1 Population pharmacokinetics and cerebrospinal fluid penetration of fluconazole in adults

- 2 with cryptococcal meningitis.
- 3
- 4 Katharine E Stott^{a,b §}, Justin Beardsley^{c §}, Ruwanthi Kolamunnage-Dona^d, Anahi Santoyo
- 5 Castelazo^a, Freddie Mukasa Kibengo^e, Nguyen Thi Hoang Mai^f, Jeremy Day^{c,g}, William Hope^{a*}
- 6
- 7 ^a Centre for Antimicrobial Pharmacodynamics, Department of Molecular and Clinical
- 8 Pharmacology, Institute of Translational Medicine, University of Liverpool, UK
- 9 ^b Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- 10 ^c Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
- ^d Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, UK
- 12 ^e MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda
- 13 ^f Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
- 14 ^g Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine,
- 15 University of Oxford, UK
- 16 [§] These authors contributed equally to this work.
- 17 * Corresponding author: hopew@liverpool.ac.uk
- 18
- 19 Keywords: Cryptococcal meningitis, pharmacokinetics, pharmacodynamics, fluconazole,
- 20 central nervous system pharmacokinetics
- 21

22	ABSTRACT

23	Robust population pharmacokinetic (PK) data for fluconazole are scarce. The variability of
24	fluconazole penetration into the CNS is not known. A fluconazole PK study was conducted
25	in 43 patients receiving oral fluconazole (usually 800 mg q24h) in combination with
26	amphotericin B deoxycholate (1 mg/kg q24h) for cryptococcal meningitis (CM). A 4-
27	compartment PK model was developed and Monte Carlo simulations performed for a range
28	of fluconazole dosages. A meta-analysis of trials reporting outcomes of CM patients treated
29	with fluconazole monotherapy was performed. Adjusted for bioavailability, the PK
30	parameter means (standard deviation) were: clearance, 0.72 (0.24) litres/hour; volume of
31	the central compartment, 18.07 (6.31) litres; volume of central nervous system (CNS)
32	compartment, 32.07 (17.60) litres; first-order rate constant from central to peripheral
33	compartment, 12.20 (11.17) hours ⁻¹ ; from peripheral to central compartment, 18.10 (8.25)
34	hours ⁻¹ ; from central to CNS compartment 35.43 (13.74) hours ⁻¹ ; from CNS to central
35	compartment 28.63 (10.03) hours ⁻¹ . Simulations of area under concentration-time curve
36	resulted in median (interquartile range) values 1143.2 mg.h/litre (988.4 – 1378.0) in plasma
37	and 982.9 (781.0 – 1185.9) in CSF after a dosage of 1200mg q24h. The mean simulated ratio
38	of AUC_{CSF} : AUC_{plasma} was 0.89 (SD 0.44). The recommended dosage of fluconazole for CM
39	induction therapy fails to attain the PD target in respect to the wild-type MIC distribution of
40	C. neoformans. The meta-analysis suggested modest improvements in both CSF sterility and
41	mortality outcomes with escalating dosage. This study provides the pharmacodynamic
42	rationale for the long-recognised fact that fluconazole monotherapy is an inadequate
43	induction regimen for CM.

44

45

46 INTRODUCTION

47	Mortality from cryptococcal meningitis remains unacceptably high. More than 90%
48	of the estimated 223,100 annual incident cases of cryptococcal meningitis occur in Sub-
49	Saharan Africa and Asia-Pacific regions (1). The most effective regimen for induction is
50	amphotericin B deoxycholate and flucytosine (2, 3). However, access to these drugs is
51	limited in many regions where the burden of cryptococcal meningitis is greatest (4, 5). In
52	these settings, high-dose fluconazole is used for induction monotherapy, despite consistent
53	evidence of reduced survival in comparison with other agents and combinations (6-8).
54	Fluconazole was discovered by Pfizer Inc. (Sandwich, UK) in 1978 (9). The objective
55	was to discover an orally bioavailable agent for the treatment of invasive mycoses with a
56	lower propensity to develop resistance than flucytosine (9). Fluconazole inhibits
57	cytochrome P450-dependent demethylation of lanosterol in the ergosterol biosynthetic
58	pathway (10). The ratio of the area under the concentration-time curve (AUC) to the
59	minimum inhibitory concentration (MIC) is the pharmacodynamic (PD) index that best links
60	drug exposure of fluconazole with the observed antifungal effect (11, 12).
61	Successful antimicrobial therapy within the central nervous system depends on the
62	achievement of effective drug concentrations within relevant subcompartments that
63	include the cerebrum, meninges and CSF (13). Fluconazole has a low molecular weight
64	(approximately 300g/mol), is weakly protein bound and is not known to be a substrate for
65	central nervous system (CNS) efflux pumps (14, 15). Its ability to partition from the
66	endovascular compartment into the CNS has been established in laboratory animal models
67	(16, 17) and clinical studies (18, 19). Brain:plasma penetration ratios up to 1.33 have been
68	reported in humans (19). However, there is a surprising paucity of population

AAC

pharmacokinetic (PK) data for fluconazole in all clinical contexts. Furthermore, the extent
and variability of penetration into the CNS is not known.

71 The primary aim of this study was to quantify the extent and variability of CNS penetration of fluconazole in adults with cryptococcal meningitis. We developed a 72 73 population PK model that quantified the inter-individual variability in drug exposure in plasma and cerebrospinal fluid (CSF). We investigated the impact of a range of clinically 74 75 relevant covariates on fluconazole PK. Monte Carlo simulation was used to assess the 76 implications of PK variability in terms of achieving fluconazole PD targets. Finally, we 77 conducted a meta-analysis of clinical trials of fluconazole monotherapy to estimate the 78 contribution of dosage to clinical outcome.

79

81 Patients

82	A total of 43 patients (23 from Vietnam and 20 from Uganda) were recruited over an
83	11-month period between January and November 2016. Twenty-two patients (52%) were
84	female. The overall median (range) age was 33 years (20 – 73 years), weight 48 kg (32 – 68
85	kg), body mass index 18 kg/m² (12 – 25 kg/m²), creatinine at enrolment 70 $\mu mol/L$ (37 – 167
86	μ mol/L) and estimated glomerular filtration rate using the Cockcroft Gault equation 84.8
87	mL/min/1.73m ² (35.4 – 146.7 mL/min/1.73m ²). The baseline creatinine concentration was
88	significantly lower in Vietnamese patients than in Ugandan patients (median 56 versus 79
89	μ mol/L; p-value 0.02). However, this did not manifest as a significant difference in eGFR
90	due to different age, sex and weight profiles between the two patient populations. There
91	were no statistically significant differences between ethnic groups for other demographic
92	variables. The demographic data are shown by ethnicity and for the study population as a
93	whole in Table 1.

94

95 Pharmacokinetic data

The final dataset included 312 plasma observations and 52 CSF observations from 96 the Vietnamese cohort. From the Ugandan cohort, the dataset included 196 plasma 97 98 observations and 115 CSF observations. A single CSF observation from 1 Ugandan patient 99 was excluded because no fluconazole was detectable in an isolated sample after 13 days of 100 therapy. This was inconsistent with results from other patients and could not be verified. 101 The mean number of plasma samples and CSF samples per patient was 11.8 and 3.9, 102 respectively. Figure 1 shows the raw plasma and CSF concentration-time profiles from study 103 participants.

A A C

Antimicrobial Agents and Chemotherapy

AAC

104

105 **Population pharmacokinetic analysis**

106	The final mathematical model was a linear model comprised of an absorption
107	compartment, central compartment, peripheral compartment and CSF compartment. The
108	fit of the final model to the clinical data was acceptable. The mean parameter estimates
109	better fitted the data than medians, and were used to calculate Bayesian estimates of drug
110	exposure for each individual patient. A linear regression of the observed-versus-predicted
111	fluconazole concentrations in plasma after the Bayesian step was given by: observed
112	fluconazole concentration = 1.03 *predicted fluconazole concentration + 0.27 ; r ² = 0.80 . For
113	the observed-versus-predicted fluconazole concentrations in CSF, the linear regression was
114	given by observed fluconazole concentration = 1.03*predicted fluconazole concentration -
115	0.07; $r^2 = 0.81$ (Figure 2 and table 3). The mean weighted population bias for fluconazole
116	concentrations in plasma and CSF was 0.20 and -0.30, respectively. The bias-adjusted
117	population imprecision in plasma and CSF was 2.21 and 1.55, respectively. The population
118	PK parameter estimates for the final model are shown in Table 2.
119	
120	Covariate investigation
121	Multivariate linear regression of each subject's covariates versus the Bayesian
122	posterior parameter values revealed a weak relationship between patient weight and
123	estimated volume of distribution (slope 0.22, 95% confidence interval for the slope -0.06 to
124	0.51, p-value 0.05). Incorporation of weight into the PK model was therefore explored.
125	However, values for log likelihood, Akaike information criterion (AIC) and population bias

and imprecision were comparable between the 2 models. The simple base model was

Downloaded from http://aac.asm.org/ on July 11, 2018 by University of Liverpool Library

127 therefore used to describe the data and for the subsequent simulations. The model

128 comparisons and the fit to data are summarized in Table 3.

129 There was no relationship between the Bayesian estimates of clearance and volume, 130 and ethnicity or sex in the base model. The mean (95% CI) clearance was 0.74 liters/hour 131 (0.64 - 0.83) and 0.71 liters / hour (0.59 - 0.82) for Vietnamese and Ugandan patients, 132 respectively; p= 0.51. The mean (95% Cl) volume was 16.88 liters (14.33 – 19.44) and 19.44 133 liters (16.88 – 22.0) for Vietnamese and Ugandan patients, respectively; p= 0.16. In males, 134 the mean (95% CI) clearance was 0.79 liters /hour (0.67 – 0.90). In females, clearance was 135 0.66 liters / hour (0.57 – 0.75); p= 0.09. In males, the mean (95% CI) volume was 18.07 liters 136 (15.47 – 20.67). In females, volume was 18.07 liters / hour (15.41 – 20.73); p= 0.97. 137 138 Fluconazole penetration into the CSF 139 There was large variability in the AUCs generated from each patient's posterior 140 estimates. The 38 patients who received 800mg fluconazole q24h had a median (IQR) 141 AUC₁₄₄₋₁₆₈ of 945.4 (799.2 - 1139.8) mg.h/L in plasma and 784.2 mg.h/L (615.9 - 879.4) in 142 CSF. From these posterior estimates, the mean ratio of AUC_{CSF}:AUC_{plasma} was 0.82 (standard 143 deviation 0.22). 144 Monte Carlo simulation was used to estimate the distribution of drug exposure for 145 dosages of 400mg, 800mg, 1200mg and 2000mg q24h of fluconazole (Figure 3). PK 146 variability was marked, both in plasma and CSF. After administration of a dosage of 1200mg 147 fluconazole q24h, median (IQR) simulated plasma AUC₁₄₄₋₁₆₈ was 1143.2 mg.h/L (988.4 -148 1378.0) and CSF AUC₁₄₄₋₁₆₈ was 982.9 mg.h/L (781.0 – 1185.9). The mean simulated ratio of 149 AUC_{CSF}:AUC_{plasma} was 0.89 (SD 0.44). 150

151 **Probability of target attainment analysis**

152	Monte Carlo simulation was used to predict the probability of achieving a total drug
153	AUC:MIC ratio of \geq 389.3 in plasma. This PD target was shown in a murine model of
154	cryptococcal meningitis to be associated with a stasis endpoint (i.e. no net change in fungal
155	density at the end of the experiment compared with that at treatment initiation) (11). Only
156	61% of simulated patients receiving 1200mg fluconazole q24h achieved this PD target when
157	the MIC of the infecting strain was 2.0 mg/L. For MICs \ge 4.0mg/L, < 1% of simulated
158	patients administered 1200mg q24h achieved the PD target (Figure 4).
159	
160	Meta-analysis of clinical outcome data
161	A systematic review identified 163 relevant manuscripts, of which 11 were
162	duplicates. After reviewing titles and abstracts, 28 studies were deemed potentially
163	relevant for inclusion in the meta-analysis. Detailed examination of these studies resulted
164	in the ultimate inclusion of 12 papers describing clinical outcomes from cryptococcal
165	meningitis treated with fluconazole monotherapy. In total, 28 patients in 1 study received
166	200mg fluconazole q24h (20), 19 patients in 2 studies received 400mg fluconazole q24h (7,
167	21), 97 patients in 3 studies 800mg q24h (22-24), 113 patients in 4 studies 1200mg q24h (8,
168	23-25), and 1 study described outcomes of 16 patients on 1600mg (24) and 8 patients on 2g
169	fluconazole q24h (24). All included patients were HIV positive. Baseline characteristics and
170	reported clinical outcomes are presented in Table 4.
171	The final model suggests that the combination of dose and baseline fungal burden
172	explains the total heterogeneity in the estimated proportion of patients with sterile CSF
173	after 10 weeks of treatment (P-value for residual heterogeneity 0.64). However, there was
174	not a significant relationship between dose and CSF sterility at 8-10 weeks (p-value 0.45).

AAC

Antimicrobial Agents and Chemotherapy

After adjustment for dose, the test for residual heterogeneity in both 2 and 10-week
mortality was not significant (p-value 0.70 and 0.22, respectively), indicating that dose alone
adequately explained total heterogeneity in mortality outcomes at both time points. For
both 2 and 10-week mortality outcomes, there was a non-significant trend towards reduced
mortality with escalating dosage (Figure 5).

9

181 DISCUSSION

182	Fluconazole is the only drug available for induction therapy for cryptococcal
183	meningitis in many regions of the world where the incidence of disease is highest. An
184	accumulating body of evidence suggests that fluconazole is a suboptimal agent for this
185	indication (26). Whilst this has long been recognised, an explanation for the relatively poor
186	efficacy of fluconazole is absent. This study presents a uniquely comprehensive clinical
187	dataset describing the PK of fluconazole. It provides robust estimates of CNS penetration
188	and the variability of those estimates. A high degree of CNS partitioning has been observed
189	in previous clinical studies with fluconazole (19, 27). Distribution into the CNS is facilitated
190	by low molecular weight, low protein binding and moderate lipophilicity (15, 28).
191	Fluconazole has proven activity against Cryptococcus neoformans. (29, 30). This study
192	provides a further understanding as to why, despite these attributes, fluconazole is an
193	inferior agent for induction monotherapy for cryptococcal meningitis compared with
194	amphotericin B deoxycholate (6-8).
195	In contrast to previous studies of fluconazole PK (31-33), our data do not suggest a
196	significant relationship between fluconazole clearance and creatinine clearance, nor
197	between patient weight and volume of distribution. The reason for this is not immediately
198	clear but may relate to the relatively narrow range of creatinine clearance in our population,
199	and the fact that the vast majority of patients in our cohort had low body weight, with the
200	range of this covariate also being relatively narrow.
201	The PK model suggests that current regimens of fluconazole are inadequate for
202	induction therapy for cryptococcal meningitis. This has routinely been ascribed to the
203	overly simplistic notion that fluconazole is a fungistatic agent. Our analyses provide further
204	insight into the limitations of this drug. Previous estimates of fluconazole CNS:plasma

AAC

205

206	estimates by rigorously quantifying the marked variability in the CSF PK. This variability has
207	consequences at both microbiological and clinical levels. Suboptimal exposure of
208	fluconazole promotes the expansion of intrinsically resistant cryptococcal subpopulations
209	present at the initiation of therapy (35). In addition, the evolution of <i>C. neoformans</i> during
210	therapy to become increasingly triazole resistant has been demonstrated in clinical studies
211	(36, 37). To be clinically effective, adequate concentrations of drug must be present at the
212	site of infection for long enough to exert antimicrobial effect on both susceptible and
213	resistant subpopulations. The present analysis demonstrates the challenges in achieving
214	that aim.
215	At recommended fluconazole dosages of 1200mg q24h, the probability of PD target
216	attainment (PTA) bisects the MIC distribution of WT <i>C. neoformans</i> isolates. This is
217	consistent with the findings of Sudan et al (11). Approximately half of patients will fail
218	therapy because they are not able to generate the drug exposure required to prevent
219	progressive fungal growth. Since clinical PK-PD targets are not available for fluconazole in
220	cryptococcal meningitis, we have used a target derived from a murine study (11). This
221	assumes that CNS partitioning is the same in mice and humans. The cerebrum:plasma AUC
222	ratio in the murine study was 46.9% (11). It is conceivable that this is in keeping with our
223	CSF:plasma AUC ratio of 82%, though clearly it would be preferable to have clinical PK-PD
224	targets defined. Nevertheless, our PTA analysis is supported by the 53% 10-week mortality
225	outcomes for patients receiving 1200mg fluconazole q24h, estimated in the meta-analysis.
226	Importantly, such PTA analyses are based on an AUC/MIC of 389.3, which is more than an
227	order of magnitude greater than the AUC/MIC ratio required for Candida albicans (12).

partition ratios have ranged from 0.52 to 1.33 (18, 19, 27, 34). We have extended these

11

Downloaded from http://aac.asm.org/ on July 11, 2018 by University of Liverpool Library

228	Progressive escalation of the dosage of fluconazole is not likely to be an effective
229	strategy for improving cryptococcal meningitis induction therapy. The drug exposure
230	required to reliably treat isolates with MICs \geq 4.0mg/L is difficult to achieve and potentially
231	toxic. Our meta-analysis suggests that escalating dosages of fluconazole do not increase the
232	proportion of patients with sterile CSF at 10 weeks. Dosages of 2000mg q24h do not appear
233	to significantly improve 10-week mortality outcomes in comparison to 1200mg q24h. The
234	ACTG study (https://clinicaltrials.gov/show/NCT00885703) is investigating the use of higher
235	dosages of fluconazole (1600mg and 2000mg q24h) for the treatment of cryptococcal
236	meningitis in HIV-infected individuals and results are pending. The addition of flucytosine to
237	high-dose fluconazole (≥ 1200mg q24h) for cryptococcal meningitis increases antifungal
238	activity and improves mortality outcomes (8, 24), suggesting that combination therapy is
239	required to optimise antifungal activity in fluconazole-containing regimens.
240	In summary, this study provides part of the pharmacodynamic rationale for the long-
241	recognised fact that fluconazole monotherapy is an ineffective induction regimen for
242	cryptococcal meningitis. We have developed a fluconazole population PK model that
243	suggests that approximately half of patients with cryptococcal meningitis caused by WT
244	strains of <i>C. neoformans</i> will be undertreated by currently recommended dosages of
245	fluconazole for induction therapy. In doing so we have addressed a knowledge gap
246	regarding the reason for the inferiority of this drug for cryptococcal meningitis. There is a
247	pressing need for improved provision of affordable combination treatments and
248	development of more effective drugs.
249	

250

251 MATERIALS AND METHODS

252 Clinical pharmacokinetic studies

253 Patients from whom plasma and CSF samples were obtained for this PK study have 254 been described previously (38). Briefly, adult patients were initially recruited from a multi-255 centre randomised controlled trial of adjuvant dexamethasone in HIV-associated 256 cryptococcal meningitis. The trial is reported elsewhere (n=3, International Standard 257 Registered Clinical Number 59144167) (39). Following the early cessation of this trial, 258 patients were recruited from a prospective descriptive study at the same sites (n=40). Study 259 sites were The Hospital for Tropical Diseases in Ho Chi Minh City, Vietnam, and Masaka 260 General Hospital, Uganda. The study protocols were approved by the relevant institutional 261 review boards and regulatory authorities at each trial site and by the Oxford University 262 Tropical Research Ethics Committee. 263 Fluconazole was administered orally. Where conscious level did not enable oral 264 administration, fluconazole was administered via nasogastric tube. The majority of patients 265 received 800mg fluconazole q24h. Two patients received one-off doses of 400mg q24h. 266 Two received one-off doses of 600mg q24h. One patient's regimen of 800mg fluconazole 267 q24h was escalated to 1200mg q24h for 6 days from day 8 of treatment. All patients 268 received combination therapy with amphotericin B deoxycholate 1mg per kg infused over 5-269 6 hours.

270

271 Measurement of fluconazole concentrations

Fluconazole concentrations were measured using a validated LC/MS/MS methodology (1260 Agilent UPLC coupled to an Agilent 6420 Triple Quad mass spectrometer, Agilent Technologies UK Ltd, Cheshire, UK). Briefly, fluconazole was

Antimicrobial Agents and Chemotherapy

Antimicrobial Agents and Chemotherapy

extracted by protein precipitation; 300 µl of cold methanol containing the internal standard
fluconazole-D4 at 0.625 mg/L (TRC, Canada) was added to 10 µl of sample (plasma or CSF).
The solution was vortex mixed for 5 seconds and filtered through a Sirocco precipitation
plate (Waters Ltd, Cheshire, UK). One hundred fifty µl of supernatant was transferred to a
96-well auto sampler plate, and 3 µL were injected on an Agilent ZORBAX C18 RRHD (2.1 X
50mm, 1.8 µm) (Agilent Technologies UK Ltd, Cheshire, UK).

Chromatographic separation was achieved using a gradient consisting of 70% A:30% B (0.1% formic acid in water as mobile phase A and 0.1% formic acid in methanol as mobile phase B). The organic phase was increased to 100% over 90 seconds, with additional 90 seconds of equilibration.

The mass spectrometer was operated in multiple reaction monitoring scan mode in positive polarity. The precursor ions were 307.11 m/z and 311.1 m/z for fluconazole and internal standard, respectively. The product ions for fluconazole were 220.1 m/z and 238.1 m/z; for the internal standard 223.2 m/z and 242.1 m/z. The source parameters were set as follows: capillary voltage 4000 V, gas temperature 300°C and nebulizer gas 15 lb/in².

The standard curve for fluconazole encompassed the concentration range 1-120 mg/L and was constructed using blank matrix. The limit of quantitation was 1 mg/L. In plasma, the intra-day coefficient of variation (CV) was <3.4% and the inter-day CV was <6.7%, over the concentration range 1-90 mg/L. In CSF, the intra-day CV was <5.2% and the inter-day CV was <5.3% over the same concentration range.

295

296 Population pharmacokinetic modelling

The concentration-time data for fluconazole in plasma and CSF were analysed using
the non-parametric adaptive grid (NPAG) algorithm of the program Pmetrics (40) version

299 1.5.0 for R statistical package 3.1.1. The initial PK mathematical model fitted to the data

300 contained four compartments and took the following form:

301 1. $\frac{dX(1)}{dt} = -Ka * X(1)$

302 2.
$$\frac{dX(2)}{dt} = Ka * X(1) - \left(Kcp + Kcs + \frac{scL}{V}\right) * X(2) + Ksc * X(3) + Kpc * X(4)$$

303 3.
$$\frac{dX(3)}{dt} = Kcs * X(2) - Ksc * X(3)$$

304 4.
$$\frac{dX(4)}{dt} = Kcp * X(2) - Kpc * X(4)$$

- 305 5. Y(1) = X(2)/V
- 306 6. Y(2) = X(3)/Vcns

307 Where equations (1), (2), (3) and (4) describe the rate of change in amount of drug in

308 milligrams (mg) in the gut, central, CSF and peripheral compartment, respectively. *Ka* is the

309 absorption rate constant from the gut to the central compartment. X(1), X(2), X(3) and X(4)

310 are the amount of fluconazole (mg) in the gut, central (c), CSF (s) and peripheral

311 compartments (p), respectively. Kcp, Kpc, Kcs and Ksc represent first-order transfer

312 constants connecting the various compartments. SCL is the first-order clearance of drug

313 (L/h) from the central compartment. V is the volume of the central compartment. The CSF

314 compartment (*X*(*3*)) has an apparent CSF volume (*Vcns*), given in litres.

315 Model error was attributed separately to process noise (including errors in sampling
316 times or dosing) and assay variance. Process noise was modelled using lambda, an additive

317 error term. The data were weighted by the inverse of the estimated assay variance.

318 The data for some patients indicated that they had taken fluconazole at an

319 undocumented time prior to study enrolment, since there was detectable drug in the first

- 320 PK sample. To accommodate this, non-zero initial conditions of all four compartments were
- 321 estimated in the structural model. A switch was coded whereby the parameterised

322 estimate of each initial condition was multiplied by a binary covariate equal to 1 where 323 fluconazole was detected in the first PK sample, or 0 where no fluconazole was detected in 324 the first PK sample. 325 326

Population pharmacokinetic covariate screening

327 The impact of patent weight, BMI, sex, ethnicity and baseline eGFR on the PK of 328 fluconazole were investigated. Bidirectional stepwise multivariate linear regression was 329 employed to assess the relationship between each covariate and the Bayesian estimates for 330 volume of distribution and clearance from the central compartment from the standard 331 population PK model. Covariates that were retained with significant multivariate p-values 332 (≤ 0.05) in the regression model were explored individually. The relationship between 333 retained continuous covariates and Bayesian estimates of PK parameters was explored 334 using univariate linear regression. The difference between Bayesian estimates of volume 335 and clearance according to categorical covariates (sex and ethnicity) was compared using 336 the Mann-Whitney test.

337

338 Population pharmacokinetic model diagnostics

339 The fit of the model to the data was assessed by visual inspection of diagnostic 340 scatterplots displaying observed-versus-predicted values before and after the Bayesian step. 341 Linear regression was performed and the coefficient of determination, intercept and 342 regression slope noted for each model. In addition, the log-likelihood value, Akaike 343 Information criterion (AIC), mean weighted error (a measure of bias) and bias-adjusted, 344 mean weighted squared error (a measure of precision) were calculated and compared for 345 each model.

16

346

347 Monte Carlo Simulation and calculation of probability of target attainment

Monte Carlo simulation (n = 5000) was performed in Pmetrics (40). The support points from the final joint density were used. For the simulations, the initial conditions of all compartments were defaulted to zero. Fluconazole was administered at a range of dosages: 400mg q24h, 800mg q24h, 1200mg q24h and 2000mg q24h. The plasma and CSF AUC for fluconazole was calculated using trapezoidal approximation after the sixth dose, from 144 to 168 hours after treatment initiation.

354 Wild type fluconazole MIC data were obtained from a previously published collection 355 of 5,733 C. neoformans isolates estimated using Clinical and Laboratory Standards Institute 356 (CLSI) methodology (41). The modal MIC was 4mg/L (1,629 of 5,733 strains; 28%). Almost 357 half of strains had MICs \geq 4mg/L (2,834 of 5,733 strains; 49%). The epidemiological cut-off 358 value for *C. neoformans* versus fluconazole was 8mg/L. This collection of strains included 359 molecular types VNI to VNIV and the pattern of MIC distribution was comparable across all 360 molecular types (41). The proportion of simulated patients that would achieve a previously 361 published plasma AUC/MIC target of 389.3 was determined. This target was defined as the 362 magnitude of drug exposure required for fungal stasis (defined as prevention of progressive 363 fungal growth) in a murine study that employed CLSI methodology (11). To our knowledge, 364 no CSF PK/PD target has been defined in preclinical or clinical studies of fluconazole for 365 cryptococcal meningitis. In the present study, the probability of attaining this plasma PK/PD 366 target was examined at each simulated fluconazole dose.

367

368

370 Meta-analysis of clinical outcome data

371	The AUC/MIC target used in the probability of target attainment analysis was
372	derived from murine studies. To enhance clinical relevance, we sought PD data from
373	humans. The PD data from patients in the present PK study are confounded by the co-
374	administration of amphotericin B deoxycholate. For this reason, a search for clinical trials of
375	fluconazole monotherapy for cryptococcal meningitis was performed. The electronic
376	databases Pubmed and Medline were searched on 31 st January 2018 using the terms
377	"fluconazole" and "cryptococcal meningitis". Preclinical studies and case reports were
378	excluded. To reduce potential heterogeneity, only studies of HIV-positive participants were
379	included in the meta-analysis. Baseline variables were chosen a priori for extraction from
380	the studies if they had previously been determined to have a significant impact on clinical
381	outcome. These were mental status, CSF fungal burden and patient age (6, 42). Where it
382	was not reported, baseline CSF fungal burden was extrapolated from CSF cryptococcal
383	antigen titre according to a correlation published by Jarvis et al (6).
384	For consistency with the literature, we collected data on clinical outcomes
385	commonly presented in cryptococcal meningitis trials: CSF sterility at 8-10 weeks, 2-week
386	mortality and 10-week mortality. Mixed-effects meta-analysis adjusted for fluconazole
387	dosage was performed. Fungal burden in CSF, CD4 count and proportion of patients with
388	reduced Glasgow Coma Score (GCS) at baseline were explored to assess the degree to which
389	these modifiers accounted for inter-study heterogeneity in clinical outcome. The mixed-
390	effects model took the form:

 $\theta_i = \beta_0 + \beta_1 Z_{i1} + \dots + \beta_1 Z_{ij} + u_i$

391

Antimicrobial Agents and Chemotherapy

and	
ents	Уq
Age	lera
oial	noth
- cro	her
i	0
An	

392	where θ_i is the corresponding (unknown) true effect of the <i>i</i> th study, Z_{ij} is the value of the
393	j th moderator variable for the i th study and u_i are study-specific random effects such that
394	$u_i \sim N(0, \tau^2)$. Here, τ^2 denotes the amount of residual heterogeneity, estimated using the
395	DerSimonian-Laird estimator (43). Additional model parameters were estimated via
396	weighted least squares with weights relative to the estimated $ au^2$. The null hypothesis
397	H_0 : $\tau^2 = 0$ was tested using Cochran's Q-test, and model parameters were tested with the
398	Wald-type test statistic.

400 Conflicts of Interest

401	William Hope holds or has recently held research grants with F2G, AiCuris, Astellas
402	Pharma, Spero Therapeutics, Matinas Biosciences, Antabio, Amplyx, Allecra and Pfizer. He
403	holds awards from the National Institutes of Health, Medical Research Council, National
404	Institute of Health Research, and the European Commission (FP7 and IMI). WH has received
405	personal fees in his capacity as a consultant for F2G, Amplyx, Ausperix, Spero Therapeutics,
406	Medicines Company, Gilead and Basilea. WH is Medical Guideline Director for the European
407	Society of Clinical Microbiology and Infectious Diseases, and an Ordinary Council Member
408	for the British Society of Antimicrobial Chemotherapy.
409	Jeremy Day holds or has recently held research awards from The Wellcome Trust,
410	The Medical Research Council UK, The UK Department for International Development, The
411	National Institutes for Health, The Li Ka Shing Foundation, The British Infection Society and
412	The British Medical Association. He has received personal fees in his capacity as a consultant
413	to Viamet Pharmaceuticals.
414	
415	Funding statement
416	Supported by the United Kingdom Department for International Development, the
417	Wellcome Trust, and the Medical Research Council through a grant (G1100684/1) from the
418	Joint Global Health Trials program, part of the European and Developing Countries Clinical
419	Trials Partnership, supported by the European Union.
420	Katharine Stott is a Wellcome Trust Clinical PhD Fellow [203919/Z/16/Z].
421	Jeremy Day is a Wellcome Trust Intermediate Fellow [WT097147MA].
422	

Antimicrobial Agents and Chemotherapy

Accepted Manuscript Posted Online

423

REFERENCES

AAC

Antimicrobial Agents and Chemotherapy

424	1.	Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, Denning DW,
425		Loyse A, Boulware DR. 2017. Global burden of disease of HIV-associated cryptococcal
426		meningitis: an updated analysis. Lancet Infect Dis.
427	2.	Day JN, Chau TT, Wolbers M, Mai PP, Dung NT, Mai NH, Phu NH, Nghia HD, Phong
428		ND, Thai CQ, Thai le H, Chuong LV, Sinh DX, Duong VA, Hoang TN, Diep PT, Campbell
429		JI, Sieu TP, Baker SG, Chau NV, Hien TT, Lalloo DG, Farrar JJ. 2013. Combination
430		antifungal therapy for cryptococcal meningitis. N Engl J Med 368:1291-302.
431	3.	Molloy SF, Kanyama C, Heyderman RS, Loyse A, Kouanfack C, Chanda D, Mfinanga S,
432		Temfack E, Lakhi S, Lesikari S, Chan AK, Stone N, Kalata N, Karunaharan N, Gaskell K,
433		Peirse M, Ellis J, Chawinga C, Lontsi S, Ndong JG, Bright P, Lupiya D, Chen T, Bradley J,
434		Adams J, van der Horst C, van Oosterhout JJ, Sini V, Mapoure YN, Mwaba P, Bicanic
435		T, Lalloo DG, Wang D, Hosseinipour MC, Lortholary O, Jaffar S, Harrison TS, Team
436		ATS. 2018. Antifungal Combinations for Treatment of Cryptococcal Meningitis in
437		Africa. N Engl J Med 378:1004-1017.
438	4.	Bicanic T, Wood R, Bekker LG, Darder M, Meintjes G, Harrison TS. 2005.
439		Antiretroviral roll-out, antifungal roll-back: access to treatment for cryptococcal
440		meningitis. The Lancet Infectious Diseases 5:530-1.
441	5.	Loyse A, Thangaraj H, Easterbrook P, Ford N, Roy M, Chiller T, Govender N, Harrison
442		TS, Bicanic T. 2013. Cryptococcal meningitis: improving access to essential antifungal
443		medicines in resource-poor countries. Lancet Infect Dis 13:629-37.
444	6.	Jarvis JN, Bicanic T, Loyse A, Namarika D, Jackson A, Nussbaum JC, Longley N,
445		Muzoora C, Phulusa J, Taseera K, Kanyembe C, Wilson D, Hosseinipour MC, Brouwer
446		AE, Limmathurotsakul D, White N, van der Horst C, Wood R, Meintjes G, Bradley J,
447		Jaffar S, Harrison T. 2014. Determinants of mortality in a combined cohort of 501
448		patients with HIV-associated Cryptococcal meningitis: implications for improving
449		outcomes. Clin Infect Dis 58:736-45.
450	7.	Bicanic T, Meintjes G, Wood R, Hayes M, Rebe K, Bekker L-G, Harrison T. 2007.
451		Fungal Burden, Early Fungicidal Activity, and Outcome in Cryptococcal Meningitis in
452		Antiretroviral-Naive or Antiretroviral-Experienced Patients Treated with
453		Amphotericin B or Fluconazole. Clinical Infectious Diseases 45:76-80.
454	8.	Nussbaum JC, Jackson A, Namarika D, Phulusa J, Kenala J, Kanyemba C, Jarvis JN,
455		Jaffar S, Hosseinipour MC, Kamwendo D, van der Horst CM, Harrison TS. 2010.
456		Combination flucytosine and high-dose fluconazole compared with fluconazole
457		monotherapy for the treatment of cryptococcal meningitis: a randomized trial in
458		Malawi. Clin Infect Dis 50:338-44.
459	9.	Richardson K, Cooper K, Marriott MS, Tarbit MH, Troke PF, Whittle PJ. 1990.
460		Discovery of Fluconazole, a Novel Antifungal Agent. Reviews of Infectious Diseases
461		12:S267-S271.
462	10.	Vanden Bossche H, Koymans L, Moereels H. 1995. P450 inhibitors of use in medical
463		treatment: focus on mechanisms of action. Pharmacol Ther 67:79-100.
464	11.	Sudan A, Livermore J, Howard SJ, Al-Nakeeb Z, Sharp A, Goodwin J, Gregson L, Warn
465		PA, Felton TW, Perfect JR, Harrison TS, Hope WW. 2013. Pharmacokinetics and
466		pharmacodynamics of fluconazole for cryptococcal meningoencephalitis:
467		implications for antifungal therapy and in vitro susceptibility breakpoints. Antimicrob
468		Agents Chemother 57:2793-800.

469 470 471	12.	Andes D, van Ogtrop M. 1999. Characterization and quantitation of the pharmacodynamics of fluconazole in a neutropenic murine disseminated candidiasis infection model. Antimicrob Agents Chemother 43:2116-20
472 473	13.	Felton TW, McCalman K, Malagon I, Isalska B, Whalley S, Goodwin J, Bentley AM, Hope WW. 2014. Pulmonary penetration of piperacillin and tazobactam in critically
474 475 476	14.	Kethireddy S, Andes D. 2007. CNS pharmacokinetics of antifungal agents. Expert
470	15.	Gubbins PA, EJ. 2009. Antifungal therapy, p 161 - 196. <i>In</i> Anaissie EM, MR; Pfaller,
478 479	16.	Arndt CA, Walsh TJ, McCully CL, Balis FM, Pizzo PA, Poplack DG. 1988. Fluconazole
480 481		central nervous system. Journal of Infectious Diseases 157:178-80.
482 483	17.	Madu A, Cioffe C, Mian U, Burroughs M, Tuomanen E, Mayers M, Schwartz E, Miller M. 1994. Pharmacokinetics of fluconazole in cerebrospinal fluid and serum of
484 485		rabbits: validation of an animal model used to measure drug concentrations in cerebrospinal fluid. Antimicrob Agents Chemother 38:2111-5.
486 487 488	18.	Tucker RM, Williams PL, Arathoon EG, Levine BE, Hartstein AI, Hanson LH, Stevens DA. 1988. Pharmacokinetics of fluconazole in cerebrospinal fluid and serum in human coccidioidal meningitis. Antimicrobial Agents and Chemotherapy 32:369-373.
489 490	19.	Thaler F, Bernard B, Tod M, Jedynak CP, Petitjean O, Derome P, Loirat P. 1995. Fluconazole penetration in cerebral parenchyma in humans at steady state.
491 492 493 494	20.	Mayanja-Kizza H, Oishi K, Mitarai S, Yamashita H, Nalongo K, Watanabe K, Izumi T, Ococi J, Augustine K, Mugerwa R, Nagatake T, Matsumoto K. 1998. Combination therapy with fluconazole and flucytosine for cryptococcal meningitis in Ugandan
495 496 497 498	21.	patients with AIDS. Clin Infect DIS 26:1362-6. Larsen RA, Leal MA, Chan LS. 1990. Fluconazole compared with amphotericin B plus flucytosine for cryptococcal meningitis in AIDS. A randomized trial. Ann Intern Med 113:183-7
499 500 501 502	22.	Rothe C, Sloan DJ, Goodson P, Chikafa J, Mukaka M, Denis B, Harrison T, van Oosterhout JJ, Heyderman RS, Lalloo DG, Allain T, Feasey NA. 2013. A prospective longitudinal study of the clinical outcomes from cryptococcal meningitis following treatment induction with 800 mg oral fluconazole in Blantyre, Malawi. PLoS One
503 504 505 506 507	23.	Longley N, Muzoora C, Taseera K, Mwesigye J, Rwebembera J, Chakera A, Wall E, Andia I, Jaffar S, Harrison TS. 2008. Dose response effect of high-dose fluconazole for HIV-associated cryptococcal meningitis in southwestern Uganda. Clin Infect Dis 47:1556-61.
508 509	24.	Milefchik E, Leal MA, Haubrich R, Bozzette SA, Tilles JG, Leedom JM, McCutchan JA, Larsen RA. 2008. Fluconazole alone or combined with flucytosine for the treatment of AIDS-associated cryptococcal meningitis. Medical Mycology 46:393-5
510 511 512 513 514	25.	Gaskell KM, Rothe C, Gnanadurai R, Goodson P, Jassi C, Heyderman RS, Allain TJ, Harrison TS, Lalloo DG, Sloan DJ, Feasey NA. 2014. A prospective study of mortality from cryptococcal meningitis following treatment induction with 1200 mg oral fluconazole in Blantyre, Malawi, PLoS One 9:e110285
514		

AAC

Antimicrobial Agents and Chemotherapy

515 516	26.	Beyene T, Zewde AG, Balcha A, Hirpo B, Yitbarik T, Gebissa T, Rajasingham R, Boulware DR. 2017. Inadequacy of High-Dose Fluconazole Monotherapy Among
517		Cerebrospinal Fluid Cryptococcal Antigen (CrAg)-Positive Human Immunodeficiency
518		Virus-Infected Persons in an Ethiopian CrAg Screening Program. Clin Infect Dis
519		65:2126-2129.
520	27.	Fischman AJ, Alpert NM, Livni E, Ray S, Sinclair I, Callahan RJ, Correia JA, Webb D,
521		Strauss HW. Rubin RH. 1993. Pharmacokinetics of 18F-labeled fluconazole in healthy
522		human subjects by positron emission tomography. Antimicrob Agents Chemother
523		37:1270-7.
524	28.	Pasko MT. Piscitelli SC. Van Slooten AD. 1990. Fluconazole: a new triazole antifungal
525	-	agent. Dicp 24:860-7.
526	29.	Palou de Fernandez E. Patino MM. Gravbill JR. Tarbit MH. 1986. Treatment of
527		cryptococcal meningitis in mice with fluconazole. I Antimicrob Chemother 18:261-
528		70.
529	30.	Kartalija M. Kave K. Tureen IH. Liu O. Tauber MG. Elliott BR. Sande MA. 1996.
530		Treatment of experimental cryptococcal meningitis with fluconazole: impact of dose
531		and addition of flucytosine on mycologic and pathophysiologic outcome. Journal of
532		Infectious Diseases 173:1216-21.
533	31.	Aovama T. Hirata K. Hirata R. Yamazaki H. Yamamoto Y. Havashi H. Matsumoto Y.
534		2012. Population pharmacokinetics of fluconazole after administration of
535		fosfluconazole and fluconazole in critically ill patients. J Clin Pharm Ther 37:356-63.
536	32.	Alobaid AS, Wallis SC, Jarrett P, Starr T, Stuart J, Lassig-Smith M, Meija JL, Roberts
537		MS. Sinnollareddy MG. Roger C. Lipman J. Roberts JA. 2016. Effect of Obesity on the
538		Population Pharmacokinetics of Fluconazole in Critically III Patients. Antimicrob
539		Agents Chemother 60:6550-6557.
540	33.	McLachlan AJ. Tett SE. 1996. Pharmacokinetics of fluconazole in people with HIV
541		infection: a population analysis. Br J Clin Pharmacol 41:291-8.
542	34.	Brammer KW, Farrow PR, Faulkner JK, 1990. Pharmacokinetics and tissue
543	-	penetration of fluconazole in humans. Rev Infect Dis 12 Suppl 3:S318-26.
544	35.	Sanglard D. 2002. Resistance of human fungal pathogens to antifungal drugs. Current
545		Opinion in Microbiology 5:379-385.
546	36.	Chen Y, Farrer RA, Giamberardino C, Sakthikumar S, Jones A, Yang T, Tenor JL, Wagih
547		O. Van Wyk M. Govender NP. Mitchell TG. Litvintseva AP. Cuomo CA. Perfect JR.
548		2017. Microevolution of Serial Clinical Isolates of Cryptococcus neoformans var.
549		grubii and C. gattii. MBio 8.
550	37.	Bicanic T. Harrison T. Niepieklo A. Dvakopu N. Meinties G. 2006. Symptomatic
551	0.11	relapse of HIV-associated cryptococcal meningitis after initial fluconazole
552		monotherapy: the role of fluconazole resistance and immune reconstitution. Clin
553		Infect Dis 43:1069-73.
554	38.	Beardsley J. Wolbers M. Kibengo FM. Ggavi AB. Kamali A. Cuc NT. Binh TO. Chau NV.
555	50.	Farrar L Merson L Phyong L Thwaites G Van Kinh N Thuy PT Chierakul W Siriboon
556		S. Thiansukhon F. Onsanit S. Supphamongkholchaikul W. Chan AK. Hevderman R
557		Mwiniiwa F, van Oosterhout II, Imran D, Basri H, Mayxav M, Dance D, Phimmasone
558		P Rattanavong S Lalloo DG Day IN CryptoDex L 2016 Adjunctive Devamethasone
559		in HIV-Associated Cryptococcal Meningitis New England Journal of Medicine
560		374:542-54.

561 562 563 564 565 566 567	39.	Beardsley J, Wolbers M, Kibengo FM, Ggayi AB, Kamali A, Cuc NT, Binh TQ, Chau NV, Farrar J, Merson L, Phuong L, Thwaites G, Van Kinh N, Thuy PT, Chierakul W, Siriboon S, Thiansukhon E, Onsanit S, Supphamongkholchaikul W, Chan AK, Heyderman R, Mwinjiwa E, van Oosterhout JJ, Imran D, Basri H, Mayxay M, Dance D, Phimmasone P, Rattanavong S, Lalloo DG, Day JN. 2016. Adjunctive Dexamethasone in HIV- Associated Cryptococcal Meningitis. N Engl J Med 374:542-54. Neely M, van :Guilder M, Yamada W, Schumitzky A, Jelliffe :BW, 2012
568		Accurate detection of outliers and subpopulations with Pmetrics, a nonparametric
569		and parametric pharmacokinetic modeling and simulation package for R.
570		Ther Drug Monit 34:467-476.
571	41.	Espinel-Ingroff A, Aller AI, Canton E, Castañón-Olivares LR, Chowdhary A, Cordoba S,
572		Cuenca-Estrella M, Fothergill A, Fuller J, Govender N, Hagen F, Illnait-Zaragozi MT,
573		Johnson E, Kidd S, Lass-Flörl C, Lockhart SR, Martins MA, Meis JF, Melhem MSC,
574		Ostrosky-Zeichner L, Pelaez T, Pfaller MA, Schell WA, St-Germain G, Trilles L,
575		Turnidge J. 2012. Cryptococcus neoformans-Cryptococcus gattii Species Complex: an
576		International Study of Wild-Type Susceptibility Endpoint Distributions and
577		Epidemiological Cutoff Values for Fluconazole, Itraconazole, Posaconazole, and
578		Voriconazole. Antimicrobial Agents and Chemotherapy 56:5898-5906.
579	42.	Montezuma-Rusca JM, Powers JH, Follmann D, Wang J, Sullivan B, Williamson PR.
580		2016. Early Fungicidal Activity as a Candidate Surrogate Endpoint for All-Cause
581		Mortality in Cryptococcal Meningitis: A Systematic Review of the Evidence. PLOS
582		ONE 11:e0159727.
583	43.	DerSimonian R, Laird N. 1986. Meta-analysis in clinical trials. Control Clin Trials
584		7:177-88.
585		

586

587 Table 1: Patient demographics

Demographic or clini characteristic	ical Vietnam	Uganda	Combined	p-value†
Sex ^a (Male:Female)	13:10	8:12	23:20	
Age (years) ^b				
Mean	38	33	35	0.75
Median	33	33	33	0.75
Range	20 - 73	24 - 50	20 - 73	
Weight (kg) $^{\circ}$				
Mean	46	49	48	0.22
Median	45	49	48	0.25
Range	32 - 68	35 - 60	32 – 68	
BMI (kg/m ²) ^d				
Mean	18	18	18	0.72
Median	18	18	18	0.75
Range	12 - 25	15 - 22	12 - 25	
Creatinine (µmol/L)	а			
Mean	67	81	74	0.02
Median	56	79	70	0.02
Range	37 – 167	43 - 145	37 - 167	
eGFR (ml/min/1.73m	1 ²) ^e			
Mean	88.3	80.7	84.7	0.10
Median	84.8	81.4	84.8	0.10
Range	35.4 – 136.1	49.8 - 146.7	35.4 – 146.7	
8 ^a <i>n</i> = 43				
9 ^b $n = 31$				
$0 {}^{c} n = 41$				
1 $^{d}n = 35$				
2 ^e n = 33				
3 [†] p-value for differ	ence between Vietn	am and Uganda	by Mann-Whit	ney test of
4 significance.				
5 BMI: Body Mass In	dex; eGFR: estimate	d Glomerular Fi	tration Rate, by	y Cockcroft-Gau
6 equation.				

597 Table 2: Population parameter estimates from the final 4-compartment pharmacokinetic

598 model

Parameter	Mean	Median	Standard deviation
Ka (h ⁻¹)	8.78	1.73	11.98
SCL/F (L/h)	0.72	0.65	0.24
Volume _c /F(L)	18.07	17.41	6.31
Kcp (h⁻¹)	12.20	8.36	11.17
Kpc (h⁻¹)	18.10	18.34	8.25
IC _{gut} (mg)	34.67	49.99	22.74
IC _{central} (mg)	35.86	49.98	19.67
IC _{CNS} (mg)	31.06	49.96	23.47
IC _{peripheral} (mg)	34.29	49.96	13.21
Kcs (h⁻¹)	35.43	42.55	13.74
Ksc (h⁻¹)	28.63	29.04	10.03
Volume _{cns} /F(L)	32.07	30.49	17.60

599

SCL: clearance; Volume_c: volume of distribution in central compartment; F: bioavailability;
Kcp: first-order rate constant from the central to peripheral compartment; Kpc, first-order
rate constant from peripheral to central compartment; IC: initial conditions in respective
compartments; Kcs: first-order rate constant from the central to CNS compartment; Ksc,
first-order rate constant from CNS to central compartment; Volume_{cns}: volume of
distribution in CNS compartment.

606

607	Table 3: Evaluation of the predictive performance of the considered and final models

Model	Measured compartment	Log likelihood	AIC	Population bias	Population imprecision	Linear regression of observed-predicted values for each patient		predicted values	p-value†
						R ^{2, <i>a</i>}	Intercept	Slope	-
Model 1	Plasma	-2451	4928	0.20	2.21	0.80	0.27	1.03	
	CSF			-0.30	1.55	0.81	-0.07	1.03	_
Model 2	Plasma	-2413	4854	0.36	2.38	0.80	0.01	1.03	-0.56
	CSF			-0.41	1.81	0.80	0.89	1.01	-

608

609 Model 1 did not include any covariates. Model 2 incorporated a function to scale the volume of distribution in central compartment to patient

610 weight.

611 AIC: Akaike Information criterion.

^a Relative to the regression line fitted for the observed versus predicted values after the Bayesian step.

613 ⁺ Comparison of the joint distribution of population parameter values for each model.

614

Downloaded from http://aac.asm.org/ on July 11, 2018 by University of Liverpool Library

Antimicrobial Agents and Chemotherapy

Online
cript Posted
ted Manusa
Accept

AAC

Table 4: Baseline characteristics and clinical outcomes from trial data of fluconazole monotherapy, by dosing regimen

Fluconazole dosage (mg)	Country	Number of patients	Age*	GCS < 15, %	CD4 cell count per mm ³ *	CSF burden, log10 CFU/mL	CSF sterility, fraction (%) of patients	Time CSF sterility charted	2 week mortality (%)	10 week mortality (%)	Reference
200	Uganda	28	33 (range 23- 50)	43	Mean 73		4/8 (50)	2 months	10/25 (40)	16/25 (64)	Mayanja-Kizza 1998 (20)
400	USA	14	mean 38(SE 2)	0	Mean 44 (SE 13)	4 [§]	6/14 (43)	10 weeks	NR	4/14 (29)	Larsen 1990 (21)
400	South Africa	5	39 (37-51)	60	41	5.53	NR	NR	NR	3/4 (75)	Bicanic 2007 (7)
800	Malawi	58	32 (29-39)	24	37 (11-58)		NR	NR	17/58 (29)	33/58 (57)	Rothe 2013 (22)
800	Uganda	30	35 (30-38)	33	7 (3-17)	5.7	NR	NR	11/30 (37)	18/30 (60)	Longley 2008 (23)
800	USA	9	35	100	8	4.8 [§]	1/9 (11)	10 weeks	NR	8/9 (89)	Milefchik 2008 (24)
1200	Malawi	47	35 (32-40)	24	36 (17-62)		NR	NR	16/47 (34)	26/47 (55)	Gaskell 2014 (24)
1200	Uganda	30	33 (28-42)	60	14 (4-33)	5.9	NR	NR	6/27 (22)	13/27 (48)	Longley 2008 (23)
1200	USA	16	40	100	36	3.5 [§]	6/16 (37.5)	10 weeks	NR	10/16 (62.5)	Milefchik 2008 (24)
1200	Malawi	20	36.5 (range 27-71)	40	25 (range 1- 66)	5.30	1/20 (5)	2 weeks	7/19 (37)	11/19 (58)	Nussbaum 2010 (8)
1600	USA	16	35	100	33	3 [§]	10/16 (62.5)	10 weeks	NR	6/16 (37.5)	Milefchik 2008 (24)
2000	USA	8	36	100	35	2.4 [§]	5/8 (62.5)	10 weeks	NR	3/8 (37.5)	Milefchik 2008 (24)

616

617 *Median (interquartile rage) unless otherwise specified. §: Extrapolated from cryptococcal antigen titre. CSF: Cerebrospinal fluid. SE:

618 Standard error. CFU: Colony-forming units.

AAC

Antimicrobial Agents and Chemotherapy 619 Figure 1: Fluconazole concentrations in 43 patients

- 621 Black diamonds represent plasma concentrations. White triangles represent CSF
- 622 concentrations.

623 Figure 2: Scatter plots showing observed versus predicted values for the chosen population

624 pharmacokinetic model after the Bayesian step.

625

626

627

- 628 A: Population predicted concentration of fluconazole in plasma. R2 = 0.49; intercept = 2.89 (95% CI 0.51
- 629 5.27), slope = 0.89 (95% CI 0.82 0.97)
- 630 B: Individual posterior predicted concentration of fluconazole in plasma. R2 = 0.80; intercept = 0.27
- 631 (95% CI -1.08 1.62); slope = 1.03 (95% CI 0.98 1.07)
- 632 C: Population predicted concentration of fluconazole in CSF. R2 = 0.46; intercept = 3.39 (95% CI -0.09–
- 633 6.87), slope = 1.03 (95% Cl 0.87 1.2)
- 634 D: Individual posterior predicted concentration of fluconazole in CSF. R2 = 0.81; intercept = -0.07 (95% CI
- 635 -1.97 1.84); slope = 1.03 (95% CI 0.95 1.10)

636

- 637 Circles, dashed lines, and solid lines represent individual observed-predicted data points, line of
- 638 identity, and the linear regression of observed-predicted values, respectively. All observed and
- 639 predicted fluconazole concentrations in mg/L. FLC: fluconazole; CI: Confidence Interval.

640

AAC

641 Figure 3: AUC distributions in 5,000 simulated patients at escalating fluconazole dosages

642

643 Light grey bars indicate simulated plasma AUC₁₄₄₋₁₆₈. Dark grey bars indicate simulated CSF

644 AUC₁₄₄₋₁₆₈.

		-						
645	Figure 4. Probability	/ of	pharmacody	namic ta	rget attain	ment in	nlasma as a	a function of
010	inguic fi i robubilit		priarinacoa	ymanne ta	Set attain	inche in		

646 isolate MIC and fluconazole dosage.

647

648

649

- 650 Each line represents the proportion of 5000 simulated patients that achieve the PD target at
- 651 the respective dosage of fluconazole. The PD target was a plasma AUC/MIC ratio \geq 389.3.
- 652 Bars show the proportion of WT strains of *C.neoformans* at the indicated MIC.

J	
$\overline{\triangleleft}$	
\triangleleft	

654	Figure 5: Meta-analysis of clinical trials of fluconazole monotherapy showing dose-adjusted		
655	effects on A) 2-week mortality and B) 10-week mortality.		
656			
657	A)		
658			
659	Right hand column provides observed and estimated proportions of patients dead at 2		
660	weeks.		
661			
662			
663			

664 B)

665

666	Right hand column provides ob	served and estimated pro	oportions of patients dead at 10
-----	-------------------------------	--------------------------	----------------------------------

667 weeks.

668

\$

Downloaded from http://aac.asm.org/ on July 11, 2018 by University of Liverpool Library

Time (hours)

Mortality at 2 weeks

Mortality at 10 weeks