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ABSTRACT  22 

Robust population pharmacokinetic (PK) data for fluconazole are scarce.  The variability of 23 

fluconazole penetration into the CNS is not known.  A fluconazole PK study was conducted 24 

in 43 patients receiving oral fluconazole (usually 800 mg q24h) in combination with 25 

amphotericin B deoxycholate (1 mg/kg q24h) for cryptococcal meningitis (CM).  A 4-26 

compartment PK model was developed and Monte Carlo simulations performed for a range 27 

of fluconazole dosages.  A meta-analysis of trials reporting outcomes of CM patients treated 28 

with fluconazole monotherapy was performed.  Adjusted for bioavailability, the PK 29 

parameter means (standard deviation) were: clearance, 0.72 (0.24) litres/hour; volume of 30 

the central compartment, 18.07 (6.31) litres; volume of central nervous system (CNS) 31 

compartment, 32.07 (17.60) litres; first-order rate constant from central to peripheral 32 

compartment, 12.20 (11.17) hours-1; from peripheral to central compartment, 18.10 (8.25) 33 

hours-1; from central to CNS compartment 35.43 (13.74) hours-1; from CNS to central 34 

compartment 28.63 (10.03) hours-1. Simulations of area under concentration-time curve 35 

resulted in median (interquartile range) values 1143.2 mg.h/litre (988.4 – 1378.0) in plasma 36 

and 982.9 (781.0 – 1185.9) in CSF after a dosage of 1200mg q24h.  The mean simulated ratio 37 

of AUCCSF:AUCplasma was 0.89 (SD 0.44).  The recommended dosage of fluconazole for CM 38 

induction therapy fails to attain the PD target in respect to the wild-type MIC distribution of 39 

C. neoformans.  The meta-analysis suggested modest improvements in both CSF sterility and 40 

mortality outcomes with escalating dosage.  This study provides the pharmacodynamic 41 

rationale for the long-recognised fact that fluconazole monotherapy is an inadequate 42 

induction regimen for CM.   43 

 44 

 45 
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 INTRODUCTION 46 

 Mortality from cryptococcal meningitis remains unacceptably high.  More than 90% 47 

of the estimated 223,100 annual incident cases of cryptococcal meningitis occur in Sub-48 

Saharan Africa and Asia-Pacific regions (1).  The most effective regimen for induction is 49 

amphotericin B deoxycholate and flucytosine (2, 3).  However, access to these drugs is 50 

limited in many regions where the burden of cryptococcal meningitis is greatest (4, 5).  In 51 

these settings, high-dose fluconazole is used for induction monotherapy, despite consistent 52 

evidence of reduced survival in comparison with other agents and combinations (6-8). 53 

 Fluconazole was discovered by Pfizer Inc. (Sandwich, UK) in 1978 (9).  The objective 54 

was to discover an orally bioavailable agent for the treatment of invasive mycoses with a 55 

lower propensity to develop resistance than flucytosine (9).  Fluconazole inhibits 56 

cytochrome P450-dependent demethylation of lanosterol in the ergosterol biosynthetic 57 

pathway (10).  The ratio of the area under the concentration-time curve (AUC) to the 58 

minimum inhibitory concentration (MIC) is the pharmacodynamic (PD) index that best links 59 

drug exposure of fluconazole with the observed antifungal effect (11, 12). 60 

 Successful antimicrobial therapy within the central nervous system depends on the 61 

achievement of effective drug concentrations within relevant subcompartments that 62 

include the cerebrum, meninges and CSF (13).  Fluconazole has a low molecular weight 63 

(approximately 300g/mol), is weakly protein bound and is not known to be a substrate for 64 

central nervous system (CNS) efflux pumps (14, 15).  Its ability to partition from the 65 

endovascular compartment into the CNS has been established in laboratory animal models 66 

(16, 17) and clinical studies (18, 19).  Brain:plasma penetration ratios up to 1.33 have been 67 

reported in humans (19).  However, there is a surprising paucity of population 68 

 on July 11, 2018 by U
niversity of Liverpool Library

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org/


 4 

pharmacokinetic (PK) data for fluconazole in all clinical contexts.  Furthermore, the extent 69 

and variability of penetration into the CNS is not known.   70 

  The primary aim of this study was to quantify the extent and variability of CNS 71 

penetration of fluconazole in adults with cryptococcal meningitis.  We developed a 72 

population PK model that quantified the inter-individual variability in drug exposure in 73 

plasma and cerebrospinal fluid (CSF).  We investigated the impact of a range of clinically 74 

relevant covariates on fluconazole PK.  Monte Carlo simulation was used to assess the 75 

implications of PK variability in terms of achieving fluconazole PD targets.  Finally, we 76 

conducted a meta-analysis of clinical trials of fluconazole monotherapy to estimate the 77 

contribution of dosage to clinical outcome. 78 
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RESULTS 80 

Patients 81 

A total of 43 patients (23 from Vietnam and 20 from Uganda) were recruited over an 82 

11-month period between January and November 2016.  Twenty-two patients (52%) were 83 

female.  The overall median (range) age was 33 years (20 – 73 years), weight 48 kg (32 – 68 84 

kg), body mass index 18 kg/m2 (12 – 25 kg/m2), creatinine at enrolment 70 µmol/L (37 – 167 85 

µmol/L) and estimated glomerular filtration rate using the Cockcroft Gault equation 84.8 86 

mL/min/1.73m2 (35.4 – 146.7 mL/min/1.73m2).  The baseline creatinine concentration was 87 

significantly lower in Vietnamese patients than in Ugandan patients (median 56 versus 79 88 

µmol/L; p-value 0.02).  However, this did not manifest as a significant difference in eGFR 89 

due to different age, sex and weight profiles between the two patient populations.  There 90 

were no statistically significant differences between ethnic groups for other demographic 91 

variables.  The demographic data are shown by ethnicity and for the study population as a 92 

whole in Table 1.   93 

 94 

Pharmacokinetic data 95 

 The final dataset included 312 plasma observations and 52 CSF observations from 96 

the Vietnamese cohort.  From the Ugandan cohort, the dataset included 196 plasma 97 

observations and 115 CSF observations.  A single CSF observation from 1 Ugandan patient 98 

was excluded because no fluconazole was detectable in an isolated sample after 13 days of 99 

therapy.  This was inconsistent with results from other patients and could not be verified. 100 

The mean number of plasma samples and CSF samples per patient was 11.8 and 3.9, 101 

respectively.  Figure 1 shows the raw plasma and CSF concentration-time profiles from study 102 

participants.  103 
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 104 

Population pharmacokinetic analysis 105 

 The final mathematical model was a linear model comprised of an absorption 106 

compartment, central compartment, peripheral compartment and CSF compartment.  The 107 

fit of the final model to the clinical data was acceptable.  The mean parameter estimates 108 

better fitted the data than medians, and were used to calculate Bayesian estimates of drug 109 

exposure for each individual patient.  A linear regression of the observed-versus-predicted 110 

fluconazole concentrations in plasma after the Bayesian step was given by: observed 111 

fluconazole concentration = 1.03*predicted fluconazole concentration + 0.27; r2 = 0.80.  For 112 

the observed-versus-predicted fluconazole concentrations in CSF, the linear regression was 113 

given by observed fluconazole concentration = 1.03*predicted fluconazole concentration - 114 

0.07; r2 = 0.81 (Figure 2 and table 3).  The mean weighted population bias for fluconazole 115 

concentrations in plasma and CSF was 0.20 and -0.30, respectively.  The bias-adjusted 116 

population imprecision in plasma and CSF was 2.21 and 1.55, respectively.  The population 117 

PK parameter estimates for the final model are shown in Table 2. 118 

 119 

Covariate investigation 120 

 Multivariate linear regression of each subject’s covariates versus the Bayesian 121 

posterior parameter values revealed a weak relationship between patient weight and 122 

estimated volume of distribution (slope 0.22, 95% confidence interval for the slope -0.06 to 123 

0.51, p-value 0.05).  Incorporation of weight into the PK model was therefore explored.  124 

However, values for log likelihood, Akaike information criterion (AIC) and population bias 125 

and imprecision were comparable between the 2 models.  The simple base model was 126 
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therefore used to describe the data and for the subsequent simulations.  The model 127 

comparisons and the fit to data are summarized in Table 3.  128 

 There was no relationship between the Bayesian estimates of clearance and volume, 129 

and ethnicity or sex in the base model.  The mean (95% CI) clearance was 0.74 liters/hour 130 

(0.64 – 0.83) and 0.71 liters / hour (0.59 – 0.82) for Vietnamese and Ugandan patients, 131 

respectively; p= 0.51.  The mean (95% CI) volume was 16.88 liters (14.33 – 19.44) and 19.44 132 

liters (16.88 – 22.0) for Vietnamese and Ugandan patients, respectively; p= 0.16.  In males, 133 

the mean (95% CI) clearance was 0.79 liters /hour (0.67 – 0.90).  In females, clearance was 134 

0.66 liters / hour (0.57 – 0.75); p= 0.09.  In males, the mean (95% CI) volume was 18.07 liters 135 

(15.47 – 20.67).  In females, volume was 18.07 liters / hour (15.41 – 20.73); p= 0.97.   136 

  137 

Fluconazole penetration into the CSF 138 

 There was large variability in the AUCs generated from each patient’s posterior 139 

estimates.  The 38 patients who received 800mg fluconazole q24h had a median (IQR) 140 

AUC144-168 of 945.4 (799.2 – 1139.8) mg.h/L in plasma and 784.2 mg.h/L (615.9 – 879.4) in 141 

CSF.  From these posterior estimates, the mean ratio of AUCCSF:AUCplasma was 0.82 (standard 142 

deviation 0.22).  143 

Monte Carlo simulation was used to estimate the distribution of drug exposure for 144 

dosages of 400mg, 800mg, 1200mg and 2000mg q24h of fluconazole (Figure 3).  PK 145 

variability was marked, both in plasma and CSF.  After administration of a dosage of 1200mg 146 

fluconazole q24h, median (IQR) simulated plasma AUC144-168 was 1143.2 mg.h/L (988.4 – 147 

1378.0) and CSF AUC144-168 was 982.9 mg.h/L (781.0 – 1185.9).  The mean simulated ratio of 148 

AUCCSF:AUCplasma was 0.89 (SD 0.44).  149 

 150 
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Probability of target attainment analysis 151 

 Monte Carlo simulation was used to predict the probability of achieving a total drug 152 

AUC:MIC ratio of ≥ 389.3 in plasma.  This PD target was shown in a murine model of 153 

cryptococcal meningitis to be associated with a stasis endpoint (i.e. no net change in fungal 154 

density at the end of the experiment compared with that at treatment initiation) (11).  Only 155 

61% of simulated patients receiving 1200mg fluconazole q24h achieved this PD target when 156 

the MIC of the infecting strain was 2.0 mg/L.  For MICs ≥ 4.0mg/L, < 1% of simulated 157 

patients administered 1200mg q24h achieved the PD target (Figure 4). 158 

 159 

Meta-analysis of clinical outcome data 160 

 A systematic review identified 163 relevant manuscripts, of which 11 were 161 

duplicates.  After reviewing titles and abstracts, 28 studies were deemed potentially 162 

relevant for inclusion in the meta-analysis.  Detailed examination of these studies resulted 163 

in the ultimate inclusion of 12 papers describing clinical outcomes from cryptococcal 164 

meningitis treated with fluconazole monotherapy.  In total, 28 patients in 1 study received 165 

200mg fluconazole q24h (20), 19 patients in 2 studies received 400mg fluconazole q24h (7, 166 

21), 97 patients in 3 studies 800mg q24h (22-24), 113 patients in 4 studies 1200mg q24h (8, 167 

23-25), and 1 study described outcomes of 16 patients on 1600mg (24) and 8 patients on 2g 168 

fluconazole q24h (24).  All included patients were HIV positive.  Baseline characteristics and 169 

reported clinical outcomes are presented in Table 4. 170 

The final model suggests that the combination of dose and baseline fungal burden 171 

explains the total heterogeneity in the estimated proportion of patients with sterile CSF 172 

after 10 weeks of treatment (P-value for residual heterogeneity 0.64).  However, there was 173 

not a significant relationship between dose and CSF sterility at 8-10 weeks (p-value 0.45).  174 
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After adjustment for dose, the test for residual heterogeneity in both 2 and 10-week 175 

mortality was not significant (p-value 0.70 and 0.22, respectively), indicating that dose alone 176 

adequately explained total heterogeneity in mortality outcomes at both time points.  For 177 

both 2 and 10-week mortality outcomes, there was a non-significant trend towards reduced 178 

mortality with escalating dosage (Figure 5). 179 

  180 
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DISCUSSION 181 

 Fluconazole is the only drug available for induction therapy for cryptococcal 182 

meningitis in many regions of the world where the incidence of disease is highest.  An 183 

accumulating body of evidence suggests that fluconazole is a suboptimal agent for this 184 

indication (26).  Whilst this has long been recognised, an explanation for the relatively poor 185 

efficacy of fluconazole is absent.  This study presents a uniquely comprehensive clinical 186 

dataset describing the PK of fluconazole.  It provides robust estimates of CNS penetration 187 

and the variability of those estimates.  A high degree of CNS partitioning has been observed 188 

in previous clinical studies with fluconazole (19, 27).  Distribution into the CNS is facilitated 189 

by low molecular weight, low protein binding and moderate lipophilicity (15, 28).  190 

Fluconazole has proven activity against Cryptococcus neoformans. (29, 30).  This study 191 

provides a further understanding as to why, despite these attributes, fluconazole is an 192 

inferior agent for induction monotherapy for cryptococcal meningitis compared with 193 

amphotericin B deoxycholate (6-8). 194 

 In contrast to previous studies of fluconazole PK (31-33), our data do not suggest a 195 

significant relationship between fluconazole clearance and creatinine clearance, nor 196 

between patient weight and volume of distribution.  The reason for this is not immediately 197 

clear but may relate to the relatively narrow range of creatinine clearance in our population, 198 

and the fact that the vast majority of patients in our cohort had low body weight, with the 199 

range of this covariate also being relatively narrow. 200 

The PK model suggests that current regimens of fluconazole are inadequate for 201 

induction therapy for cryptococcal meningitis.  This has routinely been ascribed to the 202 

overly simplistic notion that fluconazole is a fungistatic agent.  Our analyses provide further 203 

insight into the limitations of this drug.  Previous estimates of fluconazole CNS:plasma 204 
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partition ratios have ranged from 0.52 to 1.33 (18, 19, 27, 34).  We have extended these 205 

estimates by rigorously quantifying the marked variability in the CSF PK.  This variability has 206 

consequences at both microbiological and clinical levels.  Suboptimal exposure of 207 

fluconazole promotes the expansion of intrinsically resistant cryptococcal subpopulations 208 

present at the initiation of therapy (35).  In addition, the evolution of C. neoformans during 209 

therapy to become increasingly triazole resistant has been demonstrated in clinical studies 210 

(36, 37).  To be clinically effective, adequate concentrations of drug must be present at the 211 

site of infection for long enough to exert antimicrobial effect on both susceptible and 212 

resistant subpopulations.  The present analysis demonstrates the challenges in achieving 213 

that aim.   214 

At recommended fluconazole dosages of 1200mg q24h, the probability of PD target 215 

attainment (PTA) bisects the MIC distribution of WT C. neoformans isolates.  This is 216 

consistent with the findings of Sudan et al (11).  Approximately half of patients will fail 217 

therapy because they are not able to generate the drug exposure required to prevent 218 

progressive fungal growth.  Since clinical PK-PD targets are not available for fluconazole in 219 

cryptococcal meningitis, we have used a target derived from a murine study (11).  This 220 

assumes that CNS partitioning is the same in mice and humans.  The cerebrum:plasma AUC 221 

ratio in the murine study was 46.9% (11).  It is conceivable that this is in keeping with our 222 

CSF:plasma AUC ratio of 82%, though clearly it would be preferable to have clinical PK-PD 223 

targets defined.  Nevertheless, our PTA analysis is supported by the 53% 10-week mortality 224 

outcomes for patients receiving 1200mg fluconazole q24h, estimated in the meta-analysis.  225 

Importantly, such PTA analyses are based on an AUC/MIC of 389.3, which is more than an 226 

order of magnitude greater than the AUC/MIC ratio required for Candida albicans (12).   227 
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Progressive escalation of the dosage of fluconazole is not likely to be an effective 228 

strategy for improving cryptococcal meningitis induction therapy.  The drug exposure 229 

required to reliably treat isolates with MICs ≥ 4.0mg/L is difficult to achieve and potentially 230 

toxic.  Our meta-analysis suggests that escalating dosages of fluconazole do not increase the 231 

proportion of patients with sterile CSF at 10 weeks.  Dosages of 2000mg q24h do not appear 232 

to significantly improve 10-week mortality outcomes in comparison to 1200mg q24h.  The 233 

ACTG study (https://clinicaltrials.gov/show/NCT00885703) is investigating the use of higher 234 

dosages of fluconazole (1600mg and 2000mg q24h) for the treatment of cryptococcal 235 

meningitis in HIV-infected individuals and results are pending.  The addition of flucytosine to 236 

high-dose fluconazole (≥ 1200mg q24h) for cryptococcal meningitis increases antifungal 237 

activity and improves mortality outcomes (8, 24), suggesting that combination therapy is 238 

required to optimise antifungal activity in fluconazole-containing regimens. 239 

In summary, this study provides part of the pharmacodynamic rationale for the long-240 

recognised fact that fluconazole monotherapy is an ineffective induction regimen for 241 

cryptococcal meningitis.  We have developed a fluconazole population PK model that 242 

suggests that approximately half of patients with cryptococcal meningitis caused by WT 243 

strains of C. neoformans will be undertreated by currently recommended dosages of 244 

fluconazole for induction therapy.  In doing so we have addressed a knowledge gap 245 

regarding the reason for the inferiority of this drug for cryptococcal meningitis.  There is a 246 

pressing need for improved provision of affordable combination treatments and 247 

development of more effective drugs. 248 

 249 

  250 
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MATERIALS AND METHODS 251 

Clinical pharmacokinetic studies 252 

 Patients from whom plasma and CSF samples were obtained for this PK study have 253 

been described previously (38).  Briefly, adult patients were initially recruited from a multi-254 

centre randomised controlled trial of adjuvant dexamethasone in HIV-associated 255 

cryptococcal meningitis.  The trial is reported elsewhere (n=3, International Standard 256 

Registered Clinical Number 59144167) (39).  Following the early cessation of this trial, 257 

patients were recruited from a prospective descriptive study at the same sites (n=40). Study 258 

sites were The Hospital for Tropical Diseases in Ho Chi Minh City, Vietnam, and Masaka 259 

General Hospital, Uganda. The study protocols were approved by the relevant institutional 260 

review boards and regulatory authorities at each trial site and by the Oxford University 261 

Tropical Research Ethics Committee. 262 

 Fluconazole was administered orally.  Where conscious level did not enable oral 263 

administration, fluconazole was administered via nasogastric tube.  The majority of patients 264 

received 800mg fluconazole q24h.  Two patients received one-off doses of 400mg q24h.  265 

Two received one-off doses of 600mg q24h.  One patient’s regimen of 800mg fluconazole 266 

q24h was escalated to 1200mg q24h for 6 days from day 8 of treatment.  All patients 267 

received combination therapy with amphotericin B deoxycholate 1mg per kg infused over 5-268 

6 hours. 269 

 270 

Measurement of fluconazole concentrations 271 

Fluconazole concentrations were measured using a validated LC/MS/MS 272 

methodology (1260 Agilent UPLC coupled to an Agilent 6420 Triple Quad mass 273 

spectrometer, Agilent Technologies UK Ltd, Cheshire, UK).  Briefly, fluconazole was 274 
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extracted by protein precipitation; 300 µl of cold methanol containing the internal standard 275 

fluconazole-D4 at 0.625 mg/L (TRC, Canada) was added to 10 µl of sample (plasma or CSF). 276 

The solution was vortex mixed for 5 seconds and filtered through a Sirocco precipitation 277 

plate (Waters Ltd, Cheshire, UK). One hundred fifty µl of supernatant was transferred to a 278 

96-well auto sampler plate, and 3 µL were injected on an Agilent ZORBAX C18 RRHD (2.1 X 279 

50mm, 1.8 µm) (Agilent Technologies UK Ltd, Cheshire, UK).  280 

Chromatographic separation was achieved using a gradient consisting of 70% A:30% 281 

B (0.1% formic acid in water as mobile phase A and 0.1% formic acid in methanol as mobile 282 

phase B).  The organic phase was increased to 100% over 90 seconds, with additional 90 283 

seconds of equilibration.   284 

The mass spectrometer was operated in multiple reaction monitoring scan mode in 285 

positive polarity. The precursor ions were 307.11 m/z and 311.1 m/z for fluconazole and 286 

internal standard, respectively. The product ions for fluconazole were 220.1 m/z and 238.1 287 

m/z; for the internal standard 223.2 m/z and 242.1 m/z. The source parameters were set as 288 

follows: capillary voltage 4000 V, gas temperature 300°C and nebulizer gas 15 lb/in2.  289 

The standard curve for fluconazole encompassed the concentration range 1-120 mg/L and 290 

was constructed using blank matrix. The limit of quantitation was 1 mg/L.  In plasma, the 291 

intra-day coefficient of variation (CV) was <3.4% and the inter-day CV was <6.7%, over the 292 

concentration range 1-90 mg/L.  In CSF, the intra-day CV was <5.2% and the inter-day CV 293 

was <5.3% over the same concentration range. 294 

 295 

Population pharmacokinetic modelling 296 

The concentration-time data for fluconazole in plasma and CSF were analysed using 297 

the non-parametric adaptive grid (NPAG) algorithm of the program Pmetrics (40) version 298 
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1.5.0 for R statistical package 3.1.1.  The initial PK mathematical model fitted to the data 299 

contained four compartments and took the following form: 300 

1. 
𝑑𝑋(1)

𝑑𝑡
=  −𝐾𝑎 ∗ 𝑋(1) 301 

2. 
𝑑𝑋(2)

𝑑𝑡
=  𝐾𝑎 ∗ 𝑋(1) − (𝐾𝑐𝑝 +  𝐾𝑐𝑠  +

𝑆𝐶𝐿

𝑉
) ∗ 𝑋(2) + 𝐾𝑠𝑐 ∗ 𝑋(3) +  𝐾𝑝𝑐 ∗ 𝑋(4)  302 

3. 
𝑑𝑋(3)

𝑑𝑡
= 𝐾𝑐𝑠 ∗ 𝑋(2) −  𝐾𝑠𝑐 ∗ 𝑋(3)  303 

4. 
𝑑𝑋(4)

𝑑𝑡
= 𝐾𝑐𝑝 ∗ 𝑋(2) −  𝐾𝑝𝑐 ∗ 𝑋(4) 304 

5. 𝑌(1) =  𝑋(2)/𝑉 305 

6. 𝑌(2) =  𝑋(3)/𝑉𝑐𝑛𝑠 306 

Where equations (1), (2), (3) and (4) describe the rate of change in amount of drug in 307 

milligrams (mg) in the gut, central, CSF and peripheral compartment, respectively.  Ka is the 308 

absorption rate constant from the gut to the central compartment. X(1), X(2), X(3) and X(4) 309 

are the amount of fluconazole (mg) in the gut, central (c), CSF (s) and peripheral 310 

compartments (p), respectively.  Kcp, Kpc, Kcs and Ksc represent first-order transfer 311 

constants connecting the various compartments.  SCL is the first-order clearance of drug 312 

(L/h) from the central compartment.  V is the volume of the central compartment.  The CSF 313 

compartment (X(3)) has an apparent CSF volume (Vcns), given in litres.  314 

 Model error was attributed separately to process noise (including errors in sampling 315 

times or dosing) and assay variance.  Process noise was modelled using lambda, an additive 316 

error term.  The data were weighted by the inverse of the estimated assay variance.   317 

The data for some patients indicated that they had taken fluconazole at an 318 

undocumented time prior to study enrolment, since there was detectable drug in the first 319 

PK sample.  To accommodate this, non-zero initial conditions of all four compartments were 320 

estimated in the structural model.  A switch was coded whereby the parameterised 321 
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estimate of each initial condition was multiplied by a binary covariate equal to 1 where 322 

fluconazole was detected in the first PK sample, or 0 where no fluconazole was detected in 323 

the first PK sample.  324 

 325 

Population pharmacokinetic covariate screening 326 

 The impact of patent weight, BMI, sex, ethnicity and baseline eGFR on the PK of 327 

fluconazole were investigated.  Bidirectional stepwise multivariate linear regression was 328 

employed to assess the relationship between each covariate and the Bayesian estimates for 329 

volume of distribution and clearance from the central compartment from the standard 330 

population PK model.  Covariates that were retained with significant multivariate p-values 331 

(≤0.05) in the regression model were explored individually.  The relationship between 332 

retained continuous covariates and Bayesian estimates of PK parameters was explored 333 

using univariate linear regression.  The difference between Bayesian estimates of volume 334 

and clearance according to categorical covariates (sex and ethnicity) was compared using 335 

the Mann-Whitney test.   336 

 337 

Population pharmacokinetic model diagnostics 338 

The fit of the model to the data was assessed by visual inspection of diagnostic 339 

scatterplots displaying observed-versus-predicted values before and after the Bayesian step.  340 

Linear regression was performed and the coefficient of determination, intercept and 341 

regression slope noted for each model.  In addition, the log-likelihood value, Akaike 342 

Information criterion (AIC), mean weighted error (a measure of bias) and bias-adjusted, 343 

mean weighted squared error (a measure of precision) were calculated and compared for 344 

each model. 345 
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 346 

Monte Carlo Simulation and calculation of probability of target attainment 347 

 Monte Carlo simulation (n = 5000) was performed in Pmetrics (40).  The support 348 

points from the final joint density were used.  For the simulations, the initial conditions of all 349 

compartments were defaulted to zero.  Fluconazole was administered at a range of dosages: 350 

400mg q24h, 800mg q24h, 1200mg q24h and 2000mg q24h.  The plasma and CSF AUC for 351 

fluconazole was calculated using trapezoidal approximation after the sixth dose, from 144 to 352 

168 hours after treatment initiation.  353 

Wild type fluconazole MIC data were obtained from a previously published collection 354 

of 5,733 C. neoformans isolates estimated using Clinical and Laboratory Standards Institute 355 

(CLSI) methodology (41).  The modal MIC was 4mg/L (1,629 of 5,733 strains; 28%).  Almost 356 

half of strains had MICs ≥ 4mg/L (2,834 of 5,733 strains; 49%).  The epidemiological cut-off 357 

value for C. neoformans versus fluconazole was 8mg/L.  This collection of strains included 358 

molecular types VNI to VNIV and the pattern of MIC distribution was comparable across all 359 

molecular types (41). The proportion of simulated patients that would achieve a previously 360 

published plasma AUC/MIC target of 389.3 was determined.  This target was defined as the 361 

magnitude of drug exposure required for fungal stasis (defined as prevention of progressive 362 

fungal growth) in a murine study that employed CLSI methodology (11).  To our knowledge, 363 

no CSF PK/PD target has been defined in preclinical or clinical studies of fluconazole for 364 

cryptococcal meningitis.  In the present study, the probability of attaining this plasma PK/PD 365 

target was examined at each simulated fluconazole dose. 366 

 367 

 368 

 369 
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Meta-analysis of clinical outcome data 370 

 The AUC/MIC target used in the probability of target attainment analysis was 371 

derived from murine studies.  To enhance clinical relevance, we sought PD data from 372 

humans.  The PD data from patients in the present PK study are confounded by the co-373 

administration of amphotericin B deoxycholate.  For this reason, a search for clinical trials of 374 

fluconazole monotherapy for cryptococcal meningitis was performed.  The electronic 375 

databases Pubmed and Medline were searched on 31st January 2018 using the terms 376 

“fluconazole” and “cryptococcal meningitis”.  Preclinical studies and case reports were 377 

excluded.  To reduce potential heterogeneity, only studies of HIV-positive participants were 378 

included in the meta-analysis.  Baseline variables were chosen a priori for extraction from 379 

the studies if they had previously been determined to have a significant impact on clinical 380 

outcome.  These were mental status, CSF fungal burden and patient age (6, 42).  Where it 381 

was not reported, baseline CSF fungal burden was extrapolated from CSF cryptococcal 382 

antigen titre according to a correlation published by Jarvis et al (6).  383 

 For consistency with the literature, we collected data on clinical outcomes 384 

commonly presented in cryptococcal meningitis trials: CSF sterility at 8-10 weeks, 2-week 385 

mortality and 10-week mortality.  Mixed-effects meta-analysis adjusted for fluconazole 386 

dosage was performed.  Fungal burden in CSF, CD4 count and proportion of patients with 387 

reduced Glasgow Coma Score (GCS) at baseline were explored to assess the degree to which 388 

these modifiers accounted for inter-study heterogeneity in clinical outcome.   The mixed-389 

effects model took the form: 390 

𝜃𝑖 = 𝛽0 + 𝛽1𝑍𝑖1 + ⋯ + 𝛽1𝑍𝑖𝑗 + 𝑢𝑖 

  391 
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where 𝜃𝑖 is the corresponding (unknown) true effect of the 𝑖th study, 𝑍𝑖𝑗 is the value of the 392 

𝑗th moderator variable for the 𝑖th study and 𝑢𝑖 are study-specific random effects such that 393 

𝑢𝑖~𝑁(0, 𝜏2). Here, 𝜏2 denotes the amount of residual heterogeneity, estimated using the 394 

DerSimonian-Laird estimator (43).  Additional model parameters were estimated via 395 

weighted least squares with weights relative to the estimated 𝜏2.  The null hypothesis 396 

𝐻0: 𝜏2 = 0 was tested using Cochran’s Q-test, and model parameters were tested with the 397 

Wald-type test statistic. 398 

  399 
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Table 1: Patient demographics 587 

Demographic or clinical 

characteristic 

Vietnam Uganda Combined p-value† 

Sex a (Male:Female) 13:10 8:12 23:20  

Age (years) b 

Mean 

Median 

Range 

 

38 

33 

20 - 73 

 

33 

33 

24 - 50 

 

35 

33 

20 - 73 

0.75 

Weight (kg) c 

Mean 

Median 

Range 

 

46 

45 

32 - 68 

 

49 

49 

35 - 60 

 

48 

48 

32 – 68 

0.23 

BMI (kg/m2) d 

Mean 

Median 

Range 

 

18 

18 

12 - 25 

 

18 

18 

15 - 22 

 

18 

18 

12 - 25 

0.73 

Creatinine (µmol/L) a 

Mean 

Median 

Range 

 

67 

56 

37 – 167 

 

81 

79 

43 - 145 

 

74 

70 

37 - 167 

0.02 

eGFR (ml/min/1.73m2) e 

Mean 

Median 

Range 

 

88.3 

84.8 

35.4 – 136.1 

 

80.7 

81.4 

49.8 – 146.7 

 

84.7 

84.8 

35.4 – 146.7 

0.10 

a n = 43 588 

b n = 31 589 

c n = 41 590 

d n = 35 591 

e n = 33 592 

† p-value for difference between Vietnam and Uganda by Mann-Whitney test of 593 

significance. 594 

BMI: Body Mass Index; eGFR: estimated Glomerular Filtration Rate, by Cockcroft-Gault 595 

equation.  596 
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Table 2: Population parameter estimates from the final 4-compartment pharmacokinetic 597 

model 598 

Parameter Mean Median Standard deviation 

Ka (h-1) 8.78 1.73 11.98 

SCL/F (L/h) 0.72 0.65 0.24 

Volumec /F(L) 18.07 17.41 6.31 

Kcp (h-1) 12.20 8.36 11.17 

Kpc (h-1) 18.10 18.34 8.25 

ICgut (mg) 34.67 49.99 22.74 

ICcentral (mg) 35.86 49.98 19.67 

ICCNS (mg) 31.06 49.96 23.47 

ICperipheral (mg) 34.29 49.96 13.21 

Kcs (h-1) 35.43 42.55 13.74 

Ksc (h-1) 28.63 29.04 10.03 

Volumecns /F(L) 32.07 30.49 17.60 

 599 

SCL: clearance; Volumec: volume of distribution in central compartment; F: bioavailability; 600 

Kcp: first-order rate constant from the central to peripheral compartment; Kpc, first-order 601 

rate constant from peripheral to central compartment; IC: initial conditions in respective 602 

compartments; Kcs: first-order rate constant from the central to CNS compartment; Ksc, 603 

first-order rate constant from CNS to central compartment; Volumecns: volume of 604 

distribution in CNS compartment. 605 

  606 
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Table 3:  Evaluation of the predictive performance of the considered and final models       607 

Model Measured 
compartment 

Log likelihood AIC Population 
bias 

Population 
imprecision 

Linear regression of observed-predicted values 
for each patient 
 

p-value†  

R2, a Intercept Slope 

Model 1 Plasma -2451 4928 0.20 2.21 0.80 0.27 1.03 

0.56 
 CSF -0.30 1.55 0.81 -0.07 1.03 

Model 2 Plasma -2413 4854 0.36 2.38 0.80 0.01 1.03 

 CSF -0.41 1.81 0.80 0.89 1.01 

 608 

Model 1 did not include any covariates.  Model 2 incorporated a function to scale the volume of distribution in central compartment to patient 609 

weight. 610 

AIC: Akaike Information criterion. 611 

a Relative to the regression line fitted for the observed versus predicted values after the Bayesian step. 612 

† Comparison of the joint distribution of population parameter values for each model. 613 

  614 
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Table 4:  Baseline characteristics and clinical outcomes from trial data of fluconazole monotherapy, by dosing regimen 615 

Fluconazole 
dosage (mg) 

Country 
Number 
of 
patients 

Age* 
GCS < 15, 
% 

CD4 cell 
count per 
mm3 * 

CSF 
burden, 
log10 
CFU/mL 

CSF 
sterility, 
fraction 
(%) of 
patients 

Time CSF 
sterility 
charted 

2 week 
mortality 
(%) 

10 week 
mortality (%) 

Reference 

200 Uganda 28 
33 (range 23-
50) 

43 Mean 73 . 4/8 (50) 2 months 10/25 (40) 16/25 (64) 
Mayanja-Kizza 
1998 (20) 

400 USA 14 mean 38(SE 2) 0 
Mean 44 (SE 
13) 

4§ 6/14 (43) 10 weeks NR 4/14 (29) Larsen 1990 (21) 

400 
South 
Africa 

5 39 (37-51) 60 41 5.53 NR NR NR 3/4 (75) Bicanic 2007 (7) 

800 Malawi 58 32 (29-39) 24 37 (11-58) . NR NR 17/58 (29) 33/58 (57) Rothe 2013 (22) 

800 Uganda 30 35 (30-38) 33 7 (3-17) 5.7 NR NR 11/30 (37) 18/30 (60) Longley 2008 (23) 

800 USA 9 35 100 8 4.8§ 1/9 (11) 10 weeks NR 8/9 (89) 
Milefchik 2008 
(24) 

1200 Malawi 47 35 (32-40) 24 36 (17-62) . NR NR 16/47 (34) 26/47 (55) Gaskell 2014 (24) 

1200 Uganda 30 33 (28-42) 60 14 (4-33) 5.9 NR NR 6/27 (22) 13/27 (48) Longley 2008 (23) 

1200 USA 16 40 100 36 3.5§ 6/16 (37.5) 10 weeks NR 10/16 (62.5) 
Milefchik 2008 
(24) 

1200 Malawi 20 
36.5 (range 
27-71) 

40 
25 (range 1-
66) 

5.30 1/20 (5) 2 weeks 7/19 (37) 11/19 (58) 
Nussbaum 2010 
(8) 

1600 USA 16 35 100 33 3§ 
10/16 
(62.5) 

10 weeks NR 6/16 (37.5) 
Milefchik 2008 
(24) 

2000 USA 8 36 100 35 2.4§ 5/8 (62.5) 10 weeks NR 3/8 (37.5) 
Milefchik 2008 
(24) 

 616 

*Median (interquartile rage) unless otherwise specified.  §: Extrapolated from cryptococcal antigen titre.  CSF: Cerebrospinal fluid.  SE: 617 

Standard error.  CFU: Colony-forming units. 618 
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Figure 1: Fluconazole concentrations in 43 patients 619 

 620 

Black diamonds represent plasma concentrations.  White triangles represent CSF 621 

concentrations.  622 
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Figure 2:  Scatter plots showing observed versus predicted values for the chosen population 623 

pharmacokinetic model after the Bayesian step. 624 

 625 

 626 

 627 

A: Population predicted concentration of fluconazole in plasma.  R2 = 0.49; intercept = 2.89 (95% CI 0.51 628 

– 5.27), slope = 0.89 (95% CI 0.82 – 0.97) 629 

B:  Individual posterior predicted concentration of fluconazole in plasma.  R2 = 0.80; intercept = 0.27 630 

(95% CI -1.08 – 1.62); slope = 1.03 (95% CI 0.98 – 1.07) 631 

C: Population predicted concentration of fluconazole in CSF.  R2 = 0.46; intercept = 3.39 (95% CI -0.09– 632 

6.87), slope = 1.03 (95% CI 0.87 – 1.2) 633 

D:  Individual posterior predicted concentration of fluconazole in CSF.  R2 = 0.81; intercept = -0.07 (95% CI 634 

-1.97 – 1.84); slope = 1.03 (95% CI 0.95 – 1.10) 635 

 636 

Circles, dashed lines, and solid lines represent individual observed-predicted data points, line of 637 

identity, and the linear regression of observed-predicted values, respectively. All observed and 638 

predicted fluconazole concentrations in mg/L. FLC: fluconazole; CI: Confidence Interval. 639 

  640 
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Figure 3:  AUC distributions in 5,000 simulated patients at escalating fluconazole dosages 641 

 642 

Light grey bars indicate simulated plasma AUC144-168.  Dark grey bars indicate simulated CSF 643 

AUC144-168.  644 
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Figure 4: Probability of pharmacodynamic target attainment in plasma as a function of 645 

isolate MIC and fluconazole dosage. 646 

 647 

 648 

 649 

Each line represents the proportion of 5000 simulated patients that achieve the PD target at 650 

the respective dosage of fluconazole.  The PD target was a plasma AUC/MIC ratio ≥ 389.3.  651 

Bars show the proportion of WT strains of C.neoformans at the indicated MIC.  652 

  653 
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Figure 5: Meta-analysis of clinical trials of fluconazole monotherapy showing dose-adjusted 654 

effects on A) 2-week mortality and B) 10-week mortality. 655 

 656 

A) 657 

  658 

Right hand column provides observed and estimated proportions of patients dead at 2 659 

weeks. 660 

 661 

 662 

  663 
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B) 664 

 665 

Right hand column provides observed and estimated proportions of patients dead at 10 666 

weeks. 667 

 668 
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