i ∈ [n]:
(a) If dκ = 0 then wκi is indifferent w.r.t. edges of type 5.
(b) If dκ = 1 then ηκi = wκi .

Proof. Suppose dκ = 0. If ηκi = 0 then θκi,1 = 1 and θκi,2 = µκi = 0, and hence wκi is
indifferent w.r.t. edges of type 5. The case ηκi = 1 is symmetric. This proves (a). If
dκ = 1 then θκi,1 = θκi,2 = 1, so ηκi is indifferent w.r.t. the edges connecting it to θκi,1
and θκi,2 = 1. Hence ηκi will copy the value of wκi , which proves (b). ut

We proceed by showing how type 1 gadgets ensure that an incorrect gate enforces
the corresponding z node to be set to 1 and how this gets propagated through the
type 2 gadget.

Lemma 3. If gκi is incorrect then zκi = 1. If zκi = 1 then zκj = 1 for all 0 ≤ j ≤ i
and yκ = 0.

Proof. Gate gκi can be incorrect in two ways:

(i) Ij(g
κ
i ) = 1 for some j ∈ {1, 2} and gκi = 1,
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(ii) I1(g
κ
i ) = I2(g

κ
i ) = 0 and gκi = 0.

For case (i) observe that Ij(g
κ
i ) = 1 =⇒ ακi,j = 1 =⇒ λi,j = 0 =⇒ βκi,j = 0.

Together with gκi = 1 this directly implies γκi,j = 1. Consider now case (ii). Since
I1(g

κ
i ) = I2(g

κ
i ) = 0 we have δκi,1 = δκi,2 = 0 and therefore βκi,3 = 0. Together with

gκi = 0 this directly implies γκi,3 = 0. In either case, this implies zκi = 1, proving the
first part of the lemma.

The second claim holds by induction, since zκi = 1 enforces zκi−1 = 1, while zκ0 = 1
enforces yκ = 0. ut

The next lemma shows how the z nodes can make the inputs of gates indifferent
with respect to type 1 edges of that gate. This is important so that gates with smaller
index can change their output.

Lemma 4. If zκi+1 = 1 then the inputs I1(g
κ
i ) and I2(g

κ
i ) are indifferent with respect

to the type 1 edges of gate gκi .

Proof. We show that ακi,1 = ακi,2 = 1 and δκi,1 = δκi,2 = 0, which implies the claim.
According to type 7, since zκi+1 = 1, gate i is in the RESET GATE regime.

We first show that in this regime, we must have ακi,1 = ακi,2 = 1. It is immediate
that if Ij(g

κ
i ) = 1 then ακi,j = 1 for j ∈ {1, 2}. We now show that Ij(g

κ
i ) = 0 implies

ακi,j = 1 for j ∈ {1, 2}. Suppose, without loss of generality, that j = 1. Suppose
I1(g

κ
i ) = 0 and for the sake of contradiction that ακi,1 = 0. Since ακi,1 is biased to 1 it

can only be 0 if λκi,1 = 1. Since λκi,1 is biased to 0, it can only be 1 if βκi,1 = 1. Since
βκi,1 is biased to 0, it can only be 1 if gi = 1 and γκi,1 = 0. However, since βκi,1 = 1 and
gκi = 1 and γκi,1 is biased to 1, we have γκi,1 = 1. Thus ακi,1 = 1.

We are left to show that in the RESET GATE regime we must have δκi,1 =
δκi,2 = 0. If (I1(g

κ
i ), I2(g

κ
i )) = (0, 0), it is immediate that δκi,1 = δκi,2 = 0. Suppose

(I1(g
κ
i ), I2(g

κ
i )) = (0, 1). Then it is immediate that δκi,1 = 0, and then since δκi,2 is

biased to 0, it must also be 0. The case (I1(g
κ
i ), I2(g

κ
i )) = (1, 0) is symmetric. Finally,

suppose (I1(g
κ
i ), I2(g

κ
i )) = (1, 1). If δκi,1 = δκi,2 = 1 then it is immediate that βκi,3 = 1.

Then δκi,1 and δκi,2 are both indifferent to the edges of type 1, but they are not stable
since they are biased to 0. Suppose δκi,1 = 1 and δκi,2 = 0. If βκi,3 = 0 then δκi,1 is indif-
ferent to the edges of type 1, but is biased to 0 and hence is not stable. If βκi,3 = 1,
then since βκi,3 is biased to 0, we must have gi = 0 and γκi,3 = 1. But then γκi,3 is not
stable since it is biased to 0. The case δκi,1 = 0 and δκi,2 = 1 is symmetric. ut

The following two lemma are important for being able to correct gates in the
appropriate circumstances.

Lemma 5. Suppose zκi+1 = 0 and zκi = 1 for some index 1 ≤ i ≤ N .
(a) If gκi is correct then γκi,1 = γκi,2 = 0 and γκi,3 = 1.
(b) If gκi is not correct then gκi is indifferent w.r.t. edges of type 1 but w.r.t. the edges
only in type 8 deviating would improve her happiness.
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Proof. According to type 7, since zκi+1 = 0, gate i is in the FIX GATE regime. Thus
γκi,1 and γκi,2 are biased to 0. First suppose the gate is correct.

If the correct output is 0 then we have gκi = 0, and zκi = 1 by assumption. Then
γκi,1 and γκi,2 either prefer 0 or are indifferent w.r.t. the edges in type 1 (depending
on the values of βκi,1 and βκi,2). As they are biased to 0 they will be 0. Suppose that
γκi,3 = 0 for the sake of contradiction. Then since it is biased to 1, we must have
βκi,3 = 0. Since βκi,3 is biased to 1, we must have δκi,1 = δκi,2 = 0. However, as the correct
output is 0, at least one of the input bits must be 1. Suppose w.l.o.g. that I1(g

κ
i ) = 1.

Then, since δκi,1 is indifferent w.r.t. the edges in type 1 and is biased to 1, it must be
1, a contradiction.

Now suppose the correct output is 1. Thus we have gκi = 1, and zκi = 1 by
assumption. Then γκi,3 either prefers 1 or is indifferent w.r.t. the edges in type 1
(depending on the value of βκi,3). Since γκi,3 is biased to 1, it will be 1. Suppose that
γκi,1 = 1 for the sake of contradiction. Since γκi,1 is biased to 0 it can only be 1 if
βκi,1 = 0. Since βκi,1 is biased to 1 is can only be 0 if λκi,1 = 0. Since λκi,1 is biased to
1 it can only be 0 if ακi,1 = 1. Since the output is 1 the input I1(g

κ
i ) = 0, and then

since ακi,1 is indifferent w.r.t. the edges in type 1 and is biased to 0, it must be 0, a
contradiction. The same reasoning applies for γκi,2. This completes the proof of (a).

Now suppose the output is incorrect. Note that gi is indifferent w.r.t. the edges
of type 1 if and only if βκi,1 6= γκi,1 and βκi,2 6= γκi,2 and βκi,3 = γκi,3.

First suppose the output is 0. Thus we have gκi = 0, and zκi = 1 by assumption.
Since the output is 0 and incorrect, we have I1(g

κ
i ) = I2(g

κ
i ) = 0,

Suppose βκi,1 = γκi,1 = 1. Then γκi,1 is indifferent w.r.t. the edges in type 1 and is
biased to 0, a contradiction. Now suppose βκi,1 = γκi,1 = 0. Since βκi,1 is biased to 1, we
have λκi,1 = 0. Since λκi,1 is biased to 0, we have ακi,1 = 1. But ακi,1 is indifferent w.r.t.
the edges of type 1 and biased to 0, a contradiction. Thus βκi,1 6= γκi,1 and likewise
βκi,2 6= γκi,2.

Now suppose βκi,3 = 1 and γκi,3 = 0. Then γκi,3 is indifferent w.r.t. the edges in
type 1 and biased to 1, a contradiction. Now suppose βκi,3 = 0 and γκi,3 = 1. Then γκi,3
prefers to be 0 than 1, a contradiction. We have shown that gκi is indifferent w.r.t.
edges of type 1 when the output is 0 and incorrect.

Since I1(g
κ
i ) = I2(g

κ
i ) = 0, and ακi,1 and ακi,2 are biased to 0, we have ακi,1 = ακi,2 = 0.

Thus type 8 biases gκi to 1, and it would gain by flipping as claimed.

Now suppose the output is 1. Thus we have gκi = 1, and zκi = 1 by assumption.
Suppose βκi,1 = γκi,1 = 0. Then γκi,1 prefers to be 1 than 0, a contradiction. Suppose
βκi,1 = γκi,1 = 1. Then γκi,1 is indifferent w.r.t. edges of type 1 and is biased to 0, a
contradiction. Thus βκi,1 6= γκi,1 and likewise βκi,2 6= γκi,2.

Now suppose βκi,3 = 1 and γκi,3 = 0. Then γκi,3 prefers to be 1 than 0, a contradiction.
Now suppose βκi,3 = 0 and γκi,3 = 1. Since βκi,3 is biased to 1, we must have δκi,1 = δκi,2 =
0. Since the output is 1 and incorrect, we have at least one of I1(g

κ
i ) and I2(g

κ
i ) equal

to 1. Suppose w.l.o.g. that I1(g
κ
i ) = 1. Then, since δκi,1 is indifferent w.r.t. the edges
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in type 1 and is biased to 1, it must be 1, a contradiction. We have shown that gκi is
indifferent w.r.t. edges of type 1 when the output is 1 and incorrect.

At least one of I1(g
κ
i ) and I2(g

κ
i ) are 1. Suppose w.l.o.g. that I1(g

κ
i ) = 1. Then

ακi,1 = 1. Thus type 8 biases gκi to 0, and it would gain by flipping as claimed. This
completes the proof of (b). ut

Lemma 6. If dκ = 1 and dκ = 0 then for all 1 ≤ i ≤ 2n, node gκi is indifferent w.r.t.
edges in type 4.

Proof. Each of these nodes is incident to exactly two type 4 edges both having the
same weight. For 1 ≤ i ≤ n these are (1, gκi ) and (dκ, gκi ), while for n + 1 ≤ i ≤ 2n
these are (0, gκi ) and (dκ, gκi ). The claim follows since dκ = 1 and dκ = 0. ut

We proceed by showing how the COMPUTE and RESET regimes influence z and
y nodes.

Lemma 7. Suppose dκ = 1 and dκ = 0.

(a) If zκ is in the COMPUTE regime then zκi = 0 for all 0 ≤ i ≤ N + 1 and yκ = 1.
(b) If zκ is in the RESET regime then zκi = 1 for all 0 ≤ i ≤ N + 1 and yκ = 0.

Proof. We start proving part (a). Since zκ is in the COMPUTE regime we imme-
diately get zκN+1 = 0. Assume, by way of contradiction, that there exists an in-
dex 1 ≤ i ≤ N such that zκi = 1 and zκi+1 = 0. First assume gκi is correct. Then
γκi,1 = γκi,2 = 0 and γκi,3 = 1 by Lemma 5(a). This and the fact that zκi+1 is biased
to 0 implies that zκi = 0, a contradiction. Now assume gκi is not correct. Then, by
Lemma 5(b), gκi is indifferent w.r.t. edges of type 1 but w.r.t. the edges only in type
8 flipping would improve her happiness. If 3n + 1 ≤ i ≤ N this already implies
that gκi would gain by switching, a contradiction. For the outputs and negated out-
puts, i.e., 1 ≤ i ≤ 2n, we know by Lemma 6 that gκi is indifferent w.r.t. edges in
type 4. Moreover for the gates that represent the better neighbouring solution, i.e.
2n + 1 ≤ i ≤ 3n, we know by Lemma 2(a) that gκi is indifferent w.r.t. edges in type
5. (Recall that wκi is just another name for gκ2n+i.) In either case, gκi would gain by
switching, a contradiction. Thus, zκi = 0 for all 1 ≤ i ≤ N . It remains to show that
zκ0 = 0 and yκ = 1. Since zκ1 = 0 and zκ is in the COMPUTE regime, we get (by
inspection of type 3 edges) that zκ0 = 0 which then implies yκ = 1. This completes
the proof of part (a).

To see part (b), observe that dκ = 0 together with the bias of yκ to 0 implies
yκ = 0. Now since yκ = 0 and dκ = 1 the bias of zκ0 enforces zκ0 = 1. The rest is by
induction since zκi = 1 and the bias directly implies zκi+1 = 1 for all 0 ≤ i ≤ N . This
completes the proof of part (b). ut

We now continue with the proof of Theorem 3. Suppose we are in a Nash stable
outcome of the party affiliation game. For our proof we assume C(v0) ≥ C(v1). We
will point out the small differences of the other case afterwards. Since C(v0) ≥ C(v1),
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z0 is in the COMPUTE regime, i.e., all z0i are biased to 0 and y0 is biased to 1 (by
type 6). Thus, z0N+1 = 0.

The remainder of the proof splits depending on the coalition of z01 and z11 . By
Lemma 3 we know that zκ1 = 0 implies that all gates in Cκ are correct.

z01 = 1: By Lemma 3 we have z00 = 1 and y0 = 0. If d0 = d1 = 0 then d0 is better

off changing to 1 (by inspection of type 3 edges). If d0 = 1 then Lemma 7(a) implies
z01 = 0, a contradiction. If d1 = 1 and z1 is in the RESET regime then by Lemma 7(b)
and Lemma 4, v1 is indifferent w.r.t. type 1 edges. Thus v1 = η0. But then either
condition (ii) or (iii) for putting z1 in the COMPUTE regime (cf. type 6) are fulfilled.
So z1 has to be in the COMPUTE regime. Lemma 7(a) then implies z11 = 0. But
then the neighbourhood of d1 in type 3 is dominated by 0, a contradiction to d1 = 1.

z01 = 0 and z11 = 1: By Lemma 3 we have z10 = 1 and y1 = 0. Since C(v0) ≥ C(v1) we

know that z0 is in the COMPUTE regime. So z01 = 0 enforces z00 = 0 and y0 = 0. By
inspection of type 3 edges we have d0 = 0 and thus d1 = 1. First assume that z1 is
in the RESET regime, then z1i = 1 for all 0 ≤ i ≤ N + 1 and Lemma 4 says that the
inputs of all gates g1i are indifferent w.r.t. type 1 edges. In particular this holds for
v1 = (v1i )i∈[n], so v1 = η0. By Lemma 2(b), η0 = w0. Since z01 = 0, C0 is computing
correctly and thus w0 = w(v0). Combining this we get v1 = w(v0) which contradicts
our assumption that z1 is in the RESET regime. Thus z1 is in the COMPUTE regime.
Since d1 = 1 we can apply Lemma 7(a) to conclude z11 = 0, a contradiction.

z01 = 0 and z11 = 0: By Lemma 3 we have z00 = z10 = 0 and y0 = y1 = 1. Moreover

we know that both circuits are computing correctly. If d0 = 1 then d1 = 0 and d0

is indifferent w.r.t. type 3 edges. Since both circuits are computing correctly and
C(v0) ≥ C(v1), the type 4 edges enforce d0 = 0. But then d1 is indifferent w.r.t.
type 3 edges and the type 4 edges enforce d1 = 1. So, d0 = 0 and d1 = 1. If z1 is
in the RESET regime then Lemma 7(b) gives z11 = 1, a contradiction. Thus, z1 is
in the COMPUTE regime. Since d1 = 1 we can apply Lemma 2(b). This and the
fact that C0 is computing correctly implies η0 = w(v0). So z1 can only be in the
COMPUTE regime if v1 = w(v0). Since C(v0) ≥ C(v1) this implies that v0 = v1 is a
local optimum for the circuit C.

This finishes the proof in case C(v0) ≥ C(v1). The case C(v0) < C(v1) is com-
pletely symmetric except here the conclusion v0 = v1 in the very last sentence leads
to the contradiction C(v0) < C(v0). So this case can’t happen in a local optimum.

Note that throughout the construction we made sure that no node is incident to
more than one negative edge. This completes the proof of Theorem 3. ut

The instance produced by this reduction has the property that no node is indifferent
between the two coalitions. We will make use of this property later in the paper.

Corollary 1. OneEnemyPartyAffiliation is PLS-complete even if restricted to
instances where no player is ever indifferent between the two coalitions, i.e. One-
EnemyPartyAffiliation* is PLS-complete.



23

4 Individual stability

In this section, we study the computational complexity of finding individually stable
outcomes. We first provide a polynomial-time algorithm for 2-IS, which we define as
the problem of finding an individually stable outcome when at most two coalitions can
form, i.e., we restrict the maximum number of coalitions in the problem definition as
for PartyAffiliation. The main result in this section is that IS is PLS-complete. We
reduce from OneEnemyPartyAffiliation* that was shown to be PLS-complete
in the previous section. Our reduction uses exactly 5 coalitions, a restriction which
we enforce using supernodes. We leave open the computational complexity of the
problems 3-IS and 4-IS, where are most 3 or 4, respectively, coalitions can form.

Proposition 1. 2-IS can be solved in polynomial time.

Proof. We assume that there is at least one negative edge. Otherwise, the grand
coalition is Nash stable (and thus individually stable). The algorithm goes as follows:

Start with any bipartition. Move nodes with incident negative edges so that
they have a negative edge to the other coalition. In this process, each node will
move at most once, since after a move of a node u, there is a negative edge
between u and some other node v in the other coalition, and we will never need
to move either u or v again. In each of the two parts (coalitions), contract all
nodes with negative incident edges into a single node and call the contracted
nodes s and t. For any other node the new edge weights to s and t are the
sum of the original edge weights to the corresponding contracted nodes. Now
(ignoring all edges between s and t) compute a min cut between s and t via a
max flow algorithm and assign the nodes accordingly.

After the first stage, all nodes that we are about to contract have a negative edge
to the other coalition. So they are not allowed to join the other coalition. After the
contraction this property is preserved since the algorithm will not move contracted
nodes anymore. The flow algorithm operates only on positive edges and computes
a global minimum cut between s and t. Thus, the cut also maximizes the total
happiness of all non-contracted nodes. So none of these nodes have an incentive
to switch coalitions, since unilateral improvements would further increase the total
happiness (recall Observation 1). All performed steps of the algorithm can be done
in polynomial time. ut

Next we show that IS is PLS-complete2 when we do not impose a restriction on
the number of coalitions in the problem definitions as we did for 2-IS.

Theorem 4. IS is PLS-complete.

2 The version of Theorem 4 that appeared in [30] missed a special case that is dealt with here.
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Proof. Throughout this proof, “stability” refers to “individual stability”.
We start with an instance of OneEnemyPartyAffiliation*. The instance has

the property that no player is ever indifferent between the two coalitions that make
up a stable outcome. We add five supernodes which are connected by a complete
graph of sufficiently large negative edges. This enforces that in any stable outcome
the supernodes are in different coalitions, say 0, 1, 2, 3, 4. The supernodes are used
to restrict which coalition a node can be in in a stable outcome. This is achieved
by having large positive edges of equal weight to the corresponding supernodes. All
original nodes of the OneEnemyPartyAffiliation* instance are restricted to be
0 or 1.

We now show how to simulate a negative edge of OneEnemyPartyAffiliation*
by an IS-gadget. To do so, we replace a negative edge (a, b) of weight −w with the
gadget in Figure 5. Nodes a and b are original nodes and restricted to {0, 1}, node

3w w

2w

w
2

w
2

w

w

w

6w8wM + 8w

M

w

a

4

3

2

c d e f

1 02

3

b′

−M

M
2

−M

−M

w

b

a′

−M
Bias internal nodes

if a can improve then
bias c to 3
bias a′ to 2

else
bias a′ to {0, 1}
bias c to 2

end if
if b can improve then

bias b′ to 3
else

bias b′ to {0, 1}
end if

Fig. 5. Gadget to replace negative edges. M is a sufficiently large positive value.

a′ is restricted to {0, 1, 2}, node b′ is restricted to {0, 1, 3}, node c is restricted to
{2, 3, 4}, node d is restricted to {2, 4}, node e is restricted to {1, 2}, node f is re-
stricted to {0, 2}. As depicted in the gadget, nodes b′, c, d, e, and f have additional
edges to supernodes.

Coalitions 2, 3 and 4 are only used locally within the gadget. The pseudocode next
to the gadget describes how the internal nodes of the gadget are biased; a bias to a
set of coalitions should be interpreted as an individual bias to each coalition in the
set. In the pseudocode, checking whether a node can improve is w.r.t. her original
neighborhood. We use “look at” and “bias” as defined in the following lemma and
definition. In particular, we check if a node can improve by looking at all nodes in
her original neighborhood.
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Lemma 8. For any polynomial-time computable function f : {0, 1}k 7→ {0, 1, 2, 3}m
one can construct a graph Gf = (Vf , Ef , w) having the following properties: (i) there
exist s1, . . . , sk, t1, . . . , tm ∈ Vf , (ii) all edges e ∈ Ef are positive, (iii) f(s1, . . . , sk) =
(t1, . . . , tm) in any stable solution of the additively separable hedonic game defined by
Gf .

Proof. We first show how to construct a graph Gf ′ , which implements a function
f ′ : {0, 1}k 7→ {0, 1}4m. This part is similar to the proof of Lemma 1. We need a
slightly different proof here, because we cannot use negative edges as in Lemma 1.
To overcome this, our construction will use more than two coalitions, which was not
possible for the party affiliation games in Lemma 1. Afterwards, we show how to
augment Gf ′ to implement f : {0, 1}k 7→ {0, 1, 2, 3}m

Recall from Lemma 1 that for any polynomial-time computable function f ′ :
{0, 1}k 7→ {0, 1}4m one can construct a circuit C with polynomial many gates that
implements this function, where all gates are NOR gates with fan-in and fan-out
at most 2. Again, we organize the gates in levels according to their distance to C’s
output; output gates of C are at level 1.

We replace each gate gi at level ` with the gadget in Figure 6. Nodes u, v are
inputs and y is the output of the gate. Nodes u, v, y are restricted to {0, 1}. Nodes w
and x are internal to the gate and restricted to w ∈ {1, 2} and x ∈ {0, 2}, respectively.
By construction of the gadget, we have that in any Nash stable solution, y = 1 if and
only if u = v = 0. In other words y = NOR(u, v).

w

34`−1

34`−1

x

34`−2

34`−2

y

34`−3

102

≤ 34(`−1)

≤ 34(`−1)
34`

34`u

v

Fig. 6. NOR gate without negative edges

As in Lemma 1, u and v are also either output notes of some other gate of the
circuit, or they correspond to inputs of the circuit. In the latter case we connect u or
v to the corresponding input s-node by an edge of weight 34`+1.

To connect the output t-nodes, we need to augment Gf ′ in order to allow for the
extended range of the function f : {0, 1}k 7→ {0, 1, 2, 3}m. For each output node ti we
will use 4 outputs of Gf ′ .

For each of these four outputs, we first change the domain by using a slightly
modified NOR-gate. Observe that by changing the restrictions of nodes w, x, and
y in a NOR-gate and connecting them to different supernodes, we can change the
domain of the NOR gate to any two distinct values in {0, 1, 2, 3, 4}. E.g., if we want
y ∈ {2, 4} and y = 2 if and only if u = v = 0, then we can change the restrictions
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w ∈ {1, 3}, x ∈ {2, 3}, and y ∈ {2, 4}; and replace the edges of w, x, y to supernodes
2, 0, 1 by edges of the same weights to supernodes 3, 2, 4, respectively. Using this
idea, we first change the domain of the four outputs of C that correspond to ti to
{0, 4}, {1, 4}, {2, 4}, and {3, 4}, respectively. These four modified outputs are then
all connected to the output node ti (which we restrict to {0, 1, 2, 3}) with edges of
weight 1. Suppose that, under f , the value of ti is κ ∈ {0, 1, 2, 3}, then three of the
corresponding modified outputs of f ′ will take on value 4 and the remaining one
(which is uniquely determined) will take on value κ.

The claim follows since our construction fulfils properties (i), (ii) and (iii). ut
Definition 6. For a polynomial-time computable function f : {0, 1}k 7→ {0, 1, 2, 3}m
we say that Gf as constructed in Lemma 8 is a graph that looks at s1, . . . , sk ∈ Vf
and biases t1, . . . , tm ∈ Vf according to the function f .

Recall that the instance of OneEnemyPartyAffiliation* has the property
that no player is ever indifferent between the two coalitions that make up a stable
outcome. By scaling edge weights we can implement the “look at” required to bias
the internal nodes of the gadget without affecting their original preferences.

For the gadget in Figure 5, we say that node a is locked by the gadget if a = 1
and a′ = 0 or a = 0 and a′ = 1. Node b is said to be locked accordingly. The following
three lemmas describe the operation of the gadget. All three lemmas should be read
with the implicit clause: If the internal nodes (a′, b′, c, d, e, f) of Figure 5 are stable.
Let ¬u denote the complement of u over {0, 1}.
Lemma 9. Node c is either in coalition 2 or in coalition 3, while nodes d, e and f
are in coalition 2. If c = 2 then a′ = ¬a, and if c = 3 then b′ = ¬b.
Proof. We start by showing that c ∈ {2, 3}. By way of contradiction assume c = 4.
Then c = 4⇒ d = 4⇒ e = 1⇒ f = 0 and therefore a′ = ¬a ∈ {0, 1}. Together with
b′ ∈ {0, 1, 3} this directly implies that c can improve by choosing c = 2, contradicting
our assumption. Thus c ∈ {2, 3}. From c 6= 4 we immediately get d = 2 ⇒ e = 2 ⇒
f = 2. If c = 2 then the negative edges incident to a′ assure a′ = ¬a. Similarly, if
c = 3 then the negative edges incident to b′ assure b′ = ¬b. This completes the proof
the lemma. ut
Lemma 10. If neither a nor b can improve then a and b are locked by the gadget.

Proof. Since neither a nor b can improve, a′ and b′ are biased to {0, 1} and c is biased
to 2. If c = 2 then a′ = ¬a (by Lemma 9). So b′ has an edge of weight w to both 0
and 1. Together with the bias this implies b′ = ¬b. If c = 3 then b′ = ¬b. So a′ has
an edge of weight w to both 0 and 1. Together with the bias this implies a′ = ¬a. So
in both cases a′ = ¬a and b′ = ¬b. The claim follows. ut
Lemma 11. If a or b (or both) can improve then one of the nodes that can improve
is not locked while the other node is locked by the gadget. Moreover, if a (resp. b) is
not locked by the gadget then b′ = ¬b (resp. a′ = ¬a).
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Proof. We consider three cases: (i) only a can improve, (ii) only b can improve, (iii)
a and b can improve.
Case (i) (only a): Here c is biased to 3, a′ is biased to 2, and b′ is biased to {0, 1}.
First assume c = 2. Lemma 9 enforces a′ = ¬a which together with the bias implies
b′ = ¬b. But then the bias on c gives c = 3, a contradiction. Thus c = 3, which
enforces b′ = ¬b and with the bias implies a′ = 2. So a is not locked and b is locked.
Case (ii) (only b): Here c is biased to 2, a′ is biased to {0, 1}, and b′ is biased to 3.
First assume c = 3. Lemma 9 enforces b′ = ¬b which together with the bias implies
a′ = ¬a. But then the bias on c gives c = 2, a contradiction. Thus c = 2, which
enforces a′ = ¬a and with the bias implies b′ = 3. So a is locked and b is not locked.
Case (iii) (a and b): Here c is biased to 3, a′ is biased to 2, and b′ is biased to 3. If
c = 2 then Lemma 9 enforces a′ = ¬a, which together with the bias implies b′ = 3. So
in this case a is locked and b is not locked. If c = 3 then Lemma 9 enforces b′ = ¬b,
which together with the bias implies a′ = 2. So in this case a is not locked and b is
locked.

In every case both claims of the lemma are fulfilled. ut
To complete the proof we show that a stable outcome of the IS instance is also

a stable outcome for the OneEnemyPartyAffiliation* instance. Suppose the
contrary. Then there must exist an original node which is stable for IS but not for
OneEnemyPartyAffiliation*. Clearly such a node must be the node a or b for
some gadget. So either a or b (or both) can improve. But then by the first statement
in Lemma 11 one of the improving nodes is unlocked, say a. Since a was only incident
to one negative edge in the OneEnemyPartyAffiliation* instance, a cannot be
locked by any other gadget. Moreover, by the second statement in Lemma 11, a is
now connected in the gadget by a positive edge to the node b′ and b′ = ¬b. On the
one hand, if a = b then the original edge (a, b) contributes −w to a’s utility while now
a receives 0 from the edge (a, b′). On the other hand, if a 6= b then the corresponding
utility contributions are 0 and w. So if a changes strategy then the difference in her
utility w.r.t. b is the same in both problems, since we just shifted the utility of node
a w.r.t. b by w. So a is also not stable for IS, a contradiction. This finishes the proof
of Theorem 4. ut

5 Other veto-based stability concepts

In an IS outcome, a single player can veto another player joining her coalition, but
there is no restriction on leaving a coalition. The following proposition shows that
adding certain leaving conditions yields polynomial-time convergence from the all-
singleton partition.

Proposition 2. Any problem in column 3 of Table 1 can be solved in polynomial
time provided that the leaving condition requires that the leaving node has at least one
negative edge within the coalition. In particular, this holds for the problems in cells
3B, 3C, and 3D.
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Proof. We use local improvements starting from the set of singleton coalitions. Then a
player can make at most one improving step, since all edges in resulting non-singleton
coalitions will be positive because of the veto-in restriction, and so no player can leave
such a coalition. Hence we arrive at a stable outcome in at most |V | improving steps.

ut

Interestingly, requiring veto-out feasibility is already enough for polynomial-time
convergence even if we have no restriction on the entering condition. This stands in
contrast to Theorem 4.

Proposition 3. All problems in row C of Table 1 can be solved in polynomial time
by local improvements starting from any initial configuration and using at most 2|V |
improving steps.

Proof. To get a running time of 2|V | (rather than O(|V |2)) we restrict players from
joining a non-empty coalition to which they have no positive edge. This ensures
that whenever a player joins a non-empty coalition then this player (and all players
to which she is connected by a positive edge in the coalition) will never move again.
Moreover, a player can only start a new coalition once. It follows that each player can
make at most two strategy changes. In total we have at most 2|V | local improvements.

ut

6 sumCIS

Next we study sumCIS, where a deviating player’s total weight to the new coalition
is non-negative, and to the old coalition is non-positive. Even though deviations are
very restricted here, it is PLS-complete to compute a stable outcome.

Theorem 5. sumCIS is PLS-complete.

Proof. We reduce from LocalMaxCut. Consider an arbitrary instance of Local-
MaxCut with only (non-negative) integer edge weights. Recall that such an in-
stance can be cast as an instance of PartyAffiliation by negating the weights
of the edges. Let G = (V,E,w) represent the PartyAffiliation instance. For
each player i ∈ V let σi be the total weight of edges incident to player i, i.e.
σi =

∑
{i,j}∈E w({i, j}). Observe that σi is a negative integer. We augment G by

introducing two new players, called supernodes. Every player i ∈ V has an edge of
weight −σi

2
+ 1

4
to each supernode. The two supernodes are connected by an edge of

weight −M where M is sufficiently large (i.e., M >
∑

i∈V (−σi
2

+ 1
4
)). The resulting

graph G′ represents our sumCIS instance.
Consider a stable outcome of the sumCIS instance G′. By the choice of M the

two supernodes will be in different coalitions. Now consider any player i ∈ V . If i is
not in a coalition with one of the supernodes, then i’s payoff is non-positive. On the
other hand joining the coalition of one of the supernodes yields positive payoff, since
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2(−σi
2

+ 1
4
) + σi > 0. Thus, each player i ∈ V will be in a coalition with one of the

supernodes. So our outcome partitions V into two parts, say V1, V2.
It remains to show that any stable outcome for the sumCIS instance is also a

local optimum for the PartyAffiliation instance. Assume that the outcome of the
sumCIS instance is stable but in the corresponding outcome of PartyAffiliation
instance there exists a player i that can improve by joining the other coalition. W.l.o.g.
assume i ∈ V1. Then,

∑
s∈V1 w({i, s}) < ∑

s∈V2 w({i, s}). With σi =
∑

s∈V w({i, s})
and since σi is integer, we get∑

s∈V1
w({i, s}) ≤ σi

2
− 1

2
<
σi
2
<
σi
2

+
1

2
≤

∑
s∈V2

w({i, s}).

It follows that in the sumCIS instance, player i’s payoff is negative in her current
coalition V1 whereas joining V2 would yield positive payoff. This contradicts our as-
sumption that we are in a stable outcome of the sumCIS instance. The claim follows.

ut

7 Voting-based deviations

In this section we study the complexity of computing stable outcomes under various
voting-based stability requirements. We start by showing PLS-hardness for the case
where a deviating player needs a Tin majority in the target coalition but there is no
restriction on leaving coalitions.

Theorem 6. VoteIn is PLS-complete for any voting threshold 0 ≤ Tin ≤ 1.

Proof. We reduce from OneEnemyPartyAffiliation* represented by an edge-
weighted graph G = (V,E,w). Let ∆(G) be the maximum degree of a node in
G. Recall that, in every bipartition, no player is ever indifferent between the two
coalitions.

First observe that the case Tin >
∆(G)−1
∆(G)

is exactly the same as IS (for which we

show hardness in Theorem 4), since in this case one negative edge is enough to veto

a player joining a coalition. In the following we assume Tin ≤ ∆(G)−1
∆(G)

.
We augment G as follows:
For every negative edge (a, b) in G we introduce 2∆(G) − 2 new nodes, called

followers, and connect them with a and b as shown in Figure 7. Both (a and b) get
∆(G)− 1 followers and have a δ edge to each of them. Moreover, the followers have
also an edge of weight ε to the other node. Here 0 < ε < δ and δ is small enough
so that the preferences of the original players (a and b) are still determined only by
the original edges. In a stable outcome the followers will be in the same coalition as
their “leader”, i.e., the node to which they have a δ edge. In particular, in Figure 7,
the ∆ − 1 nodes above the negative edge will be in the same coalition as a and the
bottom ones will be with b. The presence of followers ensures that each negative edge
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Fig. 7. Gadget used for showing that VoteIn is PLS-complete. The gadget augments negative edges with
followers that ensure that there is always a Tin -majority when a player enters a coalition.

to some coalition will be accompanied by ∆− 1 positive edges to the same coalition.
Thus, for any node and any (possibly empty) coalition, either the node does not have
an edge to the coalition or at least a ∆−1

∆
fraction of those edges are positive. Since

Tin ≤ ∆−1
∆

, we get that there is always a Tin-majority for entering a coalition. In
other words, in a stable outcome of the VoteIn instance, the voting doesn’t impose
any restrictions.

To ensure that any stable outcome for the VoteIn instance has only two coali-
tions we further augment G by introducing two supernodes, as used in the proof of
Observation 2. The claim follows. ut

VoteOut is conceptually different from VoteIn. In VoteOut a coalition of two
players connected by a positive edge is vote-out stable. This makes it hard to restrict
the number of coalitions. Doing this is probably the key for proving PLS-hardness
also for VoteOut. For the following theorem we consider a version of VoteOut
where the number of coalitions is restricted by the problem. Let k-VoteOut be
the problem of computing a vote-out stable outcome when at most k coalitions are
allowed. Observe that for any k ≥ 2 such a vote-out stable outcome exists and that
local improvements starting from any k-partition converge to such a stable outcome.

Theorem 7. k-VoteOut is PLS-complete for any voting threshold 0 ≤ Tout < 1
and any k ≥ 2.

Proof. Our reduction is from OneEnemyPartyAffiliation, but we first reduce
to the intermediate problem OneEnemyNashStable, which is a restricted version
of NashStable where each player is only incident to at most one negative edge.
Consider an instance of OneEnemyPartyAffiliation which is represented as an
edge-weighted graph G = (V,E,w). We augment G with two supernodes in exactly
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the same way as in Theorem 6. This ensures that any stable outcome of the OneEn-
emyNashStable instance uses only two coalitions and thus is also a stable outcome
for the OneEnemyPartyAffiliation instance. Hence, OneEnemyNashStable
is PLS-complete.

We now reduce from OneEnemyNashStable to k-VoteOut. Let G be the
graph corresponding to an instance of OneEnemyNashStable. Let ∆(G) be the
maximum degree of a node in G. We augment G as follows: We introduce s · k ·∆(G)
new nodes where s is an integer satisfying s ≥ Tout

1−Tout . Those nodes are organized in
s ·∆(G) complete graphs of k nodes each. All the edges in the complete graphs have
weight −M where M is sufficiently large (M > |V | ·∆(G) · ε will do). Moreover, we
connect every original node u ∈ V to every new node with an edge of weight −ε,
where ε > 0.

By the choice of M and since at most k coalitions are allowed, in any stable
solution there will be one node from each complete graph in each of the k coalitions.
This shifts the utility of each player i ∈ V with respect to each coalition by −s·∆(G)·
ε. Moreover, every original node has at least s ·∆(G) negative edges to each coalition.
Since each node is incident to at most ∆(G) positive edges, it follows that the fraction
of negative edges to each coalition is at least s

s+1
≥ Tout . Thus, in every stable outcome

all nodes u ∈ V have a Tout -majority for leaving their coalition. This implies that in
the corresponding outcome of the OneEnemyNashStable instance, no player can
improve her utility by joining one of the k coalitions used in k-VoteOut. Moreover,
in every stable outcome the utility of each node u ∈ V with respect to the set of
original nodes V is non-negative, since u has at most one negative incident edge in
the OneEnemyNashStable instance and k ≥ 2. It follows that a stable outcome for
the k-VoteOut instance is also a stable outcome for the OneEnemyNashStable
instance. The claim follows. ut

It is an interesting open problem whether PLS-completeness also holds if the re-
striction on the number of allowed coalitions is dropped. Can we construct a gadget
that imposes this restriction without restricting the problem a priori?

Since VoteIn and a restricted version of VoteOut are PLS-complete it is inter-
esting to study the combination of both problems. What happens if we require vote-
in stability and vote-out stability? With a mild assumption on the voting thresholds
Tin , Tout , we establish:

Theorem 8. For any instance of VoteInOut with voting thresholds Tin , Tout >
1
2

local improvements from any initial configuration converge in at most 2|E| steps.

Proof. For any outcome p define a potential function Φ(p) = Φ+(p) − Φ−(p), where
Φ+(p) (resp. Φ−(p)) is the number of positive (resp. negative) internal edges, i.e. edges
not crossing coalition boundaries. Consider a local improvement of some player i from
coalition p(i) to p′(i). Since Tout >

1
2
, player i has either no edges or more negative

than positive edges to p(i). Likewise, since Tin >
1
2
, player i has either no or more

positive that negative edges to p′(i). So, Φ(p) cannot decrease by a local improvement.
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A player i that performs a local improvement will either have edges to p(i) or to p′(i),
so Φ(p′) > Φ(p). The claim follows since −|E| ≤ Φ(p) ≤ |E| and Φ(p) is integer. ut

8 Open problems

In this paper, we studied the computational complexity of finding stable outcomes
in hedonic games. We show that NashStable is PLS-complete. On the other hand
we show that CIS, that is finding a stable outcome where any member of a coalition
can block (veto) a player from leaving or joining, can be solved in polynomial time.
For the case where a player can only block a player from joining, we show that the
corresponding problem IS is PLS-complete (Theorem 4). Our reduction to IS uses
five coalitions. On the other hand, 2-IS, where the number of coalitions is restricted
to two, is solvable in polynomial time (Proposition 1). This leaves open the complex-
ity of 3-IS and 4-IS, where the number of coalitions is restricted to three or four,
respectively.

We then study cases where members of a coalition can vote on whether to allow a
player to leave or join a coalition. The problem VoteIn is parameterized by a voting
threshold, Tin ∈ [0, 1]. IS can be seen as VoteIn with Tin = 1. Theorem 5 shows
hardness for 0 ≤ Tin < 1, so in fact we show that VoteIn is PLS-complete for all
voting thresholds. In contrast, we show that the case of VoteOut with Tout = 1 is
polynomial-time solvable (Proposition 3). This suggests that VoteOut is concep-
tually different from VoteIn. Indeed, it seems difficult to restrict the coalitions in
this case. We do show that k-VoteOut, where we restrict the outcome to have at
most k coalitions, is PLS-complete for 0 ≤ Tout < 1, but we leave the complexity of
VoteOut as an interesting open problem.

On the positive side, we show that local improvements converge in polynomial
time in the case of requiring both vote-in- and vote-out- stability with Tin , Tout >

1
2
.

We leave open the case of VoteInOut with voting thresholds that do not satisfy
these conditions, in particular the case of Tin = Tout = 1

2
. We also leave open the case

of finding an outcome that is vote-in and sum-out stable.
Elsässer and Tscheuschner [27] showed that local max cut is PLS-complete even

when the input graph has degree at most five. In contrast, Poljak [44] gives a
polynomial-time algorithm for graphs with degree at most three. It would be in-
teresting to study degree restrictions for additively-separable hedonic games.
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