MATTHIAS WINTERHAGER, PETER WEINGART UND ROSWITHA SEHRINGER

Die Cozitationsanalyse als bibliometrisches Verfahren zur Messung der nationalen und institutionellen Forschungsperformanz^{*}

1. Die wissenschaftspolitische Funktion der Forschungsmessung und -bewertung

Die traditionelle Form der Leistungsbewertung und -kontrolle und der öffentlichen Berichterstattung staatlicher Behörden ist bis vor kurzer Zeit ausnahmslos die Ausgabenstatistik gewesen. Das liegt nicht nur daran, daß sie für die Legitimierung von Regierungspolitik unmittelbar geeignet ist, sondern vor allem daran, daß für die Erfolgskontrolle nicht-ökonomischer Leistungsverwaltung keine einheitlichen Bewertungsmaßstäbe existieren, noch existieren können. So hat auch für die Forschungspolitik bislang die Überzeugung geherrscht, daß deren Leistungen und Erfolge nicht direkt meßbar, sondern nur über die Aufwendungen zu erfassen seien. Im Bereich der Forschungs- und Entwicklungs (FuE-) Politik ist diese Selbstbeschränkung noch zusätzlich durch die für die Wissenschaft reklamierte Überzeugung gestützt worden, daß eine Erfolgsmessung wegen der Unberechenbarkeit von Erkenntnisprozessen und der zeitlichen Entkoppelung von Entdeckung und Anwendung prinzipiell ausgeschlossen sei. Sowohl allgemein als auch im Hinblick auf den speziellen Bereich der FuE-Politik verändert sich diese gegenüber einer präziseren Erfolgskontrolle des Staatshandelns abstinente Haltung. Dafür sind eine Reihe von Gründen verantwortlich:

Generell hat die enorme Ausweitung der staatlichen Leistungs- und Vorsorgeverwaltung und deren faktische Ausnahme von öffentlicher Erfolgskontrolle zu einem wachsenden Legitimationsdefizit geführt. Ständig steigenden Ausgaben stehen keine entsprechend präzisen Erfolgskontrollen gegenüber. Das Legitimationsdefizit wird erst dann virulent, wenn die öffentlichen Haushalte schrumpfen und sich der interne Verteilungskampf verschärft. Dies ist Ende der 70er Jahre eingetreten.

Ein weiterer Grund ist in der Art der gesellschaftlichen Bereiche zu sehen, die Gegenstand der Leistungs- und Vorsorgeverwaltung geworden sind, und damit in den je spezifischen Interventions- und Steuerungsleistungen, die vom Staat erbracht

^{*} Das diesem Bericht zugrundeliegende Forschungsvorhaben wurde mit Mitteln des Bundesministeriums für Forschung und Technologie (Förderkennzeichen SWF 0012 0) gefördert. Die Verantwortung für den Inhalt der Veröffentlichung liegt bei den Autoren.

werden müssen. Bildung, öffentliche Gesundheit, Verkehr, soziale Sicherheit oder Familienpolitik sind derartige Bereiche, die jeweils besonderer, gegenstandsbezogener Maßnahmen bedürfen, die durch monetäre Aufwandseinheiten weder adäquat erfaßt noch vergleichbar werden. Es ist deshalb nicht zufällig, daß die zuerst im wirtschaftspolitischen Bereich geübte Praxis der Konstruktion von Leistungs- und Erfolgsindikatoren auch auf diese Bereiche ausgeweitet worden ist. Dabei hat die Indikatorenbewegung zunächst den sozialpolitischen Bereich erfaßt, mittels des Versuchs der Konstruktion von Sozialindikatoren.

Im Bereich der FuE-Politik muß als ein Grund der Umstand angesehen werden, daß sich nur ein Bruchteil der staatlichen Aufwendungen auf die Förderung der Grundlagenforschung bezieht, für die allein Argumente der Unberechenbarkeit des Erkenntnisprozesses ins Feld geführt werden können. Selbst für diesen Bereich gilt jedoch, daß er in den hochentwickelten Industrienationen seit der Institutionalisierung einer systematischen Wissenschaftspolitik immer enger an die Technologieentwicklung und damit auch an die wirtschaftspolitischen Strategien angekoppelt worden ist. Steuerung der Forschung ist in Grenzen durchaus möglich und wird durch Prioritätensetzung und Mittelallokation auch faktisch betrieben. Dabei müssen die hohen Aufwendungen durch Steuerungserfolge gerechtfertigt werden. Die möglichst genaue Diagnose und Verfolgung von Stand und Entwicklung der technisch und ökonomisch relevanten Bereiche der nationalen Grundlagenforschung wird so zu einem wichtigen Element der FuE-Politik. Vor allem auch internationale Leistungsvergleiche gehören inzwischen zum festen Bestandteil der Wissenschaftspolitik, da in den Hochtechnologieländern relative Vorteile im Bereich der Wissensindustrien über mittel- und längerfristige Exportvorteile entscheiden. Die in den letzten Jahren in der Bundesrepublik Deutschland, aber auch in anderen europäischen Staaten, vor allem gegenüber Japan und den USA, diagnostizierten Defizite in der hochtechnologierelevanten Forschung lassen die erhöhte Sensibilität gegenüber dem relativen Forschungsstand erkennen. Allerdings herrscht hinsichtlich der Diagnose derartiger »Defizite« erhebliche Unsicherheit. Deshalb liegt die Konstruktion von »Wissenschaftsindikatoren« auf der Linie einer allgemeinen Entwicklungslogik.

Für die Konstruktion und Anwendung von Wissenschaftsindikatoren gelten eine Reihe allgemeiner und wissenschaftsspezifischer Bedingungen. Für Indikatoren allgemein gilt, daß sie leicht handhabbar und außerdem relativ kostengünstig sein müssen. (Sie müssen zumindest billiger sein als ihr Informationswert, ggf. also als die durch sie ermöglichten Einsparungen.) Außerdem müssen Indikatoren einen relativ hohen Konsensgrad unter den von ihrer Anwendung Betroffenen haben. Letzteres ist in der Grundlagenforschung insbesondere deshalb problematisch, weil sich das Wissenschaftssystem (im Bereich der Grundlagenforschung) durch die »Selbststeuerung« über systeminterne Gutachter, also Experten, definiert. Dieser wissenschaftsspezifische Umstand muß zunächst Widerstand gegen jede Bewertung von »außen« hervorrufen, der nur darin seine Legitimationsgrenze findet, daß auch die Finanzierung von außen erfolgt und den dafür üblichen öffentlichen Begründungspflichten unterliegt. Im gegenwärtigen Stadium der Entwicklung und wissenschaftspolitischen Anwendung von Indikatoren für die Erfolgsmessung der Grundlagenforschung ist weder eine als endgültig zu betrachtende Form der Indikatoren gegeben, noch ein Konsens über diese in der »scientific community« erreicht. Die Indikatorenkonstruktion ist selbst noch Forschung, d. h. Validierung von Erfolgsmaßen und ggf. versuchsweise Einführung.

Die folgende Darstellung der Cozitationsanalyse und ihrer Anwendungsmöglichkeit ist auf die relevante deutsche Beteiligung am internationalen Forschungsgeschehen ausgerichtet. Die mit dieser Methode generierten Listen erfordern zu ihrer weiteren Bearbeitung, daß Wissenschaftler und Vertreter aus Wissenschaftspolitik und -verwaltung eine Auswahl derjenigen Gebiete vornehmen, die in der weiteren Analyse berücksichtigt werden sollen. Die darin involvierte politische Entscheidung sollte nach Möglichkeit nicht Gegenstand der Indikatorenkonstruktion sein. Unabhängig davon muß die Validierung der generierten Daten jedoch mit Hilfe von Fachleuten aus den jeweiligen Forschungsbereichen vorgenommen werden, um sicherzustellen, daß die aggregierten Daten keine Artefakte enthalten oder anderweitig fehlerhaft sind.

Auf der Grundlage der damit getroffenen Entscheidungen werden die Strukturdaten für die ausgewählten und validierten Forschungsfronten und Disziplinen/ Gebiete erstellt, die im Hinblick auf die Ursachen für die Stärke oder Schwäche der Forschungsleistung detailliert und qualitativ zu analysieren sind.

Diese wiederholte Rückkopplung der Indikatorenkonstruktion und Datengenerierung dient im Stadium der Indikatorenkonstruktion und Erprobung sowohl zur Validierung der Daten als auch zur Erhöhung der Akzeptanz der Indikatoren. Wenn im Dialog zwischen den Wissenschaftlern und jenen, die die Daten generieren und aufbereiten, die zumindest weitgehende Übereinstimmung zwischen den »objektiv« (im Sinne von unabhängig von subjektiven Urteilen) generierten Daten und den subjektiven Einschätzungen hergestellt werden kann, kann die Konstruktion der Indikatoren als im Prinzip abgeschlossen gelten. Das ist jedoch ein Vorgriff auf die Zukunft. Im folgenden wird die Leistungsfähigkeit der Cozitationsanalyse von der Identifikation der unter wissenschaftspolitischen Gesichtspunkten relevanten Forschungsbereiche (Forschungsfronten und Clusterkerne) bis hin zur Isolierung der zugehörigen Publikationen, ihrer Autoren und deren Forschungseinrichtungen dargestellt. 2. Die Clusteranalyse von Cozitationen als Instrument zur Gewinnung von Indikatoren wissenschaftlicher Aktivität

2.1. DER SCIENCE CITATION INDEX ALS DATENBASIS FÜR BIBLIOMETRISCHE ANALYSEN

Weltweit existieren zur Zeit einige hundert Datenbanken wissenschaftlichen Inhalts. Man unterscheidet grob zwischen Faktenbanken und Literaturdatenbanken. Während Faktenbanken Informationen über konkrete Sachverhalte (z. B. über bestimmte Stoffe im Bereich der pharmazeutischen Forschung) enthalten, sind in Literaturdatenbanken wissenschaftliche Publikationen abgespeichert. Es gibt Literaturdatenbanken, die eine sogenannte Volltextspeicherung vornehmen, d. h. für einen bestimmten Bereich jeweils die vollständigen Publikationen aufnehmen. In einem solchen Fall sind die gespeicherten Dokumente vollständig recherchierbar, die Informationssuche kann sich also auch auf den vollen Text der Publikationen erstrecken. Weit mehr verbreitet sind die bibliographischen Literaturdatenbanken, die zwar nicht den vollen Text jedes gespeicherten Dokuments enthalten, aber jeweils eine Zusammenfassung (Summary bzw. Abstract). Meist liegen diese »Abstracting Services« auch in gedruckter Form (Referatedienste) vor.

Ein Sonderfall der Literaturdatenbanken ist der 1961 von Eugene Garfield eingeführte Science Citation Index (SCI), der seit einiger Zeit durch den Social Sciences Citation Index (SSCI) und den Arts & Humanities Citation Index (A&HCI) ergänzt wird. Diese disziplinübergreifend angelegte Datenbank enthält zwar keine Abstracts, bietet aber für jede aufgenommene Publikation die Referenzen, die die Autoren der Publikation (meist am Ende ihres Artikels) angefügt haben. Diese Referenzen sind dann als Zitationen unabhängig recherchierbar und ermöglichen den bibliographischen Zugriff auf die gesamte zitierte Literatur der gespeicherten Dokumente. Der von Garfields »Institute for Scientific Information« (ISI) in Philadelphia produzierte SCI liegt in gedruckter Form vor, wobei vierteljährliche, jährliche, fünf- und z. T. zehnjährige Akkumulationen erhältlich sind.

Die gedruckte Form umfaßt im wesentlichen vier Varianten:

- Citation Index,
- Source Index,
- Corporate Index,
- Permuterm Subject Index.

Daneben gibt es die Journal Citation Reports, in denen das gegenseitige Zitationsgeschehen auf der Ebene der Zeitschriften dokumentiert ist. Im *Citation Index* kann wie erwähnt nach der zitierten Literatur gesucht werden, der Index ist alphabetisch sortiert. Recherchierbar sind hier der Erstautor, das Publikationsjahr, die Zeitschrift, die Bandnummer und die Seitenzahl der zitierten Publikation, verwiesen wird dann auf die entsprechenden Veröffentlichungen, in denen diese Arbeit zitiert wurde. Im Source Index dagegen kann nach der zitierenden Literatur gesucht werden, der Index ist ebenfalls alphabetisch nach Autoren sortiert. Hier sind auch alle Zweitautoren und der Titel der Publikation recherchierbar, daneben finden sich die institutionellen Adressen der Autoren sowie die Zahl der Referenzen, die diese Publikation enthält.

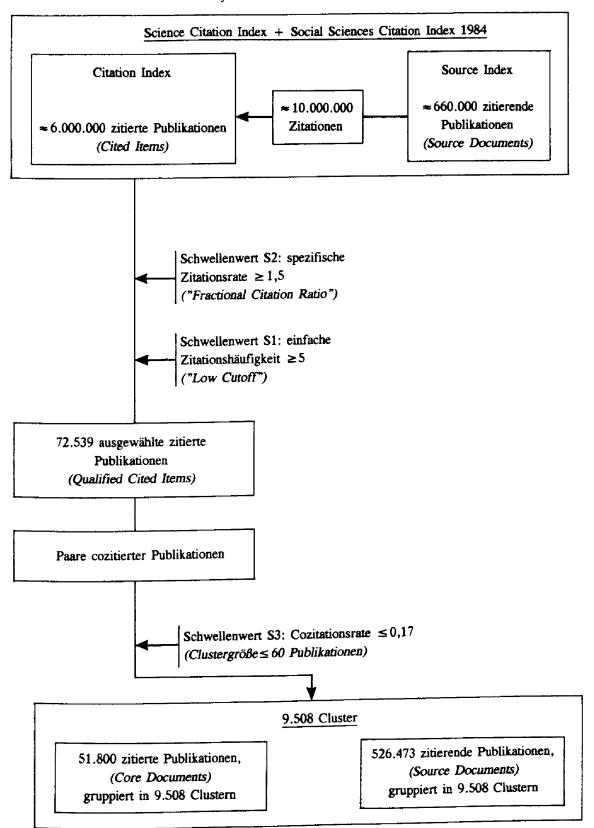
Im *Corporate Index* kann nach Institutionen gesucht werden; für jede institutionelle Adresse finden sich Verweise auf die zugeordneten Autoren, die wiederum dann im Source Index mit ihren einzelnen Publikationen aufgefunden werden können. Der *Permuterm Subject Index* schließlich enthält ein zweistufiges Schlagwortregister, das aus den Wörtern in den Titeln der gespeicherten Dokumente generiert wird. Es werden Paare aus allen vorkommenden Hauptwörtern aller Titel gebildet und diese Paare in alphabetischer Sortierung ausgegeben mit den Verweisen auf die entsprechenden Publikationen. In der »online« im Dialog abfragbaren Version des SCI sind alle vier Varianten der gedruckten Version integriert und mit einer entsprechenden Retrieval-Sprache in ein und derselben Datenbank recherchierbar. Neben dem SCI gibt es wie oben erwähnt noch den SSCI sowie den A&HCI. Die folgende Übersicht zeigt die Rahmendaten für den SCI, SSCI und A&HCI¹:

SCI 1961	SSCI 1966	A&HCI 1976
4 500	1 400	1 300
-	3 200	5 700
11 000	2 400	2 100
572 000	124 800	109 200
	1961 4 500 	1961 1966 4 500 1 400 - 3 200 11 000 2 400

Neben den eingespeicherten Publikationen des laufenden Jahrgangs enthalten die drei Indizes jeweils die von diesen Publikationen ausgehenden Zitationen, das sind im Falle des SCI knapp 10 Millionen Zitationen, die auf ca. 4,8 Millionen einzelne zitierte Publikationen verweisen.

ISI hält mit dem SCI bzw. SSCI und A&HCI weltweit ein absolutes Monopol für disziplinübergreifende Zitationsdatenbanken. Es ist kein Konkurrent auf dem Markt, der eine vergleichbare Literaturdatenbank produziert. Diese Situation wird vermutlich noch für lange Zeit bestehen bleiben, da der große zeitliche Vorsprung, den ISI beim Aufbau der Datenbanken gewonnen hat, wegen der enormen Datenmengen kaum aufzuholen ist.

Über die Qualität der von ISI hergestellten Datenbanken gibt es eine Debatte, die ebenso alt ist wie der SCI selbst; hierüber ist an anderer Stelle ausführlich berichtet worden.² Die im vorliegenden Zusammenhang wichtigste Frage in bezug auf den SCI ist, inwieweit er das Publikations- und Zitationsgeschehen (weltweit) adäquat abbildet. Es ist unbestritten, daß es für Teilgebiete der Wissenschaft Literaturdatenbanken gibt, die einen deutlich höheren Vollständigkeitsgrad bieten, wenn auch ohne die Möglichkeit, Zitationen zu recherchieren; namentlich die »Abstracting Services« sind hier dem SCI sicher überlegen. Angesichts einer ohnehin nicht zu erreichenden 100%-Vollständigkeit stellt sich allerdings die Frage, wie schwer der Verlust eines bestimmten Prozentsatzes von Literatur im Einzelfall wiegt. ISI selbst hat sich immer wieder in der Diskussion zu dieser Frage zu Wort gemeldet und für sich beansprucht, daß mit der getroffenen Auswahl von derzeit ca. 4500 wissenschaftlichen Zeitschriften für den SCI eine ganz überwiegende Abdeckung der weltweit wichtigen wissenschaftlichen Literatur gelingt. Technisch wäre es zwar ohne weiteres möglich, wesentlich mehr Zeitschriften auszuwerten; Garfield stellt allerdings fest, daß der dadurch zu erzielende Gewinn in keinem Verhältnis zu den anfallenden Kosten stehe.³ Ein 1980 von Carpenter und Narin vorgenommener Vergleich des Science Citation Index mit führenden disziplinären Literaturdatenbanken bzw. Abstracting Services zeigte erneut, daß der SCI für die meisten Disziplinen und die meisten Nationen ein repräsentatives Bild der Publikationsaktivitäten liefert.⁴


Der Vorwurf, wichtige Zeitschriften würden für den SCI nicht erfaßt werden, läßt sich im Hinblick auf die Repräsentanz deutscher wissenschaftlicher Zeitschriften auch nicht aufrechterhalten. Die Liste der für den SCI ausgewerteten wissenschaftlichen Zeitschriften, die in der gedruckten Version des SCI enthalten ist und somit in jeder größeren Universitätsbibliothek einsehbar ist, zeigt, daß immerhin 252 deutsche darunter sind. Für den SSCI sind es 50 und für den A&HCI 102 deutsche Zeitschriften, die regelmäßig ausgewertet werden (Stand 1984).

2.2. METHODIK DER CLUSTERANALYSE VON COZITATIONEN

2.2.1. Grundzüge des Verfahrens

Die Clusteranalyse von Cozitationen (im folgenden verkürzt: Cozitationsanalyse) ist ein Verfahren, das in den letzten Jahren in der Wissenschaftsforschung zunehmend an Bedeutung gewonnen hat. Die Grundzüge der Methode wurden Mitte der siebziger Jahre entworfen, und das Verfahren ist seitdem erheblich weiterentwickelt worden.⁵ Die Methode setzt das Vorhandensein eines Datensatzes voraus, in dem neben der jeweils aktuellen (zitierenden) Literatur die bibliographischen Verweise auf früher erschienene Arbeiten (Referenzen, Zitationen) erfaßt sind (vgl. Abschnitt 2.1.). Ausgangspunkt der Cozitationsanalyse ist jeweils ein bestimmter, zeitlich begrenzter Ausschnitt aus dem gewählten Datensatz, der dann sowohl die während dieses Zeitraums aktuell publizierten Arbeiten als auch die von diesen zitierten Veröffentlichungen beinhaltet.

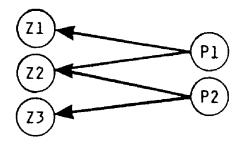

Im vorliegenden Fall wurde aus der kombinierten Datenbank Science Citation Index und Social Sciences Citation Index (SCI/SSCI, vgl. Abschnitt 2.1.) das Segment des Jahres 1984 ausgekoppelt. Es enthält etwa 660 000 (1984 erschienene) wissenschaftliche Publikationen der verschiedensten Disziplinen sowie ca. 6 Millionen

SCHAUBILD 1: Cozitationsanalyse SCI/SSCI 1984: Verfahrensschritte.

früher veröffentlichte Arbeiten, die von diesen zitiert werden (vgl. Schaubild 1). Die Menge der 6 Millionen zitierten Publikationen muß zunächst reduziert werden, da die sehr rechenzeitintensiven Programme der Clusteranalyse sonst nicht mit vertretbarem Aufwand abgewickelt werden könnten. Zu diesem Zweck wird eine Selektion vorgenommen, bei der in einem ersten Durchgang nur solche zitierte Publikationen ausgewählt werden, die (von den 1984er Publikationen) mindestens 5 Zitationen auf sich ziehen konnten (sog. »low cutoff«). Unter diesen zitierten Publikationen mit einer einfachen Zitationshäufigkeit von ≥ 5 werden im zweiten Schritt wiederum nur diejenigen ausgewählt, die den Schwellenwert von 1,5 für die sog. »fractional citation ratio« überschreiten.

Das Berechnungsverfahren für diesen zweiten Schwellenwert ist so konstruiert, daß dadurch disziplinspezifische Unterschiede im Zitationsgeschehen ausgeglichen werden. Die Tatsache, daß die Referenzlisten der einzelnen Publikationen z. B. in der Mathematik im Vergleich etwa zum biomedizinischen Bereich wesentlich kürzer sind (bei den ersteren wird generell weniger zitiert), hatte in früheren Modellen der Cozitationsanalyse dazu geführt, daß im Ergebnis die Mathematik in den Clustern kaum abgebildet wurde, während biomedizinische Gebiete übermäßig differenziert erschienen. Diesem Problem wird jetzt dadurch begegnet, daß alle Zitationen mit einem Gewichtungsfaktor versehen werden: Jede von einer Publikation ausgehende Zitation wird durch die Gesamtzahl der von dieser Publikation ausgehenden Zitationen geteilt. Die so erhaltenen Zitationsbruchteile werden auf der Seite der zitierten Arbeiten dann addiert. Ein Beispiel verdeutlicht das Vorgehen:

Von den Publikationen P1 und P2 gehen je zwei Zitationen aus, diese werden also mit 0.5 gewichtet. Die Zitationsraten für Z1–Z3 betragen demnach: Z1: 0.5, Z2: 0.5 + 0.5 = 1.0, Z3: 0.5.

Durch Einführung dieser beiden Schwellenwerte wird die Menge der ursprünglich 6 Millionen zitierten Publikationen auf 72539 reduziert. Gleichzeitig ist hiermit eine Vorselektion »wichtiger« (d. h. mit einem Mindestmaß zitierter) versus »unwichtiger« (d. h. kaum bzw. gar nicht zitierter und damit folgenloser) Publikationen getroffen worden.

Im nächsten Schritt beginnt die Clusteranalyse im eigentlichen Sinne, d. h., mit den verbliebenen 72539 zitierten Publikationen werden nach einem bestimmten Algorithmus zusammenhängende Gruppen, sog. Cluster, gebildet, wobei das Kriterium für die Clusterbildung die Stärke der Cozitation zwischen den einzelnen Publikationen ist. Hierzu werden zunächst alle Paare von Publikationen gebildet, die auf der Referenzliste mindestens einer 1984er Publikation gemeinsam auftauchen. Im Ergebnis steht eine Liste aller Paare cozitierter Publikationen zur Verfügung, wobei für jedes dieser Paare die Stärke der Cozitation berechnet werden kann. Um die Cozitationsstärke zwischen verschiedenen Paaren sinnvoll vergleichen zu können, muß diese bezüglich der (stark schwankenden) individuellen Zitationsraten normalisiert werden; dafür wird folgende Formel verwendet:

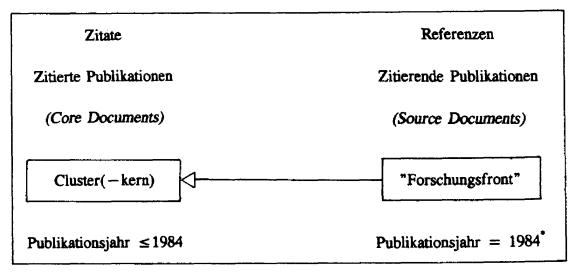
$$C_{norm} = \frac{C_{ij}}{(C_i \times C_i)^{0.5}}$$

wobei: Cnorm: normalisierte Cozitationsrate

C_{ij}: Anzahl Cozitationen von i und j

C_i: Zitationsrate von i

C_j: Zitationsrate von j


Im nächsten Schritt werden diejenigen Paare untereinander verkettet oder besser zu Netzen verknüpft, die mindestens ein gemeinsames Element (i. e. Publikation) aufweisen (»single link clustering«). Die so generierten Netze cozitierter Publikationen bilden dann bereits die Cluster. Bei ihrer Entstehung wird kontrolliert, daß nicht mehr als 60 Einzelpublikationen zu einem Cluster zusammengeschlossen werden (größere Cluster sind zu heterogen und »von Hand« nicht mehr ohne weiteres zu überblicken). Steuerungsinstrument ist dabei der Schwellenwert der (normalisierten) Cozitationsstärke. Dieser auf 0.17 angesetzte Wert wird im Falle von zu großen Clustern schrittweise so weit angehoben, bis das Cluster in mehrere kleine zerfällt (sog. »variable level clustering«).

Auf diese Weise erhält man 9508 Cluster, in denen 51800 zitierte Publikationen gruppiert sind. Von den ursprünglich 72539 zitierten Publikationen konnten 20739 nicht in Form von Cozitationspaaren den Schwellenwert überspringen, sie bleiben daher als unverbundene Elemente zurück.

Die durch diese Prozedur gebildeten Cozitationscluster beinhalten also jeweils eine Gruppe von mindestens 2, höchstens 60 hochzitierten Publikationen, denen gemeinsam ist, daß sie in hohem Maße cozitiert werden, und zwar von den im SCI/SSCI erfaßten Publikationen des Jahrgangs 1984.

Im letzten Schritt des Verfahrens ist es dann möglich, die Gruppierungen der zitierten Publikationen auf die zitierenden zu übertragen; für jeden Cluster kann aus dem aktuellen Datensatz des SCI/SSCI 1984 eine Gruppe von Publikationen herausgesucht werden, die Zitationsbezüge in genau diesen Cluster aufweist. Für jeden Cluster existiert somit ein sog. *Clusterkern*, der aus den *cozitierten* Publikationen besteht, sowie eine zugeordnete *»Forschungsfront«*, die aus den *zitierenden* Publikationen Besteht. Schaubild 2 verdeutlicht noch einmal die Terminologie (für einige Begriffe bestehen keine adäquaten Übersetzungen).

SCHAUBILD 2: Cozitationsanalyse SCI/SSCI 1984: Terminologie.

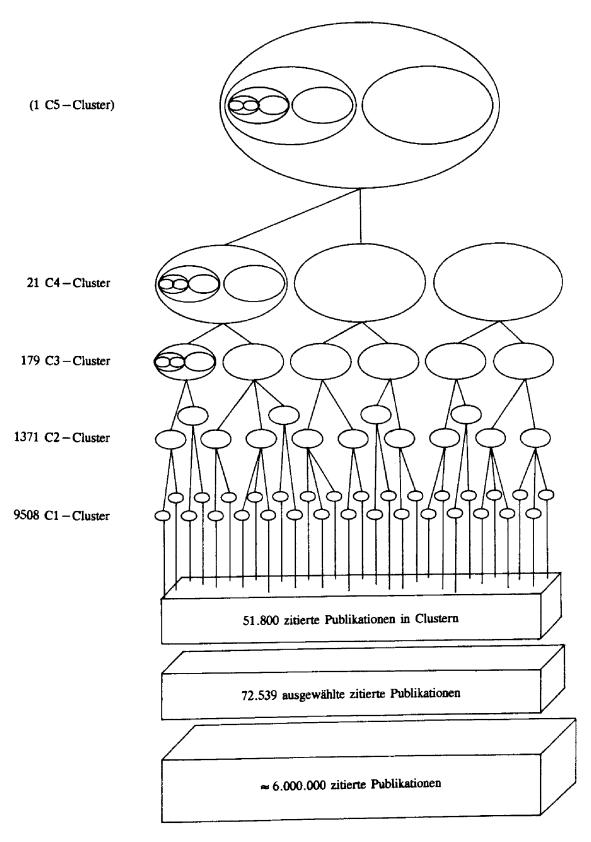
* In Ausnahmefällen auch 1983, wenn die entsprechende Zeitschrift mit Verzögerung ausgeliefert wurde.

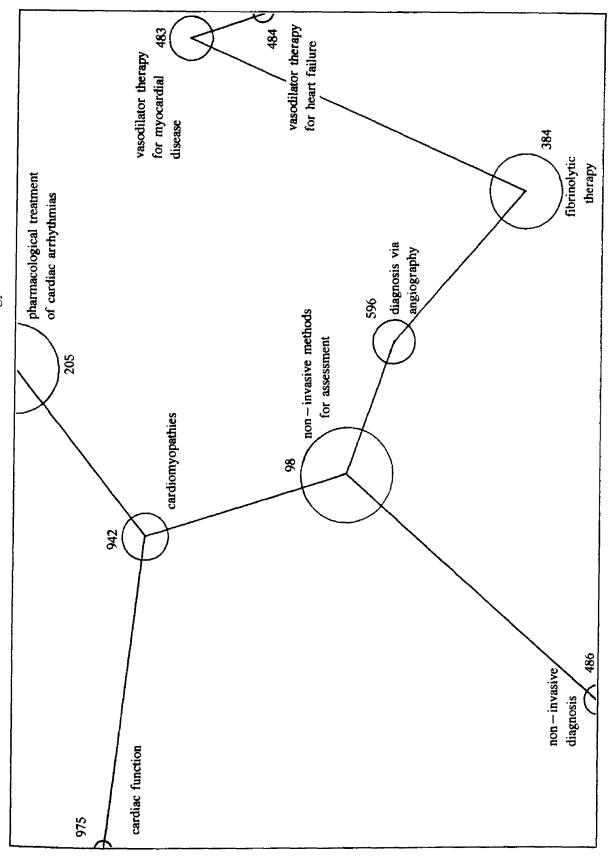
Anschließend werden alle Cluster bzw. »Forschungsfronten« noch mit Titeln versehen, die den Inhalt des betreffenden Gebiets bezeichnen (»cluster naming«). Dabei wird ein kombiniert automatisch-manuelles Verfahren angewandt: Aus den im SCI/SSCI gespeicherten Titeln aller zitierenden Publikationen eines Clusters wird durch den Rechner eine Liste aller dort vorkommenden Begriffe erstellt und diese wird dann, sortiert nach der Häufigkeit des Vorkommens dieser Begriffe, ausgegeben. Anhand dieser Listen werden von Fachvertretern die Titel der Cluster erstellt.

2.2.2. Iteration der Clusteranalyse und »mapping« von Clustern

Als Folge des »variable level clustering« sind die zwischen den 9508 Clustern der ersten Generation zu erwartenden hierarchischen Strukturen weitgehend eliminiert worden; es ist praktisch unmöglich, eine systematische Struktur in der Vielzahl dieser zum Teil sehr kleinen Cluster auszumachen. Aus diesem Grund wurden durch Iteration der Clusteranalyse solche Strukturen (»künstlich«) erzeugt.

Ausgangspunkt ist die Idee, ganze Cluster ebenso auf Cozitationen zu untersuchen, wie dies in der ersten Stufe mit zitierten Publikationen geschah. Input für die zweite Stufe der Clusteranalyse sind also die 9508 Cluster, die als Output der ersten entstanden. Durch Anwendung desselben Verfahrens entstehen auf diese Weise 1371 »Supercluster«, i. e. Cluster von Cozitationsclustern. Schaubild 3 veranschaulicht das Vorgehen. Diese Iteration der Clusteranalyse kann man so lange wiederholen, bis sich eine überschaubare Anzahl von Superclustern ergibt, wobei jeweils die Ergebnis-Cluster einer Stufe als die zu »clusternden« Eingangselemente der nächsten Stufe dienen. Um die Aggregationsebenen auseinanderhalten zu können, spricht man auf




SCHAUBILD 3: Cozitationsanalyse SCI/SSCI 1984: Iteration der Clusteranalyse.

der untersten Ebene von C1-Clustern, darüber von C2-, C3- bzw C4-(Super-) Clustern. Analog zum Verfahren auf der untersten Stufe bleiben auch auf den höheren Ebenen jeweils einige Cluster unverbunden stehen, da ihre Cozitationsbeziehungen zu anderen Clustern nicht stark genug ausgeprägt sind. Die Zahlen für die einzelnen Verfahrensstufen setzen sich folgendermaßen zusammen:

Aggregationsniveau	C1	C2	С3	C4
Input	72 539	9508	1371	179
Clusterbildend	51 800	6084	757	110
Nicht clusterbildend	20 739	3424	614	69
Gebildete Cluster	9 508	1371	179	21

Während die entstehenden Cluster der C1-Ebene extrem eng begrenzten Teilgebieten der Wissenschaft entsprechen (die Clusterkerne umfassen zum Teil nur 2 zitierte Publikationen, also ein einfaches Cozitationspaar!), werden die Cluster der oberen Aggregationsniveaus immer umfangreicher, sowohl hinsichtlich der Zahl der in ihnen enthaltenen Publikationen als auch von der Thematik her. Das gilt für die eigentlichen Clusterkerne wie auch für die zugehörigen »Forschungsfronten«.

Die als »Output« der Clusteranalyse entstandenen Cluster weisen jeweils auch untereinander Cozitationsbezüge auf. Ausgangspunkt des Verfahrens waren ja zunächst alle Cozitationen, wobei allerdings dann nur solche ab einer gewissen Stärke (Cozitationsschwellenwert) zur Bildung der (abgeschlossenen) Cluster führten. Unter Einbeziehung der unterhalb des Schwellenwertes liegenden Cozitationsverbindungen können (auf jeder Aggregationsebene) Netzwerke von Clustern gebildet werden, die je nach Stärke der Cozitationen die inhaltlichen Verwandtschaften der Cluster erkennen lassen (»cluster mapping«). Eine gute graphische Darstellung dieser Verbindungen läßt sich erzielen, wenn man das Produkt der Clusteranalyse in Form einer Cozitationsmatrix zwischen den einzelnen Publikationen (bzw. Cluster auf den höheren Aggregationsebenen) als Input für ein Programm zur multidimensionalen Skalierung verwendet. Dabei werden die Cozitationsstärken in Abständen zwischen den einzelnen Clustern abgebildet, und das Programm erstellt eine zweidimensionale Anordnung der Cluster, in der möglichst alle Abstände zwischen den Clustern genau der Stärke der Cozitationsbezüge entsprechen (um Überlappungen zu vermeiden, müssen einige Abstände des ursprünglich multidimensionalen Modells für die zweidimensionale Darstellung geändert werden). Schaubild 4 zeigt als Beispiel aus der Cozitationsanalyse SCI/SSCI 1984 die 9 Cluster der C2-Ebene, die zusammen das C3-Cluster Nr. 42 bilden.

2.2.3. Struktur und Umfang der Ergebnisse der Cozitationsanalyse SCI/SSCI 1984

Die durch die Cozitationsanalyse entstandenen Ergebnisse sind nach Form und Inhalt derartig umfangreich, daß es einiger Erläuterungen bedarf, um die vielfältigen Möglichkeiten zur weiteren Analyse dieser Daten deutlich werden zu lassen. Im Falle des Bielefelder Projekts liegen die Ergebnisse in 14 Dateien auf zahlreichen Magnetbändern vor. Einzelne Dateien sind so umfangreich, daß sie sich über zwei mit äußerster Dichte beschriebene Bänder erstrecken. Durch den Einkauf der Daten in Form von elektronischen Dateien werden viele Analysen überhaupt erst möglich, da ein »Durchforsten« ausgedruckter Listings von Hand angesichts des Umfangs von vornherein zum Scheitern verurteilt wäre.

Neben den Ergebnissen der eigentlichen Cozitationsanalyse liegt für Kontrollzwecke noch eine vollständige Bibliographie all derjenigen Publikationen aus dem SCI vor, die mindestens *einen* Autor mit institutioneller Adresse in der Bundesrepublik Deutschland bzw. Berlin (West) haben, und zwar für die 10-Jahres-Zeitspanne 1975 bis 1984 (insgesamt knapp 300000 Veröffentlichungen).

Die Ergebnisse der Cozitationsanalyse bestehen zunächst in den Clustern sowie den zugehörigen »Forschungsfronten« auf den vier Aggregationsebenen:

Aggregationsniveau	Zahl der Cluster	_
C 4	21	
C 3	179	
C 2	1371	
C 1	9508	

Für jedes Cluster liegen neben seinen eigentlichen Bezeichnungen (Cluster-Nr. und Titel) zahlreiche Einzeldaten vor, die in einer Struktur dargestellt werden können, wie sie sich zum Aufbau eines relationalen Datenbanksystems eignen (vgl. Schaubild 5). Es läßt sich grob unterscheiden zwischen Clusterstrukturdaten auf der einen und Daten zu den Clusterkernen und »Forschungsfronten« auf der anderen Seite. Die relationale Verknüpfung zwischen diesen drei Datengruppen geschieht dabei über die jeweilige Cluster-Nr. Bei den Strukturdaten der Cluster gibt es neben Cluster-Nr. und Titel zunächst Daten über die Stellung des Clusters in der Hierarchie der Aggregationsebene, d. h. für ein C1-Cluster z. B. die übergeordneten Supercluster der C2-, C3- und C4-Ebenen, soweit es in ihnen vertreten ist (dadurch wird es auch möglich, »Nachbarcluster« derselben Aggregationsstufe aufzufinden, zu denen starke Cozitationsverbindungen bestehen). Daneben gibt es den Zugriff auf die Größe des Clusterkerns und der »Forschungsfront« (= die Anzahl der in ihnen enthaltenen Publikationen), die Aktualität des Clusterkerns (= die Anzahl bzw. der Prozentsatz der Publikationen im Clusterkern, die nicht älter als drei Jahre sind), die Gesamtzahl aller institutionellen Adressen an der »Forschungsfront« sowie die auf die einzelnen Nationen entfallenden Anteile hiervon.

Zahl der erhaltenen Zitate

Erscheinungsjahr

SCHAUBILD 5: Struktur der Daten aus der Cozitationsanalyse SCI/SSCI 1984.

Publikationen der Clusterkerne

Zeitschrift/Monographietitel

Band Seite

Cluster – Nr. Erstautor

Strukturdaten der Cluster Cluster – Nr. Titel des Clusters Supercluster C4 C3 C3 C3 C3 C2 Größe des Kerns Aktualität des Kerns Aktualität des Kerns Größe der "Forschungsfront" Gesamtzahl der inst. Adressen	Strukturdaten der Cluster Cluster – Nr. Titel des Clusters Supercluster C4
Cluster – Nr. Titel des Clusters Supercluster C4 C3 C3 C2 Größe des Kerns Aktualität des Kerns Größe der "Forschungsfront" Gesamtzahl der inst. Adressen	Cluster – Nr. Titel des Clusters Supercluster C4
Titel des Clusters Supercluster C4 C3 C3 C2 Größe des Kerns Aktualität des Kerns Größe der "Forschungsfront" Gesamtzahl der inst. Adressen	Titel des Clusters Supercluster C4
Supercluster C4 C3 C2 Größe des Kerns Aktualität des Kerns Größe der "Forschungsfront" Gesamtzahl der inst. Adressen	Supercluster C4
C4 C3 C2 Größe des Kerns Aktualität des Kerns Größe der "Forschungsfront" Gesamtzahl der inst. Adressen	64
C3 C2 Größe des Kerns Aktualität des Kerns Größe der "Forschungsfront" Gesamtzahl der inst. Adressen	ç
C2 Größe des Kerns Aktualität des Kerns Größe der "Forschungsfront" Gesamtzahl der inst. Adressen	3
Größe des Kerns Aktualität des Kerns Größe der "Forschungsfront" Gesamtzahl der inst. Adressen	3
Aktualität des Kerns Größe der "Forschungsfront" Gesamtzahl der inst. Adressen	Größe des Kerns
Größe der "Forschungsfront" Gesamtzahl der inst. Adressen	Aktualität des Kerns
Gesamtzahl der inst. Adressen	Größe der "Forschungsfront"
	Gesamtzahl der inst. Adressen
Zahl der inst. Adressen pro Nauon	Zahl der inst. Adressen pro Nation
Nationale Anteile (in %)	Nationale Anteile (in %)

Für den Clusterkern gibt es Angaben über die einzelnen Publikationen, die diesen Clusterkern bilden. Für jede einzelne Publikation eines solchen Clusterkerns finden sich die bibliographischen Angaben: Erstautor, Zeitschrift, Bandnummer, Seitenzahl und das Publikationsjahr, so daß ein Auffinden der Originalpublikation in der entsprechenden Zeitschrift möglich ist. Daneben ist auch die Zahl der Zitationen verzeichnet, die diese Publikation aus der zugeordneten »Forschungsfront« erhalten hat. Entsprechend der Grundstruktur der Ausgangsdatenbasen SCI und SSCI sind auf der Seite der zitierten Publikationen keine Zweitautoren, keine Titel und keine institutionellen Adressen der Autoren verfügbar. Dagegen sind für die den Clusterkernen zugeordneten »Forschungsfronten« die einzelnen Publikationen mit ihren vollständigen bibliographischen Angaben voll verfügbar: neben Erstautor, Zeitschrift, Bandnummer, Seitenzahl und Publikationsjahr hier auch der genaue Titel der Publikation, die Originalsprache der Veröffentlichung sowie alle Zweitautoren sowie sämtliche institutionellen Adressen der Autoren, wie sie in der Originalpublikation verzeichnet sind, d. h., mit Institutionsnamen, vollständiger Anschrift und nationaler Zugehörigkeit (entsprechend der Struktur des Source Index des SCI bzw. SSCI, vgl. Abschnitt 2.1.). Außerdem ist auch die Anzahl der in den zugehörigen Clusterkern weisenden Zitationen verzeichnet.

Sowohl die Ergebnisse der Cozitationsanalyse als auch die Bibliographie liegen in einer Form vor, die sich zum Aufbau integrierter Datenbanken eignet. Ein großer Teil der Daten wurde daher in ein relationales Datenbanksystem reintegriert, so daß ein sehr schneller Zugriff auf beliebige Ausschnitte im Online-Dialog möglich ist. Durch die in dieser Form zur Verfügung stehenden Ergebnisse der Cozitationsanalyse werden vielfältige Einzelauswertungen möglich. So können etwa bei Bedarf bestimmte Cluster bzw. »Forschungsfronten« gezielt herausgesucht und vollständig dokumentiert werden, einschließlich aller in ihnen enthaltenen Publikationen, Autoren und Institutionen. Über die Titel kann nach Clustern einer bestimmten Thematik gesucht werden, für jeden einzelnen Autor und jede Institution kann festgestellt werden, an welchen »Forschungsfronten« sie aktiv sind. Über die Coautorenschaft kann die (internationale) Zusammenarbeit von Forschungsinstitutionen verfolgt werden. Über alle Cluster hinweg können statistische Durchschnittsmaße gebildet werden, anhand derer dann einzelne Abweichungen sichtbar zu machen sind. Im folgenden Abschnitt werden erste Ergebnisse exemplarisch vorgestellt.

2.3. EINIGE ERGEBNISSE DER COZITATIONSANALYSE SCI/SSCI 1984

Wie bereits erwähnt, bestehen die primären Ergebnisse der Clusteranalyse von Cozitationen des SCI/SSCI-Jahrgangs 1984 in den 9508 gebildeten C1-Clustern und zugehörigen »Forschungsfronten« sowie den entsprechenden Aggregationen auf der C2-, C3- und C4-Ebene. Die ungefähre disziplinäre Verteilung der C1-Cluster (ermittelt anhand der Clustertitel) zeigt, daß der weitaus größte Teil (knapp 80%) im

Bereich der Naturwissenschaften liegt, mit Schwerpunkt im Bereich (Bio-)Medizin, nur 9% aller Cluster fallen in den Bereich der Sozialwissenschaften.

Über die Zahl der institutionellen Adressen an jeder »Forschungsfront« sowie die nationalen Anteile daran läßt sich die Beteiligung einzelner Nationen an den Clustern erkennen. Über alle Cluster hinweg kann eine Gesamtstatistik der institutionellen Adressen erstellt werden. So entfallen auf der Aggregationsebene C1 von den insgesamt gezählten 819872 Adressen 40830 auf die Bundesrepublik Deutschland incl. Berlin (West), das entspricht 5%. Dieser Prozentsatz bleibt auch auf den höheren Aggregationsniveaus erhalten. Die anderen »großen« Wissenschaftsnationen halten ebenfalls stabile Anteile: USA 47%, Großbritannien 7,8%, Frankreich 4,8% und Japan 5,4%. Der Rest von ca. 30% verteilt sich auf die übrigen Nationen.

Da für alle »Forschungsfronten« auf allen vier Aggregationsebenen die nationalen Anteile an der Gesamtzahl der institutionellen Adressen verfügbar sind, können die »Forschungsfronten« in eine Rangfolge gebracht werden, die jeweils für eine Nation in auf- bzw. absteigender Reihe sortiert ist. Auf diese Weise läßt sich leicht feststellen, an welchen »Forschungsfronten« eine Nation stark bzw. schwach beteiligt ist (gemessen am jeweiligen Durchschnitt des Prozentanteils dieser Nation an der Gesamtzahl der institutionellen Adressen, über alle »Forschungsfronten« hinweg). Es sei betont, daß dieses Vorgehen keinen irgendwie gearteten Qualitätsindikator produziert, sondern lediglich Hinweise auf die Präsenz (i.e. Publikationsaktivität) der Nation an den durch die Cozitationsanalyse ermittelten »Forschungsfronten« gibt. Am ehesten überschaubar sind derartige Listen naturgemäß auf der höchsten Aggregationsebene C4. In der Sortierung nach dem deutschen Prozentanteil zeigt die Tabelle 1, daß etwa für die C4-»Forschungsfront« Nr. 18 mit dem Titel »Laser, microwave and other studies of small-molecules« eine mit 9,05% überdurchschnittlich hohe deutsche Beteiligung vorliegt. Gleiches gilt in diesem Fall für Frankreich, Japan und die restlichen Nationen, die USA und Großbritannien bleiben dagegen unter den entsprechenden Durchschnittswerten.

Auf der nächstniedrigeren Aggregationsebene (vgl. Tabelle 2) zeigen sich die Unterschiede in der nationalen Partizipation bereits deutlicher. An der Spitze der Liste finden sich mit C3-»Forschungsfront« Nr. 104 und Nr. 167 zwei Bestandteile der o. a. C4-»Forschungsfront« Nr. 18. Die Liste enthält daneben eine ganze Reihe von C3-Clustern, die auf dem C4-Niveau nicht mehr erscheinen (da sie keine hinreichend stark ausgeprägten Cozitationsbezüge zu benachbarten Clustern aufweisen). Bereits auf den ersten Blick wird an dieser C3-Rangreihe deutlich, daß auf den vorderen Plätzen vor allem Cluster der Physik und Chemie rangieren, dagegen z. B. das erste sozialwissenschaftliche Cluster auf Platz 68 erscheint.

Tabe	TABELLE 1: Cozitationsanalyse SCI/SSCI 1984: Nationale Beteiligung an den »Forschungsfronten« der C4-Cluster.							
Rang	C4	USA 23.46	21.11	D 56	F 12.32	С 47.3	Rest 25.81	Clustername Generation and fiftron-spin-resonance and other characterization
•	1	, ,		0/ 101	7/(71	t o	104/7	OF RADICALS AND RADICAL-IONS AND THEIR USE IN ORGANIC-SYNTHESIS
2	18	32,10	6,79	9,05	8,30	8,30	35,46	LASER, MICROWAVE AND OTHER STUDIES OF SMALL-MOLECULES
n	16	16,12	5,25	6,88	6,88	9,96	54,89	PHASE-TRANSITIONS AND OTHER PROPERTIES OF VARIOUS SOLIDS
4	7	39,20	8,51	6,73	5,06	4,57	35,94	PHOTOSYNTHESIS, MORPHOLOGY, ENVIRONMENTAL CONDITIONS AND OTHER FACTORS EFFECTING DEVELOPMENT AND GROWTH IN PLANTS
ŝ	٢	32,75	8,12	6,36	13,40	4,47	34,91	PROPERTIES OF MOLTON SLAGS AND KINETICS OF DIFFUSION AND FLOW THROUGH POROUS-MEDIA
9	12	39,93	5,75	6,26	5,47	5,55	37,04	TOPICS IN PURE AND APPLIED MATHEMATICS
L	17	46,69	5,91	6,01	8,52	6,75	26,12	STUDIES OF PLASMA PHYSICS IN THE LABORATORY AND ON THE SUN
æ	6	58,04	5,86	5,52	3,39	4,75	22,43	DIAGNOSTIC TECHNIQUES AND CLINICAL STUDIES OF TUMORS AND OTHER DISEASES
6	8	36,53	8,03	5,49	10,42	7,39	32,15	THEORETICAL AND EXPERIMENTAL ANALYSIS OF STRESS IN CRYSTALS, METALS AND OTHER MATERIALS
10	20	26,09	8,25	5,39	8,75	4,71	46,80	MOSSBAUER AND OTHER STUDIES OF THE STRUCTURE AND PROPERTIES OF MAGNETIC MATERIALS

Clustername	APPLICATIONS AND BASIC PRINCIPLES IN SOCIAL AND NATURAL SCIENCES	CATHETERIZATION, SHUNTS AND OTHER ASPECTS OF CLINICAL MANAGEMENT OF VARIOUS DISORDERS	ANTIBIOTIC THERAPY AND OTHER ASPECTS OF MANAGEMENT OF BACTERIAL AND FUNGAL INFECTIONS	ATMOSPHERIC AND OCEANIC STUDIES	TOPICS IN OBSTETRICS AND NEONATOLOGY	EFFECTS OF INSECTICIDES AND OTHER TOXINS ON PLANTS AND ANIMALS	MORPHOLOGY, ENDOCRINDLOGY AND VIROLOGY OF INSECTS AND OTHER ARTHROPODS	EFFECTS OF OCCUPATIONAL AND ENVIRONMENTAL SUBSTANCES	ECOLOGY, TAXONOMY AND BIOLOGY OF ANIMALS AND PLANTS	GENETIC STUDIES AND APPLICATIONS OF CODED-APERATURE IMAGING	HEALTH-CARE ISSUES AND TREATMENT OF JOINT DISEASE
Rest	29,88	16,71	26,28	25,45	25,47	36,24	36,28	25,49	33,95	32,71	22,38
٦	5,08	4,46	5,42	3,77	2,10	5,51	7,80	5,60	3,15	2,12	2,54
iد.	5,81	5,85	2,86	4,45	0,91	9,15	8,25	2,86	2,09	2,35	0,89
۵	5,22	4,74	4,70	4,53	3,19	2,88	2,70	2,64	2,15	2,12	2,05
68	7,89	8,36	8,28	6,79	10,31	7,68	7,95	10,00	10,29	9,41	10,61
NSN	46,12	59,89	52,45	55,02	58,02	38,54	37,03	53,41	48,37	51,29	61,52
C4	1	21	15	13	Ś	4	6T	9	ñ	11	10
Rang	11	12	13	14	15	16	17	18	19	20	21

	DIFFUSION OF MUONS AND OTHER LIGHT PARTICLES IN METALS AND PROPERTIES OF TWO-DIMENSIONAL ELECTRON SYSTEMS				SYNTHESIS AND REACTIONS OF AZIDE DERIVATIVES AND AZO COMPOUNDS	POWER REQUIREMENTS AND OTHER CHARACTERISTICS OF MIXING IMPELLERS	TOPICS IN MAMMALIAN RESPIRATORY FUNCTION AND ENVIRONMENTAL SCIENCE		PHYSICS OF CRITICAL PHENOMENA AND STUDIES OF AMORPHOUS AND POLYMERIC SYSTEMS		STRUCTURE AND REACTIONS OF METAL-COMPLEXES AND OTHER COMPOUNDS	MANAGEMENT OF CANCER OF HEAD		CATALYTIC ACTIVITY OF MOLTEN SLAGS AND PEROVSKITE TYPE METAL-DXIDES		SYNTHESIS, CRYSTAL-STRUCTURE AND OTHER CHARACTERIZATION OF BRIDGED TRANSITION-METAL AND LANTHANIDE COMPLEXES
Rest	46,73	22,94	38,82	33,33	36,59	17,91	19,69	18,08	36,31	33,09	50,85	30,03	35,19	36,33	20,96	37,16
	6,03	6,42	6,63	5,56	6,40	10,45	9,45	15,50	6,15	6,26	0,85	3,45	3,70	6,57	9,17	6,88
L	8,04	13,76	8,11	1,85	16,77	11,94	2,36	12,55	8,45	7,42	12,71	4,03	1,85	19,72	14,41	4,59
	13,32	12,39	11,55	11,11	10,67	10,45	10,24	9,96	8,70	8,70	8,47	8,40	8,33	8,30	8,30	8,26
68	2,76	25,69	8,35	1,85	5,18	7,46	6,30	4,43	5,97	8,38	9,32	3,80	5,56	6,57	2,18	10,55
NSA	23,12	18,81	26,54	46,30	24,39	41,79	51,97	39,48	34,42	36,16	17,80	50,29	45,37	22,49	44,98	32,57
5	н	14	18	0	0	0	0	18	1	0	0	0	0	٢	0	Ч
5	1 124	45	104	169	62	166	151	167	6	134	152	81	168	29	44	162
Rang C3		2	m		ŝ	0	~		6		11	12		-		16 1

TABELLE 2: Cozitationsanalyse SCI/SSCI 1984: Nationale Beteiligung an den »Forschungsfronten« der C3-Cluster.

Clustername	APPLICATIONS OF SPECTROSCOPY AND OTHER TECHNIQUES IN MATERIALS SCIENCE WITH EMPHASIS ON AMORPHOUS-ALLOYS AND METALLIC-GLASSES	CLINICAL MANAGEMENT OF BONE INJURIES, NEURAL DISORDERS AND SNAKEBITES	TOPICS IN ALGEBRAIC TOPOLOGY, DIFFERENTIAL-GEOMETRY, FUNCTIONAL-ANALYSIS AND NUMBER-THEORY AND SOLUTION METHODS FOR PARTIAL-DIFFFRENTIAL-FOMMATIONS	RING-THEORY, FINITE-GROUPS AND LIE-ALGEBRAS	THEORY AND APPLICATIONS OF SUPERCONDUCTIVITY	CLINICAL ASPECTS UP ALTERED SULFATE METABULISM AND RELATED DERMATOLOGICAL ABNORMALITIES	RADICAL REACTIONS IN ORGANIC-SYNTHESIS	SYNTHESIS OF ORGANIC COMPOUNDS	PHYSICS OF SEMICONDUCTORS, SURFACES AND LIQUIDS	STUDIES OF CONTACT AND WEAR PROBLEMS IN SOLIDS, SOILS AND	PHARMACEUTICAL PRODUCTS	SURFACE PROPERTIES OF SILICON, AMORPHOUS-CARBON AND OTHER SEMICONDUCTORS	MANAGEMENT OF GASTROINTESTINAL DISORDERS	CLINICAL PHARMACOLOGY OF ANTIHYPERTENSIVE DRUGS	STRUCTURE, PHASE-TRANSITIONS AND ELECTRONIC AND OTHER	PROPERTIES OF VARIOUS SOLIDS	URINARY PROTEIN ANALYSIS AND OTHER TECHNIQUES IN THE	DIAGNOSIS OF NEPHROTOXICITY DUE TO GENTAMYCIN AND OTHER Agents	CHLOROPLAST FUNCTION, ENVIRONMENTAL CONDITIONS ANDOTHER	FACTORS AFFECTING PHOTOSYNTHESIS	GEOLOGY, GEDCHEMISTRY AND ASSOCIATIONS OF CLAYS, CARBONATE ROCKS AND HYDROCARBONS
Rest	34,31	42,00	39,18	38,60	44,60	26,6U	30,23	28,89	29,33	21,02		24,14	29.72	42,29	45,90		28,12		38,43		30,51
Г	6,82	1,33	8,05	3,44	5,66	0, 62	6,98	6,68	6,21	2,55		7,59	3.55	3,43	12,30		8,84		4,72		12,66
Ŀ	8,96	0,67	6,70	4,97	9,95	4,78	9,30	21,39	10,51	3,82		16,55	5.70	1,71	10,66		3,17		4,49		2,15
٥	8,16	8,00	7,91	7,90	7,89	/ , 04	7,75	7,74	7,65	7,64		7,59	7.56	7,43	7,38		7,26		7,25		7,22
68	7,38	2,00	3,55	9,43	, 09 0, 09	8	14,73	5,95	7,24	21,02		2,76	13.03	10,29	12,30		9,75		9,21		9,75
NSA	34,36	46,00	34,60	35,67	28,82	44,44	31,01	29,34	39,05	43,95		41,38	40.44	34,86	11,48		42,86		35,90		37,72
C4	I	0	12	12	0 0	>	14	0	ы	0		0	-	¢	16		15		2		T
5	24	175	37	102	36	0	75	54	31	126		68	95	145	127		125		Ś		144
Rang	17	18	19		21	77	23	24	25	26		27	28	29	30		31		32		33

Clustername	TOPICS IN ASTRONOMY, CHEMISTRY, GEOLOGY AND PHYSICS	EFFECTS OF TEMPERATURE AND ETHANOL ON METABOLISM	RELATIONSHIP BETWEEN THE INCIDENCE OF CERVICAL NEOPLASIA AND USE OF VARIOUS CONTRACEPTIVE METHODS, OCCURRENCE OF CONDYLOMATA-ACUMINATA AND OTHER CLINICAL PHENOMENA	SURFACE CHARACTERIZATION AND ACTIVITY OF ZEOLITE-SUPPORTED, OTHER SUPPORTED AND HOMOGENEDUS TRANSITION-METAL AND METAL-OXIDE CATALYSTS	PHASE-TRANSITIONS AND OTHER PROPERTIES OF FERROELECTRIC MATERIALS, SOLID GASES AND OTHER MATERIALS	EPIDEMIDLOGICAL, IMMUNOLOGICAL, BIOCHEMICAL AND CLINICAL STUDIES OF BACTERIA AND YEAST	INSTRUMENTATION AND APPLICATIONS OF ELECTRON-MICROSCOPY TECHNIQUES	EVALUATION AND MANAGEMENT OF GASTROESOPHAGEAL-REFLUX, CHOLEDOCHOLOTHIAS AND OTHER DISORDERS OF THE GASTROINTESTINAL SYSTEM	PLASMA PHYSICS	QUANTUM-THEORY OF SPECTRA AND ANALYSIS OF QUANTUM-SYSTEMS	DIAGNOSIS AND CLINICAL STUDIES OF PHEOCHROMOCYTOMA, NEUROFIBROMATOSIS AND OTHER MALIGNANT DISORDERS	BINDING-ACTIVITIES AND CELL METABOLISM	PHARMACOLOGY AND CLINICAL EFFECTS OF ANTIHISTAMINE S AND HYPNOTIC AGENTS	STUDIES IN ATMOSPHERIC PHYSICS	NUMERICAL METHODS FOR DIFFUSION AND NON-STATIONARY FLOW PROBLEMS	CONSIDERATIONS OF RADIOTHERAPY AND CHEMOTHERAPY IN THE MANAGEMENT OF CANCER PATIENTS
Rest	36,17	39,29	23,60	7,47 40,81	57,60	35,87	25,57	25,00	25,22	34,95	22,46	25,88	29,77	27,73	27,79	30,15
Г	7,35	3,57	5,04	7,47	9,22	4,17	7,60	5,94	7,37	5,53	5,96	7,84	4,86	3,51	4,52	2,31
Ŀ	6,09	2,14	0,58	7,08	5,76	8,03	6,88	0,68	9,04	7,89	5,71	9,41	3,01	5,45	1,62	2,47
٥	7,15	7,14	7,05	7,02	6,91	6,80	6,76	6,74	6,71	6,62	6,58	6,57	6,53	6,47	6,46	6,43
89	7,29	11,43	16,69	6,24	3,23	9,91	20,39	14,04	6,15	6,87	5,33	11,96	12,69	8,13	11,79	12,85
NSA	35,94	36,43	47,05	31,38	17,28	35,21	32,81	47,60	45,51	38,13	53,97	38,33	43,14	48,71	47,82	45,80
C4	-	0	Ч	0	16	7		Ч	17	T	9	-	Г	0	12	0
ß	0	170	110	109	71	٢	112	118	94	13	33	132	43	2	86	103
Rang C3	34	35	36	37	38	39	40	41	42	43	44	45		47	48	49

Clustername	RESISTANCE IN PLANTS AND MICROSCOPIC MORPHOLOGY OF FUNGI AND OTHER PLANTS	STRUCTURE AND INFRARED, RAMAN AND MICROWAVE SPECTRA DF SMALL MOLECULES	USE OF BUPIVACAINE AND OTHER ANESTHETICS IN OBSTETRICS AND UNDER OTHER CLINICAL CONDITIONS	MICROSTRUCTURE EFFECTS ON THE MECHANICAL PROPERTIES OF METAL ALLOYS AND COMPOSITES	CHEMICAL INDUCTION OF CARCINOGENESIS	THERMODYNAMICS, STRUCTURE, PHYSICAL PROPERTIES AND	MECHANICAL-PROPERTIES OF ALLOYS, POLYMER-BLENDS, BINARY Solutions and other mixtures	NEUROPHYSIOLOGICAL AND PHONOLOGICAL STUDIES OF SPEECH DEDEEDITON AND THEID CLINICAL INDI ICATIONS	DIAGNOSTIC STUDIES IN NEURAL AND MUSCULAR DISEASES	MANAGEMENT OF BACTERIAL INFECTIONS AND TUMORS OF SOFT-TISSUE	AND BONE	HORMONAL AND MORPHOLOGICAL STUDIES OF ARTHROPODS	DIAGNOSIS AND TREATMENT OF CARDIAC DISEASE	PROGRAMMING LINGUISTICS, COMPUTER ARCHITECTURE, DATABASE	SYSTEMS AND SDFTWARE PRACTICES	CHARACTERIZATION OF MAJOR BIOLOGICAL PROTEINS	FORMATION OF TRANSITION-METAL COMPLEXES	STUDIES IN WAVE-PROPAGATION, SIGNAL-PROCESSING AND DIGITAL TWAGE-PEFORNSTRUCTION	DIAGNOSIS AND TREATMENT OF PARASITE INFECTIONS	REPRODUCTIVE ENDOCRINOLOGY OF CATTLE	COLUMNS FOR GAS-CHROMOTOGRAPHY AND HIGH-PERFORMANC	E-LIQUID-CHROMATOGRAPHY SEPARATIONS	
Rest	33,94	40,80	30,85	32,26	22,78	38,85		19,58	35,08	27,92		23,85	25,10	26,36		30,47	49,63	26,07	51.47	40,99	38,61		
n	4,53	6,19	3,31	9,30	1,33	6,61		2,41	7.87	5,26		12,39	4,88	5,71		3,84	5,39	4,80	11.27	3,31	3,88		
LL.	5,48	5,83	0,83	11,70	18,20	7,13		1,57	3,61	2,47		9,17	4,02	3,94		10,14	13,20	5,04	0.49	1,82	8,50		
0	6,39	6,38	6,34	6,22	6,21	6,20		6,07	6,07	5,98		5,96	5,96	5,93		5,89	5,79	5,77	5.64	5,62			
89	7,90	7,10	11,85	8,00	4,59	6,79		8,38	7,87	6,70		11,01	5,95	8,18		5,62	5,68	6,00	5.88	8,60	6,16		
USA	41,76	33,70	46,83	32,53	46,89	34,42		61,99	39,51	51,67		37,61	54,09	49,87		44,04	20,31	52,31	25.25	39,67	37,38		
C4	2	18	Ś	æ	Г	-1		0	0	15		19	٦	٦		٦	٦	13	o	- -	0		
5	70	101	12	о Б	148	15		46	161	141		107	42	23		26	72	83	90	137	76		
Rang	50	51	52	53		55		56	57	58		59	60	61		62	63	64	65	66	67		

Clustername	ATTITUDES TOWARD PSYCHLATRY AND AUTHORITARIAN, CONSERVATIVE	AND RELIGIOUS VALUES	MANAGEMENT DF CYSTIC DISEASE DF KIDNEY AND LIVER	STRUCTURE AND MAGNETIC-PROPERTIES OF METAL ALLOYS AND OTHER	COMPOUNDS	MOSSBAUER AND OTHER STUDIES OF MAGNETIC MATERIALS	INTESTINAL RESPONSES TO HORMONAL ACTIVITY AND DRUGS	CLINICAL MANAGEMENT OF HIP DISORDERS AND ALTERED COLLAGEN	METABOLISM	IMMUNOHISTOCHEMISTRY AND OTHER TECHNIQUES IN THE	CHARACTERIZATION OF CELL-SURFACE ANTIGENS ASSOCIATED WITH	CELL-GROWTH AND DIFFERENTIATION	PICOSECOND AND OTHER STUDIES OF THE MECHANISM OF	PHOTOCHEMICAL PROCESSES	ASPECTS OF CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY AND	SURGICAL TREATMENT OF EYE DISEASES	STRUCTURE AND PROPERTIES OF ORGANOMETALLIC COMPOUNDS	MANAGEMENT OF CHRONIC PAIN	KINETICS OF DIFFUSION AND CHEMICAL REACTIONS ASSOCIATED WITH	COAL GASIFICATION, FLUIDIZED-BEDS AND FLOW THROUGH POROUS-	MEDIA	GEOLOGY AND ATMOSPHERIC SCIENCE OF THE PLANETS AND	SATELLITES OF THE SOLAR SYSTEM	STUDIES OF ADSORPTION ON METAL SURFACES, LIPIDS, MEMBRANES	AND COLLOIDAL SUSPENSIONS	CYTOGENETIC STUDIES	COMPUTED-TOMOGRAPHY AND OTHER IMAGING TECHNIQUES AND PEPCHTANFUNS DIACNOSTIC PROFENUESS IN THE DIACNOSTS OF	LUCEDURES IN
Rest	22,95		35,33	45,45		47,19	33,38	29,55		25,24			40,16		20,38		58,39	30,93	33,55			11,83		36,26		40,06	22,35	
Ē	0,00		3,59	3,72		5,34	5,25	5,30		3,00			4,92		1,98		4,38	2,82	3,05			10,31		6,79		5,00	3,89	
Ŀ	0,55		10,78	9,92		8,15	2,98	2,53		9,06			17,49		5,44		7,30	1,15	9,80			1,15		7,37		5,29	1,87	
٥	5,46		5,39	5,37		5,34	5,31	5,30		5,29			5,19		5,14		5,11	5,02	5,01			4,96		4,93		4,90	4,83	
68	8,74		5,39	2,89		12,08	15,10	12,88		15,01			9,29		5,34		8,76	10,34	9,37			4,58		6,64		5,49	6,07	
USA	62,30		39,52	32,64		21,91	37,98	44,44		42,39			22,95		61,72		16,06	49,74	39,22			67,18		38,01		39,26	60,98	
C4	0		0	20		20	-	0		I			0		0		0	Г	7			0		1		T	٩	
S	56		98	171		140	57	130		113			111		16		156	88	85			178		92		131	84	
Rang	68		69				72			74			75		76			78	61			80		81		82 1	83	

Clustername	STUDIES OF LITHIUM INTERCALATION COMPOUNDS, ELECTROCHEMICAL CELLS AND ALKALI GLASSES	STRUCTURAL AND CONFORMATIONAL STUDIES OF PROTEIN FOLDING, BINDING AND INTERACTIONS WITH BIOCHEMICAL CONSTITUENTS	CLINICAL MANAGEMENT OF CARCINOMAS, HEPATIC DISEASES AND Skeletal dysplasias	ANALYSIS OF BIOLOGICAL VISION AND STUDIES OF ROBOT VISION AND AUTOMATED PATTERN-RECOGNITION	EFFECTS OF MYCOTOXINS IN FOOD PRODUCTS ON ANIMALS	PROTEIN CHANGES AND NEOPLASMS IN PREGNANCY	METHODS FOR CATHETERIZATION AND DETECTION OF MICRO ORGANISMS	GENETICS AND IMMUNOLOGY OF HUMAN DISEASE	FLOW IN PERMEABLE MEDIA AND TRANSPORT PROPERTIES OF	MEMBRANES	PHYSIDLDGY AND MANAGEMENT OF ALTERED BLOOD-FLOW AND VASCULAR DISFASF	DOMAIN-WALL DYNAMICS AND SPIN DYNAMICS IN FERROMAG NETS AND	OTHER MAGNETIC SYSTEMS	TOPICS IN WOUND-HEALING AND NEDNATAL NEOPLASMS	ACUTE PHASE SERUM PROTEINS AND AMYLOIDOSIS	DETERMINATION, ANALYSIS AND ECOLOGICAL EFFECTS OF	ATMOSPHERIC AEROSOLS, ACID-RAIN AND AIR~POLLUTION	DETERMINATION OF METALS AND TRACE-ELEMENTS USING SPECTROMETRIC METHODS	DISORDERS OF THE BLOOD-COAGULATION SYSTEM AND ROLEOF THE COMPLEMENT SYSTEM AND OTHER IMMUNE FACTORSIN AUTDIMMUNE	DISEASE, INFECTIONS AND CARCINDGENESIS	PHYSIOLOGICAL DEFENSES AGAINST TOXIC SUBSTANCES ACTIVITY OF NEUROTRANSMITTERS IN THE BRAIN
Rest	34,83	27,78	16,27	26,55	44,22	40,88	17,43	24,76	41,71		28,69	74.65		26,60	29,24	24,48		41,27	30,15		28,00 28,39
C	12,44	6,99	5,95	2,34	1,73	2,69	0,92	5,37	5,14		4,10	4.18		2,46	7,31	1,04		1,81	5,93		3,27 7,22
4	11,61 12,44	9,42	5,95	4,18	3,76	5,57	5,50	5,07	7,43		4,34	3.62		6,40	8,97	2,94		9,19	5,03		6,88 4,41
0	4,81	4,79	4,76	4,74	4,62	4,61	4,59	4,57	4,57		4,46	4.46	•	4,43	4,41	4,41		4,37	4,33		4,33 4,30
GB	10,78	6,93	9,92	7,67	6,07	12,86	4,59	7,74	4,57		8,02	3.06		3,45	16,83	4,76		7,68	7,97		6,98 14,06
USA	25,54	44,08	57,14	54,51	39,60	33,40	66,97	52,49	36,57		50,39	10.03		56,65	33,24	62,37		35,69	46,58		50,53 41,62
C4	0	T	21	0	0	0	21	г	0		Ч	c	,	0	0	13		0	г		
ប	28	52	174	59	147	129	159	14	157		60	75	Ì	176	67	39		89	T		16 87
Rang	84	85	86]	87	88	89		91	92		93	44	•	95	96	16		98	66		101

Clustername	CHEMISTRY DF NATURAL CARBONATE WATERS AND OTHER AQ UEOUS-SOLUTIONS	PARASITIC INFECTIONS IN ANIMALS	SYNTHESIS, CHARACTERIZATION AND ELECTRONIC-STRUCTU RE OF TRANSITION-METAL COMPLEXES	ANTIBIOTIC ACTIVITY AND ANTIBIOTIC-RESISTANCE IN T HE TREATMENT OF STAPHYLICOCCUS-AURFUS AND OTHER RA	CTERIAL INFECTIONS	STUDIES RELATING METALS AND NUTRIENTS TO THE CHEMI	STRY, MINERALOGY, PHYSICAL PROPERTIES AND AGRICULT	URAL QUALITIES OF SOILS AND SEDIMENTS	GEOCHEMISTRY AND OCCURRENCE OF SULFIDE, GOLD AND OTHER	MINERALIZATION ASSOCIATED WITH ORE-DEPOSITS	STUDIES OF STEROID-RECEPTORS AND STEROID BINDING AND	METABOLISM IN MAMMALIAN TISSUES	ECOLOGICAL COMMUNITIES AND TAXONOMY OF ALGAE AND OTHER	ORGANISMS	THEORY AND APPLICATIONS OF OPTIMAL-CONTROL	ALLERGIC AND OTHER RESPONSES TO VARIOUS CHEMICALS IN	RELATION TO THEIR EFFICACY AND SAFETY IN HUMANS	CIRCADIAN RHYTHMS, NEURO-ENDOCRINE REGULATION AND OTHER	FACTORS AFFECTING RELEASE AND ACTIVITY OF HORMONES	MECHANICS OF DEFORMABLE MEDIA AND FINITE-ELEMENT METHODS IN	STRESS ANALYSIS	PHYSIOLOGY AND CLINICAL ASPECTS OF ENERGY RELATED HORMONES	GROWTH AND METABOLISM IN FISH	PHYSIOLOGICAL AND BIOCHEMICAL EFFECTS OF XANTHINE-	DERIVATIVES	EPIDEMIOLOGY OF OCCUPATIONAL DISEASES
Rest	40,43	22,76	61,60	25,25		42,98			32,62		26,13		38,57		35,79	38,05		31,03		31,31		30,73	41,68	25,26		28,48
D	4,96	1,63	5,36	6,17		2,83			15,51		7,00		2,58		3,34	4,81		3,88		2,48		3,89	1,94	4,43		4,71
L.	6,38	4,88	6,69	3,99		3,30			2,14		4,24		2,39		4,60	2,26		4,49		7,36		3,76	4,54	4,82		1,35
Q	4,26	4,07	4,04	4,03		4,02			4,01		3,99		3,98		3,97	3,96		3,88		3,75		3,74	3,67	3,65		3,59
89	8,51	21,14	6,00	8,64		7,32			4,28		6,41		7,75		7,35	14,29		8,33		7,96		8,82	10,15	9,38		12,33
USA	35,46	45,53	16,30	51,92		39,55			41,44		52,22		44,73		44,95	36,63		48,40		47,15		49,07	38,01	52,47		49,55
C4	0	0	-1	12		T			-		-		n		12	0		-		œ		-	0	-1		9
C3	119	61	80	105 117		96			120		64		æ		49	106		115		63		27	139	82		21
Rang	102	103	104	105		106			107		108		109			111		112		113		114	115	116		117

Clustername	PROSTAGLANDINS AND DTHER ASPECTS OF PATHOPHYSIOLOGY AND TREATMENT OF ALLERGIC, PULMONARY, MUSCLE AND HEART DISEASES	USE OF DECISION SUPPORT AND EXPERT SYSTEMS IN MEDICAL AND Other fields	METABOLISM OF PROTEINS AND OTHER NUTRITIONAL REQUIREMENTS IN Relation to growth, exercise and other physiological Processes	TOPICS IN DRGAN-TRANSPLANTION AND PERCUTANEOUS DEV ICES	POPULATION-DYNAMICS OF ANIMAL AND OTHER COMMUNITIES	MANAGEMENT OF INTESTINAL BACTERIAL INFECTIONS	MANAGEMENT OF FUNGAL INFECTIONS	STUDIES OF THE MUSCULAR-SYSTEM, CENTRAL NERVOUS-SYSTEM AND	PSYCHOLOGICAL FUNCTIONS UNDER NORMAL AND PATHOLOGICAL CONDITIONS	THEORY OF HIGH-POWER LASERS AND ELECTRON-BEAMS	QUEUING PROBLEMS AND RELIABILITY OF NETWORKS	STUDIES OF NEURONAL TRANSMITTER ACTIVITY	LASER ANNEALING, PLASMA ETCHING AND SPUTTER DEPOSITON OF	SILICON AND OTHER SEMICONDUCTOR SURFACES AND FILMS	TAXONOMY, BIDGEDGRAPHY AND ECOLOGY OF MOLLUSKS AND OTHER MARINE ANIMALS	STRUCTURE AND ACTIVITY OF MICELLES IN THE FORMATION OF	GALLSTONES AND OTHER PHYSIOLOGICAL PRUCESSES FACTOPS AFFECTING NITROGEN_FIXATION AND NITROGEN IDSS IN	SOILS AND DTHER CHEMICAL PROCESSES PERFORMED IN FUNGI AND BACTERIA	OCEAN AND ATMOSPHERIC CIRCULATION MODELS AND STUDIES OF FACTORS INFILIENTING REGIONAL AND GLUBAL CLIMATES	
Rest	29,49	11,43	28,68	20,50	32,35	46,26	24,16	23,41		22,61	33,23	31,41	19,33		27,56	30,42	80 AF		24,48	15,48
L	3,88	2,08	3,59	1,50	2,94	2,75	2,66	3,57		11,56	1,34	4,33	7,13		4,17	5,94	1 33	· · · · ·	3,56	0,81
4	5,31	1,46	1,56	2,50	1,47	4,15	1,51	4,77		3,52	4,30	7,94	16,60		1,60	7,17	1 F.	106	4,20	0,04
D	3,58	3,53	3,53	3,50	3,43	3,39	3,29	3,28		3,27	3,26	3,25	3,24		3,21	3,15	ער צ יו	t	3,13	2,96
GB	11,13	6,86	9,58	9,00	11,76	8,05	9,77	7,65		1,26	5,49	8,66	5,06		13,46	2,62	11 11	, t, t,	8,52	4,13
USA	46,62	74,64	53,05				58,61	57,32		57,79	52,37	44,40	48,64		50,00	50,70	00 с 1	74 [°]	56,11	76,57
C4	-	Ч	o	0	m	0	15	٦		0	12	٦	٦		r	0	-	4	n	Ţ
S	m	66	65	58	158	146	69	17		116	78	135	93		9	55	2	2	17	41
Rang	118	611	120	121			124	125			127		129		130	131	621	761	133	134

Rang	2	C4	USA	8		L	ח	Rest	Clustername
135	172	0	49,26	9,36	2,96	1,48	2,46	34,48	GENETIC IMPROVEMENT AND CULTIVATION FOR NUTRITIONAL VALUE OF CROP PLANTS
136	51	4	39,91	6,95	2,92	9,53	4,98	35,71	DETERMINATION OF THE EFFECTS OF VARIOUS TOXINS ON PLANTS AND ANIMALS
137	173	0	39,29	13,57	2,86	7,14	3,57	33,57	AGRICULTURAL METHODS AND METHODS FOR DETERMINATION AND CHARACTERIZATION OF PROTEINS
138	22	ŝ	58,95	10,21	2,83	0,91	2,01	25,09	MEDICAL AND SOCIAL ISSUES IN NEONATOLOGY
6	76	г	61,17	10,89	2,83	1,35	1,04	22,72	RELATION OF SOCIOLOGICAL ASPECTS OF ECONOMICS, POLITICS, EDUCATION AND LANGUAGE DEVELOPMENT
140	155	m	44,60	8,01	2,79	2,44	4,18	37,98	GROWTH AND DEVELOPMENT IN PLANTS
141	121	0	53,27	7,52	2,77	6,93	1,19	28,32	INTERPRETATION OF EXPERIMENTAL DATA REGARDING THE TOXICITY
									AND TERATOGENICITY OF ETHYLENE-GLYCOL AND OTHER CHEMICALS IN RELATION TO ESTABLISHING SAFETY STANDARDS FOR THEIR USE
142	177	0	46,23	10,62	2,74	10,96	10,96	18,49	EMBRYDLOGY OF AQUATIC ANIMALS
143	20	٦	49,06	7,69	2,74	13,16	5,47	21,88	PATHOLOGY AND DIAGNOSIS OF ENDOCRINE TUMORS
144	163	12	67,03	4,86	2,70	0,54	3,24	21,62	STOCHASTIC OPTIMAL-CONTROL AND DYNAMIC OPTIMIZATION
145	11	4	34,80	9,56	2,70	8,33	6,86	37,75	SYNTHESIS AND EFFECTS OF INSECTICIDES AND DEVELOPMENT OF
	ļ							1	
146	5	Ξ	52,75	8,76	2,65	3,05	2,24	30,55	APPLICATIONS OF CODED-APERTURE IMAGING AND PROPERTIES OF MULTIPLE-ACCESS SPREAD-SPECTRUM SYSTEMS
147	149	0	33,55	6,51	2,61	5,86	7,49	43,97	CHARACTERIZATION AND MODELING OF SORPTION PROCESSES
148	153	0	50,65	3,90	2,60	0,00	7,79	35,06	DETERMINATION OF SOIL-MOISTURE AND WATER-CONTENT, AND
									ACOUSTIC WAVE ANALYSIS IN GEOPHYSICS
149	18	0	42,73	14,18	2,55	14,36	4,18	22,00	DESIGN, PHOTOSTABILITY AND CHARACTERIZATION OF POLYMERS AND OTHER MATERIALS FOR RESISTS
150]	165	0	27,91	6,13	2,54	12,26	8,25	42,92	CLINICAL EFFECTS AND PHARMACOLOGICAL PROPERTIES OF ANALGESICS AND ANTI-INFLAMMATORY AGENIS
151	20	Ч	61,00	10,00	2,50	1,00	0,00	25,50	REGIONAL MIGRATION AND SOCIAL AND ECONOMIC DEVELOPMENT IN THE NUTTED STATES AND DEVELOPMENT COUNTERS

Clustername	GOVERNMENT, JUDICIAL-PROCESS, INVESTMENT MARKETS, BUSINESS AND OTHER ISSUES RELATING TO ECONOMICS INTHE UNITED-STATES	ROLE OF AIRBORNE AGENTS IN PLANT AND ANIMAL DISEASE	STUDIES IN SOLAR PHYSICS	TREATMENT OF PATIENTS WITH JOINT DISEASE	DIET AND METABOLISM OF RUMINANTS	CLINICAL STUDIES OF OCULAR DISEASES AND NEURAL-COMPRESSION	SYNDROMES	EFFECTS OF TEMPERATURE AND WATER-STRESS ON PLANTS	VALUE DISTRIBUTION OF MEROMORPHIC FUNCTIONS AND ITS RELATION	TO SPECTRAL-THEORY AND THEORY OF QUASICONFORMAL-MAPPINGS	GENETIC VARIATION, EVOLUTION, TAXONOMY, REPRODUCTION AND	ECOLOGY OF ANIMALS AND PLANTS	HISTORICAL AND COMPARATIVE STUDIES OF SOCIAL BEHAVIOR,	SOCIAL-POLICY AND POPULATION DYNAMICS IN VARIOUS CULTURES	EVALUATION OF PROTEINS IN FOOD	FUNCTIONS AND PROTECTIVE RESPONSES OF THE RESPIRATORY-TRACT	AGAINST ENVIRONMENTAL SUBSTANCES	HEALTH-CARE COSTS FOR DIFFERENT PATIENT POPULATIONS AND	OTHER ISSUES IN HEALTH-CARE POLICY	EPIDEMIOLOGY, CLINICAL STUDIES AND PREVENTION OF DENTAL-	CARIES AND PERIODONIAL-DISEASE	TOPICS IN ORTHODONTICS	GENETIC STUDIES OF ANIMAL AND PLANT TRAITS	MARRIAGE, FAMILY, RELIGION AND OTHER TOPICS IN SOCIDLOGY AND	CULTURAL ANTHROPOLOGY	MANAGEMENT OF HEMOPHILUS INFECTIONS	
Rest	18,51	32,83	30,87	26,70	38,83	21,92		31,31	52,00		33,55		21,59		39,50	22,36		15,75		38,13		27,82	35,48	21,71		24,78	
C	0,97	5,83	3,69	3,50	3,30	10,96		3,03	2,00		3,19		1,73		0,00	6,21		0,99		1,25		5,28	1,88	0,00		3,66	
Ŀ	0,58	4,54	5,80	1,24	0,78	2,05		5,56	6,00		2,08		0,35		12,61	4,14		0,33		3,42		3,87	1,61	1,97		0,86	
۵	2,47	2,38	2,37	2,33	2,33	2,05		2,02	2,00		1,91		1,73		1,68	1,66		1,54		1,48		1,41	1,34	1,32		1,29	
CB	6,32	14,69	6,33	14,08	12,62	4,79		8,08	8,00		10,37		8,98		4,20	7,45		5,18		10,51		5,63	10,75	7,89		6,90	
USA	71,15	39,74				58,22		50,00	30,00		48,91		65,63		42,02	58,18		76,21		45,21		55,99	48,92	67,11		62,50	
C4	I	0	17	10	0	0		7	12		m		Ч		0	9		10		0		0	11	٦		15	
5	19	105	123	128	143	164		108	62		47		100		179	48		34		4		160	138			150	
Rang	152	153	154	155	156	157		158	159		160		161		162	163		164		165		166	167	168		169	

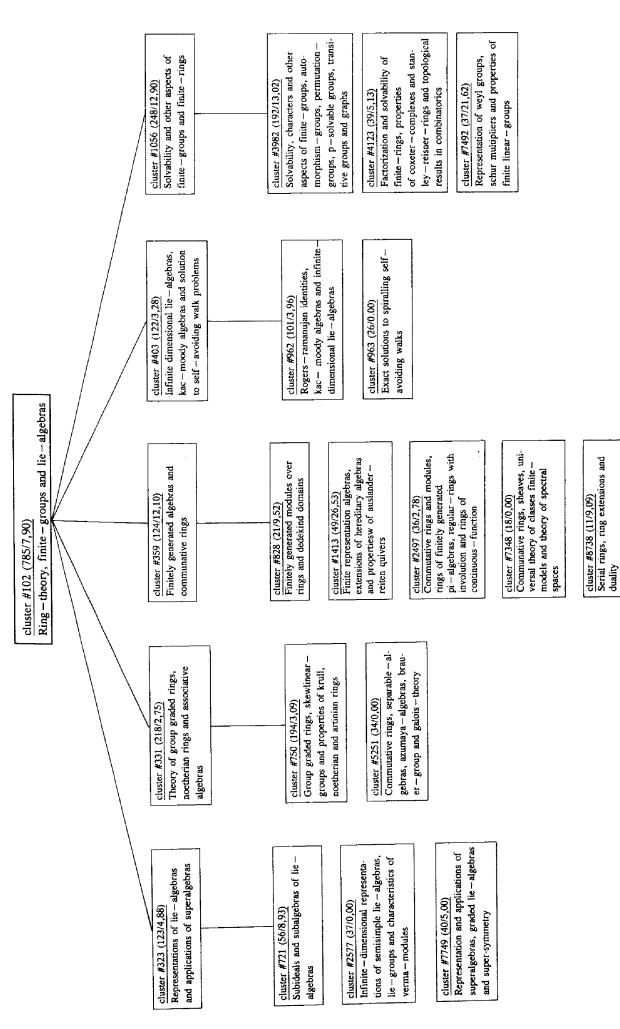
J Rest Clustername	HEMODYNAMICS, LIPID-METABOLISM AND OTHER ASPECTS OF PHYSIOLOGY IN RELATION TO PSYCHOLOGY AND HUMAN DISEASE	VIRUS DETECTION IN AND ANATOMY OF MOSQUITOES AND OTHER DIPTERAN SPECIES	MANAGEMENT AND IMMUNDLOGY OF ALLERGIC REACTIONS AND INFECTIONS	COMPLICATIONS AND MANAGEMENT OF BONE-FRACTURES	URBAN-POLICY AND OTHER CONSIDERATIONS IN PRIMARY HEALTH-CARE STRATEGIES	DEATH, BEREAVEMENT AND POST-TRAUMATIC STRESS DISORDERS	THERMODYNAMIC AND OTHER STUDIES OF ION SOLVATION AND ION CLUSTER FORMATION IN SOLUTION	ROLE OF PSYCHIATRY, CLINICAL PSYCHOLOGY AND OTHER BEHAVIORAL SCIENCES IN COMMUNITY ISSUES AND PUBLIC-HEALTH	SOCIAL AND MEDICAL ASPECTS OF ADDLESCENT DRUG USE	DENTAL PROSTHESES AND RESTORATIVE MATERIALS
Rest	92,69	6,15 41,76	6,32 35,97	36,55	18,01	11,82	93,44	0,60 13,39	12,01	33,33
ŋ	0,46	6,15	6,32	2,07	0,62	0,00	0,63	0,60	0,00	1,28
١œ	1,37	7,69	14,62	2,07	0,00	00'0	1,25	0,30	0,00	7,69
۵	1,14	1,10	0,79	0,69	0,62	0,49	0,31	0,30	0,16	0,00
CB	0,00	6,59	32,41 9,88	10,34	14,91	7,88	0,31	5,65	3,74	14,10
USA	4,34	36,70	32,41	48,28	65,84	79,80	4,06	79,76		
C4	0	19	1	0	•	T	0	0	г	0
Rang C3	170 114	171 142	172 136		66	32	74	122	73	133
Rang	170	171	172	173	174		176	177 122	178 73	179 133

Diese Betrachtung läßt sich noch weiter systematisieren: durch Einführung einer groben disziplinären Klassifikation kann ein disziplinspezifisches Profil aller 179 C3-Cluster erstellt werden. Dabei verteilt sich die Gesamtzahl der C3-Cluster zunächst wie folgt:

	Anzahl	%
Biomedizinische und biochemische Forschung	75	41,9
Sonstige biologische Forschung	24	13,4
Physik und Ingenieurwissenschaften	35	19,6
Chemie	16	8,9
Mathematik und Informatik	9	5,0
Geowissenschaften	7	3,9
Sozial- und Verhaltenswissenschaften (incl. Psychiatrie)	13	7,3
Summe	179	100,0

Betrachtet man dagegen nur diejenigen 77 »Forschungsfronten«, an denen eine überdurchschnittliche (> 5,1%) Präsenz deutscher Forschungsinstitutionen gegeben ist, so sind in dieser Verteilung vor allem die Physik und die Ingenieurwissenschaften sowie die Chemie deutlich stärker vertreten:

	Anzahl	%
Biomedizinische und biochemische Forschung	31	40,3
Sonstige biologische Forschung	5	6,5
Physik und Ingenieurwissenschaften	21	27,3
Chemie	13	16,9
Mathematik und Informatik	4	5,2
Geowissenschaften	2	2,6
Sozial- und Verhaltenswissenschaften (incl. Psychiatrie)	1	1,3
Summe	77	100,1


Im Gegensatz dazu treten bei den 100 »Forschungsfronten« mit unterdurchschnittlicher (< 5,1%) Präsenz deutscher Institutionen die Biologie und die Sozialwissenschaften stärker hervor. Hieraus ergeben sich erste Hinweise, in welchen disziplinären Bereichen mit dem vorliegenden Datensatz Stärken und Schwächen (hinsichtlich der Präsenz an »Forschungsfronten«) zu suchen sein werden. Für eine detaillierte Bewertung wird allerdings die stark schwankende Größe der einzelnen Cluster und »Forschungsfronten« zu berücksichtigen sein. An sehr kleinen »Forschungsfronten« können schon wenige Publikationen die entsprechenden Prozentanteile einzelner Nationen deutlich verschieben, während für große »Forschungsfronten« u. U. sehr viel mehr Veröffentlichungen »bewegt« werden müssen, bevor sich die nationalen Anteile sichtbar ändern. Interessant sind demnach vor allem die »Forschungsfronten«, die bei (oder: trotz) hoher Gesamtgröße sich durch einen überdurchschnittlich starken deutschen Anteil auszeichnen.

Über die Ergebnisse der Cozitationsanalyse auf der Aggregationsebene C3 läßt sich zusammenfassend folgendes festhalten: Die Daten geben deutliche Hinweise darauf, daß eine starke (Publikations-)Aktivität deutscher Forschungsinstitutionen an »Forschungsfronten« vor allem in den disziplinären Bereichen Chemie und Physik/ Ingenieurwissenschaften zu verzeichnen ist. Dagegen bleibt die Präsenz an den »Forschungsfronten« der Sozialwissenschaften, Biologie und Geowissenschaften unter dem Erwartungs (= Durchschnitts-)wert. In den Bereichen Biomedizin/Biochemie sowie Mathematik/Informatik liegt offenbar keine Abweichung vom disziplinübergreifenden Durchschnitt vor, was auf eine »normale« Beteiligung der deutschen Forschungsinstitutionen an den entsprechenden »Forschungsfronten« schließen läßt.

Bei dieser Beurteilung muß allerdings berücksichtigt werden, daß die C3-Cluster und die zugehörigen »Forschungsfronten« immer noch hoch aggregierte Einheiten darstellen, die zahlenmäßig sehr umfangreich sind. Innerhalb solch großer »Forschungsfronten« können die nationalen Anteile wiederum erheblich streuen. In den seltensten Fällen werden die Anteile in den zugrundeliegenden Clustern bzw. »Forschungsfronten« der unteren Aggregationsstufen C2 und C1 homogen sein und dem Wert des C3-Superclusters entsprechen. Vielmehr kann die Betrachtung der C2- und C1-»Forschungsfronten« ein disaggregiertes Bild liefern, durch das sich die zu analysierenden Gebiete immer weiter eingrenzen lassen können und das die Identifikation von eng begrenzten Spezialgebieten mit hohen bzw. niedrigen nationalen Anteilen ermöglicht. Der Detailreichtum der Ergebnisse der Cozitationsanalyse erlaubt es dabei, bis auf die Ebene der an den C1-»Forschungsfronten« vertretenen Forschungsinstitutionen und der einzelnen Publikationen zu gehen.

Im folgenden soll ein Beispiel für derartige Detailanalysen vorgeführt werden. Dazu wurde aus den 179 Clustern bzw. »Forschungsfronten« der C3-Ebene eines mit hohem deutschen Anteil ausgewählt und bis auf C1-Ebene dokumentiert.⁶ Die Auswahl erfolgte nach pragmatischen Gesichtspunkten (Umfang und Darstellbarkeit) und stellt keinerlei Bewertung dar. Die Darstellung enthält die hierarchische Struktur des Clusters, aus der ersichtlich wird, welche Cluster in die jeweiligen Supercluster der nächsthöheren Aggregationsstufe eingehen. Daneben ist für jedes Cluster der von ISI vorgegebene Titel des Clusters sowie (in Klammern) die Größe der zugehörigen »Forschungsfront« (i. e. Gesamtzahl der institutionellen Adressen) und der deutsche Anteil daran wiedergegeben.

Das Beispiel zeigt eine »mathematische Forschungsfront« zum Thema Ringtheorie, endliche Gruppen und Lie-Algebra – mit insgesamt hoher deutscher Beteiligung (Schaubild 6). Am Beispiel des in diesem Cluster enthaltenen C1-Clusters Nr. 7492 soll demonstriert werden, wie Ergebnisse der Cozitationsanalyse auf der C1-Ebene im einzelnen aussehen. Neben den aus Schaubild 6 ersichtlichen Hierarchiedaten liegen die genauen Daten für den Clusterkern sowie die zugehörige »ForschungsSCHAUBILD 6: »Forschungsfronten« zu C3-Cluster Nr. 102 – Ringtheorie, endliche Gruppen und Lie-Algebra.

front« vor. Tabelle 3 zeigt den Clusterkern, der in diesem Fall aus 5 hoch-(co-)zitierten Publikationen besteht. Eine davon, die Arbeit von Schur, stammt aus dem Jahre 1911(!).

Die »Forschungsfront« umfaßt 32 Publikationen, wobei neben den Titeln der Publikationen der Erstautor, die Zeitschrift, die Bandnummer, die Seitenzahl, das Publikationsjahr sowie die Zahl der in den Clusterkern gerichteten Zitationen angeführt sind (vgl. Tabelle 4). Zweitautoren wurden aus Gründen der Übersichtlichkeit nicht in die Darstellung mit aufgenommen, stehen aber ebenfalls zur Verfügung. Die Publikationen Nr. 2, 3 und 19 zeigen, daß im 1984er Datensatz noch einige »Nachzügler« enthalten sind, deren formales Publikationsdatum schon bis zu zwei Jahre zurückliegt. Die Publikationen Nr. 11, 21 und 32 zeigen, daß auch französisch- und deutschsprachige Artikel an dieser »Forschungsfront« vertreten sind. Tabelle 5 zeigt schließlich die an der »Forschungsfront« aktiven Institutionen, ermittelt über die von den Autoren der 32 Publikationen angegebenen institutionellen Adressen. Durch Mehrfachautorenschaft kommt es dazu, daß die Zahl der Adressen die Zahl der Publikationen übertrifft (37:32). Über die Gesamtzahl dieser institutionellen Adressen kann dann der deutsche Anteil errechnet werden, in diesem Fall 8:37 = 21,6%. In der Liste der institutionellen Adressen finden sich drei Titel weniger als in der originären Publikationsliste dieser »Forschungsfront«. Es sind dies die Publikationen, in denen keine institutionelle Adresse aufgeführt war (Nr. 3, 19 und 24 aus Tabelle 4); in allen drei Fällen handelt es sich um Publikationen von sowjetischen Autoren.

Das vorgestellte Beispiel zeigt, mit welcher Genauigkeit die einzelnen Clusterkerne und »Forschungsfronten« als Ergebnis der Cozitationsanalyse nachgezeichnet werden

TABELLE 3: Cozitationsanalyse SCI/SSCI 1984: C1-Clusterkern Nr. 7492. »Representation of Weyl-groups, Schur multipliers and properties of finite lineargroups«.

Erstautor	Zeitschrift	Band	Seite	Jahr	Zitationen
Humphreys, J. E.	Linear Algebraic Gro			75	9
Kerber, A.	Lecture Notes Math	240		71	11
Kerber, A.	Lecture Notes Math	495		75	6
Schur, I.	J Reine Angew Math	139	155	11	8
Steinberg, R.	Lectures Chevalley G			67	8

1. Humphreys, James E.: Linear Algebraic Groups. New York 1975.

2. Kerber, Adalbert: Representations of Permutation Groups I. Lecture notes in Mathematics, New York 1971.

^{3.} Kerber, Adalbert: Representations of Permutation Groups II. Lecture notes in Mathematics, New York 1975.

^{4.} Schur, I.: Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen. Journal für reine und angewandte Mathematik, 139, 1911, 155 ff.

^{5.} Steinberg, Robert: Lectures on Chevally Groups. Notes prepared by John Faultner and Robert Nilson. New Haven 1967.

TABELLE 4: Publikationen der Forschungsfront zu C1-Cluster Nr. 7492. »Representation of Weyl-groups, Schur multipliers and properties of finite lineargroups«.

ſr.	Erstautor	Zeitschrift	Band	Seite	Jahr	Zitatione
۱.	HUMPHREY. JF	MATH PROC C	96	195	84	3
	CONJUGACY CLASSES	OF DOUBLE COVERS	OF MONC	MIAL GRO	UPS	
		LECT N MATH		7	82	2
	GROUP EXTENSIONS,	REPRESENTATIONS AI	ND THE S	CHUR MUL	TIPLICAT	OR
	BOROVIK AV		24	843	83	2
	EMBEDDINGS OF FINI	TE CHEVALLEY-GROU	PS AND I	PERIODIC L	INEAR-GF	ROUPS
	DAMHUST	THEOR CHIM	65	317	84	2
	PHASE-FIXED DOUBL	F-GROUP 3-GAMMA-SY	MBOLS .	1. A NOVEL	EXPOSITI	ON OF THE
	GENERAL-THEORY O	E 3.GAMMA-SYMBOLS	AND COL	IPLING-COI	EFFICIENT	'S
	JARDINE JF		89	335	84	2
	FIBRATIONS OF ALGE		02	000	0.	
	LYONS R	COMM ALGEB	12	1889	84	2
			12	1007	04	-
	THE SCHUR MULTIPLI		00	430	84	2
•	TOKUYAMA T	JALGEBRA	90 TTUE WE			-
	A THEOREM ON THE P	EPRESENTATIONS OF	THE WE	380 380	84	יוע שיוה יוכ אום שות יוכ
	TOKUYAMA T	J ALGEBRA	00 110001			NTATIONS
	ON THE DECOMPOSIT		-PRODU	CISOF THE	KErkese	NIAHONS
	OF THE CLASSICAL W			505 0	04	2
	WEISFEIL, B	P NAS PHYS	81	5278		-
	POST-CLASSIFICATION			EM ON FINI	TE LINEAF	C-GROUPS
	AKYILDIZ E	PAC J MATH		257	84	1
	GYSIN HOMOMORPHI	SM AND SCHUBERT CA	LCULUS			
	ALEXANDR. V	CR AC S I	298	99	84	1
	FR« ON THE CHARAC	FERS OF A FINITE-GRO	UP			
	BAAKE M	J MATH PHYS	25	3171	84	1
	STRUCTURE AND REP	RESENTATIONS OF TH	E HYPER	OCTAHED	RAL GROU	JP
	BYRNES CI	SIAM J CON	22	362	84	1
	OUTPUT-FEEDBACK A	ND GENERIC STABILI	ZABILITY	Y		
	DOLGACHE I	IPURE APPL	32	33	84	1
	ON THE SPRINGER RE	SOLUTION OF THE MIN	IMAL UN	VIPOTENT C	CONJUGAC	CY CLASS
	DRENSKVV	LALGEBRA	91	1	84	1
	CODIMENSIONS OF T-	DEALS AND HILBERT	SERIES O	F RELATIV	ELY FREE	ALGEBRA
	GELBARTS	B AM MATH S	10	177	84	1
	AN ELEMENTARY INT	BODUCTION TO THE L		IDS PROGR.	AM	
	HARTLEY B	QJMATH	35	49	84	1
•	MONOMORPHISMS AN	UTMATT NITS OF F			-	
	HASSELBA. W		66	91	84	1
•	RASSELBA. W	I TEUK UTIM UMED ATION TUEODV		<i>,</i> ,	<u>.</u> .	
		UMERATION THEORY	120	183	83	1
	KAZARIN LS	MATH USSR S				-
	AUTOMORPHISMS, FA	CIURIZATIONS AND S	1004	1 Incor	84	1
	KLETZING D	LECT N MATH	1084		07	
	STRUCTURE AND REP	RESENTATIONS OF Q-0	JKUUPS	- TKEFAUE	84	1
	MEYER W	MATH ANNAL	267	519	04	1
	GE« THE 5-REPRESEN		S GROUP	0.50	04	1
	MORRISI	DISCR MATH	50	253	84	1
	ADAMS-OPERATIONS	AND LAMBDA-OPERA	TIONS IN	BETA-RING	38	1
	OELJEKLA. K	MATH ANNAL	268	273	84	1
	HOMOGENEOUS COM					
	POPOV VL	MATH USSR I	47	507	83	1
		ORY OF INVARIANTS				

Nr. Erstautor		Zeitschrift	Band	Seite	Jahr	Zitationen
25. PUTCHA	A MS	SEMIGR FOR	30	253	84	1
REDUC	FIVE GRO	UPS AND REGULAR-SEN	AIGROUPS			
26. PUTCHA	A MS	SEMIGR FOR	28	365	84	1
ALGRE	BRAIC MO	NOIDS WITH A DENSE C	ROUP OF U	NITS		
7. RUDVA	LIS A	J ALGEBRA	86	181	84	1
A RANK	-3 SIMPLE	-GROUP OF ORDER 214 3	$35^{3}7 \cdot 13 \cdot 29$			
8. SAEEDU	JLI. M	LECT N PHYS	201	70	84	1
IRREDU	JCIBLE PR	OJECTIVE-REPRESENT/	ATIONS OF T	HE GENEF	RALIZED S	YMMETRIC-
GROUP	S BNM					
9. SAEEDU		P LOND MATH				1
THE AL	PHA-REG	ULAR ELEMENTS OF TH	E FINITE IM	PRIMITIVE	UNITARY	REFLECTIO
GROUP	s					
0. SERGER	EV AN	FUNCT ANAL	18	70	84	1
REPRES OF TEN		NS OF THE LIE-SUPERAL	LGEBRAS GI	L (N, M) AN	ID Q (N) OI	N THE SPACE
1. TINBER	G NB	COMM ALGEB	12	1257	84	1
WEIGH	IS AND AI	OMISSIBLE PAIRS				
32. VILAN		LECT N MATH	1068	243	84	1
FR« TH	ESOLUTIO	ON OF AN IMBEDDING P	ROBLEM			

können. Es muß hier daran erinnert werden, daß die durch die Cozitationsanalyse generierten Cluster und »Forschungsfronten« von keinerlei vorgängigen Entscheidungen beeinflußt sind, die eine disziplinäre oder gar eine Differenzierung nach Spezialgebieten in den Datensatz einführen. Es handelt sich bei den Clusterkernen und »Forschungsfronten« vielmehr um synthetische Einheiten, die zunächst rein mechanisch gebildet werden auf der Grundlage des Publikations- und Zitationsgeschehens, so wie es sich in den im Jahrgang 1984 vom SCI und SSCI erfaßten Zeitschriften widerspiegelt. Eine Deckungsgleichheit der ermittelten »Forschungsfronten« etwa mit den Gliederungen feststehender Fächerkataloge ist demnach nicht zu erwarten. Der Vorteil der Methode liegt vielmehr gerade in der Unabhängigkeit ihrer Ergebnisse von derartigen Kategorien.

Immerhin sind die gebildeten Einheiten aber so fein aufgegliedert, daß auf der niedrigsten Aggregationsebene (C1) über entsprechende Software ein wahlfreier Zugriff auf annähernd 10000 »Forschungsfronten« möglich ist. So können z. B. über die Titel der Cluster für beliebige vorgegebene Begriffe die einschlägigen »Forschungsfronten« identifiziert werden. Hier liegt die Stärke des Verfahrens: Mit den Ergebnissen der Cozitationsanalyse lassen sich die Publikations- und Zitationsstrukturen beliebiger wissenschaftlicher Spezialgebiete ermitteln, und zwar einschließlich der erwähnten Strukturdaten. Umgekehrt lassen sich ohne weiteres Profile von Institutionen erstellen, die Auskunft darüber geben, an welchen »Forschungsfronten« diese Institutionen präsent sind. TABELLE 5:Institutionelle Adressen der Autoren an der Forschungsfront zu C1-
Cluster Nr. 7492.

»Representation of Weyl-groups, Schur multipliers and properties of finite lineargroups«.

Nr.	Erstautor	Zeitschrift	Band	Seite	Jahr	Zitationen
1.	HUMPHREY. JF	MATH PROC C	96	195	84	3
	UNIV LIVERPOOL,					
		9 3BX LANCASHIRE	ENGLAN	1D		
2.	BEYLFR	LECT N MATH	958	7	82	2
	UNIV HEIDELBER	J. INST MATH				
		BERG 1 FED REP GER				
		H AACHEN, LEHRSTUHL				
	D-5100 AACHEN					
3.	DAMHUS T	THEOR CHIM	65	317	84	2
υ.		N, HC ORSTED INST, DEI				
	DK-2100 COPEN	HAGEN 0 DENMARK				
4	JARDINE JF	J ALGEBRA	89	335	84	2
4.	UNIV CHICAGO, D		02	000		
		L 60637 USA				
5	LYONS R	COMM ALGEB	12	1889	84	2
5.	RUTGERS STATE U		12	1002	0.	
c	NEW BRUNSWI	CII 110 00700	90	430	84	2
0.		J ALGEBRA	90	450	04	2
	UNIV TOKYO, DEP					
-		JAPAN	88	380	84	2
7.	TOKUYAMA T	•	00	500	04	-
	UNIV TOKYO, DEP					
		JAPAN	01	5278	84	2
8.	WEISFEIL. B	P NAS PHYS	81	3270	04	2
	PENN STATE UNIV					
	UNIVERSITY P		115	257	84	1
9.	AKYILDIZ E		115	257	04	ł
	UNIV PETR & MINE					
		SAUDI ARABIA		00	04	1
10.	ALEXANDR. V		298	99	84	1
	UNIV BUCHAREST					
		REST ROMANIA				
		, FAC PHYS, DEPT MATH				
	BUCHAREST			2151	0.4	1
11.	BAAKE M	J MATH PHYS	25	3171	84	1
	UNIV BONN, INST P					
	D-5300 BONN 1	FED REP GER		a./a	0.4	1
12.	BYRNES CI	SIAM J CON	22	362	84	1
	HARVARD UNIV, E	DEPT M MATH				
	CAMBRIDGE	MA 02138 USA				
	HARVARD UNIV, E	DIV APPL SCI				
	CAMBRIDGE	MA 02138 USA				
	UNIV BREMEN					
	D-2800 BREMEN	133 FED REP GER				
	UNIV NEWCASTLE	, DEPT ELECT & COMP EN	NGN			
	NEWCASTLE	NSW 2308 AUSTRAL	IA			
13.	DOLGACHE. I	J PURE APPL	32	33	84	1
	UNIV MICHIGAN, I					
	ANN ARBOR	MI 48109 USA				
	PURDUE UNIV, DE					
	W LAFAYETTE					

٧r.	Erstautor	Zeitschrift	Band	Seite	Jahr	Zitationer	
4.	DRENSKY V	J ALGEBRA	91	1	84	1	
	BULGARIAN ACA						
	BU-1090 SOFL						
5.	GELBART S	B AM MATH S	10	177	84	1	
	CORNELL UNIV.						
		VY 14853 USA					
6.	HARTLEY B	QJMATH	35	49	84	1	
	UNIV MANCHEST	_				-	
	MANCHESTE	GLAND					
	UNIV WISCONSIN						
	KENOSHA	WI 53140 USA					
7	HASSELBA. W	THEOR CHIM	66	91	84	1	
		IN, INST QUANTEN CHEM	00	21	04	1	
	D-1000 BERLI						
0	KLETZING D		1004	1	04	1	
0.		LECT N MATH	1084	1	84	1	
	STETSON UNIV, DEPT MATH & COMP SCI						
0		FL 32720 USA	0/7	610			
9.	MEYER W	MATH ANNAL	267	519	84	1	
	UNIV BONN, INST						
	D-5300 BONN FED REP GER						
	UNIV BONN, INST ASTRON						
	D-5300 BONN						
0.	MORRIS I	DISCR MATH	50	253	84	1	
	UNIV WALES UNIV COLL N WALES, DEPT PURE MATH						
	BANGOR LL57 2UW GWYNEDD WALES						
21.	OELJEKLA. K	MATH ANNAL	268	273	84	1	
	RUHR UNIV BOC	HUM, INST MATH					
	D-4630 BOCHUM FED REP GER						
22.	PUTCHA MS	SEMIGR FOR	28	365	84	1	
	N CAROLINA STA	ATE UNIV, V, DEPT MATH					
	RALEIGH NC 27650 USA						
23.	PUCHTA MS	SEMIGR FOR	30	253	84	1	
	N CAROLINA STA	ATE UNIV, DEPT MATH			0.	-	
	RALEIGH						
4.	RUDVALIS A	NC 27695 USA J ALGEBRA	86	181	84	1	
		JSETTS, DEPT MATH	00	101	04	1	
	AMHERST	MA 01003 USA					
25	SAEEDULI. M		201	70	04	1	
				70	84	1	
	BAHAUDDIN ZAKARIYA UNIV, DEPT MATH MULTAN PAKISTAN						
06	SAEEDULI, M	P LOND MATH	40	1.44			
20.			49	141	84	1	
	BAHAUDDIN ZAKARIYA UNIV, DEPT MATH						
-		PAKISTAN					
:/.	SERGEEV AN	FUNCT ANAL	18	70	84	1	
	MV LOMONOSO						
	MOSCOW 117						
28.	TINBERG NB	COMM ALGEB	12	1257	84	1	
		DLL, DEPT MATH					
	LOS ANGELES CA 90041 USA						
29.	VILA N	LECT N MATH	1068	243	84	1	
	UNIV AUTONOM	A BARCELONA, SECC MAT	EMAT		-		
		A BARCELONA SPAIN					

Anmerkungen

- ¹ Die hier angegebenen Zahlen beziehen sich auf die auf Magnetband lieferbaren Fassungen von SCI, SSCI und A&HCI. Sie weichen zum Teil von den entsprechenden Angaben ab, die ISI in den gedruckten Ausgaben macht. Insbesondere wird für die gedruckte Version des SCI eine reduzierte Anzahl von Zeitschriften ausgewertet (ca. 3300). Demgegenüber sind in der gedruckten Ausgabe fünf- bzw. zehnjährige Kumulationen erhältlich, die zum Teil in frühere Jahre zurückreichen: SCI 1955 bis 1964, SSCI 1966 bis 1970 und A&HCI 1975 bis 1979.
- ² Vgl. Weingart und Winterhager 1984, S. 128ff.
- ³ Vgl. Garfield 1979, S. 23.
- ⁴ Vgl. Carpenter und Narin 1981. Der SCI wurde bezüglich der nationalen Anteile an der Gesamtzahl der erfaßten Publikationen verglichen mit:
 - MEDLINE,
 - Biological Abstracts,
 - Chemical Abstracts,
 - Physics Abstracts,
 - Engineering Abstracts,
 - Psychological Abstracts und
 - Mathematical Reviews.

Es ergab sich im allgemeinen eine gute Übereinstimmung der Werte, vor allem für die größeren Industrienationen. Problematisch war eine deutliche Unterrepräsentanz der UdSSR in der klinischen Medizin und der Biologie.

- ⁵ Vgl. Small und Griffith 1974, Griffith et al. 1974, und zum aktuellen Stand der Methode: Small et al. 1985 a und 1985 b.
- ⁶ Hierbei ist zu beachten, daß durch den Zugriff »von oben«, also das bloße Disaggregieren von C3-Clustern, nicht der vollständige Datensatz erschlossen werden kann. Bedingt durch den Algorithmus der Clusteranalyse gehen bei der Aggregation auf jeder Stufe eine Reihe von Clustern »verloren«, sind mithin nicht in den Superclustern der höheren Aggregationsstufen enthalten (vgl. Abschnitt 2.2.2.).

Literatur

- Carpenter, M. P., Narin, F., The adequacy of the Science Citation Index (SCI) as an indicator of international scientific activity. Journal of the American Society for Information Science, 32, 1981, 430–439.
- Garfield, E., Citation Indexing Its theory and application in science, technology, and humanities. New York 1979.
- Griffith, B. C., Small, H. G., Stonehill, J. A., Dey, S., The structure of scientific literatures, II. Toward a macro- and microstructure for science. Science Studies, 4, 1974, 339-365.
- Small, H., The relationship of information science to the social sciences: a co-citation analysis. Information Processing and Management, 17, 1981, 39-50.

- Small, H., Griffith, B. C., The structure of scientific literatures, I. Identifying and graphing specialties. Science Studies, 4, 1974, 17–40.
- Small, H., Sweeney, E., Clustering the Science Citation Index using co-citations. I. A comparison of methods. Scientometrics, 7, 1985a, 391–409.
- Small, H., Sweeney, E., Greenlee, E., Clustering the Science Citation Index using co-citations. II. Mapping science. Scientometrics, 8, 1985b, 321-340.
- Weingart, P., Winterhager, M., Die Vermessung der Forschung. Theorie und Praxis der Wissenschaftsindikatoren. Frankfurt/M. 1984.