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Abstract Background. Density models are fundamental in machine learn-
ing and have received a widespread application in practical cognitive modeling
tasks and learning problems.
Methods. In this work, we introduce a novel deep density model, referred
to as Deep Mixtures of Factor Analyzers with Common Loadings (DMCFA),
with an efficient greedy layer-wise unsupervised learning algorithm. The model
employs a mixture of factor analyzers sharing common component loadings in
each layer. The common loadings can be considered to be a feature selection
or reduction matrix which makes this new model more physically meaning-
ful. Importantly, sharing common components is capable of reducing both the
number of free parameters and computation complexity remarkably. Conse-
quently, DMCFA makes inference and learning rely on a dramatically more
succinct model and avoids sacrificing its flexibility in estimating the data den-
sity by utilizing Gaussian distributions as the priors.
Results and Conclusions. Our model is evaluated on five real datasets and
compared to three other competitive models including Mixtures of Factor An-
alyzers (MFA), MFA with common loadings (MCFA), Deep Mixtures of Factor
Analyzers (DMFA), and their collapsed counterparts. The results demonstrate
the superiority of the proposed model in the tasks of density estimation, clus-
tering and generation.
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1 Introduction

Density models constitute a family of effective machine learning methodolo-
gies that connect density estimation and manifold discovery [8, 22]. They are
employed to solve many core tasks that estimate probabilities in terms of the
data distributions. In the recent years, they have been receiving increasing
interest in multi-layered or deep architectures. Compared to shallow models
of similar scale, deep models greatly reduce the computational cost of learn-
ing, tend to resist overfitting through parameter sharing between successive
layers [24], and can effectively promote cognitive capabilities [5, 7]. The knowl-
edge of cognitive agents can be modeled using more complex probability dis-
tributions and a deep density model can provide better support for simulating
complex data. Deep density models have theoretical and practical significance
in many disciplines and have attracted considerable attention in unsupervised
learning, prediction, reconstruction, clustering, and simulation [21]. Further-
more, probabilistic graphical models have always had a fundamental role in
constructing sophisticated density estimates in deep density models, such as
the restricted Boltzmann machine (RBM), Gaussian restricted Boltzmann ma-
chine (GRBM), and directed belief networks (DBNs) [1, 10, 11]. Despite their
lower computational cost than shallow architectures, deep models still present
computational difficulties in practice; for instance, RBMs are tricky to train
with a large number of free parameters, while DBNs require costly inference
procedures [23, 24, 32].

To mitigate this issue, Tang et al. proposed a deep density model utilizing
a greedy layered unsupervised learning algorithm, referred to as deep mixtures
of factor analyzers (DMFA) [24]1. Unlike previous methods, this model is a
directed graphical model which has been developed by adopting mixtures of
factor analyzers (MFA) [19]. In particular, DMFA extends the same scheme
as MFA to train each hidden layer and takes the expectation-maximization
(EM) algorithm to maximize the log-likelihood in learning [9, 18]. Its inference
and parameter computation procedure is more straightforward than previous
methods. However, it is a highly parameterized model where the number of
parameters may not be manageable. In real applications, overfitting could
become a severe problem in DMFA, because it adopts multiple different factor
loadings. Additionally, the latent factors are specified to follow a multivariate
standard normal prior, which may limit its flexibility and hinder the accurate
estimation of the density.

This work addresses the previous limitations by proposing a novel greedy
layer-wise learning approach, referred to as the Deep Mixtures of Factor Ana-
lyzers with Common loadings (DMCFA). In developing the underlying idea, we
extend the MFA model sharing a common component factor loading (MCFA) [4]
when constructing a deep generative framework. The principal improvement is
the common component factor loading which can be considered to be a feature

1 The greedy layer-wise algorithm is a generative model with many layers of hidden vari-
ables.
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(a) Graphical model of DMFA. (b) Graphical model of DMCFA.

Fig. 1 Graphical models of a two-layer DMCFA and DMFA.

selection or dimensionality reduction matrix. This, consequently reduces con-
siderably the number of model parameters [3, 25]. DMCFA can simultaneously
perform deep learning or clustering, together with dimensionality reduction or
feature selection. In this case, a common loading can be well justified and
is physically more meaningful. This setting can potentially further increase
the performance, particularly in cases of large number of components or fea-
tures [26]. The proposed model is also flexible in estimating the data density
by utilizing the learnable Gaussian distributions as the priors for each latent
unit.

Fig. 1(b) offers an overview of the proposed model through a graphical
example of a two-layer DMCFA. The first layer is constructed with two global
parameters, which are the factor loading and the noise covariances. In the
second layer, the common parameters are extended to each latent unit. While
we introduce the mean and variance matrices of the latent factors, the number
of free parameters is still dramatically reduced compared to that of DMFA.
Under a two-layer model, the total number of free parameters in DMCFA is
far smaller than in DMFA; approximately, we have pq + cqd << cpq + sqd,
where d < q � p (the dimensionality), and the total number of second layer
components s is a multiple of the total number of first layer components c.
It is easy to verify that DMCFA utilizes approximately only 1/c parameters
of DMFA (details can be found in Section 4.2). Therefore, our model has the
notable advantage of dealing with multivariate data with a larger number of
clusters or with insufficient instances.

To optimize the proposed model, we further develop a simple yet efficient
EM-type algorithm for both learning and inference. The modified EM algo-
rithm converts the M-step into 2-layer loops and then performs learning in
each layer independently. Compared to the classical MCFA model, the layers
are configured to contribute to a simpler objective function within the EM
algorithm with the same scale of mixtures [2]. This makes DMCFA inference
and learning more straightforward and efficient and less likely to get trapped
into a local optima. Furthermore, the overfitting risk and the computational
cost are reduced by sharing the factor loadings amongst the layers. With mild
variational inference assumptions, when the bound is tight, any increase in the



4 Xi Yang et al.

bound will improve the true log-likelihood of the model. Therefore, the higher
layer has the ability to model a better aggregated posterior of the first layer,
showing that the proposed deep model would be much better than training a
shallow model.

The remainder of this paper is structured as follows. Section 2 introduces
some related work, while the MFA and MCFA approaches are briefly reviewed
as background in Section 3. The proposed method and inference procedure
are described in Section 4. Section 5 demonstrates the density estimation and
clustering results on four datasets and also includes the generation results on a
benchmark dataset. The results obtained illustrate the improved performance
of DMCFA over MFA, DMFA, MCFA, and the shallow forms collapsed from
the deep models. Finally, a conclusion is given in the last section. This paper
is an extension of [30], based on the reorganization of the method description,
supplementing experiments for the generation capability, and expanding the
details of related work and the computational complexity.

2 Related Work

In the recent years, deep learning has developed very rapidly, initiating interest
in designing a new type of deep architectures from classical shallow models,
such as using the shallow feature learning modules to derive deep architec-
tures [33], or combining simple linear projections, such as PCA, with a CNN
learning structure [34]. Deep density models are also frequently used in cog-
nitive computation and deep learning communities. They have been used for
several applications, such as feature extraction, object discrimination, quan-
titative analysis and medical diagnosis [27, 28, 31, 32]. Recent efforts have
moved towards training deep density models with directed graphical models,
aiming to find structures within the latent space in an unsupervised manner.
For example, [6] focused on learning convolutional factor analysis with non-
parametric Bayesian priors. [22] learned a latent representation with a simple
factorial density function by constructing bijective deterministic maps. In-
spired by the variational auto-encoder (VAE), a deep generative model is used
to estimate data density with neural networks, from which unseen samples
can be generated [12]. These deep generative models can encode rich latent
structures.

The work most related to the proposed model is the deep mixtures of
factor analyzers (DMFA), which is a deep directed graphical model utilizing
the multi-layer factor analyzers developed by adopting an MFA in each hidden
layer [19, 24]. MFA introduces a multivariate standard normal prior that is
specified via the latent factors for all components. The principal method is
to sample the data regarding the posterior distributions of the current layer
and treat it as the training data for the next layer. Fig. 1(a) presents an
instance of DMFA, where the observation vector and the first hidden layer
are treated as an MFA component, while the parameters are used for the
learning. After fixing the first layer parameters, the priors of next layer MFAs



A Novel Deep Density Model for Unsupervised Learning 5

are replaced by sampling the hidden units of the current layer. The same
scheme can be extended to the training of the subsequent layers. Importantly,
different loading matrices are exploited for the different components in DMFA.
Therefore, if the data has large feature dimensionality and/or small number
of observations, the number of parameters may not be manageable. On the
other hand, different loading matrices may be even less physically meaningful.
In comparison, the proposed DMCFA model adopts the common component
factor loadings to cope with these situations and provides both theoretical and
empirical justification for its effectiveness.

The proposed model is also compared with several classical shallow models.
With regard to the model itself, a deep MCFA structure can be collapsed into
a standard shallow MCFA by multiplying the factor loading matrices at each
layer. However, since the lower layer shares the parameters with the compo-
nents at the upper layers, the learning of these two models is entirely different.
For a shallow model, large-scale mixtures could render the objective function
sufficiently complex. On the other hand, the model parameter redundancy may
also lead to overfitting during learning. If we assume that d < q � p denotes
the number of the second and the first layer factors, and that the number of
attributes and the second layer component number are an a multiple of the
first layer component number, then we have s > ac. A standard shallow MFA
has s components and q factors. The reduced parameters are then calculated
as T = spq − (cpq + sqd) = q (p(s− c)− ds) > 0.

3 Mixtures of Factor Analyzers with Common Factor Loadings

The MCFA model considered here is fundamental to the proposed method. For
completeness, we briefly review the formulation of MFA models and then intro-
duce the MCFA one. We assume that a p-dimensional vector of observed vari-
ables y can be generated through a linear combination with a q-dimensional
vector of latent factors z potentially corrupted by additive uncorrelated Gaus-
sian noise ε. In general, q is less than p and use this to analyze high-dimensional
patterns. By separating the observations independently into c non-overlapping
components, the MFA approach is modeled as

y =

C∑
c=1

Mc + Wczc + εc, with probability πc (c = 1, . . . , C),

where Mc ∈ Rp is the mean vector of each component, Wc ∈ Rp×q is the
factor loading matrix of each component, zc denotes the q × p matrix of the
cth component factor, and πc denotes the mixing proportion. The independent
noise εc follows N (0,Ψc). The latent factor follows a normal distribution with
zero mean and an identity covariance matrix Iq. Differently, MCFA assumes
that the prior of the latent factor follows a Gaussian density with mean ξc
and covariance Ωc, defined via

p(z|c) = N (zc; ξc,Ωc).
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By introducing the common factor loadings A ∈ Rp×q, the directed gener-
ative MCFA model is defined as

y = A

C∑
c=1

zc + ε, with probability πc (c = 1, . . . , C). (1)

The vector of independent noise ε follows N (0,Ψ), where Ψ is a diagonal
p × p matrix, while c ∈ 1, . . . , C denotes the component indicator over the C
total components of the mixture. πc denotes the mixing proportions, that is

p(c) = πc,

C∑
c=1

πc = 1.

With the above definitions, the probability density function of the visible
variable y, given the latent variables c, and z can be written as

p(y|c, z) =
C∑

c=1

πcN (y; Azc,Ψ).

This density can also be written through a shallow form by integrating out
the latent factors, as

p(y|c) =
∫
z
p(y|c, z)p(z|c)dz = N (y;µc,Σc), (2)

µc = Aξc, Σc = AΩcA
T + Ψ.

Finally, the marginal densityMCFA(y;θ) is given by a mixture of Gaussians
with constrained mean and covariance, as

p(y) =
C∑

c=1
p(c)p(y|c),

MCFA(y;θ) =
C∑

c=1
πcN (y; Aξc,AΩcA

T + Ψ).

Here, the model parameters are denoted by θ = {πc,A,Ψ, ξc,Ωc}, for c =
1, . . . , C.

Following the parameter analysis in [29], we can estimate the difference of
the number of parameters between MFA and MCFA to be (c−1)p+[c(q+1)−
q](p− q), assuming a mixture model setting with c > 1 and p > q. This result
indicates that, compared to MFA, the MCFA model can achieve significant
parameter reduction.
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3.1 Inference

For inference, the posterior probability over the components of the mixture
can be found by

q(z, c|y;θ) = pr{ωc = 1|y} .

If y belongs to the cth component, we have ωc = 1, otherwise ωc = 0. E[ωc|y]
denotes the expected value of the component labels. By using Bayes’ rule, the
formulation of the posterior can be expressed as

q(c|y;θ) =
p(y|c)p(c)∑C

h=1 p(y|h)p(h)

=
πcN (y; Aξc,AΩcA

T + Ψ)∑C
h=1 πhN (y; Aξh,AΩhAT + Ψ)

. (3)

More concisely, the posterior distribution of the latent factors can be given as

p(z|y, c) = N (z;κc,V
−1
c ), (4)

V−1c = Ω−1c + ATΨ−1A, (5)

κc = ξc + V−1c ATΨ−1(y − µc).

This is also a multivariate Gaussian density on z given y and c. The log-
likelihood function for θ based on the complete data y is then given by

L(θ|y, ω, z) =

C∑
c=1

∫
z

q(z, c|y;θ)

{log p(y|c, z;θ) + log p(z|c) + log πc}dz, (6)

where q(z, c|y;θ) is the posterior distribution. The bound is tight when q(z, c|y;θ) =
p(z, c|y;θ).

The parameter estimation of MCFA, is conducted with an EM framework.
Hence, the E-step requires evaluating the conditional expectation of Eq. 6,
which is termed as the Q-function

Q(θ|θ(k)) = E[L(θ|y, ω, z)],

where θ(k) denotes the current estimate. During the M-step, maximizing the
expected log-likelihood is equivalent to having ∂Q(θ|θ(k))/∂θ = 0 for all pa-
rameters and updating them accordingly.
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4 Deep Mixtures of Factor Analyzers with Common Factor
Loadings

This section describes how to generalize an MCFA to multiple layers. In the
shallow form, the latent factors in each component would be distributed ac-
cording to a single Gaussian. However, this cannot describe the latent factors
in practice, and the model can be improved by using a more powerful mixture
of Gaussian priors. With this in mind, it is straightforward to form the sec-
ond layer. Considering the same assumption as in MCFA, observed variables
y ∈ Rp, latent factors z ∈ Rq and non-overlapping components c are set in the
first layer of the DMCFA. After a shallow MCFA training reaches convergence,
the prior of latent factors in the first layer will be replaced by an MCFA prior

p(z|c) =MCFA(z
(1)
c ;θ(2)

c ). (7)

In the second layer of the cth component, z
(1)
c is the q-dimensional input pat-

tern for the second layer, which is a sample drawn using Eq. 4, and θ(2)
c denotes

the new parameters for the second MCFA layer specific to the component c of
the first layer. The same scheme can be extended to train more layers.

In the deep model, mc ∈ {1, . . . ,Mc} is set to be the sub-component in-
dicator variable2, which is associated with the first layer component c. In the

second layer, the mixing proportion π
(2)
mc of component mc is defined as

p(mc) = π(2)
mc
,

Mc∑
mc=1

π(2)
mc

= 1.

The old MCFAs prior is replaced by a new prior of DMCFA

p(z, c) = p(c)p(z|c)⇐ p(z, c) = p(c)p(mc|c)p(z|mc).

Different from the first layer where mc is specific to the first layer com-
ponent, a simpler DMCFA formulation is established by enumerating all the
second layer components. A new indicator s ∈ {1, . . . , S} is denoted as the
second layer component indicator variable. S is the total number of the sec-
ond layer components satisfying S =

∑C
c=1mc. Therefore, the new mixing

proportions are given by

π(2)
s = p(s) = p(cs)p(s|cs),

S∑
s=1

π(2)
s = 1,

where cs is the first component associated with s, and every s belongs to
exactly one c.

Specifically, the density on factors z(1) follows the joint density over z(2)

and s according to

p(z(1), c, z(2), s) = p(z(1), c|z(2), s)p(z(2)|s)p(s).
2 One component of the first layer can be divided into Mc sub-components. The size of

the sub-components in each first layer component need not be the same.
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It is also necessary to consider the following density functions

p(z(1), c|s, z(2)) = N (z(1); A(2)
c z(2),Ψ(2)

c ),

p(z(2)|s) = N (z(2); ξ(2)s ,Ω(2)
s ).

According to Eq. 2, the Gaussian density can be expressed on the observed
data y given z(1) and c, as

p(y|c, z(1)) = N (y; A(1)z(1),Ψ(1)).

Here, A(1) ∈ Rp×q, Ψ(1) ∈ Rp×p, z(1) ∈ Rq, A
(2)
c ∈ Rq×d, Ψ

(2)
c ∈ Rq×q,

z(2) ∈ Rd, ξ(2)s ∈ Rd and Ω
(2)
s ∈ Rd×d.3

The deep model can also be collapsed into a standard MCFA by integrating
out the first latent factors. According to Eq. 3, if the first layer factors z(1) are
integrated out, we obtain

p(y|z(2), s) =

∫
z(1)

p(y|c, z(1))p(z(1)|s, z(2))p(z(2)|s)dz(1)

= N (y; A(1)(A(2)
c z(2)),A(1)Ψ(2)

c A(1)T + Ψ(1)).

By further integrating out the second layer factors z(2), the final shallow form
is then obtained by

p(y|s) =

∫
z(2)

p(y|z(2), s)dz(2) = N (y;µs,Σs), (8)

µs = A(1)(A(2)
c ξ(2)s ), (9)

Σs = A(1)(A(2)
c Ω(2)

s A(2)T

c + Ψ(2)
c )A(1)T + Ψ(1).

Finally, the marginal density of the shallow model is given by a mixture of
Gaussians with the complete data y, given as

p(y) =

S∑
s=1

p(s)p(y|s) =

S∑
s=1

πsN (y;µs,Σs).

The parameters of the shallow form of DMCFA can be similarly denoted as
θs = {πs,A,Ψ,Ac,Ψc, ξs,Ωs}, for s = 1, . . . , S, and c = 1, . . . , C.

3 The superscript represents which layer these variables belongs to. Since in the second
layer, the sub-components corresponding to a component of the first layer share a common

loading and the variance of the independent noise, A
(2)
c and Ψ

(2)
c are marked with the

subscript c. d corresponds to the subspace dimensionality in the second layer, where d < q.



10 Xi Yang et al.

4.1 Inference and Learning

According to Eq. 7, we sample z(1) ∼ p(z|y, c) by selecting the component
ĉ = argmax

c
q(c|y;θ). Then z(1) and ĉ are treated as the input data for the

second layer. The posterior probability q(s|z(1), ĉ) and the posterior distribu-
tion q(z(2), s|z(1), ĉ) are computed similarly by the inference for the first layer
shown in Eq. 3,4.

The algorithm we proposed for training DMCFA is based on the EM algo-
rithm. Since the mixtures are independent in a layer due to the greedy layer-
wise optimization, the EM algorithm can be used to estimate the parameters
of each mixture and find a local maximum of the log-likelihood. Given the
complete data y, the first layer log-likelihood objective function is formulated
as in Eq. 6. With regard to the second layer parameters θ(2)

c which are specified
for component c of the first layer, the DMFA formulation seeks to substitute
a more effective prior log p(z(1)|ĉ;θ(2)

c ).

Holding the first layer parameters fixed, maximizing Eq. 6 with the second
layer parameters is equivalent to maximizing

L(θ(2)
c |z(1)) =

∑
s∈c

∫
z(2)

q(z(2), s|z(1), ĉ;θ(2)
c )

{log p(z(1), ĉ|z(2), s;θ(2)
c ) + log p(z(2)|s) + log p(s)}dz(2).(10)

The second layer parameter vector consists of θ(2)
c = {πs,Ac,Ψc, ξs,Ωs}, for

s ∈ c, and c = 1, . . . , C.

In the layer-wise learning scenario, an MCFA is trained in a standard way
for the first layer. For the second layer, the parameters of the first layer become
fixed, and new training data is sampled depending on the posteriors from the
first layer. The modified EM-algorithm is developed to alter the M-step into
2-layer loops. The procedure is summarized in Algorithm 1.

Note that, since A is orthogonal, any upper triangular matrix U can be
absorbed in A by setting A ← AUT , where U is the Cholesky factor of Ωc.
Therefore, the updated estimates ξc and Ωc are adjusted by setting ξc ← Uξc
and Ωc ← UΩcU

T .

Every deep density model can be converted to an equivalent shallow form
with the same density function. With the comparison of the layer-wise train-
ing, the shallow MCFA collapsed from a DMCFA is also possible to run EM
steps. This process can be thought of as a ”backfitting” procedure beneficial in
preventing overfitting. In this case, the density on y given c can be written as
in Eq. 8. For the sth mixture, the posterior probability of the shallow MCFA
can be expressed as

q(s|y;θs) =
πsN (y;µs,Σs)∑S

h=1 πhN (y;µh,Σh)
.
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Algorithm 1: The procedure of the 2-loop M-step

Input : Initialized paremeters θ = {πc,A, ξ,Ωc,Dc}, and the initial value of the
log-likelihood.

Output: Optimal values of parameters θ.

M-step :
Update the global parameters θg = {A, D} :

Re-estimate the parameters A,D by maximization of E[L(θc|y, ωc, zc)].

Calculate partial derivatives of the expectation equations for each global
parameters ∂Q(θ|θ(k))/∂θg = 0.

Update the local parameters θl = {πc, ξc,Ωc} :
for c = 1 to C do

Re-estimate the parameters πc, ξc,Ωc by calculating partial derivatives
of the expectation equations for each local parameters
∂Q(θ|θ(k))/∂θl = 0.

We are also interested in the posterior distribution of the latent factor zs
which is collapsed to a shallow form, described by

p(zs, s|y) = N (zs;κs,V
−1
s ),

V−1s = (A(2)
c ΩsA

(2)
c + Ψ(2)

c )−1 + A(1)T Ψ(1)−1

A(1),

κs = A(1)T ξs + V−1s A(1)T Ψ(1)−1

(y − µs).

The DMCFA roughly reduces (s − c)qd parameters from this shallow form.
This shows that the shallow learning method can learn the same functions
theoretically, but requires a much larger number of parameters than the deep
learning methods [5].

4.2 Complexity Analysis

To measure the inference efficiency, the time complexity per iteration is calcu-
lated on the E-step and M-step. It is shown that the per-iteration complexity
of our model outperforms the standard EM-algorithm and the free parameters
are further reduced compared with the recently proposed deep mixture model.

The following calculations are all based on the two-layer mixture model, in
which n and p denote the sample size and the number of dimension, c and s
are the number of mixtures in the first and second layer, and q and d are the
dimensions of representation space in the first and second layer, respectively.
A rough estimation of the computation complexity is calculated similar to [15].
With a multi-linear Gaussian likelihood model, both DMFA and DMCFA have
same per-iteration complexity in E-step: O(cn(p + q + 1)) on the first layer
and O(sn(q+ d+ 1)) on the second layer. DMFA yields O(3cnp) and O(3snq)
operations on the first and second layers per-iteration by using the standard
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M-step. In our proposed DMCFA model, an efficient M-step is developed by
updating the global parameters and local parameters alternatively. DMCFA
yields O(2np+2cnq) operations in the first step and O(2nq+2snd) operations
in the second step. Clearly, the operations of the proposed model are mainly
reduced when updating the global parameters of the common factor loadings.

Since a common component loading matrix is shared across the compo-
nents, the number of free parameters is dramatically reduced when compared
with DMFA, even though the mean and variance matrices of latent factors is
introduced. In practice, the diagonal matrix covariance just has p parameters,

and the covariance matrix contains q(q−1)
2 constraints. From all above settings,

the total numbers of parameters are

TDMCFA = s− 1 + p+ pq − q2 + c[2q +
q(q + 1)

2
+ qd− d2] + s

d2 + 3d

2
.

TDMFA = s− 1 + c[2p+ pq − q(q − 1)

2
] + s[2q + qd− d(d− 1)

2
].

Practically, in the deep mixture models, it is usually the case that p �
q > d, c > 1, and the second layer component number s must be a positive
integer multiple of c. TDMCFA can be roughly given as p(1+ q), while TDMFA

is approximately c(2+q)p. Hence, TDMCFA/TDMFA = (1+q)/(2c+qc) < 1/c,
which means that the proposed DMCFA merely uses 1/c parameters of DMFA.

5 Experiments

In this section, we evaluate the DMCFA’s performance for model-based density
estimation and clustering using real datasets with: two standard models MFA
and MCFA, one deep model DMFA, and the shallow forms collapsed by the
deep models. Moreover, we conduct a qualitative experiment on a benchmark
dataset to evaluate the performance in terms of generation.

5.1 Experimental Setup

In the experiment, we follow the work of DMFA [24], where according to their
findings, adding a third layer can only bring little value. Therefore, we im-
plement two layers for all deep models and for all experiments. The same
mixture settings are used in the second layer. To reduce clutter, the scenarios
of density estimation and clustering exploit the same parameter settings. The
detailed settings of two deep models are described in Table 1. These settings
are achieved by using a trial and error approach to get the best empirical
performance. For the standard MFA and MCFA, we set the same number of
mixture components and factors, with the first layer of their “deep” counter-
parts.
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Table 1 Parameter settings. ]Layers denotes the layer numbers of the deep models. MIX
and FAC denote the number of mixture components and the factors, respectively.

Dataset ]Layers
DMFA DMCFA

MIX FAC MIX FAC

ULC-3
1 3 90 3 90
2 6 20 6 8

Coil-4-proc
1 4 16 4 16
2 8 8 8 12

Leuk72 3k
1 3 16 3 16
2 6 6 6 6

USPS1-4
1 4 16 4 10
2 8 8 8 8

To assess the model-based clustering performance, we compute the error
rate (ERR) defined as

ERR = 1−
∑N

i=1 δ(ci,map(c
′
i))

N
,

where δ(x, y) = 1 if x = y and δ(x, y) = 0 otherwise, and N denotes the total
number of observations. The true labels and the result cluster labels are set to
c and c′, respectively. Smaller values indicate better clustering performance.

5.2 Datasets Description

We use an artificial dataset, a multivariate physical dataset and 3 image col-
lection datasets to evaluate the proposed model throughout this section. The
details are listed as below:

– ULC-3: The urban land cover (ULC) data consists of 3 types with 273
training samples, 77 test samples, and 147 attributes which are collected
by classifying a high resolution aerial image [13, 14].

– Leuk72 3k: This is an artificial dataset drawn from randomly generated
Gaussian mixtures [17]. There are 3 classes with 39 attributes including 54
training samples and 18 test samples.

– Coil-4-proc: This dataset is a collection of 4 objects consisting of gray-
scale images and each object has 72 samples [20]. These images discard the
background and downsampled to resolutions of 32× 32. We reshaped each
image to a 1024-dimensional vector. We divide the data into a training set
and a test set, with 248 samples and 40 samples separately by randomly
sampling.

– USPS1-4: This dataset contains 16×16 images of 1 to 4 handwriting digits
of size pixels. Each image is reshaped to a vector, hence, the dimensional-
ity is equal to 256. Both the training set and the testing set include 100
(random sampled) images of each digit.
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Table 2 Performance on various real data in terms of the log-likelihood (the larger, the
better) on the training set. DMFA and DMCFA are each set to two layers. S-MFA and
S-MCFA denote the shallow form by collapsing the deep models.

Traing Results
Dataset MFA MCFA DMFA DMCFA S-MFA S-MCFA
ULC-3 -434.0364 -216.7516 -98.4912 -89.2465 -424.0828 -212.7775

Coil-4-proc -3813.9950 -1521.7157 -24.3242 -10.8630 -3759.5424 -1494.3084
Leuk72 3k -154.8025 -117.4220 -16.9911 -12.8301 -152.1288 -114.1186
USPS1-4 -1078.2457 -451.4169 -14.9465 -19.6103 -1073.4724 -442.0988

Table 3 Performance on various real data in terms of the log-likelihood (the larger, the
better) on the test set. DMFA and DMCFA are each set to two layers. S-MFA and S-MCFA
denote the shallow form by collapsing the deep models.

Test Results
Dataset MFA MCFA DMFA DMCFA S-MFA S-MCFA
ULC-3 -737.4383 -295.4271 -110.1660 -89.6897 -732.2352 -291.4142

Coil-4-proc -4504.3847 -1570.5914 -38.4105 -9.7465 -4466.2764 -1564.2895
Leuk72 3k -191.3275 -120.6031 -17.4814 -11.9715 -189.5890 -117.2442
USPS1-4 -1140.2889 -461.5310 -21.2674 -19.4758 -1137.2793 -451.6439

– MNIST: The benchmark handwritten digits dataset4 which is composed of
60, 000 28× 28 handwriting digit images [16].

5.3 Results

5.3.1 Empirical results

We first examine the quality of the density evaluation produced by the DM-
CFA and the other rival methods on a variety of datasets. Empirically, the
log-likelihood value can reflect the fitting degree of the model parameters.
Hence, the average log-likelihood is exploited to evaluate the quality of density
estimation. Table 2 lists the mean log-probability values for the deep models
versus the shallow models on their training set. The DMCFA has a better
performance in training on most datasets except the USPS1-4 dataset. On the
USPS1-4 dataset, DMFA has the highest value in training, but it cannot gain
the best clustering result (in Fig. 2). This may be caused by overfitting due
to the limited samples. The mean log-probabilities values on the test set are
listed in Table 3 . Clearly, the DMCFA demonstrates better performance on all
the datasets. By comparing the results of each group of training and testing,
we can see that DMCFA is more capable in resisting overfitting. These results
also reveal that the proposed deep model improves the true log-likelihood of
the standard model dramatically.
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Fig. 2 Clustering performance (error rate) on all the datasets. The best result is reported
from each model on training sets.

Fig. 3 Clustering performance (error rate) on all the datasets. The best result is reported
from each model on test sets.

5.3.2 Clustering results

To assess the model-based clustering performance, we compute the error rate
on 4 real datasets for comparing the performance of DMCFA with the other
methods. In the experiments, all of the methods have been initialized by ran-
dom assortment. The clustering results for the deep models versus the shallow
models on the training sets are shown in Fig. 2, and the results on the test
sets are shown in Fig. 3. For each approach, the best results are reported, and

4 http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/
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it can be seen that the lowest error rate is obtained consistently with DM-
CFA which outperforms the other competitors. Although the DMFA and the
shallow form collapsed by the DMCFA achieve the lowest error rate in some
training sets, the results deteriorate in the test set. Moreover, it can be clearly
observed that the collapsed shallow forms hardly improve performance. Also,
the deep models are consistently better than their shallow counterparts. This
observation further confirms the advantages of deep models over shallow ones.

5.3.3 Qualitative results

To demonstrate the generation results of all models, a qualitative study is
conducted on the MNIST dataset. In this experiment, we try to generate the
handwritten digits with a 2-layer model given by DMCFA and DMFA. The
deep models are trained with 10 first layer components and 64 first layer
factors. Furthermore, we stack the second layer with 40 components (4 com-
ponents for each of the 10 first layer components) and 16 factors. The process
of generating a sample is as follows. First, we sample the variables within the
latent space. Then, we can generate real samples from the density estimation
in the observation space according to the reversibility property of the gener-
ative model. Fig. 4 presents some of the generated digits, with each column
showing the same digit (since the mixture model can aggregate each type of
numbers). From the results shown in Fig. 4(a), although the generated 4’s
and 9’s could be easily confused, we can still clearly observe that the DMCFA
model is able to generate a variety of samples with high quality. The results
of the comparison model DMFA are shown in Fig. 4(b). The generated digits
are similar, although they also have high quality. Here, we also compare the
results of the shallow models, as shown in Fig. 4(c) and Fig. 4(d). Obviously,
the results of the deep models are complete and more clear.

6 Conclusion and Future Work

A novel deep density model, the deep mixtures of factor analyzers with com-
mon component loadings (DMCFA), is presented in this paper. Our approach
borrows ideas from deep learning, multilayered factor analysis, and Gaus-
sian mixture modeling to ensure that the learned density models for high-
dimensional data are tractable. Exploiting the greedy layer-wise algorithm,
we design an efficient expectation-maximization algorithm to maximize the
posterior and learn the parameters. Compared with existing deep density mod-
els, this one enjoys an easy inference procedure, lower time complexity, and a
significantly smaller number of free parameters. We evaluate our model on em-
pirical and clustering tasks using real-world datasets, and is shown to achieve
better results compared to standard and state-of-the-art methods. Our gen-
erative model also allows us to produce real samples via sampling within the
latent representation space of the learned clusters. Future work will include the
extension of the idea of common loadings to other deep density models, and
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(a) 2-layer DMCFA (b) 2-layer DMFA

(c) MCFA (d) MFA

Fig. 4 Comparison of 2-layer DMCFA, 2-layer DMFA, MCFA, and MFA on the MNIST
dataset for generation.

also investigation of Bayesian methods, so that the number of mixtures and
dimensions of the latent representation space can be automatically learned.
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