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Thesis Overview 
 
 Breast cancer is the second leading cause of cancer-related mortality in 

women and accounts for 33% of all new malignancies.  As many as 12% of 

breast cancer patients present with locally advanced breast cancer (LABC), 

defined as stage 3 disease, i.e. tumours >5 cm and may involve the skin, chest 

wall, or lymph nodes.  Survival outcomes for LABC are poor; only 50% of 

patients survive five years after diagnosis.    Clinical management involves 

neoadjuvant (i.e. pre-operative) chemotherapy (NAC) and this is recommended 

as first-line treatment to downstage tumours before surgery.  However, a 

variable response to treatment has been shown in patients receiving NAC and 

there is evidence that favourable responses to NAC correlate well with 

improved survival.   

 Understanding the likelihood of treatment efficacy at early stages of NAC 

(i.e. before starting treatment or after one chemotherapy cycle) may inform 

physicians and patients about the tumour’s response; ultimately with the 

potential to adapt treatments and improve patient outcomes. Standard methods 

to assess chemotherapy response use clinical palpation or medical imaging, 

such as magnetic resonance imaging (MRI) to measure the changes in tumour 

size during treatment.  However, the major limitations for current imaging 

techniques include expensive equipment, need for contrast agents, or poor 

sensitivity and specificity of gold-standard pathology.  Also, it may take many 

weeks for tumour size to shrink, despite the biological responses that may occur 

much earlier.    With the limitations of current imaging techniques, the 

motivation for this present study was to investigate quantitative imaging 

methods to evaluate tumour biology during early phases of treatment as early-

response markers for breast tumour response to NAC.   

 In this thesis, it is proposed that quantitative imaging using diffuse optical 

spectroscopy (DOS) and quantitative ultrasound (QUS) can be used to address 

the limitations of conventional imaging in breast cancer.  DOS and QUS can 

measure biological and functional properties in tumours which can 

subsequently be used to characterize tumour response.  Although both DOS 

and QUS parameters have previously been studied individually, further work is 
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needed to explore DOS and QUS imaging biomarkers since there remains an 

opportunity to study the temporal relationships between DOS and QUS 

parameters.   This is because with each modality, one can potentially provide 

tumour markers for vascularity, cellularity, cell death and tumour oxygenation, 

which are important hallmarks for tumour progression and tumour killing.  In 

addition, there are further opportunities to investigate DOS imaging before 

chemotherapy in order to predict the likelihood of tumour response to treatment.   

This thesis has four chapters.  To establish the groundwork for this study, 

the first chapter is presented to illustrate the biologically complex breast tumour 

and to present the treatment and clinical problem associated with locally 

advanced breast cancer.  Additionally, in Chapter 1, a review of the literature 

was conducted to evaluate the status of breast imaging to measure 

chemotherapy response in breast tumours.  Several clinical imaging modalities 

were considered, which included magnetic resonance imaging (MRI), computed 

tomography (CT), positron emission tomography (PET) and technetium 99-m 

(99m-Tc) scintigraphy.  Following this, a systematic review was completed 

which focused on studies for diffuse optical spectroscopy (DOS) and 

quantitative ultrasound spectroscopy (QUS).   

In Chapter 2, the research methods are presented within the framework 

of the research questions in this thesis.  The study was composed of two major 

subprojects; in the first subproject, the overarching research question was, “can 

DOS and QUS imaging biomarkers be modelled temporally to measure 

treatment response at early time intervals (i.e. after one or two cycles of 

chemotherapy)?”. The analysis included clustering DOS and QUS features to 

test the predictive value (sensitivity and specificity) to NAC response.   The 

results of the first subproject raised questions about using new image analysis 

techniques (i.e. texture) for DOS.   Thus, the aim of subproject 2 was to 

investigate if DOS imaging before treatment could predict tumour response to 

chemotherapy.  Here, the overarching question of the second subproject was, 

“can DOS-texture markers predict chemotherapy response prior to starting 

treatment?”.   In this component, DOS images were analysed using texture 

features of DOS parametric maps prior to chemotherapy, which were shown to 

provide an increase in DOS-imaging signatures about the tumour’s biological 

features.  Such DOS-texture markers were used in both univariate and 

multivariate analyses to yield statistical models that correlated DOS-texture 
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features with pathological response, as measured by Miller-Payne pathological 

response criteria.   

 In Chapter 3, the results of the study are presented according to each 

subproject.  For subproject one, the results showed that there was a temporal 

relationship between DOS and QUS imaging markers during early phases of 

chemotherapy.  Statistical models were developed and showed that both 

univariate and multivariate DOS and QUS features were correlated to final 

pathological (Miller-Payne) response with an area under the curve (AUC) of 

0.84-1.00 after one week of chemotherapy.    For subproject two, it was found 

that there were significant differences in DOS texture-based features between 

responsive and non-responsive tumours before NAC.  Statistical models using 

machine learning techniques, found that features of tumour oxygenation and 

tumour haemoglobin could predict pathological treatment response with an 

accuracy of 87.8%. 

 Chapter 4 includes a discussion of the current study’s findings and 

compares to the previous literature as presented in the systematic review.  A 

discussion on the status of DOS and QUS imaging as a clinical decision-making 

tool are presented in terms of the current translational gaps that DOS and QUS 

are required to overcome to achieve robust clinical and scientific validation.  

The thesis concludes with limitations and future directions.   
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Abstract 
 
Purpose: This study comprises two subprojects.  In subproject one, the study 

purpose was to evaluate response to neoadjuvant chemotherapy (NAC) using 

quantitative ultrasound (QUS) and diffuse optical spectroscopy imaging (DOS) 

in locally advanced breast cancer (LABC) during chemotherapy.  In subproject 

two, DOS-based functional maps were analysed with texture-based image 

features to predict breast cancer response before the start of NAC.      

Patients and Measurements:  The institution’s ethics review board approved 

this study.  For subproject one, subjects (n=22) gave written consent before 

participating in the study. Participants underwent non-invasive, DOS and QUS 

imaging.  Data were acquired at weeks 0 (i.e. baseline), 1, 4, 8 and before 

surgical removal of the tumour (mastectomy and/or lumpectomy); 

corresponding to chemotherapy schedules.  QUS parameters including the mid-

band fit (MBF), 0-MHz intercept (SI), and the spectral slope (SS) were 

determined from tumour ultrasound data using spectral analysis.  In the same 

patients, DOS was used to measure parameters relating to tumour haemoglobin 

and tissue composition such as %Water and %Lipids.    Discriminant analysis 

and receiver-operating characteristic (ROC) analyses were used to correlate the 

measured imaging parameters to Miller-Payne pathological response during 

treatment.  Additionally, multivariate analysis was carried out for pairwise DOS 

and QUS parameter combinations to determine if an increase in the 

classification accuracy could be obtained using combination DOS and QUS 

parametric models.   

 For subproject two, 15 additional patients we recruited after first giving 

their written informed consent.  A pooled analysis was completed for all DOS 

baseline data (subproject 1 and subproject 2; n=37 patients).  LABC patients 

planned for NAC had functional DOS maps and associated textural features 

generated.  A grey-level co-occurrence matrix (texture) analysis was completed 

for parameters associated with haemoglobin, tissue composition, and optical 

properties (deoxy-haemoglobin [Hb], oxy-haemoglobin [HbO2], total 

haemoglobin [HbT]), %Lipids, %Water, and scattering power [SP], scattering 

amplitude [SA]) prior to treatment.  Textural features included contrast (con), 
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correlation (cor), energy (ene), and homogeneity (hom).  Patients were 

classified as ‘responders’ or ‘non-responders’ using Miller-Payne pathological 

response criteria after treatment completion.  In order to test if baseline 

univariate texture features could predict treatment response, a receiver 

operating characteristic (ROC) analysis was performed, and the optimal 

sensitivity, specificity and area under the curve (AUC) was calculated using 

Youden’s index (Q-point) from the ROC.  Multivariate analysis was conducted to 

test 40 DOS-texture features and all possible bivariate combinations using a 

naïve Bayes model, and k-nearest neighbour (k-NN) model classifiers were 

included in the analysis.  Using these machine-learning algorithms, the pre-

treatment DOS-texture parameters underwent dataset training, testing, and 

validation and ROC analysis were performed to find the maximum sensitivity 

and specificity of bivariate DOS-texture features.        

Results:  For subproject one, individual DOS and QUS parameters, including 

the spectral intercept (SI), oxy-haemoglobin (HbO2), and total haemoglobin 

(HbT) were significant markers for response outcome after one week of 

treatment (p<0.01).  Multivariate (pairwise) combinations increased the 

sensitivity, specificity and AUC at this time; the SI+HbO2 showed a 

sensitivity/specificity of 100%, and an AUC of 1.0 after one week of treatment.    

 For subproject two, the results indicated that textural characteristics of 

pre-treatment DOS parametric maps can differentiate treatment response 

outcomes.  The HbO2-homogeneity resulted in the highest accuracy amongst 

univariate parameters in predicting response to chemotherapy: sensitivity (%Sn) 

and specificity (%Sp) = 86.5 and 89.0%, respectively and an accuracy of 

87.8%.  The highest predictors using multivariate (binary) combination features 

were the Hb-Contrast + HbO2-Homogeneity which resulted in a %Sn = 78.0, 

a %Sp = 81.0% and an accuracy of 79.5% using the naïve Bayes model. 

Conclusion:   DOS and QUS demonstrated potential as coincident markers for 

treatment response and may potentially facilitate response-guided therapies. 

Also, the results of this study demonstrated that DOS-texture analysis can be 

used to predict breast cancer response groups prior to starting NAC using 

baseline DOS measurements.                 
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Chapter 1 
 

Background and Review of the Literature 
 

 

1.0 Chapter Overview 
 

  This chapter has two major components that begins with background 

information on breast cancer (Section 1.1-Section 1.10), followed by a 

literature review of imaging biomarkers studied to measure breast cancer 

response to chemotherapy (Section 1.11-Section 1.14).     

The first component (i.e. background) describes the biologically complex 

tumour and the driving factors that initiate tumour growth and progression.  This 

section focuses on the incidence of breast cancer, its natural presentation, risk 

factors and the current methods used to screen and diagnose breast cancer.  

Here, a definition of locally advanced breast cancer is presented, which 

includes the disease presentation, treatment, toxicity (i.e. side effects of 

treatments) and survival outcomes, which illustrate the clinical problem.  

 The second major component of this chapter (i.e. review of the literature) 

begins in Section 1.11.  Here, the literature review question is presented.  The 

literature review was structured as a narrative review for general imaging such 

as magnetic resonance imaging, computed tomography, positron emission 

tomography and 99m-Tc-Scintigraphy.  Secondly, a systematic review was 

completed for previous research, with a focus on diffuse optical spectroscopy 

and quantitative ultrasound spectroscopy in locally advanced breast cancer.  

Technical frameworks are presented and a quality assessment of studies was 

performed using the QUADAS-2 tool (Quality Assessment of Diagnostic 

Accuracy) and the STARD tool (Standards for Reporting Diagnostic Accuracy).  

The findings of the literature review were used to provide a framework for the 

current thesis study and presented at the end of this chapter.    
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1.1 Cancer 
 

 Cancer is a disease characterized by uncontrolled and aberrant cell 

division (Harrington, 2016). The World Health Organization (WHO) report in 

2011 presented data which showed that 8.2 million deaths were caused by 

cancer globally (Ferlay et al., 2015).  In the United States (2014) alone, the 

annual incidence was 1.7 million cases for all types of cancer  (Siegel et al., 

2014).   Due to an aging population, cancer incidence in the United States is 

expected to grow to 2.14 million cases by 2030; with breast, prostate and lung 

cancers projected to account for 747,000 of the newly diagnosed malignancies 

(Rahib et al., 2014).  In the United Kingdom, there were 357,000 new cancer 

cases in 2014 and cancer incidence rates have grown 12% since the 1990s. 

(Cancer Research UK, 2017)    

Cancer risk factors are correlated to environmental factors, lifestyle 

habits and genetic causes (Torre et al., 2015).  The societal impact of cancer 

can be measured in terms of its negative effect on population health, quality of 

life, and is associated with significant costs to the health care system (Campbell 

and Ramsey, 2009, Will et al., 2000).  The growing trends in cancer-related 

mortality and morbidity have prompted major efforts to improve diagnosis and 

treatment. Therefore, the examination of the onset, development, progression, 

and optimal treatment of cancer has become the focus of substantial research.    

 

1.1.1 Tumourigenesis and Cancer Progression   
                 

 The onset of tumours, known as tumourigenesis is a multistep process 

that involves transformation of normal cells into cells that exhibit rapid and 

unstable cell growth (Beckmann et al., 1997).  Tumourigenesis is dependent on 

several factors such as the  overexpression of oncogenes, cell signal 

amplification, and angiogenesis (Luo and Elledge, 2008). These factors are 

interdependent for tumour growth; for example, oncogenes such as, ras/MAP-

kinase have been shown to initiate new blood vessels in tumours, promote 

tumour growth rate, increase cell signalling activity and enhance the potential 

for invasion and metastasis.  In contrast, other genes play a role in suppressing 

tumour growth (i.e. tumour suppressor genes) and are also part of the DNA 

repair process; for example, BRCA1 and BRCA2 genes (Rak et al., 1995, 
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Carmeliet and Jain, 2000, Atchley et al., 2008, Eerola et al., 2005, Perou et al., 

2000).   

 Hanahan and Weinberg described tumourigenesis and summarized six 

fundamental and interacting characteristics of cancer (Hanahan and Weinberg, 

2011).  These include: 1) tumour cell immortality through deregulated cell 

senescence; 2) resistance factors to cell death; 3) signalling defects that 

promote tumour cell proliferation; 4) blocking growth suppressors; 5) increase in 

angiogenesis; and 6) establishing mechanisms for invasion and metastatic 

spread (Hanahan and Weinberg, 2011).  Tumour cell immortality is caused by 

deregulated cell division and it has been shown that telomeres play an 

important role in this process and particularly in regulating cell senescence1  

(Kelland, 2005).  Tumour cells are genetically programmed to become 

“immortal” and continue to divide uncontrollably, unlike normal cells that either 

die or enter into a senescence state.  Other mechanisms involve defective cell 

signalling pathways that inhibit apoptotic cell death (Elmore, 2007).  This is 

regulated by anti-apoptotic proteins, which include survivin, caspase, Bcl-2, and 

p53 (Elmore, 2007, Lowe and Lin, 2000).  For example, mutations in the p53 

protein affect cell-cycle checkpoints that are responsible for committing cells 

into apoptosis; whereas other proteins such as survivin have been shown to 

supress signalling pathways in the cytoplasm which can lead to cell immortality 

(Escuin and Rosell, 1999).   

 An important hallmark of cancer involves angiogenesis and 

neovascularization (Nishida et al., 2006). Muthukkaruppan et al. (1982) 

described a critical point, termed the ‘angiogenic switch’ when neoplasms 

switch from passive diffusion to vascular perfusion for nutrient supply 

(Muthukkaruppan et al., 1982).  Beyond 2 mm3 in growth, tumours need a 

vascular supply to provide nutrients, oxygen and transport blood-borne 

biochemical signals for survival  (Muthukkaruppan et al., 1982, Nishida et al., 

2006).  The growing vasculature is also driven by tumour cells that release pro-

angiogenic factors such as VEG-F (vascular endothelial growth factor), 

angiogenin, angiostatin, and transforming growth factor.  Tumour cells also 

down-regulate angiogenesis inhibitors such as angiopoietin-2, angiotensin, and 

                                            
1 Cell senescence is “cell aging”, whereby cells are no longer capable of 
replicating, but are metabolically active (Campisi, 2013).   
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angiostatin-2 which lead to uncontrolled vascular growth.  The dysfunctional 

signalling produces vessels that are immature, “leaky”, and poorly formed 

(Nishida et al., 2006).   Tumour blood vessels also increases the risk for 

malignant cells to spread (i.e. metastasize), as the blood vessels serve as 

channels for circulating tumour cells (Hanahan and Weinberg, 2011).  In 

summary, tumourigenesis and sustaining the tumour’s lifecycle involves 

complex oncogene expression, molecular signalling, and angiogenesis.  The 

tumour relies on these processes in parallel to build a microenvironment that 

promotes cell immortality and tissue invasion.  The processes described above 

are also characteristic of neoplasms of the breast.          
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1.2 Breast Cancer 
 

1.2.1 Natural History and Presentation 
 
 The natural history of breast cancer starts with transformation of 

epithelial cells of the terminal duct lobules units (TDLU) (Logan et al., 2015). 

(Santagata et al., 2014, Ellis et al., 2003, Weigelt and Reis-Filho, 2009).  At the 

time of diagnosis, breast cancers may be classified as either non-invasive (i.e. 

in situ) or invasive breast cancer.  Non-invasive breast cancer are characterized 

by tumours that are confined to the lumens of the mammary duct (Burstein et 

al., 2004).  One example of non-invasive breast cancer is ductal carcinoma in 

situ (DCIS), which accounts for approximately 20% of all newly diagnosed 

breast cancers; whereas a rarer form termed lobular carcinoma in situ (LCIS) 

accounts for a smaller portion (0.5-3.9%) of new diagnoses (Logan et al., 2015, 

Burstein et al., 2004).  Both DCIS and LCIS are thought to be precursors to 

invasive breast cancer and their nomenclature refers to their proximity to the 

mammary ducts (DCIS), or terminal duct lobular units (LCIS) (Figure 1.1) (Hu et 

al., 2008). 

 
Figure 1.1:  Breast cancer arises from the epithelial cells of ducts.  A. In 

situ disease (A) is characterized as lesions contained within the duct itself, such 

as ductal carcinoma in situ (DCIS).  B.  Invasive carcinomas have features that 



 6 

show degradation of the basement membrane (myoepithelium) and invasion 

into the adjacent breast parenchyma. 

 Tumours that spread beyond the luminal ducts of the breast and travel 

into the adjacent parenchyma are termed invasive carcinoma.  There are as 

many as 17 invasive breast cancer subtypes, which are characterized by 

variable histological and molecular features such as hormone receptor status, 

growth hormone amplification, or tumour cell type (Ellis et al., 2003, Weigelt and 

Reis-Filho, 2009) (Table 1.1).  Additionally, as breast cancer progresses, it is 

categorized into stages according to the size of the tumour, its spread into 

lymph nodes and into other parts of the body.  Breast tumour staging is outlined 

in Table 1.2. 

 
 

Histological Classification Prevalence (%) 
(Ellis et al., 2003) 

ICD-O 
Code2 

Invasive Ductal Carcinoma (NOS)1 50-80 8500/3 

Invasive Lobular Carcinoma 5-15 8520/3 

Medullary Carcinoma 1-7 8510/3 

Invasive Cribriform Carcinoma 0.8-3.5 8201/3 

Mucinous Carcinoma 2 8480/3 

Neuroendocrine Tumours 2-5 8249/3 

Invasive Papillary Carcinoma 1-2 8503/3 

Apocrine Carcinoma <4 8401/3 

Lipid-rich Carcinoma 1-6 8314/3 

Metaplastic Carcinoma <1 8575/3 

Pure Tubular Carcinoma <2 8211/3 

Glycogen-rich Clear-cell Carcinoma 1-3 8315/3 

Adenoid Cystic Carcinoma 0.1 8200/3 

Secretory Carcinoma <0.15 8502/3 

Acinic-cell Carcinoma No statistics 8550/3 

Sebaceous Carcinoma No statistics 8410/3 

Table 1.1:  World Health Organization classification of breast cancers.  
1NOS: Not otherwise specified; 2ICD-O Code: International code of diseases-

oncology 
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Stage T N M Description  
Non-Invasive Breast Cancer (In Situ) 
 0 Tis N0 M0 Carcinoma in situ 
Invasive Breast Cancer 

Ea
rly

 B
re

as
t C

an
ce

r 

1 T1 N0 M0 Primary lesion <2 cm 
2A T0 N1 M0 No primary but axillary lesion 
 T1 N1 M0 Primary lesion <2 cm. Involved lymph 

nodes 
 T2 N0 M0 Primary lesion 2 to 5 cm, no node 

involvement 
2B T2 N1 M0 Primary lesion >2 to 5 cm  

Movable axillary lymph nodes 
 T3 N0 M0 Primary lesion > 5cm  

No node involvement 

Ad
va

nc
ed

 B
re

as
t C

an
ce

r  

3A T2 N2 M0 Primary lesion >2 to 5 cm 
Fixed axillary lymph nodes 

 T3 N1, N2 M0 Primary lesion > 5cm  
Movable and/or fixed axillary lymph 
nodes 

3B T4 Any N M0 >5cm, chest wall/skin 
Movable and/or fixed axillary lymph 
nodes 
Internal mammary nodes.   
Includes inflammatory carcinoma 

3C Any T N3 M0 Primary lesion >2 to 5 cm 
Primary lesions >5 cm  
Involvement with chest wall/skin  
Movable and/or fixed axillary lymph 
nodes  
May include internal mammary nodes.   
Includes inflammatory carcinoma 

Metastatic Breast Cancer 
 4 Any T Any N M1 Distant metastasis 

Table 1.2: Clinical presentation and staging for breast cancer, based on TNM 

classification (primary tumour extent [T], nodal Involvement [N], metastatic 

spread [M]).  Note: Stage 2B disease may be considered inoperable in cases 

with chest wall and/or skin involvement  (Hortobagyi et al., 1988). 
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 Other characteristics of breast cancer include differences in tumour-

molecular features such as oestrogen receptor (ER) and progesterone receptor 

(PR) expression, human epidermal growth factor-2 receptor (HER2), and 

proliferative rate (Ki67) (Inic et al., 2014).  These parameters are used to 

classify breast cancer subtypes, as outlined by a consensus guideline at the St. 

Gallen Conference in 2013 (Harbeck et al., 2013, Goldhirsch et al., 2013).  The 

breast tumour subtypes are summarized in Table 1.3.   

 

Breast Cancer 
Subtype 

ER PR HER2 Ki67 (Marker for Proliferation) 

Luminal A + + - Low1 

Luminal B + +/- +/- High1 

Basal-Like - - - n/a 

HER2 Overexpressed - - + n/a 

Table 1.3:  Molecular and cell proliferation characteristics of breast cancer 

according to subtype. 1High and low Ki67 cut-off values were not indicated in 

the St. Gallen consensus statement. 

 

Data from 50,571 women in the United States showed that 72.7% of 

women had luminal A breast cancer; while 12.2% were basal-like.  A smaller 

portion of patients exhibited luminal B breast cancer (10.3%), and only 4.6% of 

all patients demonstrated HER2 overexpressed (HER2+) breast cancer 

(Howlader et al., 2014).   

 

1.2.2 Epidemiology: Incidence and Mortality 
 
 Breast cancer is the second most diagnosed cancer globally (Ferlay et 

al., 2015).  Incidence rates vary among geographic regions; affecting 27 per 

100,000 in Africa and Asia and increasing to 96 per 100,000 in Western Europe 

and 92 per 100,000 in North America (Ferlay et al., 2015).  In terms of mortality 

rates, breast cancer is listed as the fifth leading cause of cancer-related death 

in comparison to other malignancies.  There are 522,000 deaths caused by 

breast cancer each year (Ferlay et al., 2015).  Mortality is also variable between 
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developed and developing countries, and this is caused by differences in 

healthcare infrastructure, ability to access an early diagnosis and treatment. 

 1.2.3 Risk Factors for Developing Breast Cancer 
  

 Race: SEER (Surveillance, Epidemiology, and End Results Program) 

data between 2004-2011 for American women (n= 373,563) indicated that Non-

Hispanic-White and Black women were at highest risk for developing breast 

cancer (Non-Hispanic White women = 71.9% versus Black women = 10.4%) 

(Iqbal et al., 2015).  Incidentally, Stage 3 breast cancer (i.e. locally advanced) 

was indicated as highest (16.6%) in Black women amongst all ethnic groups.  In 

comparison, Asian women demonstrated the lowest incidence of breast cancer 

(range = 0.59%-3.84%) (Newman, 2009, Iqbal et al., 2015) (Figure 1.2).  
 

 
Figure 1.2:  Stage 3 breast cancer incidence according to race. [Adapted from: 

(Iqbal et al., 2015, Newman, 2009)]. Data population: American Women; 

National Cancer Database [NCDB] (2009, n=178,764), SEER (2015, 

n=373,563).    

 
 Gender: Gender is a significant risk factor for new diagnoses; male 

breast cancers are very rare and account for only 1% of all breast cancers 

(Leone et al., 2015). Previous data from 2005 reported 1690 new cases in the 
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United States and of those cases, the mortality rate showed that 460 men died 

of the disease (Jemal et al., 2005).  After a decade, incidence rates have 

increased to 2350 diagnoses in 2015 with a stable mortality rate of 440 deaths 

(18.7%) per year in the United States (Siegel et al., 2015).   

 

 Age: The probability of developing breast cancer over a lifetime is 

12.3%, however there is an increased risk with an increase in age (Siegel et al., 

2015).  The median age for developing breast cancer is 60 years old (Iqbal et 

al., 2015).    Figure 1.3 presents the risk probability in the United States from 

2009 to 2011.  The peak probability is reported in women above 70 years old.  

At this age interval, women demonstrate a 6.7% probability of developing breast 

cancer (i.e., 1 in 15 women) (Siegel et al., 2015).    

 

 
Figure 1.3:  Breast cancer incidence related to age (data on women, 2009-

2011 in the United States).  [Adapted from data obtained by (Siegel et al., 

2015)].  The increased incidence of breast cancer is related to older age.  

Women over the age of 70 show a highest risk of developing breast cancer, 

with a probability of 6.7%, or 1 in 15 women.  The median age for developing 

breast cancer is 60 years old.   Blue dotted line:  Regression line  

 
 Family History and Genetic Conditions:   Hereditary factors account 

for 27% of breast cancer risk; 95% CI [4%, 41%] (Lichtenstein et al., 2000).  
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The risk ratio for breast cancer in women with one first degree relative who has 

breast cancer is 1.8; 95% CI [1.70, 1.91], and increases to 2.93; 95% CI [2.37, 

3.63], when two first degree relatives have breast cancer.  The risk ratio is 3.90; 

95% CI [2.03, 7.49], when three or more relatives have breast cancer 

(Collaborative Group on Hormonal Factors in Breast, 2001).  Women with an 

adoptive parent with breast cancer have not been shown to be at higher risk for 

breast cancer (Zoller et al., 2014).   

 In terms of genetic conditions, women who carry mutations in tumour 

suppressor genes, BRCA-1 (breast cancer susceptibility gene-1) and BRCA-2 

demonstrate a higher risk for breast cancer and this is confounded with age, 

and a family history of breast cancer (King et al., 2003, Antoniou et al., 2003).  It 

should be noted that BRCA mutations are relatively rare in the general 

population; only 0.11%, and 0.12% of the general population express BRCA-1 

and BRCA-2 mutations, respectively.  However, approximately 3.0%-3.1% of 

breast cancer patients under 50 are BRCA-1 and BRCA-2 mutation carriers.    

BRCA-1 or BRCA-2 mutation carriers develop breast cancer earlier in their 

lifetime compared to women who are not carriers (i.e. wild type) (King et al., 

2003).  Each successive year of the carrier’s lifetime confers an increased 

cumulative risk of developing breast cancer.  By 70 years of age the cumulative 

risks are 65% for BRCA-1 mutation carriers and 45% for BRCA-2 mutation 

carriers (Antoniou et al., 2003).   

A family history of breast malignancies elevates breast cancer risk in BRCA 

mutation carriers. Metcalfe et al. (2010) showed that women with BRCA 

mutations whose first-degree relatives are diagnosed with breast cancer by age 

50 or younger demonstrate a hazard ratio of 1.67; 95% CI [1.04, 2.69] for 

BRCA-2 carriers. In comparison, BRCA-1 carriers demonstrate a hazard ratio of 

1.21; 95% CI [0.94,1.57], indicating that there is a weaker familial association to 

breast cancer risk within this group (Metcalfe et al., 2010).  Other genes have 

been suggested in increasing the risk of breast cancer such as TP53 (tumour 

protein-53), ATM (serine/threonine kinase), and CHEK2 (checkpoint kinase-2) 

(Turnbull and Rahman, 2008).  The relative risks associated with gene 

mutations are >10%, 2-3%, and 2-3%, respectively (Turnbull and Rahman, 

2008).  However, the carrier frequency of these gene mutations is very low 

(<0.4%) in the general population (Turnbull and Rahman, 2008).      
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 Gynaecological and obstetric history:  Reproductive factors are linked 

to breast cancer risk and include the age at menarche, age of menopause, and 

parity. Women who reach menarche earlier during adolescence are at an 

increased risk of developing breast cancer (McPherson et al., 2000).  A meta-

analysis which included 117 studies showed that each earlier year at menarche 

corresponded to an increased risk of 1.050-fold; 95% CI [1.044,1.057] 

(Collaborative Group on Hormonal Factors in Breast, 2012).  In the same study, 

the later age of menopause was also linked to an increased risk.  For every 

older year of menopause, the risk factor was 1.029; 95% CI [1.025,1.032].  The 

increased risk may be linked to the lifetime exposure to oestrogens (Yager and 

Davidson, 2006).   Parity has been shown to mitigate breast cancer risk 

(Collaborative Group on Hormonal Factors in Breast, 2002). The relative risk of 

developing breast cancer is reduced by 7% with each childbirth (Collaborative 

Group on Hormonal Factors in Breast, 2002).    Also, having children earlier in 

life reduces the risk; each earlier year reduces the relative risk by 3.0% 

(Collaborative Group on Hormonal Factors in Breast, 2002).  Parity has also 

been linked to certain types of breast cancer such as hormone-sensitive breast 

cancer.  There is also evidence to suggest that parous women were 25% less 

likely to develop hormone-sensitive breast cancer.  Also, women who had 

children at an older age were shown to increase their risk by 15% of developing 

hormone-sensitive breast cancer.   Other reproductive-related factors include 

breastfeeding history, the use of oral contraceptives and hormone replacement 

therapy (HRT).  For every year of breastfeeding, the relative risk of breast 

cancer is decreased by 4.3%; 95% CI [2.9, 5.8] (Collaborative Group on 

Hormonal Factors in Breast, 2002).  Oral contraceptives account for an 

increased risk of 1.1%, and post-menopausal HRT is responsible for 3.2% of 

breast cancer cases in the UK (Parkin, 2011b).     

 

Lifestyle Factors: The patient’s lifestyle history can also provide 

important information for risk factors which include: diet, and weight.  Poor diet 

involving high fat intake, and obesity have been suggested as risk factors for 

breast cancer; the risk is double for obese patients (McPherson et al., 2000).   

Finally, alcohol consumption and smoking status have been correlated to 

increasing the lifetime risk of developing breast cancer. Chen and colleagues 

(2011) observed 105,986 women between 1980 and 2008 and evaluated the 
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link between alcohol consumption and breast cancer risk.  The study showed 

that the relative risk (RR) of developing breast cancer was 1.15 when alcohol 

consumption levels ranged between 5.0-9.9 grams/day, which equates to 3-6 

drinks per week (Chen et al., 2011).  A British study by Parkin (2011) showed 

that 6.4% of breast cancer cases between 2000-2001 were attributable to 

alcohol consumption (Parkin, 2011a).  In terms of smoking, a recent study by 

Gaudet et al. (2013) examined data taken from 73, 388 female participants 

enrolled in the American Cancer Society’s Cancer Prevention Study II (CPS-II) 

(Gaudet et al., 2013).  Breast cancer incidence was higher in current smokers 

(Hazard Ratio=1.24), and former smokers (Hazard Ratio=1.13), compared to 

women who never smoked (Gaudet et al., 2013). 
 

1.2.4 Screening and Diagnosis 
 

 Screening for breast cancer is completed under two major routes:  1) a 

self-breast exam (SBE) or; 2) during a routine or urgent referral from the 

general practitioner (GP).  Practicing and educating SBEs have not been shown 

to improve mortality, although awareness is an important aspect to overall 

breast care (Thomas et al., 2002, Austoker, 2003).   A longitudinal study 

examined 266,064 Chinese women over 10-11 years.   The participants were 

randomized into two groups that received either SBE instructions (i.e. taught 

group) or women who did not receive teaching on SBE (non-taught group).  The 

results of the study showed nearly identical death rates related to breast cancer 

between groups (taught group, n=135 versus non-taught group, n=131) 

(Thomas et al., 2002).     

 In the United Kingdom, 51% of women are diagnosed through the “two-

week wait” NHS policy; 31% through screening; 9% by way of routine or urgent 

referrals from general practitioners; and a smaller percentage (4%) are 

diagnosed in the urgent care unit (Cancer Research UK, 2016d).    Quality 

standards for breast cancer screening and diagnosis in the UK have been 

developed by the National Institute for Health and Care Excellence (National 

Institute for Health and Clinical Excellence (NICE), 2009b).  NICE guideline 

standards recommend a “timely diagnosis” where patients are referred to their 

general practitioner or specialist to carry out a triple-diagnostic assessment 

(National Institute for Health and Clinical Excellence (NICE), 2009b).  Within this 
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recommendation, a single visit for the patient would include: 1) clinical 

assessment; 2) mammography and/or ultrasound examination; and 3) a fine-

needle aspiration (FNA) or core biopsy for histological analysis (National 

Institute for Health and Clinical Excellence (NICE), 2009b).  Magnetic 

resonance imaging (MRI) may be recommended for patients when there is poor 

mammographic quality due to dense breasts, or to assess the tumour’s size if 

breast-conserving surgery is indicated (National Institute for Health and Clinical 

Excellence (NICE), 2009b).  The NICE guideline (algorithm) for screening and 

diagnosis is presented in Figure 1.4.   

 

 
Figure 1.4.  Breast cancer screening and diagnosis guidelines were developed 

by the National Institutes for Health and Care Excellence (2009).  The National 

Institutes for Health and Care Excellence make recommendations for a one-day 

service where patients undergo a triple-diagnostic assessment that involves 

clinical assessment (physical palpation), mammography, followed by a fine-

needle aspiration or core biopsy to confirm malignancies in the breast (National 

Institute for Health and Clinical Excellence (NICE), 2009b).       

 

 Medical imaging has an important role in the detection of benign and 

malignant breast masses (Saslow et al., 2007).  However, routine 

mammography has not shown to decrease mortality in women in recent 

screening trials (Miller et al., 2014).  A study by Miller et al. (2014) compared 

survival data for women (n=89,835) who were randomized into two groups: 
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annual physical breast examinations (i.e. clinical examination) with 

mammography versus a control group (no mammography, but clinical 

examination only).  A hazard ratio (HR) of only 1.05 was observed between the 

two patient groups.  The authors concluded that there is no survival benefit  

when routine mammography is given to women annually (Miller et al., 2014).  

 A diagnosis of breast cancer is determined from a core biopsy of the 

primary lesion.   Histological features of the cancer cells may also be collected, 

such as cellularity, grade, molecular and intrinsic features (ER, PR, HER2) to 

help guide treatments (National Institute for Health and Clinical Excellence 

(NICE), 2009b).  Additionally, current guidelines indicate for a biopsy of axillary 

lymph nodes as part of the cancer staging work-up (National Institute for Health 

and Clinical Excellence (NICE), 2009b).  An ultrasound-guided fine-needle 

aspiration is used to confirm for malignancies histologically (National Institute 

for Health and Clinical Excellence (NICE), 2009b).  In cases where there is no 

evidence of disease in the axilla from biopsy, women with early invasive breast 

cancer are recommended for sentinel lymph node biopsy at surgery (National 

Institute for Health and Clinical Excellence (NICE), 2011).  Additional 

investigations include using computed tomography (CT), MRI, or nuclear 

medicine scans to screen for metastasis in cases where advanced breast 

cancer is suspected (Murray et al., 2009).   These involve examinations of the 

liver, lungs, brain, and bones (Whitman and Strom, 2009).  

 Taken together, breast cancer is initiated by environmental, lifestyle, 

biological, and genetic factors.  The development of breast cancer is reliant on 

physiological processes that form biologically diverse tumours.  A diagnosis of 

breast cancer can be alarming to patients and thus clinical standards have been 

outlined in the UK to provide rapid screening and diagnosis.  Despite the efforts 

for health agencies such as the NHS (UK) and Health Canada to provide 

education, rapid screening and diagnosis, a portion of patients may still present 

with advanced disease, such as locally advanced breast cancer (LABC).  LABC 

carries an especially poor prognosis and the survival for patients is low 

compared to early stage breast cancer.  Since LABC can present itself as a 

clinical challenge, the details of its presentation, treatment and thus providing 

the motivation of the thesis is outlined in the next sections.        
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1.3 Locally Advanced Breast Cancer and Treatment 
 

Locally advanced breast cancer, which is described as stage 3 disease, 

characteristically is a lesion greater than 5 cm and may involve the lymph node, 

skin, and chest wall. There is an especially poor prognosis (Newman, 2009, Lee 

and Newman, 2007); incidence rates of LABC in the United States account for 

12.4% of new breast cancer cases in 2015 and 8.5% of cases in the United 

Kingdom (Iqbal et al., 2015, Cancer Research UK, 2016c).  Survival data for 

patients with LABC in America were reported in 2009 using the SEER registry 

(Statistics, Epidemiology, and End-Results Program) (Newman, 2009, 

Tryfonidis et al., 2015).   Mortality rates for locally advanced breast cancer 

ranged between 48%- 52% (Newman, 2009).   British data showed that 

between 2002-2006, only 55.1% of women with stage 3 breast cancer survived 

beyond 5-years (Cancer Research UK, 2016b).  

 Locally advanced breast cancer requires multimodality treatment to 

address both local (primary) disease and potential distant microscopic spread.  

Studies emerged in the 1970s in Europe and the United States, which showed 

that pre-operative (neoadjuvant) chemotherapy for LABC (stage 3 disease) can 

have significant practical and clinical advantages (Broadwater et al., 1991, 

Alvarado-Cabrero et al., 2009).   These advantages included down-staging 

inoperable breast tumours to facilitate resection and allowing clinicians to 

monitor tumour response during therapy (Cance et al., 2002, Honig et al., 

2005).  However, there is still some debate about its benefit; specifically since 

neoadjuvant chemotherapy has not been associated with increasing survival, 

despite these putative advantages (Lee and Newman, 2007).  The following 

section discusses disease management for locally advanced breast cancer, and 

specifically focus on chemotherapy treatment in the pre-operative setting (i.e. 

neoadjuvant chemotherapy).    

 

1.3.1 Multimodality Treatments:  Historical Perspective 
 
 Treatment for locally advanced breast cancer involves multimodality 

treatments that are loco-regional (i.e. surgery or radiation), or systemic (i.e. 

chemotherapy, endocrine therapy, targeted drug therapy) (El Saghir et al., 

2008).  Multimodality treatments for cancer have only been realized in the past 
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70 years of medicine (Lee and Newman, 2007).  Historically, data from the 

1940s reported low rates of survival for patients with stage three breast cancer 

who received mastectomy alone; only 6% of patients lived beyond five years 

(Haagensen and Stout, 1943, Lee and Newman, 2007).  However, it was during 

the 1940s, and 1950s that chemical agents that were intended for military 

warfare were being tested for cancer therapy (DeVita and Chu, 2008).   This 

was initiated from observations that soldiers who were accidentally exposed to 

mustard sulphurs in World War one, and two demonstrated depleted bone 

marrow and lymph nodes and thus research began to study its potential 

treatment for cancer (Krumbhaar and Krumbhaar, 1919, DeVita and Chu, 

2008).  In the late 1960s multidrug chemotherapy “cocktails” were tested for 

breast cancer (Bagley et al., 1972, Canellos et al., 1974).  Early results in the 

1970s using primary chemotherapy-alone, as well as adjuvant chemotherapy 

(i.e. after mastectomy) showed exciting improvements in survival for patients 

with advanced breast cancer (Canellos et al., 1974, DeVita and Chu, 2008).  

The median survival for responders was 13 months compared to 6 months for 

non-responders (Canellos et al., 1974).     

 At the same time, trials between 1960-1975 in the United States 

investigated radiation-alone for locally advanced breast cancer.  However early 

analysis showed high loco-regional failure rates in 37% of patients treated with 

radiation alone (Bedwinek et al., 1982).  Adjuvant radiation improved survival; 

results indicated a significant reduction of 12% in loco-regional failure rates 

(p<0.001) (Bedwinek et al., 1982).  However, distant metastasis remained as a 

clinical problem despite improved local control using radiation and surgery.  

Table 1.4 shows results of that early study (Bedwinek et al., 1982).  

 

(n=183) Percent Failure (%)  
Site Radiation-alone  Radiation + 

Surgery 
p-value 

Local 61 13 0.0001 
Regional 37 12 0.0007 
Distant Metastasis 65 68 0.7 (NS) 

Table 1.4: Radiation and surgery resulted in improved outcomes.  “Failure” end-

points were defined as disease relapse identified within the site after 5+ years.  

(NS); Not Significant 

 In current oncology practice, it has become widely accepted that 

multimodality therapies that combine surgery, chemotherapy, and radiation 
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improve overall survival compared to regimens that exclude one or more 

modalities within the treatment scheme (Cance et al., 2002, Giordano, 2003).  

Since the 1970s, pre-operative (neoadjuvant) chemotherapy, followed by 

surgery, then radiation have become standard treatment approaches for locally 

advanced breast cancer in North America (Valero et al., 1996) (Figure 1.5).  
Multimodality treatment decisions are dependent on the tumour’s response at 

each phase of the patient’s treatment plan.  

The focus of the thesis will therefore examine breast cancer neoadjuvant 

chemotherapy since it is recommended as first-line treatment for LABC in North 

America, and its effects can influence subsequent surgery and radiation for 

patients.  Neoadjuvant chemotherapy for LABC is described in the subsequent 

sections.  

 

 
Figure 1.5:  Multimodality treatments decision tree.  Neoadjuvant 

chemotherapy is administered to allow tumour surveillance during treatment.  

Approximately 84% of patients will have sufficient tumour down-staging for 

mastectomy, then radiation (Cance et al., 2002).   
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1.4 Study Motivations and Aims 1  
 

Identifying the Target Study Population 
 
The motivation for this thesis is based on studying patients with LABC because:  

1) Breast cancer is a global public health problem. 

2) Approximately 8.5% (i.e. 4,700 cases) of breast cancer is diagnosed as 

LABC (i.e. stage 3) in the United Kingdom which accounts for a 

significant patient population.   

3) LABC has a poor 5-year survival rate (55.1%) compared to early stage 

breast cancer which makes it a clinical problem.  

Therefore, the aim of this study will focus on locally advanced breast cancer 

patients and treatments.  Since neoadjuvant chemotherapy is the primary 

treatment for this patient population, the aim of this thesis is to study locally 

advanced breast cancer patients treated with neoadjuvant chemotherapy.   
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1.5 Breast Cancer Chemotherapy 
 
 Chemotherapy drugs are among many types of cytotoxic agents used to 

treat breast cancer.  Chemotherapy strategies destroy cancer cells by targeting 

the cells’ ability to replicate and function.  In many cases, this is achieved by 

disrupting the DNA of cancer cells.  In contrast to normal cells that are able to 

repair itself from cytotoxic effects, cancer cells lack repair mechanisms and 

undergo various forms of cell death such as apoptosis, oncosis or necrosis 

when exposed to chemotherapy (Okada and Mak, 2004).   

 Chemotherapy is administered intravenously for breast cancer over a 

period of several cycles (6-8 cycles, two to three weeks between cycles).  Drug 

strategies also combine several types of drugs simultaneously to target cancer 

cells (Table 1.5, Figure 1.6).  Drug combinations include anthracyclines, 

taxanes, alkylating agents and antimetabolites (Cancer Research UK, 2016a).  

Anthracyclines interfere with DNA regulation (Thorn et al., 2011); taxanes 

disrupt microtubule “building blocks” that are essential for cell replication 

(Dumontet and Jordan, 2010); alkylating agents interfere with DNA formation 

(Fu et al., 2012); and antimetabolites interfere with molecules required for DNA 

synthesis (Parker, 2009).  Employing multiple drug combinations were shown to 

improve survival by the Aberdeen Trial (UK) (Heys et al., 2002).  Patients who 

were randomized for combination drugs demonstrated a 34% rate in 

pathological complete response (pCR) versus 16% for patients who were 

randomized to fewer chemotherapies (Heys et al., 2002) (Figure 1.7).  
  

Chemotherapy Drug Drug Type Chemotherapy Combination 

Cyclophosphamide [C] Alkylating Agent FEC-D or AC-T 

Epirubicin [E] Anthracycline FEC-D 

Doxorubicin [A] Anthracycline AC-T 

Fluorouracil (5FU) [F] Antimetabolite FEC-D 

Docetaxel  [D] Taxane FEC-D 

Paclitaxel [T] Taxane AC-T 

Table 1.5:  Various chemotherapy drug-types are used to treat breast cancer.  
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Figure 1.6:  Chemotherapy is given in several cycles, over a course of several 

weeks.  In this schematic representation, chemotherapy combinations use 

Fluorouracil, Epirubicin, Cyclophosphamide in the first three cycles followed by 

Docetaxel to complete another three cycles (represented in parenthesis).  The 

time intervals are used to allow patients to recover between cycles and to 

monitor the patient’s wellbeing through blood tests and physical examination 

(Cancer Research UK, 2016a).     

 

 
Figure 1.7: [Adapted from (Heys et al., 2002)].  Breast cancer patients (n=162) 

with large or locally advanced breast cancers were treated with various 

chemotherapy treatment schemes (Phase I).  Responders were randomized 

into two treatment arms (Phase II), and results indicated that patients who were 

treated with more combination drugs demonstrated a higher pathological 

complete response rate (34%) in comparison to patients who received fewer 

chemotherapy combinations (16%).      
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Chemotherapy treatment with surgery and radiation have been shown to 

improve survival for breast cancer; however clinical data collected since the 

1980s have shown that there are no significant differences in survival outcomes 

when chemotherapy is administered pre-operatively (neoadjuvant 

chemotherapy) versus post-operatively (adjuvant chemotherapy) (Wolmark et 

al., 2001, Sachelarie et al., 2006).  Data from the United Kingdom at the Royal 

Marsden Hospital reported equivalent survival in both pre-operative and post-

operative chemotherapy-treated groups (Powles et al., 1995).   Thus, there has 

been some confusion about the primary role of pre-operative, versus post-

operative chemotherapy. Fundamental advantages for pre-operative 

chemotherapy are mostly pragmatic; which include improving resection from 

tumour-size reduction, immediate cancer down-staging (i.e. reducing tumour 

extent), permitting clinical surveillance to gauge tumour behaviour to 

chemotherapy (i.e. chemosensitivity), and assess metastatic risk (Valero et al., 

1996, Cancer Research UK, 2016a).  Anecdotal reports also argue that 

maintaining the tumour intact during chemotherapy may improve drug delivery 

since the tumour vasculature is left intact before surgery (Giordano, 2003).   

Disadvantages to neoadjuvant chemotherapy may include delayed loco-

regional treatment and it may complicate tumour resection if tumour response is 

unfavourable.   For patients, the major disadvantages of delaying surgery in 

favour of giving neoadjuvant chemotherapy is the psychological and physical 

burden of having a tumour in the breast over the course of several months of 

chemotherapy (Walker et al., 1999).    
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1.6 Chemotherapy Side Effects 
 
 Although chemotherapy strategies are intended to damage tumour cells, 

treatments also affect normal cells that result in systemic toxicity and side 

effects.  Complications associated with chemotherapy treatment (i.e. treatment 

morbidity) may present as acute side effects such as nausea, hot flashes, and 

dry mouth.  Chronic (long-term) conditions include cardiac and vascular toxicity 

(Meinardi et al., 2000).  However, morbidities such as cardiac toxicity may also 

have an early onset but continues into chronic conditions in later life (Yeh and 

Bickford, 2009).    The following section will describe common morbidities 

associated with chemotherapy treatment.     

 

1.6.1 Cardiac Complications   
 

 Cardiac complications include heart failure, myocardial ischemia, 

hypertension, thromboembolism, and bradycardia, and have been identified 

during anthracycline use (Yeh and Bickford, 2009, Thorn et al., 2011).  The 

mechanism for cardiac toxicity is poorly understood; although there is evidence 

to suggest that reactive oxygen species from anthracyclines form metabolites 

that interfere with cardiac fibrillation by disrupting iron and calcium regulation 

(Thorn et al., 2011).  Another proposed mechanism for causing cardiotoxicity is 

the disruption of mitochondrial respiration that can initiate apoptosis in cardiac 

cells (Clementi et al., 2003).  Other direct effects on cardiac cells have been 

linked to 5-fluorouracil, which has been shown to cause cell hypoxia and 

interfere with metabolic regulation (Meinardi et al., 2000).  Targeted therapies 

such as Trastuzumab have been shown to cause congestive heart failure and 

compromised left-ventricle ejection fractions (Slamon et al., 2001).  Due to 

these potential hazards, drugs are grouped separately to minimize the additive 

toxic effects; for example, Trastuzumab is not recommended in combination 

with anthracycline chemotherapy.  A higher incidence of cardiotoxic effects 

were observed when anthracyclines were given with Trastuzumab (27%) 

compared to Trastuzumab alone (5%) (Hudis, 2007).        

 The incidence of heart failure was documented to be as high as 45% of 

patients who received anthracycline-based drugs (Yeh and Bickford, 2009).  

Other agents such as antimetabolites can induce myocardial ischemia in up to 
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68% of patients.  Fluorouracil has been associated with cardiotoxicity and 

present as severe chest pain, and the death rate (mortality) for these episodes 

is estimated at 13% (Yeh and Bickford, 2009).  

   

1.6.2 Haematopoietic Toxicity 
 

 Cytotoxic effects can occur in blood cells and lead to neutropenia, which 

is a condition associated with severe neutrophil depletion.  Neutrophils are a 

type of white blood cell that are responsible for host immunity to infectious 

agents.  The risk of developing neutropenia increases with age, and its onset is 

associated with anthracyclines and alkylating chemotherapy treatment 

(Crawford et al., 2004).  Consequences associated with hematopoietic toxicity 

include susceptibility to bacterial infections from Escherichia coli, Klebsiella 

pneumoniae, Staphylococcus, Streptococcus, and Enterococcus, and are most 

commonly observed in the digestive tract, lungs and skin (Crawford et al., 

2004).  Symptoms associated with neutropenia present as fevers and fatigue.  

Mortality from neutropenia-related infections have been reported around 8% 

(Crawford et al., 2004).   

 Other complications include neutropenic sepsis which affect specialized 

immune-producing cells in the bone marrow.  Neutropenic sepsis can be fatal 

and mortality rates range between 2% - 21% (National Institute for Health and 

Clinical Excellence (NICE), 2012).  Symptoms associated with neutropenic 

sepsis are similar to neutropenia and involve fever (pyrexia) and susceptibility to 

infections.  Treatments for both conditions involve antibiotic therapy and a 

temporary suspension of chemotherapy until blood tests indicate a recovery in 

neutrophils (National Institute for Health and Clinical Excellence (NICE), 2012).             
 

1.6.3 Gastrointestinal Toxicity   
 

 Damage to the gastrointestinal (GI) system will present as nausea, 

diarrhoea, esophagitis, stomatitis, and mucositis and are associated with many 

chemotherapeutic agents such as taxanes, platinum compounds, 

anthracyclines, and pyrimidine antimetabolites (Boussios et al., 2012).   The 

gastrointestinal system is especially vulnerable to toxicity from 

chemotherapeutic agents since normal cells of the GI system divide rapidly 
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(Boussios et al., 2012).  The onset of symptoms is typically acute; for example, 

cisplatin doses given between 5-120 mg/m2 trigger vomiting (emesis) within 24 

hours after dose administration.  Similarly, alkylating agents cause nausea and 

vomiting as early as 1-2 hours after treatment administration (Boussios et al., 

2012).  The prevalence of symptoms is dependent on the type of 

chemotherapy;  alkylating agents and platinum based compounds showed the 

highest incidence of GI toxicity of up to 90% of patients (Boussios et al., 2012).   

 

1.6.4 Alopecia   
 

 Chemotherapy-induced alopecia is characterized as hair loss on the 

scalp and other parts of the body, and is associated with high anxiety and 

distress in cancer patients (Trueb, 2009).  Cells of the hair follicles are rapidly 

dividing and therefore are prone to injury from cytotoxic therapy (Trueb, 2009).  

The onset of alopecia often occurs one to three weeks after starting 

chemotherapy and full hair-loss typically takes place between one to two 

months (Trueb, 2009).  Chemotherapy agents associated with high rates of hair 

loss include: anthracyclines, alkylating agents, and pyrimidine antimetabolites 

(Chon et al., 2012).  In contrast, platinum-based drugs such as cisplatin rarely 

cause hair loss (Trueb, 2009).             

 

1.6.5 Neurotoxicity 
 
 Neurotoxicity can present in 30-40% of patients as peripheral 

neuropathy.  This condition is described as extremely painful sensations in the 

toes, fingers, and extremities (Wolf et al., 2008).  Peripheral neuropathy can be 

caused by platinum agents, taxanes, and alkylating agents that damage the 

neural cells of the peripheral nerves (Wolf et al., 2008).  The onset of symptoms 

may occur spontaneously during treatment, and present as “tingling” in the toes 

and fingers. Some reports have indicated that full neuropathic recovery is rarely 

achieved; while others have indicated improvement or resolution within 3-6 

months after completing chemotherapy (Kannarkat et al., 2007, Argyriou et al., 

2005).  Other neurotoxic effects include paclitaxel acute pain syndrome.  This 

condition is characterized as arthralgia and myalgia and is experienced in 

approximately 58% of patients who have received paclitaxel drugs as part of 
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their treatment regimen (Wolf et al., 2008).  Despite symptoms experienced in 

the muscle, the suspected mechanism is believed to be caused by 

hypersensitization of neural fibres of the spinothalamic system (Wolf et al., 

2008).         

  

1.6.6 Anaphylaxis    
 

 Hypersensitivity to chemotherapy agents can lead to anaphylaxis 

reactions which involve the rapid activation of inflammatory signals such as 

histamine, cytokines, and chemokines that result in sudden respiratory 

contraction, and cardiovascular response (Castells et al., 2012).  Taxane-

hypersensitivity reactions are common; approximately 30% of patients develop 

some form of hypersensitivity, however improved pre-treatment protocols such 

as administering antihistamines and corticosteroids prior to taxane-infusion 

have reduced the rate to approximately 10% (Castells et al., 2012, Feldweg et 

al., 2005).  The exact mechanism of chemotherapy-induced hypersensitivity is 

still under investigation, however at extremely high doses of paclitaxel (10-100 

times the dose given clinically), human basophil cells were shown to 

demonstrate elevated histamine production (Essayan et al., 1996).           
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1.7 Mechanisms of Chemotherapy Resistance  
 

1.7.1 Pharmacokinetic Influences 
 
 The variability in tumour response is caused in part by differences in drug 

pharmacokinetics; i.e., how the body processes the drugs based on biological 

and physiological mechanisms.  These mechanisms are described by how 

drugs are handled by the body, which include: absorption, distribution, 

metabolism, and excretion (Garattini, 2007).  

 

Absorption and Distribution 

 

 Drug absorption and distribution are important factors, as this represents 

the delivery of chemotherapeutic agents to the tumour (Figure 1.8).  The 

absorption and distribution of chemotherapy in the body affects the 

chemotherapy concentrations.  It has been shown that patients exhibit a two- to 

ten-fold difference in drug concentrations, which subsequently results in 

variable drug doses that can reach the tumour (Evans and Relling, 1989, 

Masson and Zamboni, 1997).  The absorption and distribution of drugs are 

affected by the route of entry into the body.  Many chemotherapies are 

administered through intravenous injection, and therefore the drug’s 

bioavailability is higher when delivered directly into the blood stream, compared 

to when drugs are given orally.  Oral drug administration inhibits optimal 

absorption and distribution since gastric pH and the intestinal villi can act as 

barriers (Undevia et al., 2005).  By contrast, in the vascular/circulatory system, 

drugs are bound to serum proteins such as albumin, that facilitates transport 

and delivery (Garattini, 2007).  In the tumour itself, drug distribution may be 

blocked by tortuous blood vessels that restrict exchange and transport cross the 

vascular barrier (Goel et al., 2011).       

 
Metabolism and Excretion 

 

 Drug metabolism is an important step for activating drugs into molecular 

forms that are recognizable to tumour cells (Figure 1.8).  For example, the 

alkylating agent, cyclophosphamide is biologically active in the liver, which 
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metabolizes cyclophosphamide into intermediate biochemical products that are 

readily transported into the tumour cell (Garattini, 2007).  Metabolic activation 

relies on enzymes such as Cytochrome P450, CYP2B10, CYP2C29, CYP2C19 

and CYP3A, which is responsible for 45-60% of drug activation (Garattini, 2007, 

Undevia et al., 2005).  For patients who are enzyme-deficient, chemotherapies 

are not activated therefore the drugs remain inactive and ineffective in the 

system (Undevia et al., 2005).  Other metabolic defects are caused by 

dysfunctional drug uptake into the cell itself, which are caused by drug efflux 

mechanisms that pump out the drugs across the cell’s plasma membrane 

(Figure 1.9) (Coley, 2008).  

 Excretion can influence drug clearance and is handled by the kidney, 

and biliary tract.  Renal and hepatic dysfunction may affect drug concentrations 

in the blood by rapidly excreting drugs  (Undevia et al., 2005).      

   

 
Figure 1.8:  Drug pharmacokinetics can influence drug resistance.  

Pharmacokinetics are defined by the drug’s interaction with the body through 

absorption, distribution, metabolism and excretion.  The efficacy of a drug can 

be reliant on its bioavailability and biotransformation that activates the 

mechanism of action on the tumour cells.   
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Figure 1.9:  Chemotherapies are transported into the cell by either active 

transport or passive diffusion across the plasma membrane.  Ineffective 

chemotherapy can occur when drug efflux occurs that result in low drug 

concentrations in the cytoplasm.  This results in inadequate delivery of drugs 

into cell targets, such as the nucleus.   

 

1.7.2 Chemotherapy Resistance in Molecular Subtypes 
 

 Breast cancer molecular subtypes, as described earlier as having 

different ER, PR and HER2 status, demonstrate variable response to 

neoadjuvant chemotherapy (von Minckwitz et al., 2012, Carey et al., 2007, 

Rouzier et al., 2005).  Reports of over 6,000 patients have showed that basal-

type, and HER2+ breast cancers have the highest rate of pathological complete 

response (pCR) to anthracycline- and taxane-based chemotherapies (Table 
1.6). In contrast, luminal A and luminal B breast cancers (i.e. ER+, PR+) are 

highly resistant to chemotherapy.  There is evidence in rodent models that 

luminal breast cancer cells exhibit stem-cell-like behaviours that are genetically 

driven and cause tumour cell immortality, higher rates of differentiation, and 

rapid proliferation (Sims et al., 2007).  Some studies have also suggested that 

basal-type tumours have dysfunctional cell-repair mechanisms in comparison to 

luminal A and luminal B tumours that make it more susceptible to 

chemotherapy-induced DNA damage (Desmedt et al., 2008).  Table 1.6 
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summarizes tumour response rates based on breast cancer molecular 

subtypes.        

Reference n Neoadjuvant 
Chemotherapy 

pCR Rate by 
Molecular Subtype 

(Babyshkina et al., 

2014) 

198 5-FU1 

Doxorubicin 

Cyclophosphamide 

Capecitabine 

Taxotere 

Methotrexate 

Luminal A+B: 2.1% 

Basal-Type: 10.7% 

HER2 +:  0.0% 

(Carey et al., 2007) 107 Doxorubicin 

Cyclophosphamide 

Taxotere 

Luminal A+B: 15.0% 

Basal-Type: 27.0% 

HER2 +:  36.0% 

(Chang et al., 2010) 74 Docetaxel 

Carboplatin 

Luminal A+B:  

No Data 

Basal-Type: 55.0% 

HER2 +:  NS 

(Goldstein et al., 2007) 68 5-FU 

Doxorubicin 

Cyclophosphamide 

Epirubicin 

Taxotere 

Luminal A+B: 19.4% 

Basal-Type: 57.1% 

HER2 +:  62.5% 

 

(Kim et al., 2010) 257 Doxorubicin 

Docetaxel 

Luminal A+B: 8.9% 

Basal-Type: 21.1% 

HER2 +:  21.1% 

(Liedtke et al., 2008) 1118 5-FU 

Doxorubicin 

Cyclophosphamide 

Epirubicin 

Paclitaxel 

Luminal A+B: No 

data 

Basal-Type: 22.0% 

HER2 +: No data 

(Rouzier et al., 2005) 82 5-FU 

Doxorubicin 

Cyclophosphamide 

Paclitaxel 

Luminal A+B: 7.0% 

Basal-Type: 45.0% 

HER2 +: 45.0% 
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(Sanchez-Munoz et 

al., 2008) 

127 Doxorubicin 

Cyclophosphamide 

Gemcitabine 

Epirubicin 

Luminal A+B: 5.4% 

Basal-Type: 58.3% 

HER2 +:  39.5% 

(von Minckwitz et al., 

2012) 

4193 Anthracyclines2 

Taxanes2 

Luminal A+B: 13.9% 

Basal-Type: 35.8% 

HER2 +:  43.0% 

 

Table 1.6:  Comparison of chemotherapy response according to breast cancer 

molecular subtypes.  All values within the 95% confidence interval. 15-

Fluorouracil; 2Anthracycline and Taxane type drugs not specified.  NS: Not 

significant; pCR: Pathological complete response.  Luminal A = ER+, PR+. 

HER2-.  Luminal B = ER+, PR+, HER2+.  Basal-Type= “Triple negative” (ER-, 

PR-, HER2-).   
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1.8 Prognostic Factors  
  

1.8.1 Pathological Response to Neoadjuvant Chemotherapy 
 

 Pathological complete response (pCR) is a prognostic indicator and is 

defined as demonstrating no residual disease following chemotherapy (Ogston 

et al., 2003).  There are several methods previously proposed to measure 

pathological response after neoadjuvant chemotherapy as a treatment endpoint 

that include the following classification systems: Chevalier, Sataloff, Residual 

Cancer Burden Index (RCBI), Miller-Payne, and the National Surgical Adjuvant 

Breast and Bowel Protocol B-18 (NSABP B-18), and Residual Disease in Breast 

and Nodes (RDBN) (Marchio and Sapino, 2011) (Table 1.7).  However, there is 

still no consensus on defining or classifying pathologic response in terms of 

pathological complete response and partial response (Corben et al., 2013).  

Resected breast specimens are analysed microscopically to measure 

residual disease, assess cellularity, and examine if any cancer remains in the 

lymph nodes. The agreement on pathological complete response remains 

undetermined; for example, residual disease from ductal carcinoma in situ is still 

defined as pathological complete response for RCBI and Miller-Payne 

classification.  On the other hand, Chevalier classification define pCR as 

complete disappearance of microscopic cells.  This has led to varying practices 

between clinics and has also posed a challenge in research for correlating 

diagnostic tests to final pathologic endpoints (Symmans et al., 2007).      

 Pathological complete response is an important prognostic factor.  There 

is an association between pCR and longer survival; a meta-analysis on 3,182 

locally advanced breast cancer patients demonstrated a better survival time for 

patients who achieved pCR after neoadjuvant chemotherapy (odds ratio: 3.44 

[95% CI: 2.45,4.84]; overall survival=2.3-7.6 years) (Kong et al., 2011).  Another 

study by Chollet et al. (2002) followed 396 locally advanced breast cancer 

patients for 15 years, following neoadjuvant chemotherapy treatment.  A 

significant difference in the disease-free survival (P=0.039) and overall survival 

(P=0.047) was reported in favour of pCR patients compared to partial 

responders (Chollet et al., 2002).  In another study, 87% of patients who 

achieved pCR survived after 5 years (Kuerer et al., 1999).   The rate of 

pathological complete response ranges between 15.2%-17.4% (Kong et al., 
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2011, Chollet et al., 2002).  Although pCR is the desired treatment outcome, 

patients achieving partial response (defined below in Table 1.7) may still benefit 

from therapy and live beyond five years.  The German Breast Group reported 

that smaller residual tumours after chemotherapy were associated with better 

survival (HR range: 1.53-7.97, p<0.001)) (von Minckwitz et al., 2012).  Also, a 

study by Huang et al. (2015) showed that the 5-year overall survival rate for 

partial responders was 68.5% (Huang et al., 2015).  Poor prognosis and low 

survival rates in this response group are attributed mainly to local recurrence 

and distant metastasis (Huang et al., 2015).     

 

System Characteristics Reference 
 
Chevalier 

 
System Classification Type: 
Categorical 
 
Grade 1: Disappearance of all tumour 

either on macroscopic or microscopic 

assessment.  

Grade 2: Presence of in situ carcinoma 

in the breast, no invasive tumour and no 

tumour found in the lymph nodes. 

Grade 3: Presence of invasive 

carcinoma with stromal alteration, such 

as sclerosis or fibrosis. 

Grade 4: No or few modifications of the 

appearance of the tumour.   

 

 

(Chevallier et al., 

1993) 

Miller-
Payne2 

System Classification Type: 
Categorical 
Grade 1: No change or some alteration 

to individual malignant cells but no 

reduction in overall cellularity. 

(Ogston et al., 2003) 

                                            
2 Miller-Payne pathological grading system is used in this study and described 

later in Chapter 2 (Methods) and Chapter 3 (Results).   
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Grade 2: A minor loss of tumour cells 

but overall cellularity still high; up to 

30% loss. 

Grade 3: Between an estimated 30% 

and 90% reduction in tumour cells. 

Grade 4: A marked disappearance of 

tumour cells such that only small 

clusters or widely dispersed individual 

cells remain; more than 90% loss of 

tumour cells.  

Grade 5: No malignant cells identifiable 

in sections from the site of the tumour; 

only vascular fibroelastotic stroma 

remains often containing macrophages.  

However, ductal carcinoma in situ 

(DCIS) may be present.   

No assessment of lymph nodes.   

 

NSABP B-
18 

System Classification Type: 
Categorical 
Pathological Complete Response 
(pCR):  No presence or recognizable 

presence of invasive tumour cells 

present.  

Pathological Partial Responder 
(pPR):  Presence of scattered individual 

or small clusters of tumour cells in a 

desmoplastic or hyaline stroma. 

No Pathologic Response (pNR): 
Tumours not exhibiting any of the 

changes and characteristics as listed for 

pCR, and pPR.     

No assessment of lymph nodes.   

 

 

(Fisher et al., 1998) 

(Marchio and Sapino, 

2011) 
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RCB Index System Classification Type: 
Continuous 
Parameters used to calculate the RCB 

index:  

Primary Tumour Bed: 

1) Primary tumour bed area (mm) 

2) Overall cancer cellularity (%) 

3) Cancer that is in situ disease (%) 

Lymph Nodes: 

1) Number of positive lymph nodes (n) 

2) Diameter of largest metastasis (mm) 

A Cox-regression model is calculated. 

RCBI indices were classified as:   

RCBI0: Pathological complete response 

RCBI1: Moderate response 

RCBI2: Moderate response (relative 

score) 

RCBI3: Extensive residual disease 

RCBI4: Extensive residual disease 

(relative score) 

 

(Symmans et al., 

2007) 

Sataloff System Classification Type: 
Categorical 
 

Tumour Characteristics Scoring (T) 

T-A: Total or near total therapeutic 

effect.  

T-B: Subjectively >50% therapeutic 

effect, but less than total, or near total 

therapeutic effect. 

T-C: <50% therapeutic effect.   

T-D: No therapeutic effect evident.   

Lymph Node Status (N): 

N-A: Evidence of therapeutic effect, no 

metastatic disease. 

(Sataloff et al., 1995) 

(Marchio and Sapino, 

2011) 
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N-B: No nodal metastasis; no 

therapeutic effect.   

N-C: Nodal metastasis; therapeutic 

effect. 

N-D: Nodal metastasis: no therapeutic 

effect.   

Table 1.7:  Pathological response classification systems use variables such as 

primary tumour dimensions, cellularity, and lymph node status to calculate the 

overall pathological scoring.  Some scores are categorical data versus 

continuous data.  The score/index indicates the relative therapeutic effect.            

 

1.8.2 Molecular Features 
 

 Molecular subtypes in breast cancer are associated with variable 

prognosis and survival outcomes (Smid et al., 2008).  A study examining 3,726 

patients showed that the 10-year overall survival rate was 70% in patients with 

luminal A tumours, 54.4% in luminal B tumours, and 52.6% in basal-like 

tumours.  HER2-overexpressed tumours were associated with 48.1% overall 

survival (Kennecke et al., 2010).  A significant decrease in overall survival was 

indicated when distant metastasis was involved; luminal A tumours were 

associated with a median survival of 2.2 years, while patients with luminal B, 

and basal-like tumours had a median survival of 1.6 and 0.5 years, respectively. 

HER2-positive tumours resulted in a survival duration of 0.7 to 1.3 years 

(Kennecke et al., 2010). Women with HER2-overexpressed (i.e. HER2+) 

tumours also presented with the highest relapse rates in the liver and lung 

(Kennecke et al., 2010, Smid et al., 2008).  Additionally, previous work from the 

German Breast Group (GBG) reported improved disease-free survival for 

Luminal B/HER2-, HER2+ (non-luminal), and triple negative (ER-/PR-/HER2-) 

breast cancers that achieve pCR (von Minckwitz et al., 2012).   

 At first glance, there seems to be conflicting data between survival 

outcomes of cancer subtypes and the rate of pathological complete response.  

For example, HER2-overexpressed tumours demonstrate high pCR but also 

have poor prognosis. This is explained as a proportion of HER2-overexpressed 

tumours demonstrate high relapse rates, and therefore patient deaths are 

caused mainly by metastasis to distant organs (Huber et al., 2009).  Despite the 
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generally favourable response rates in HER2-overexpressed tumours; a large 

majority of HER2+ breast tumours do not achieve pathological complete 

response.    

 

1.8.3 Histological Grade (Nottingham Grade) 
 
 According to the American Pathologists Consensus Statement, histologic 

grade is included as a prognostic indicator (Fitzgibbons et al., 2000).  The 

“Bloom-Richardson-Nottingham” grade is calculated from histological features 

such as tubule formation, nuclear pleomorphism, and mitotic count of tumour 

cells (Elston and Ellis, 1991).  The tubule formation describes the morphological 

characteristics of the cell; nuclear pleomorphism denotes the shape, size and 

structure of the cell’s nuclei; whereas mitotic count represents the number of 

cell divisions that are present within the specimen.   Clinicians interpret the 

Nottingham grade as the degree of cellular abnormalities present in the tumour 

and represents the tumour’s “aggressiveness” (Elston and Ellis, 1991).  Table 
1.8 outlines the scoring algorithm of individual features (Table 1.8A) and the 

resulting Nottingham tumour grade (Table 1.8B).  The Nottingham grade has 

been shown to be reproducible with a low relative disagreement rate (RDR) of 

0.10 (95% confidence interval 0.05-0.19) and kappa [k] statistic of 0.77 (95% 

confidence interval: 0.66-0.88) (Harvey et al., 1995). 

 

Histological Features Measured Score 

Tubule Formation (TF)  
 Majority of tumour (>75%) 1 
 Moderate degree (10-75%) 2 
 Little or none (<10%) 3 
Nuclear Pleomorphism (NP)  
 Small, regular uniform 1 
 Moderate increase in size and variability 2 
 Marked variation 3 
Mitotic Counts (MC)1,2  
 0-9 1 
 10-19 2 
 >20 3 

Table 1.8A: Histological grade as measured by the Nottingham grade system. 
1Mitotic counts are counted per ten fields; 2Mitotic counts are based on Leitz 

Ortholux microscope with an objective of 25x, field diameter of 0.59 mm, and 

field area of 0.274 mm2. (Elston and Ellis, 1991).   
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Nottingham Grade (Modified Bloom-Richardson):  Grade 

3-5 points: well differentiated (low) 1 

6-7: moderately differentiated (intermediate) 2 

8-9: poorly differentiated (high) 3 

Table 1.8B: The Nottingham grade is calculated based on the sum of each 

feature score, and represents the potential aggressiveness of the tumour.    

 

 Previous work by Elston and Ellis (1991) showed that the Nottingham 

grade is associated with recurrence-free intervals and disease-free survival 

(Elston and Ellis, 1991).  In this previous study, 1,830 patients were followed for 

up to 16 years after a mastectomy or local excision and radiotherapy (Elston 

and Ellis, 1991).  The patient cohort comprised of 19% of patients who were 

Nottingham grade one, 34% were Nottingham grade two, and 47% were 

Nottingham grade three.  A 16-year follow-up demonstrated that grade one 

patients were significantly correlated to a longer recurrence-free interval 

compared to grade two and three patients (c2=133.70 d/f; p<0.0001).  Also, a 

greater survival rate was significantly correlated to grade one tumours, 

compared to grade two and three tumours (c2=198.06 d/f; p<0.0001).   

 

1.8.4 Nottingham Prognostic Index 
 
 The Nottingham prognostic index (NPI) is modelled from a multivariate 

Cox regression based on an initial analysis of 387 breast cancer patients.  The 

regression model includes multiple prognostic variables (age, menopausal 

status, tumour size, lymph node stage, tumour grade, cell reaction, sinus 

histiocytosis, oestrogen receptor status, adjuvant chemotherapy) to 

prognosticate patient outcomes  (Haybittle et al., 1982, Blamey, 2002).  The NPI 

is described as: 

    

NPI = Grade [1-3] + LN Stage [1-3] + 0.2(Size) [cm] (Equation 1.1) 
 

The NPI categorizes patients into potential prognostic risk groups based on the 

final index (Table 1.9). 
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Prognostic Group NPI range1 
Excellent  2.08-2.40 
Good  2.42-3.40 
Moderate I  3.42-4.40 
Moderate II  4.42-5.40 
Poor 5.42-6.40 
Very Poor 6.50-6.80 

Table 1.9:  The Nottingham Prognostic Index was developed using a Cox 

regression analysis.  The NPI classifies the patient’s prognostic risk into 

categories that range from “Excellent” to “Very Poor”.  1Note the cut-off points 

between categories is based on the mathematical properties of the regression 

model.   

 

Survival data was collected between 1990-1999 for 2,238 patients at 

Nottingham City Hospital.  Researchers found a significant difference in the 10-

year survival between “Excellent” NPI patients compared to other risk 

categories (p<0.001); for example, the 10-year survival for “Excellent” patients 

was 96%, compared to only 38% in patients who were classified as “Very Poor” 

(Blamey, 2002).  Experimental work has also emerged in recent studies using a 

modified Nottingham prognostic indicator “plus” system (NPI+), which includes 

up to ten biomarkers in the Cox regression model: 1) Oestrogen receptor; 2) 

Progesterone receptor; 3) Cytokeratin 5/6 expression; 4) Cytokeratin 7/8; 5) 

Epidermal growth factor receptor, 6) HER2; 7) HER3; 8) HER4; 9) p53; and 10) 

Mucin 1 (Green et al., 2016, Rakha et al., 2014). In those studies, patient 

groups were stratified based on the tumour’s molecular profiles. The modified 

NPI+ tool could differentiate significant differences in survival outcomes 

(p<0.0001) within the following subgroups: oestrogen receptor+, HER2+, and 

triple-negative breast tumours (Rakha et al., 2014, Green et al., 2016).                 

 

1.8.5 Tumour Size and Lymph Node Invasion 
 
 The initial tumour size and lymph node invasion before and after 

neoadjuvant chemotherapy is a prognostic factor (Huber et al., 2009, Honkoop 

et al., 1998, Cianfrocca and Goldstein, 2004).  Data on 2310 Canadian women 

have shown that 15-year overall survival was improved when nodal status was 

negative at diagnosis (survival range 78.5%-91.8%) (Narod, 2012).  Also, larger 
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tumours were associated with a lower survival rate in comparison to smaller 

tumours and this was independent of nodal status (Table 1.10).   
 

 Survival after 15 years (%) 
Tumour Size Group (cm) Node + Node - 

0.1-1.0 80.4 91.8 
1.1-2.0 70.1 89.3 
2.1-5.0 47.1 78.5 

Table 1.10: [Adapted from (Narod, 2012)].  15-year survival data on Canadian 

women (n=2310).  Data demonstrates a negative correlation between survival, 

tumour size, and nodal status.   
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1.9 Case Study 
 
 The purpose of the following section describes the “breast cancer patient 

experience”. In so doing, the patient experience, provides an aid to 

conceptualize Section 1.1 to Section 1.8 where the diagnostic and treatment 

pathway for a typical breast cancer patient, (screening, diagnosis, tumour 

characteristics and treatment frameworks) are relevant to this thesis.  To this 

end, a case study is presented for a 45-year old woman who was diagnosed 

with locally advanced breast cancer, and received treatment at the host 

healthcare institution.    

 

1.9.1 Reason for Referral and Diagnosis 
 
  A 45-year-old, pre-menopausal, woman presented with a left sided mass 

in the upper outer quadrant of the breast, diagnosed as locally advanced breast 

cancer in July 2015.   

 

1.9.2 History of Present Illness and Work-Up 
 
 The patient first discovered a lump in her left breast, during a breast self-

examination in May 2015.  She sought medical attention from her family 

physician who referred her to the Rapid Diagnostic Unit (RDU) at the host 

healthcare institution (Toronto Canada) for further examination.  She underwent 

bilateral mammograms and bilateral breast ultrasound which revealed a benign 

sub-areolar cyst in her right breast, and a hypoechoic mass in her left breast.  

Further investigation included a bilateral ultrasound-guided biopsy, which 

confirmed a cystic lesion measuring 12 x 7 x 11 mm in her right breast.  Results 

of the biopsy indicated malignant cells in the left breast at 2:00 o’clock radian 

position, and histological analysis confirmed invasive ductal carcinoma, which 

was ER/PR positive, and HER2/Neu positive.  A fine needle aspiration biopsy of 

the left axillary lymph node was positive for metastatic lymphadenopathy.   A 

follow-up MRI confirmed malignancy in the left lateral breast; measuring 59 x 27 

x 62 mm and involved both the upper and lower quadrants.  Radiological 
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grading was BIRADS 63.  From the MRI, prominent and thickened left axillary 

lymph nodes, consistent with previous ultrasound findings for lymphadenopathy 

in the left axilla was noted. At the time of diagnosis, the patient did not present 

with any skin changes, erythema, or nipple discharge that would otherwise 

indicate inflammatory breast cancer.  

 Two months later, the patient underwent staging and metastatic work-up; 

CT of the chest, abdomen, and pelvis.  CT of the chest revealed several dense 

nodules measuring 1-3 mm, in the superior segment of the left lower lobe, and 

the right middle lobe.  The nodules were reported as post-pulmonary infection 

fibrosis, and findings did not indicate metastatic disease to the lungs.  CT of the 

abdomen and pelvis did not show any evidence of osseous metastatic disease, 

or otherwise distant metastasis in the soft tissue.  A bone scan was also 

performed, and revealed no abnormalities.  A multi-gated acquisition (MUGA) 

scan was also performed, which revealed a normal cardiac ejection fraction of 

65%.          

   

1.9.3 Past Medical History 
 
 The patient was previously diagnosed with Coeliac disease.  The patient 

reported taking no other medications.  There were no known drug allergies.      

 

1.9.4 Family History and Risk Factors 
 
 The patient’s maternal grandmother was diagnosed with breast cancer.  

There was otherwise no history of breast cancer or ovarian cancer in her family.  

Her gynaecological and obstetric history was gravida 4, parity 3, and abortus 0; 

with her first child at 34 years old.  She had reached menarche at 13 years old 

and was pre-menopausal at the time of consultation.  She was a non-smoker, 

and did not consume alcohol regularly.       

 

                                            
3 Scale 1-6: BIRADS 0 (Incomplete, need for additional imaging); BIRADS 3 

(Benign lesion); BIRADS 6 (Histologically proven malignancy) (Balleyguier et 

al., 2007). 
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1.9.5 Impression and Plan 
 
 The patient was scheduled to receive 6 courses of FEC-D neoadjuvant 

chemotherapy, and Herceptin due to her HER2/Neu status.  Following 

chemotherapy, the patient underwent a total mastectomy approximately 6 

weeks after chemotherapy completion.  Recovery of the chest wall persisted for 

another 6 weeks, in which the patient underwent radiotherapy of the chest wall, 

and supraclavicular nodes for 5 weeks (25 fractions, 50 Gy)4.     

 

1.9.6 Treatment Interval Assessments 
 

The patient presented with shortness of breath approximately after two 

cycles of chemotherapy.  A CT angiogram was ordered to rule out any 

pulmonary embolus, and was negative.  At mid-treatment, she presented with 

mucositis of the mouth, and was referred to a head and neck physician for 

management.  She was prescribed mouthwash (Lidocaine and Nystatin), and 

advised to take over-the-counter Tylenol, which helped resolve the symptoms.  

The patient has also complained of persistent back pain during treatment.  

Given her risk of neutropenia, the patient underwent several blood tests, and all 

blood work was within normal range (haemoglobin, white blood cell count, 

platelet count, and neutrophil count).  Additionally, due to her persistent 

difficulty in breathing, and complaints of chest pain, an echocardiogram was 

ordered and did not reveal any cardiac abnormalities.  After the first (FEC) 

treatment cycle, the patient experienced frequent episodes of diarrhoea, 

however this could have been a result of her Coeliac disease.  Her pain 

increased during treatment; specifically, symptoms of neuropathy and swelling 

were present and the patient was prescribed Tylenol 3 to alleviate pain.  The 

patient presented with low white blood cell count on routine blood work and was 

prescribed Neupogen (i.e. to recover white blood cells).  Due to higher risk of 

infection, the patient was monitored carefully to assess for any signs of 

respiratory distress, or otherwise signs of infection.     

                                            
4 Canadian practice guidelines use NCCN (USA), NINV-1 V.2.2016 (National 

Comprehensive Cancer Network,  2016).  In the UK, breast radiotherapy 

guidelines indicate 40 Gy/15 fractions (Haviland et al., 2013).          
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1.9.7 Post-Treatment Assessments 
 

The post-treatment MRI scan indicated that the patient was responsive to 

treatment and was classified by RECIST5 criteria as having at least a 30% 

decrease in the sum of diameters of the target lesion.  Under pathological 

examination, there was a significant reduction in tumour cellularity, with 

significant fibroadenomas, and fibrosis present within the tumour bed, and the 

patient was determined as a “responder” to chemotherapy treatment.  Figure 
1.10 demonstrates the pre- and post-MRI.   

 

 
Figure 1.10:  Left breast carcinoma prior to treatment (left image) and after 

neoadjuvant chemotherapy (right image).  A significant reduction in the mass 

was observed in the patient, with remaining fibrosis within the tumour bed.  The 

patient mastectomy samples revealed that she responded to treatment.   Red 

arrows indicate the tumour area.   

                                            
5 RECIST is the Response Evaluation Criteria In Solid Tumours and is a system 

used to evaluate tumour size changes from CT and/or MR images.  Response 

categories are based on the overall percent-changes in size:  Complete 

Response (Disappearance of lesion); Partial Response (At least 30% reduction 

in lesion size); Progressive Disease (At least 20% increase in lesion size); 

Stable Disease (Insufficient shrinkage or no overall change) (Eisenhauer et al. 

2009).  
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1.9.8 Case Report Summary 
 
The case report demonstrates that in this patient: 

1) Chemotherapy causes severe toxicity (i.e. side effects) and this can 

affect the patient’s quality of life and wellbeing in this patient only.   

2) The unknown pathological response during treatment is a real clinical 

problem because clinicians cannot modify or adapt treatment based on 

tumour response to therapy.  

In this patient, it was important for this particular patient to know if treatments 

were working or if she was a good candidate for the chemotherapy treatment.   
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1.10 Study Motivations and Aims 2 
 

Identifying the Clinical Problem 
 

The clinical challenges for managing LABC patients include: 

1) A significant proportion of patients (i.e. 80%) will respond only partially 

(i.e. tumours do not demonstrate a significant reduction in size according 

to the current methods, i.e. RECIST). This can make resecting the 

tumour during surgery more difficult. 

2) The proportion of partial responders will be at higher risk for recurrent 

disease, which will affect long-term survival. 

3) Ineffective and suboptimal chemotherapy exposes patients to many 

months of unnecessary chemotherapy toxicity.   

4) Pathologic evaluation of treatment response is completed at the end of 

chemotherapy when it is too late to modify treatments.   

To address these challenges, clinicians have traditionally used clinical palpation 

or conventional medical imaging to measure the changes in the tumour size 

during treatment.  However clinical palpation is unreliable because the 

estimated size may be confounded with fibrosis, collagen, fatty tissue and 

oedema of the breast.  Additionally, palpation only estimates the size at the 

surface of the breast and therefore the deep tumour margins cannot be 

appropriately evaluated.  Conventional medical imaging is also limited since the 

tumour size changes may take several weeks before detectable. Hence, the 

aim for this research was to identify imaging-based markers that could be used 

in the future as a predictor of outcome should the parameters under test 

correlate with the selected endpoint.  The final pathologic endpoints would be 

determined by a standard and systematic technique such as Miller-Payne 

pathological response criteria.   Thus, in the next section, a review of the status 

of existing imaging techniques was completed to identify the gaps, challenges 

and areas for which research could be focused for addressing the current 

clinical problem.      
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1.11 Systematic Review Question and Search Results 
 

1.11.1 Overview and Literature Review Question 
  

This systematic review of the literature is presented as three major 

sections.  In the first section, the literature review strategy and search results 

are presented, as indicated in the following literature search question:   

 

Which previous imaging biomarker analysis and modalities have been studied 

to measure tumour response in locally advanced breast cancer patients treated 

with neoadjuvant chemotherapy? Are there gaps and limitations of using such 

imaging techniques? 

 

The second section presents literature of studies on the following 

imaging modalities as a narrative literature review: 1) Magnetic Resonance 

Imaging (MRI), Positron Emission Tomography (PET), Computed Tomography 

(CT), X-Ray Mammography and 99-Technetium Scintigraphy Imaging (99-Tc).   

In the third section, a systematic review was completed which focussed 

on DOS and QUS imaging only.  This section provides a framework to support 

the research questions of the thesis, which are presented in the subsequent 

chapters (Chapter 3 Methods, and Chapter 4 Results).   

 

1.11.2 Systematic Review Strategy 
 
 A literature review was conducted to find previous studies between 1975-

2016 that used medical imaging to evaluate neoadjuvant chemotherapy 

response in locally advanced breast cancer.  The search dates were selected 

based on the dates that neoadjuvant chemotherapy for breast cancer was first 

introduced as a treatment.  The literature review had two components:  1) a 

narrative literature review of all previous imaging modalities such as MRI, PET, 

CT, X-Ray Mammography, and 99-Tc to evaluate NAC treatment response in 

locally advanced breast cancer; and 2) a systematic review that focused on 

imaging modalities studied in this thesis; specifically, diffused optical 
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spectroscopy (concept 1), ultrasound imaging (concept 2a) and quantitative 

ultrasound spectroscopy (concept 2b).   

 A summary of the search strategy such as databases used, and MESH 

words are outlined in Table 1.11.    For the systematic review, the PRISMA 

Statement (Preferred Reporting Items for Systematic reviews and Meta-

Analyses) was used as a reporting guideline (Moher et al., 2009).     The 

systematic review also evaluated the quality of DOS, US, and QUS studies 

using the following standardized tools: 1) Statement for Reporting Studies of 

Diagnostic Accuracy [STARD] (Bossuyt et al., 2003); and 2) Quality 

Assessment for Diagnostic Accuracy Studies tool (QUADAS-2) (Whiting et al., 

2011).  The literature review search results are indicated in Figure 1.11.    

The literature review did not include imaging studies specifically targeted 

at tumour-size changes as markers for treatment response since the focus of 

this thesis was to study functional imaging for treatment response evaluation.  A 

description of radiological tumour response endpoints and its limitations are 

outlined in Appendix 1 for reference.  To highlight the limitations of size-based 

measurements, previous studies that have used changes in the tumour’s size 

as an indicator for treatment response have reported the following limitations:  

1) objective measurements are not always attainable due to multiple imaging 

planes from MRI and CT (i.e. tumour localization can vary depending on the 

volumetric view); 2) reproducibility (i.e. inter-user variability); 3) and repeatability 

of obtaining the same image quality between imaging series during treatment;  

(Kang et al., 2012, Eisenhauer et al., 2009, Park et al., 2003). 
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CRITERIA DESCRIPTION REFERENCE 

Search 

Databases 

Medline 

PubMed 

EMBASE 

Cochrane library 

Science Direct (secondary 

database after initial search) 

Database search from 1974- 1 

April 2017 

Scally and Brealey, 2010 in 

Medical Imaging and 

Radiotherapy Research, 

(Ramlaul, 2010) 

 

Date entries based on the 

years that NAC have been 

used.   

 

MeSH 

Headings 

Locally advanced breast cancer 

imaging 

Imaging biomarkers 

Neoadjuvant chemotherapy 

Breast cancer response imaging 

markers, neoadjuvant 

chemotherapy 

 

Headings were combined with 

the following key words: 

Sensitivity and specificity 

 

“Related articles” were searched 

 

 

 

 

 

 

 

 

 

STARD guideline (Bossuyt et 

al., 2003) 

Inclusion/Exclusion Criteria 

Number of 

subjects 

Minimum number of 10 subjects 

Case studies also excluded 

Studies with less than 10 

participants could not make 

statistically significant 

conclusions.   

(Leff et al., 2008).   

 

Case studies were excluded 

from this analysis since it is the 

lowest level of evidence and 

are limited in its generalizability 

(Scally and Brealey, 2010 in 

Medical Imaging and 
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Radiotherapy Research, 

(Ramlaul, 2010). 

Types of 

studies  

Human studies included only 

Phantom and pre-clinical 

(animal) work excluded 

Animal and phantom systems 

were used for foundational and 

background information 

 

Anatomic site Breast only Imaging of other anatomic 

sites uses variations in imaging 

system settings, such as 

ultrasound frequency, and 

limitations in imaging depth 

from modalities such as DOS.  

  

Publication 

Dates 

Studies published between 

1974-2016 were included.  

These dates were chosen based 

on the approximate date in 

which NAC was introduced 

clinically.   

Only recent studies within the 

last 10 years were analysed to 

keep the review relevant to the 

improvements in computing 

and image processing 

systems.   

 

Quantitative 

and semi-

quantitative 

imaging studies 

only.   

Tumour size changes were not 

included in search strategy.    

Size and volume 

measurements do not fall 

under the definition of 

biomarkers.  These are 

classified as radiological 

response criteria.       

Table 1.11.  Systematic review search strategy.  A systematic review of 

breast cancer imaging studies was conducted to extract relevant studies that 

were related to neoadjuvant chemotherapy monitoring.   

 

1.11.3 Search Strategy Results 
 

 The literature search resulted in 194 articles related to imaging 

biomarkers after screening for subject relevance and applying the inclusion and 

exclusion criteria.  There were 158 duplicate studies in the search results and 

2804 studies were excluded because the reports were animal and phantom 

experiments, case reports or proceedings, studies on other tumour types, trials 
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that involved experimental or unconventional drugs and therapies, or trials that 

did not examine biologically-based imaging markers.  Of the eligible studies, 

magnetic resonance imaging studies yielded the largest number of studies 

(n=113) for measuring LABC response to NAC. The results demonstrated 

several imaging modalities used to measure chemotherapy response in breast 

cancer from imaging biomarkers such as positron emission tomography (PET; 

n=42), computed tomography (CT, n=1), X-ray mammography (n=1), 99m-

Technium (99-Tc, n=6), diffuse optical tomography (DOS, n=16), and 

ultrasound (US, n=15).  The systematic search strategy and results is presented 

in Figure 1.11.    Results of the literature search showed that medical imaging 

was used to measure biological features such, morphology, blood flow, 

metabolism, cell death, and tissue composition as markers for chemotherapy 

response in breast cancer.  Studies that used tumour volume or size changes to 

measure chemotherapy response did not meet inclusion/exclusion criteria.  

 

 
Figure 1.11:  Systematic search strategy and search results.  A systematic 

literature search was completed for imaging studies conducted between 1974-

2016.  The search strategy was based on identifying imaging systems that were 

used to measure chemotherapy response in breast cancer.  The results of the 

literature search yielded studies that involved MRI, PET, CT, XRAY and 99m-

Technitium, DOS and QUS imaging biomarkers.  The literature review was 

divided into a narrative literature review for MRI, PET, CT, XRAY and 99m-

Technitium.  A systematic review was conducted for DOS and US studies.   
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1.12 Narrative Review of Imaging in Breast Cancer 
 
 The results of the narrative review showed that more than 12,000 locally 

breast cancer patients have been included into imaging studies with the aim of 

measuring tumour response to chemotherapy.  The imaging modalities 

included: MRI, PET, CT, XRAY and 99m-Technitium.  In the proceeding 

sections, these imaging modalities are described and the corresponding studies 

and results are reviewed.   

 

1.12.1 Magnetic Resonance Imaging (MRI) 
 
 MRI-based imaging includes diffusion-weighted imaging (DWI-MRI), 

dynamic contrast enhancement imaging (DCE-MRI), blood-oxygen level 

depending imaging (BOLD-MRI) and MRI-spectroscopy (MRI-SPEC).    These 

techniques are capable of mapping tumour oxygenation, vascularization, 

metabolism and the extracellular matrix as response markers to neoadjuvant 

chemotherapy in breast cancer.  Diffusion-weighted MR measure the diffusion 

of water molecules (i.e. Brownian motion) in tissue (O'Flynn and DeSouza, 

2011, Belli et al., 2011).  Tissue contrast can be displayed in DW-MRI imaging 

based on areas of high and low water diffusion; where areas of low water 

motion (i.e. tumours) demonstrate an enhanced signal.  Previous studies have 

demonstrated that areas with low water motion are associated with malignant 

tissue due to densely arranged cells which limit the motion of water in the 

extracellular space (Belli et al., 2011).       

 Extrinsic contrast imaging techniques include dynamic contrast 

enhancement imaging (DCE-MRI) which detects the concentration of an 

injected contrast agent (gadolinium chelate) in the intravascular and 

extravascular space using primarily T1-weighted signals (O'Flynn and 

DeSouza, 2011).  DCE-MRI images provide information on tumour vascularity 

and blood flow and measures the gadolinium “wash-in” and “wash-out”.  

Tumours preferentially accumulate gadolinium from an increased vascular 

supply compared to normal tissue, and therefore demonstrate an enhanced 

signal in MRI (Craciunescu et al., 2009).  Blood-oxygen level dependent 

(BOLD-MRI) imaging is also used to measure the tumour vascularity, and 

tumour oxygenation.  This is accomplished by detecting deoxyhaemoglobin, 
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which is paramagnetic and therefore results in signal loss in T2-weighted 

images (Jiang et al., 2013).   

 Other techniques include MR spectroscopy imaging (MRI-SPECT) which 

detects the activity of atoms with unpaired protons such as Hydrogen (1H), 

Phosphorus (31P), Sodium (23Na) and Fluorine (19F) within a magnetic field 

(O'Flynn and DeSouza, 2011).  Biochemical compounds such as Choline and 

N-acetyl aspartate (NAA) demonstrate high 1H atomic energy shifts in magnetic 

fields and provide spectral signatures in cancer.   For example, MRI-SPECT 

has been used to distinguish between normal and malignant lesions as well as 

identifying areas of necrosis within tumours (Horska and Barker, 2010).  

Malignancies contain variations in spectral frequencies and peaks within the 

measured signal compared to normal tissue (O'Flynn and DeSouza, 2011).     

  MRI has been used to measure chemotherapy response in breast 

cancer.  The literature search results yielded studies that showed variations in 

the chemotherapy drugs and schedules administered to patients, imaging time-

points measured during chemotherapy, contrast-injection protocols, and data 

analyses used to obtain the sensitivity, specificity and accuracy of imaging tests 

against gold-standard endpoints.  There were variations in the chemotherapy 

drugs and schedules between institutions. Ah-See et al. (2008) did not study 

patient response to taxane-based drugs which are commonly used in breast 

cancer treatment (Ah-See et al., 2008); whereas Cao et al. (2012) used only 

four cycles of chemotherapy compared to conventional 6-8 cycles (Cao et al., 

2012a).  A report by Chang et al. (2002) studied 13 patients using DCE-MRI 

who received variable chemotherapy drugs within their study sample: three 

patients in this study received anthracycline drugs; three patients were given 

taxanes; six patients received weekly taxanes combined with antimetabolites 

and one patient underwent plant-alkaloid chemotherapy as primary treatment   

(Chang et al., 2004).  A Japanese study used 12 cycles of chemotherapy which 

is not traditionally implemented in North America and Europe (Michishita et al., 

2015).  Because of these variations in chemotherapy drug schedules, different 

research groups measured chemotherapy response at different times.  There 

were also variable measured time intervals between patients, within the same 

study, for example, Yu et al. (2010) imaged their patients at variable 

chemotherapy times, i.e. between their second and fourth cycle of 
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chemotherapy (Yu et al., 2010); yet, the results were pooled together.  This may 

have affected the results since chemotherapy response is time-dependent.      

 There were also variations in the MR imaging protocols used to obtain 

quantitative data across studies.  Gadolinium chelate contrast agents used for 

DWI-MRI, DCE-MRI, BOLD-MRI imaging employed a standard injection dose of 

0.1 mmol/kg however the MRI machines used to collect data varied in magnet 

field-strengths that were between 1.5 T-3.0 T.  Experiments by Abramson et al. 

(2013), Ahmed et al. (2013), Ko et al. (2013), and O’Flynn et al. (2011) used 3.0 

T imaging units which can provide greater image resolution, higher signal-to-

noise ratio and thus provide overall better image quality compared to 1.5 T 

systems (Ko et al., 2013, Ahmed et al., 2013, O'Flynn and DeSouza, 2011, 

Abramson et al., 2013, Tanenbaum, 2006).       

 Data processing and analysis techniques included variations in selecting 

the tumour regions of interest (ROIs).  ROIs were selected in either single-frame 

or multi-frame slices of the MRI images, and the distance and slice thickness 

varied between studies which can affect study outcomes.  Also, ROIs were 

selected manually by observers (Wu et al., 2016, O'Flynn and DeSouza, 2011, 

Yu et al., 2010, Pickles et al., 2005) or by using a semi-automated approach 

which used an intensity-map histogram after an initial contour by the observer 

(Teruel et al., 2014, Minarikova et al., 2016).  In select studies, radiologists were 

not involved in MRI analysis to define tumour ROIs which can affect the quality 

of the study and analysis (Atuegwu et al., 2013, Aghaei et al., 2016, Teruel et 

al., 2014, Mani et al., 2013, De Los Santos et al., 2013).  Other studies also 

didn’t report on using blinded-analysis which could potentially cause bias from 

knowing pathologic and radiologic response.   

 

1.12.2 Positron-Emission Tomography (PET) 
 

 PET imaging can be used to measure the metabolic activity by tracking 

the cellular uptake of a glucose analogue, [18F]-fluorodeoxyglucose (FDG).  

FDG is injected intravenously, and transported into cells like glucose and is 

labelled with a radioactive tracer that undergoes radioactive decay; permitting 

PET imaging to map metabolic activity in tissue.  Increase FDG-uptake is 

shown in tumours since tumour metabolism is greater compared to normal 

tissue. PET imaging can therefore serve to identify the extent of malignancies 
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(Andrade et al., 2013).  PET imaging is achieved with the release of a pair of 

annihilation photons and is detected by a photon-detection device during 

radioactive decay; this is known as positron-electron annihilation (Figure 1.12).  
Another radiotracer used in PET includes the radionuclide 15O-H2O, which 

permits tumour blood flow measurements; where the distribution of water can 

be equated to blood activity in blood vessels (Lodge et al., 2000).  

 PET imaging has been studied to measure glycolytic metabolism and 

vascular alterations in breast tumours (Garcia Vicente et al., 2014, Lodge et al., 

2000).  However, there are significant limitations to using PET clinically and 

studies demonstrate data variations based on image processing techniques 

used between studies.  One major limitation includes not being able to use PET 

imaging for patients who are diabetic (Burcombe et al., 2002).  PET imaging 

depends on glycolytic activity and therefore patients with diabetes mellitus (DM) 

who exhibit altered sugar metabolism are excluded for this reason.  Other 

limitations include undetectable signals for smaller tumours.  A study by Park et 

al. (2011) studied 50 patients and reported that 50% of the tumours that were 

not detectable by PET were less than 1 cm in size (Park et al., 2011).  However, 

Kolesnikov-Gauthier et al. (2012) did not find a correlation between tumour size 

and the standard uptake value but all tumours in their study were greater than 2 

cm (Kolesnikov-Gauthier et al., 2012).   

 Imaging protocols were compared between studies and showed 

differences in approaches to acquire PET data.  In terms of preparing patients 

before imaging, patients are required to fast, however the fasting period ranged 

between 4-6 hours between studies (Duch et al., 2009, Martoni et al., 2010) 

(Hatt et al., 2013, Keam et al., 2011, Andrade et al., 2013, Burcombe et al., 

2002).   This can affect the glycaemic index and alter the uptake of the FDG into 

the tumour (Berriolo-Riedinger et al., 2007).   Also, the radiotracer-injection 

doses differed between studies; with some studies adjusting the dose according 

to the subject’s body mass (Ogino et al., 2014); while others gave standard 

doses to all patients (Buchbender et al., 2012). Imaging protocols across 

studies showed differences in the time to measure the SUV after FDG injection.  

Andrade et al. (2013) measured the tracer signal after 90 minutes from 

injecting; while another study by Berriolo-Reidlinger et al. (2007) quantified 

tracer-uptake after 60 minutes (Andrade et al., 2013, Berriolo-Riedinger et al., 

2007).  The elapsed time between tracer injection to its detection can affect the 
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measured signal intensity.  This is due to the tracer’s radioactive decay and its 

time-dependent uptake and clearance from the tumour.      

 

 
Figure 1.12:  PET Imaging.  Tumour cells exhibit high metabolism which 

require energy from glucose.  PET imaging uses radiolabelled FDG molecules 

which are glucose analogues and tracks its uptake in tissue.  FDG molecules 

release a positron and annihilate with an electron to create a pair of annihilation 

photons.  A photon detector collects the radioactive signal and constructs the 

image based on the signal intensity.  

 

1.12.3 Computed Tomography (CT) 
 

 CT imaging uses an X-ray source and detector to construct volumetric 

images based on differences in photon attenuation.  CT helical perfusion 

imaging, which exploits dynamic contrast-enhanced computed tomography 

captures physiological information such as regional tumour blood flow and 

blood volume (Li et al., 2012).  The image resolution is high and data is 

acquired from both the unenhanced anatomical CT-images and images 

obtained from iodinated contrast agents to produce vascular maps (Eastwood 

et al., 2003).  Imaging data is generated from an arterial time-attenuation curve 

that output blood-parameters: blood flow (ml/min/100ml), blood volume (ml/100 

ml), and the flow extraction product (ml/min/100 ml) (Li et al., 2012).   
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 Conventional applications for CT imaging measure the tumour’s size 

during treatment or as an anatomical reference to PET imaging.  However, one 

study by Li et al. (2012) has used quantitative perfusion CT to investigate 

vascular parameters in breast tumours treated with neoadjuvant chemotherapy 

(Li et al., 2012).  These parameters included the regional blood flow (BF), blood 

volume (BV), and the flow extraction product (FE).  The study examined 20 

patients and the results indicated that there was a significant difference in the 

BF, and FE between patients who achieved pathological complete response 

compared to non-responders (P=0.032) and this corresponded to an AUC of 

0.87 (Li et al., 2012).  Although these studies demonstrated promising results, 

the study population was small and no power calculation was included.  

Additionally, CT imaging employed a slice collimation of 5 mm and therefore 

limits this technology from detecting microscopic disease below this size.  

Additionally, the study used a single-observer to analyse the ROI which may 

cause additional bias to the study results.  CT imaging is not advantageous 

because it exposes patients to ionising radiation and therefore limits the number 

of repeated scans that can occur during the patient’s chemotherapy treatment.  

This study also involved variable treatments for patients; one patient received 

an anti-angiogenic drug which can affect the results since blood volume and 

perfusion are measured.  Also, two patients in this study did not undergo 

surgery but were classified as non-responders.  Therefore, not all patients 

underwent standard ground-truth classification and this can affect the results of 

the receiver operating characteristic (ROC) curve.    

 

1.12.4 X-Ray Mammography 
 
 X-Ray mammography for monitoring NAC response uses radiographic 

breast density (BD) to correlate to pathologic response (Elsamany et al., 2015).  

The mammographic BD is defined as the ratio between radio-dense areas to 

normal breast and represents the stromal, epithelial cells, collagen, 

fibroglandular and adipose tissue (McCormack and dos Santos Silva, 2006).  It 

is hypothesized that dense breasts carry an increased risk of aggressive breast 

cancer since dense breasts demonstrate rapidly dividing epithelial cells 

(McCormack and dos Santos Silva, 2006).  Radiographic breast density is 

classified by methods established by Wolfe et al. (1976) into a 4-point scale 
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based on the radiologist’s visual assessment (Wolfe, 1976, Saftlas et al., 1991) 

(Table 1.12). 
 X-Ray mammography has not been studied to monitor chemotherapy 

response in breast cancer; rather the BD from diagnostic x-ray mammograms 

have been previously used as a predictive marker (i.e. before treatment has 

started).  Elsamany et al. (2015) previously showed that patients with a low BD 

on mammographic assessment at diagnosis were more likely to achieve a 

pathological complete response to NAC compared to those patients who had 

dense breasts (p=0.056) (Elsamany et al., 2015).  However, the BD 

demonstrated a relatively poor area under the curve of only 0.59 which 

suggests that the BD is a poor parameter for predicting response in patients.    

There are significant limitations for using mammographic breast density to 

predict treatment response.  One limitation involves the potentially variable 

assessment from the radiologist’s visual assessment of breast density and thus 

can lead to inter-observer variability (Spayne et al., 2012).  This has also been 

observed in both digital and analogue breast images (Spayne et al., 2012).  

Table 1.12 presents the criteria used by radiologists to assess breast density 

based on visual inspection.   

 

BD Category Description 
N1 Non-dense breasts, composed of fat and few fibrous 

connective tissues.  

P1 Beaded linear patterns denoting prominent ducts.  Up to 

25% of the breast presented as nodular densities.   

P2 Prominent duct patterns in radiograph.  Over 25% of the 

breast demonstrates nodular and mammographic 

densities.   

DY Highly dense parenchyma pattern in radiograph.  

Homogenous dense areas which appear like sheet-like 

regions.    

 Table 1.12:  Breast Density (BD) grades for mammographic assessment.   
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1.12.5 Technetium 99m (99m-Tc) scintigraphy 
 

 Previous studies have shown that increased drug efflux in tumour cells is 

mediated by P-glycoproteins (PgP) that can lead to chemotherapy resistance 

(Mechetner and Roninson, 1992).  99m-Tc scintigraphy is a molecular imaging 

technique that measures PgP activity with a radiolabelled tracer, 99m-Tc-

Sestamibi (Ciarmiello et al., 1998).   An increase in 99m-Tc-Sestamibi efflux 

through PgP was previously correlated to increased PgP activity in taxane- and 

anthracycline-based chemoresistant breast tumours (Mittal et al., 2012, 

Ciarmiello et al., 1998).  More recent 99m-Tc scintigraphy techniques include 99m-

Tc-3PRGD2 SPECT to evaluate the vascular status of tumours undergoing 

treatment (Ji et al., 2015).   A radiotracer 99m-Tc-3PRGD2 is used to detect 

biomolecules responsible for vascular and tumour cell growth.  A study by Ji et 

al. (2015) recently reported that 99m-Tc-3PRGD2 SPECT can predict breast 

tumour response to NAC with a sensitivity and specificity of 86.7% and 85.7%, 

respectively (Ji et al., 2015).     

 The major limitation to 99m-Tc scintigraphy is the repeated radiation 

exposure to patients. 99m-Tc scintigraphy is also dependent on the uptake and 

metabolism of radiotracers which can vary between patients (Ji et al., 2015).  

Additionally, patients must be excluded from 99m-Tc scintigraphy on the basis of 

renal and liver dysfunction (Mittal et al., 2012).  Studies also showed variations 

in the tracer’s radioactivity (range: 500-925 MBq) which can potentially alter the 

measured signal intensity if not normalised (Ji et al., 2015, Ciarmiello et al., 

1998, Spanu et al., 2008, Wilczek et al., 2003, Zaman et al., 2009).  In one 

study by Spanu et al. (2008), the analysis included patients who received a 

range of treatment types that included chemotherapy or hormonal therapy only 

(Spanu et al., 2008, Travaini et al., 2007).  A study by Ciarmiello et al. (1998) 

showed that tumour region-of-interest (ROI) selection varied between 3-7% 

which can affect the measurements and outcomes (Ciarmiello et al., 1998).   

 

1.12.6 Summary of Imaging Studies 
 

 A summary of imaging studies (MRI, PET, CT, 99m-Tc Scintigraphy) is 

outlined in Table 1.13, Table 1.14, and Table 1.15.  DOS and QUS imaging 

descriptions are outlined in the subsequent section (i.e. systematic literature 
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review).   Table 1.13 describes the biological measurements associated with 

each imaging modality.  Table 1.14 presents the clinical study characteristics 

and Table 1.15 shows the measured performance outcomes (i.e. the best 

measurements) of each imaging test.   

 

Modality/Technique Biological Measurements Reference 

 
Magnetic Resonance Imaging 

DWI-MRI 

Extracellular water motion 

Tumour-cell density 

Tissue micro-structure 

Cell membrane integrity 

Cell membrane 

permeability 

(Belli et al., 2011) 

(O'Flynn and DeSouza, 2011) 

DCE-MRI 
Vascular permeability 

Dynamic blood flow 

(O'Flynn and DeSouza, 2011) 

(Martincich et al., 2011) 

BOLD 

Tumour oxygenation 

Tumour vascularity 

Angiogenesis 

Blood Volume 

Blood Flow 

(Fan et al., 2011) 

(Jiang et al., 2013) 

(Padhani, 2002) 

SPECT 

Reduction in mitotic count 

Tumour cellularity 

Cell membrane integrity 

Tumour metabolism 

Tissue composition (lipid) 

(Baek et al., 2009) 

(Tozaki et al., 2010) 

   

Positron-Emission Tomography 
 

18F-FDG Tumour metabolism 
(Mankoff et al., 2002) 

 

15O-H2O Tumour blood flow 
(Lodge et al., 2000) 

(Mankoff et al., 2002) 

Computed Tomography Imaging 

DCE-CT 
 

Tumour metabolism 
(Li et al., 2012) 
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Blood flow per unit volume 

in tissue (BF) 

Proportion of tissue with 

blood flow (BV) 

Rate of transfer of contrast 

agent from intra- to 

extravascular space (FE). 

 
X-Ray Mammography 
 

X-Ray 

Stromal cell density 

Epithelial cell density 

Collagen 

Fibroglandular tissue 

Fatty (adipose) tissue 

(McCormack and dos Santos 

Silva, 2006) 

 

99mTc Scintigraphy 
 

99mTc scintigraphy 

P-glycoprotein (P-gP): Cell 

pumps that export 

chemotherapy out of 

tumour cells (drug 

resistance mechanism). 

(Takamura et al., 2001) 

99m-Tc3PRGD2-

SPECT 

Integrin proteins in tumour 

vasculature; measuring 

tumour vasculature 

(Ji et al., 2015) 

 

Table 1.13 Biological measurements according to imaging modalities.  
Imaging studies included measurements of several biological features that 

included cellularity, tissue composition, cell structure and tumour cell activity.   
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Imaging 
Modality 

Patients 
(n) 

Drug Treatments 
Chemotherapy 
Cycles 

Response 
Measurements 

MRI 8446 

Anthracyclines 

Taxanes 

Trastuzumab 

 

3-12 cycles 

 

 

 

Mandard 

RECIST 1.1 

RCBI Score 

Miller-Payne 

No clinical 

convention followed 

(pathologist 

evaluation) 

PET 3138 

Anthracyclines 

Taxanes 

Alkylating Agents 

Antimetabolites 

Trastuzumab 

Bevacizumab 

3-6 cycles 

 

RCBI Score 

Miller-Payne 

Sataloff 

NCI-EORTC 

Collaborative (1977) 

PERCIST 

CT 20 

Anthracyclines 

Taxanes 

Alkylating Agents 

Antimetabolites 

Trastuzumab 

Bevacizumab 

 

6 cycles 

 

RECIST 1.1 

No clinical 

convention followed 

(pathologist 

evaluation) 

 

X-RAY 241 

Anthracyclines 

Taxanes 

Alkylating Agents 

Antimetabolites 

Trastuzumab 

4-8 cycles 

No clinical 

convention followed 

(pathologist 

evaluation) 

99m-Tc 255 

Anthracyclines 

Taxanes 

Alkylating Agents 

Antimetabolites 

Trastuzumab 

3-8 cycles 

RCBI Score 

No clinical 

convention followed 

(pathologist 

evaluation) 

Radiologically 

Assessed (no 

convention) 

WHO criteria 

(radiographic) 
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Abbreviations and Legend 
 

Response Measurements:   
RECIST 1.1 (Response Criteria in Solid Tumours 1.1)  

RCBI (Residual Cancer Burden)   

NCI-EORTC (National Cancer Institute-European Organization for Research on 

Treatment of Cancer) 

WHO (World Health Organization) 

PERCIST (PET Response Criteria in Solid Tumours)  
 

Table 1.14 Clinical Study Characteristics.  Clinical study characteristics 

included the number of patients included in all studies combined.  Studies were 

focused on breast cancer patients treated with anthracycline and taxane based 

chemotherapies.  The response criteria (endpoints) varied between studies.   
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Modality 
Chemo 
Cycle 
Measured 

Measurement 
Techniques 

Imaging 
Markers 

Maximum 
Outcome, (Time 
Interval) 

MRI 
B, M1, 

M2, M3, 

M4, P 

Diffusion-Weighted 

(DW) 

Dynamic-contrast 

Enhanced (DCE) 

Spectroscopy 

Blood-oxygen level 

dependent (BOLD) 

ADC 

MPTS 

Texture 

∆SI 

MD 

VC 

VO 

ECU 

Cho 

L-Trans 

Kep 

R2 

T2R 

RBV 

RBF 

Wash-in 

Wash-out 

EF 

AUC=0.96, (B) 

PET 
B, M1, 

M2, M3, 

M6, P 

18FDG 
15O-H2O 

SUV 

MTV 

TLG 

AUC=0.85, (M4) 

CT B 
Dynamic contrast-

enhanced (DCE) 

BF 

BV 

FE 

AUC=0.87 (B) 

X-RAY B Mammographic Density BD AUC=0.59 (B) 

99m-Tc 
B, M1, 

M2, M3, P 

99mTc Scintigraphy 
99mTc- SPECT 

99mTc-D 

SPECT 

Acc=89% (B) 

(AUC not reported) 

Abbreviations and Legend 
Imaging Timeline Measures:  
B (Baseline)  

M (Mid-treatment, chemotherapy cycle)  

P (Post-chemo) 

Maximum Outcome Measures:  
Acc (Accuracy %)  

AUC (Area Under Curve) 
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Biomarkers 
MRI: 
ADC (Apparent Diffusion Coefficient) 

MD (Mean Diffusivity)  

MPTS (Morpho-Physiological Tumour Score) 

VC (Vascular Count)  

VO (Vascular Oxygenation)   

∆SI (Change in Signal Intensity) 

ECU (Early Enhancement Ratio) 

EF (Enhancement Fraction) 

Cho (Normalized Choline Signal)  

k-Trans (Transfer Constant) 

Kep (Rate Constant) 

R2 (Transverse Relaxation Rate) 

T2R (T2-weighted Relaxivity) 

RBV (Relative Blood Volume)  

RBF (Relative Blood Flow) 

PET: 
SUV (Standardized Uptake Value) 

MTV (Metabolic Tumour Volume) 

TLG (Total Lesion Glycolysis) 

CT: 
BF (Regional Blood Flow) 

BV (Blood Volume) 

FE (Flow Extraction Product)  

X-Ray: 
BD (Breast Density)  

99m-Tc: 
99Tc-D (99mTc-sestamibi Decay [Half-life]) 

RI (Retention Index) 

SPECT (Single Photon Emission Computed Tomography Signal) 

Table 1.15 Measurement parameters.  Imaging modalities were used to 

measure chemotherapy response at various time intervals (indicated as chemo 

cycle measured in table).  Imaging biomarkers varied between imaging studies 

and modalities.  The best performance time intervals are indicated in the table.  

The results show that MRI imaging biomarkers were the best features to 

measure tumour response.    
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1.13 Systematic Review of DOS and US Imaging in 
Breast Cancer 
 

1.13.1 Systematic Review Outline 
 

In this section, a review of diffuse optical spectroscopy and ultrasound 

imaging are reviewed in terms of their technical framework, their use for 

characterizing tissue and the technical limitations associated with each imaging 

modality.  The descriptions are divided into two major concepts:  1) Concept 1: 

DOS Imaging and; 2) Concept 2: Ultrasound Imaging.  Since ultrasound 

imaging is a broad domain, the proceeding sections will describe ultrasound 

imaging as two subcategories:  1) General ultrasound imaging which include 

power Doppler ultrasound, elastography and contrast enhanced ultrasound 

(Concept 2a) and; Concept 2b, quantitative ultrasound spectroscopy (Figure 
1.13).    

 

 
Figure 1.13  The literature review was divided into two major concepts for the 

purpose of describing the various DOS and QUS imaging techniques. Diffuse 
Optical Spectroscopy: Concept 1 included studies that used both topographic 

and tomographic DOS.  Ultrasound Imaging: Concept 2a (general ultrasound 

imaging) included power Doppler ultrasound, elastography and contrast-

enhanced ultrasound imaging.  Concept 2b includes two QUS-based 

techniques. 
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1.13.2 Principles of Optical Imaging for Tissue Characterization 
 

 Light can be described using wave theory where it is characterised as an 

electromagnetic wave or using particle theory to describe photon migration in a 

medium (Welch and Gemert, 2010).  Both theories describe the nature of light 

propagation within two common parameters, in which light is dependent on: 1) 

frequency and; 2) wavelength (Welch and Gemert, 2010).  Both light theories 

(i.e. electromagnetic wave and particle theory) are used to describe attributes of 

light; for example, the wave’s frequency and wavelength are proportional to a 

photon’s energy.  The energy, frequency and wavelength of light is represented 

by an electromagnetic spectrum whereby the optical wavelength is inversely 

proportional to the photon’s energy (Figure 1.14). The light energy is an 

important parameter since it determines the dominant light interactions in tissue, 

such as absorption and scattering.  Optical absorption and scattering in tissue 

are the basis of understanding DOS-based measurements in tissue.     

 

 
Figure 1.14:  The electromagnetic spectrum.  The electromagnetic spectrum 

demonstrates the various bands of light such as ultraviolet light, visible light and 

near-infrared light.  The various bands are defined by a range of wavelengths 

that are inversely proportional to the energy of light.   This is represented by the 

following equation: 𝐸 = ℎ𝜐; where E is the energy (units; eV) and ℎ is Plank’s 

constant and 𝜐 is the frequency (units; Hz) (Welch and Gemert, 2010). 
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For near-infrared light interactions in tissue, scattering dominates over 

absorption; here, absorption is referred to as the decrease in the light intensity 

as a function of increasing path length in tissue (Jacques, 2013).  Also, light 

scattering in tissue is defined as a deflection (change in direction) from the 

incident light path after the photon interacts with a particle (Liu, 2011).  The 

near infrared (NIR) optical scattering in tissue is described predominantly by 

either Mie scattering theory or Raleigh scattering theory6, which is a function of 

the size of the scatterer (particle), relative to the optical wavelength (Figure 
1.15) (Xu and Povoski, 2007).    

 

 
Figure 1.15.  Scattering regimes based on wavelength and scatterer size.  

Adapted from (Petty, 2006).  The scattering is based on the relationship 

between the size of the scatterer and the wavelength of the photon.  

                                            
6 Mie scattering theory describes the phenomenon when the incident photon is 
scattered by particles approximately of the same size of the photon wavelength.  
This causes anisotropic and forward scattering.  Raleigh scattering (also 
referred to as elastic scattering) describes the phenomenon when the size of 
the particle is much smaller than the photon wavelength, thus causing no 
change in the incident wavelength, thus resulting in predominantly isotropic 
scattering.     
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Diffuse optical spectroscopy measures the near-infrared light interactions 

in tissue that result from optical absorption and scattering from intrinsic 

chromophores such as water, lipid, and haemoglobin (Cerussi et al., 2001). 

Light transmission from one medium to another medium (e.g. tissue) depends 

on the refractive index, 𝑛, and is expressed as the ratio of the speed of light in a 

vacuum (𝑐) to the phase velocity (�̅�) in tissue.  The refractive index is dependent 

on tissue density and early works by Barer et al. (1957) reported that tissue 

constituents such as cells, cell proteins and water were significantly involved in 

light refraction in tissue (Barer, 1957).  Using Snell’s law, the refractive index 

can provide information on the directional change of the propagating light wave 

between the incident light and the transmitted light travelling across two 

mediums.  The direction of the light in tissue is an important consideration since 

DOS mammography detects light transmission (or reflection) across the breast 

tissue (Figure 1.16).     

 
Figure 1.16:  Tissue-Light interaction.  A.  Light can be absorbed at the tissue 

interface. The light that is transmitted may also result in remission.  B.  Light 

that is transmitted may alternatively undergo elastic scattering whereby the 

incident light and the scattered light has the same wavelength.  Transmission of 

light is represented by Snell’s law: 𝑛) sin(𝜃)) = 𝑛0 sin(𝜃0).   
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Tissue measurements using diffuse optical spectroscopy are based on 

optical absorption and scattering principles in the near-infrared spectrum 

(wavelengths=600nm-1100 nm).   In breast tissue, light scattering is 

significantly greater (100-fold) than light absorption, and hence the term 

“diffuse” in DOS refers to a diffusion regime that is caused by multiple scattering 

events across the gradient (Cerussi et al., 2001, Dehghani et al., 2009, 

Tromberg et al., 2005).  Although chromophore measurements are based on 

the absorption co-efficient (haemoglobin, water, lipids, oxygen saturation), 

measuring the scattering in tissue can give important insight to tissue 

substructures such as the scattering that can occur from tumour cell nuclei or 

mitochondria.  Raleigh scatterers such as mitochondria, nuclei, and collagen 

fibres can be measured from DOS; thus, measuring the scattering coefficient 

can also indicate substructural constituents (and its state from cell death and 

cytotoxic stress) in the breast and tumours that arise in the breast (Cerussi et 

al., 2006, Liu, 2011). 

 

1.13.3 DOS for Breast Imaging (Concept 1)  
 

 Diffuse optical spectroscopy (DOS) imaging can measure tumour 

response to chemotherapy by detecting changes in haemoglobin content, tissue 

composition and light scattering features (Roblyer et al., 2011, Cerussi et al., 

2007, Jiang et al., 2014).  Maps of tumour physiological features, such as 

haemoglobin are computed from tissue-optical properties that are based on 

near-infrared optical scattering and absorption within the near-infrared spectrum 

(600-1100 nm) (Cerussi et al., 2006).  For breast tissue, significant optical 

absorbers include oxy-haemoglobin (HbO2), deoxy-haemoglobin (Hb), water 

(H2O) and lipids (Li) (Cerussi et al., 2006).   Chromophore concentrations can 

be estimated by measuring the absorption co-efficient [µa] and using Beer’s law 

equation (Cerussi et al., 2011).  Also, tissue optical parameters such as the 

reduced scattering co-efficient [µ¢s] can provide additional information on tissue 

microstructure (~0.2 µm); corresponding to optical scattering effects from 

mitochondria and the cell nucleus (Mourant et al., 2000, Cerussi et al., 2006) 

(methods for calculating chromophore concentration is further described in  

Chapter 2, Methods).    
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DOS systems can be built as topographic devices (usually handheld and 

obtain 2D images), or larger tomographic systems that are referred to as diffuse 

optical tomography (DOT) devices that construct three-dimensional images of 

the breast (Figure 1.17).   Both systems have their respective advantages, such 

as broad optical bandwidth and tissue penetrance.  For example, advantages 

for DOT include the capability of imaging deeper tumours, and major technical 

advancements have increased the performance of DOT systems to separate 

the specific contributions of light absorption and scattering in tissue for 

improved tissue contrast.   

 Three types of DOS techniques, such as frequency domain (FD), time 

domain (TD) or continuous wave (CW) have been used to measure photon 

migration in tissue.  Continuous wave systems emit light with constant 

amplitude and measure the attenuation (Xu and Povoski, 2007); whereas 

frequency domain DOS employ light emission that is sinusoidally modulated at 

high frequencies.  FD systems measure the attenuation and phase shift of the 

light to measure the optical absorption and scattering.  The major advantage to 

FD systems is a relatively higher signal-to-noise ratio, and it is generally 

portable, which makes it potentially desirable as a “bedside” tool.  In a TD 

system, used in the thesis study, short pulses of light are emitted and the times 

of flight are measured.  The major advantage is the tissue-depth penetrance 

and improved resolution, compared to other DOS systems.  However, TD 

systems are often large due to the requirement for several subcomponents 

used in signal detection and processing.  

 Continuous wave, frequency domain and time domain systems utilize the 

absorption co-efficient to calculate the biochemical composition of tissue.  Using 

the Beer-Lambert law, with the known molar extinction co-efficient, one can 

calculate the concentrations of haemoglobin, oxy-haemoglobin, water, and 

lipids.  It is important to note that breast tissue demonstrates significantly higher 

scattering than absorption, and this is due to the tissue’s composition, and 

cellular structure.  Other DOS parameters such as the scatter power and scatter 

amplitude, calculated by using the power-law function, are representative of the 

tissue’s substructure, which is related to cellularity, cell arrangement and light-

scatterer spatial distributions (Fantini and Sassaroli, 2012).  As a result, DOS 

can demonstrate a good sensitivity to the biochemical characteristics of tissue.  

A summary of DOS imaging is described in Table 1.16.   
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DOS Imaging 
Technique Description Reference 

 
 
Frequency 
Domain (FD) 
 
 

Emits light that is sinusoidally 

modulated at high frequencies.   

FD detection systems measure the 

attenuation and phase shift of the 

light to report the absorption and 

scattering.   

Portable 

Relatively higher signal-to-noise ratio 

(Soliman et al., 

2010) 

(Durduran et al., 

2010) 

(Gibson et al., 

2005) 

 

 

Time Domain  
(TD) 

Uses short pulses of light and 

measure the times of flight of the 

transmitted light.    

The major advantage is the tissue-

depth penetrance and improved 

resolution, compared to other DOS 

systems. 

Large system due to many 

subcomponents in detection and 

computing system. 

(Soliman et al., 

2010) 

(Fantini and 

Sassaroli, 2012) 

(Gibson et al., 

2005) 

Continuous 
Wave (CW) 

Continuous wave systems emit light 

with constant amplitude and 

measure the attenuation. 

(Xu and Povoski, 

2007) 

Table 1.16. DOS imaging can be approached using several systems that 

employ frequency domain, time domain and continuous wave techniques 

 

1.13.4 Technical Considerations and Limitations for DOS 
 

In terms of technologies used, DOS clinical studies showed variations in 

the use of frequency domain, time domain or continuous wave systems. 

Imaging devices were built as laboratory (i.e. research devices) or commercially 

manufactured systems.  The systems were either topographic systems that 

acquired 2-dimensional images or tomographic systems that were capable of 

constructing 3-dimensional breast images (Figure 1.17).  Hand-held 

topographic devices were capable of only measuring fixed-sized areas of up to 
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20 cm, while bulkier tomographic devices were capable of probing the whole 

breast volume.  All the devices used near-infrared light (600-1100 nm) and this 

corresponded to the spectral window of known chromophores such as 

haemoglobin, lipids and water.  It is important to note the distinction between 

DOS topography and DOS tomography systems used in previous studies.  

Although both systems use similar light scattering and absorption 

measurements, DOS tomography enables volumetric image reconstruction 

compared to DOS topography, and can penetrate at greater depths. Hand-held 

topography DOS systems, such as those used by Cerussi et al. (2011) may be 

limited by its optical penetrance due to the geometry of the detectors and the 

probe’s construction.  Therefore, hand-held DOS devices are often restricted to 

tumours situated 10-20 mm below the skin surface (Cerussi et al., 2011).  Also, 

tumours with deep posterior margins beyond this distance are poorly measured 

by DOS topography, and are better measured using DOS-tomography.   

 

 
Figure 1.17.  Differences between hand-held reflectance-type topography 

probes (left) and DOS tomography systems (right).   A.  Hand-held devices are 

placed over the breast and 2-D chromophore maps are constructed.  B.  
Tomography devices (as used in this study) involve whole-breast imaging and 

are coupled with optical compensation medium (OCM).  3-D maps are 

constructed with multiple scan planes that report the concentration of the 

chromophore of interest, for example deoxy-haemoglobin (Hb).    
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1.13.5 Principles of Ultrasound Imaging for Tissue Characterization 

 
The ultrasonic signal represents the tissue composition and 

microstructure.  Tumour structures such as cells and the vasculature are 

susceptible mediums for ultrasound scattering.  Ultrasound is a propagating 

pressure wave that has frequencies greater than the audible range in humans, 

which is approximately 20 KHz (Shung and Thieme, 1993).  Medical 

applications exploit ultrasound waves that carry energy and demonstrate 

predominantly longitudinal wave properties; thus, causing particle 

displacements that are parallel to the direction of the propagating wave (Shung 

and Thieme, 1993).   

Ultrasound waves that travel from one medium to another medium 

undergo refraction or reflection which causes a change in the wave’s direction 

at the interface.  For refraction, the directional change can be calculated using 

Snell’s law, where the angle and velocity of the incident wave is proportional to 

the angle and velocity of the reflected or refracted wave.  In biological tissue 

(i.e. tumours), the transmitted wave encounters a highly inhomogeneous 

medium and the acoustic energy is lost as a function of distance; this is caused 

by acoustic absorption and scattering.  The absorbed energy produces heat 

while the scattered energy results in either forward- or backscattering.  Thus, 

acoustic scattering is defined as the redistribution in the acoustical energy in a 

non-uniform medium; where there is a change in the amplitude, frequency, 

phase velocity, or direction of the acoustical wave (Chivers, 1977) (Figure 
1.18).   
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Figure 1.18:  Wave propagation and transmission.  A.  Ultrasound waves that 

travel between interfaces demonstrate reflection and refraction.  For reflection, 

the incident angle (qi) is equal to the reflected angle (qr).  For refraction, the 

incident angle and the refraction (transmitted) angle (qt) is dependent on the 

speed of sound between interfaces (Snell’s law).  B.  Wave propagation in 

biological tissue encounter a highly inhomogeneous medium and therefore the 

refracted wave loses energy as a function of distance.  The loss in energy is a 

result of absorption (producing heat) and scattering.   

 

1.13.6 General US Imaging (Concept 2a) and QUS (Concept 2b) 
 

General Ultrasound Imaging (Concept 2a) 

 

 Conventional breast ultrasound uses acoustic frequencies between 9-15 

MHz to obtain good contrast and axial (depth) resolution in breast tissue 

(Athanasiou et al., 2009).  Breast sonography techniques include mechanical 

imaging such as elastography or functional imaging such as contrast-enhanced 

imaging, power-Doppler ultrasound and quantitative ultrasound spectroscopy.    

Ultrasound elastography measures the tissue’s stiffness and therefore 

characterizes the tissue’s biomechanical properties.  Tumours are “harder” than 

the surrounding normal parenchyma because it is comprised of densely 

populated and rapidly dividing cells, increased vasculature and fibroglandular 

components that alter its mechanical properties (Schrader et al., 2011, Wells 
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and Liang, 2011, Hayashi et al., 2012).  Tissue stiffness can be measured in 

terms of tissue stress and strain (units; pascals [Pa]) using shear-wave 

elastography or compression-based elastography.  These imaging techniques 

compute the alterations in sound wave propagation in soft and hard tissue 

(Wells and Liang, 2011). 

 Functional ultrasound imaging, such as contrast-enhanced imaging 

(CEUS) and power Doppler measures tumour blood flow; while quantitative 

ultrasound techniques have been used to measure morphologic features of the 

whole-cell and subcellular structures such as the nucleus  (Czarnota et al., 

2002, Cao et al., 2012b, Shia et al., 2015).  Contrast-enhanced ultrasound 

(CEUS) uses a contrast medium, such as microbubbles for improved 

visualization of the blood vessels.  Microbubbles are small lipid, protein or 

biopolymer microspheres that encapsulate a gas.  Under varying acoustic 

pressure, microbubbles oscillate due to their echogenicity which result in 

increased echoes that are detected by the ultrasound system (Blomley et al., 

2001).  For power Doppler imaging, the vasculature is assessed by detecting 

the frequency shift and amplitude (power) of the ultrasound backscatter signal 

caused by scatterers in the blood vessels (Martinoli et al., 1998).       

 

Quantitative Ultrasound Spectroscopy (QUS) (Concept 2b) 

     

Quantitative ultrasound spectroscopy for tissue characterization has 

many medical applications such as detecting cardiac ischemia, characterising 

liver histology and renal imaging (Lizzi et al., 1997b).  In oncology, QUS aims to 

provide acoustic data about tumour microstructure (cells and cell nuclei) that 

can be used for diagnosis and treatment-response evaluation (Sannachi et al., 

2015).  The major advantage of analysing the radiofrequency data in 

comparison to conventional B-Mode “grey-scale” ultrasound is the added 

information about tissue properties such as attenuation, integrated backscatter, 

scatterer size and concentration (Kolios et al., 2002).  Additionally, a significant 

advantage to using QUS data to characterize tumours is to mitigate operator 

dependent variations associated with conventional grey-scale imaging such as 

time-gain compensations and image contrast adjustments.    

 Quantitative ultrasound spectroscopy (QUS) uses the spectral 

information of radiofrequency (RF) backscatter signals that are typically 
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discarded in conventional grey-scale sonography; thus, it is unique from other 

types of sonography since the information collected is based on the frequency-

dependent power spectrum.  QUS can employ either low or high (>20MHz) 

frequency ultrasound for tissue characterization based on the desired acoustic 

resolution, and required depth for imaging (Feleppa et al., 2011).  QUS 

parameters using spectral analysis, such as the mid-band fit (MBF), 0-MHz 

intercept (SI) and spectral slope (SS) are determined by applying a linear 

regression function within a discrete frequency bandwidth of the computed 

power spectrum (Czarnota et al., 1999, Kolios et al., 2002, Lizzi et al., 1997b, 

Feleppa et al., 2011) (methods for calculating QUS parameters are described in 

Chapter 2, Methods).  In early studies by Lizzi et al. (1997), QUS parameters 

were studied for therapy response monitoring in hyperthermia-treated ocular 

tumours (Lizzi et al., 1997b).  The results of their study showed an increase in 

the SI in responsive lesions, in comparison to the surrounding normal tissue 

(p=0.003).  This increase in the backscatter intensity was explained as 

corresponding to changes in tissue microstructure caused by focal areas of 

increased cell death (Lizzi et al., 1997b).  It was hypothesized that changes in 

the scattering surfaces at subcellular levels from cell death, such as fragmented 

nuclear structures, may modulate acoustic scattering in tissue.   Later reports by 

Czarnota and colleagues applied Lizzi et al.’s theoretical framework to study the 

effects of apoptotic cell death and QUS in acute myeloid leukaemia (AML) cells 

treated with chemotherapy in vitro (Czarnota et al., 1999).  That work used QUS 

methods as markers for apoptotic cell death.  Chemotherapy-treated AML cells 

demonstrated a 2.92-fold to 5.83-fold increase in backscatter intensity 

compared to non-treated cells, and histological data revealed morphological 

changes resulting from cellular pyknosis, karyorrhexis and apoptotic cell death 

(Czarnota et al., 1999).  In another study, Kolios et al. demonstrated an 

increase in the MBF (+13 dB) after treating AML cells to chemotherapy in vitro, 

and linked these findings to morphological changes from chromatin 

condensation (Kolios et al., 2002).  These studies demonstrated the link 

between changes in tissue features, nuclear morphology and the resulting 

acoustic scattering in tissue (Sannachi et al., 2015) (Figure 1.19). Theoretical 

frameworks in these early QUS studies for cancer imaging have driven efforts to 

study chemotherapy response in breast cancer in vivo (Sadeghi-Naini et al., 

2013b, Tadayyon et al., 2014).  To date, QUS has been used to monitor 
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treatment response in photodynamic therapy, chemotherapy, and radiation 

therapy; both in animal and human studies (Lee et al., 2012, Czarnota et al., 

1999, Banihashemi et al., 2008, Sadeghi-Naini et al., 2013a, Sadeghi-Naini et 

al., 2013b, Tadayyon et al., 2014).   

The sensitivity of QUS to measure the biomechanical features of tumours 

is dependent on two main factors:  1) Tissue-dependent features (i.e. scatterer 

size, distribution, organization) and; 2) the ultrasound (wave) properties (Lizzi et 

al., 1997a, Lizzi et al., 1997b, Insana and Hall, 1990).  In this section, important 

principles of ultrasound imaging are discussed since the experimental QUS 

parameters used in this study should be interpreted in terms of its relationship 

to the tumour response and biology.  The important factors discussed here 

include image resolution, image reconstruction and system corrections that 

have a critical role in the QUS data that represents the tumour’s biological 

characteristics.   

 

 
Figure 1.19:  Quantitative ultrasound using spectral analysis can be used to 

estimate morphological changes in cells.  Increased nuclear fragmentation 

caused by treatments can affect the intensity of the spectral form.  The 

backscatter is measured in terms of the normalized intensity (power) in decibels 

(dBr).   
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1.13.7 Technical Considerations and Limitations for US Imaging 
 
 Ultrasound image quality is affected by the characteristics of the 

ultrasound system itself, such as the quality of the display monitor and its 

display settings (Sehgal et al., 2006).  The system’s hardware include 

transducer types that use variable frequencies, bandwidths, focal distances and 

aperture that can change the output display of the ultrasound image (Sehgal et 

al., 2006).    

 

Ultrasonic Parameters for Optimal QUS Imaging  

 

QUS data is based on the digitized radiofrequency signal from tissue 

backscatter.  The practical challenges of optimal QUS imaging arises in terms 

of achieving a desirable resolution in both the lateral and axial direction of the 

ultrasound image and this is dependent on the ultrasound parameters used for 

imaging.  In order to attain useful QUS data and information, QUS imaging 

parameters must be capable of resolving cellular and subcellular structures.  

For this, the optimal lateral and axial resolution are dependent on the following 

parameters: wavelength (𝜆), f number (ƒ234567), acoustic frequency bandwidth 

(B), and the speed of sound (𝑐).  These parameters are described below in 

terms of its relationship to achieving the desired lateral and axial resolution in 

an ultrasound image for useful QUS analysis.   
 The lateral resolution is spatially perpendicular to the beam axis (O'Brien, 

2007) and permits imaging objects that are positioned side-by-side.  The lateral 

resolution is defined as the minimum resolvable distance to differentiate or 

contrast two adjacent reflectors or structures (O'Brien, 2007).  The lateral 

resolution is high when the beam width is at its narrowest due to a small 

distance between acoustic scan lines.  The lateral resolution is dependent on 

the frequency (and thus wavelength, l) and the geometric characteristic of the 

acoustic focus, such as the diameter of the transducer (D) and the focal depth 

(F).  The optimal parameters for optimal imaging include the following 

parameters: 

i.Shorter wavelength (l); 

ii.High frequency (f) 

iii.Large diameter (D) 
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At distances beyond the focal zone (i.e. the far zone), the lateral resolution 

deteriorates as the beam width diverges (i.e. wider) beyond this point.  Thus, 

optimal lateral-resolution is achieved within the near zone and up to the focal 

zone (Figure 1.20).   

 

 
Figure 1.20:  Lateral resolution is best when the beam width is narrow; allowing 

for distinguishing side-by-side structures.  The lateral resolution is highest within 

the focal zone at the focal point (;
2
); where the beam converges, and is 

narrowest.   

 

The lateral and axial resolution are important in imaging locally advanced breast 

cancer tumours due to the size of the tumour which can span several cm across 

the breast (>5 cm).   The axial resolution is defined as the distance of one 

wavelength (l) along the axis of the ultrasound beam.  Thus, an object can be 

resolved that is equal to the distance occupied from one cycle or pulse of 

ultrasound (O'Brien, 2007).   In practical US imaging, single wavelengths are 

not used rather, pulses of ultrasound are employed that contain N wavelengths 

per pulse; this is termed the spatial pulse length (SPL).  The SPL can be used 

to calculate the axial resolution based on the frequency bandwidth (Figure 
1.21).    
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Figure 1.21: Axial resolution for ultrasound imaging.  The axial resolution is 

determined by the wavelength of an ultrasound pulse (A).  However, in practical 

ultrasound imaging, a pulse of ultrasound will contain several wavelengths as it 

propagates through the imaging medium (e.g. tissue).    The spatial pulse 

length (SPL) is defined as the number of wavelengths in a repeated pulse 

waveform.  For practical ultrasound imaging, the SPL is used to determine the 

optimal (best) axial resolution.  In this example in (B), the SPL is equal to 2l.   

 

For QUS quantification of biological tissue which can contain several 

scatterers, a Born approximation is assumed; that is, the backscattered field is 

the sum of the individual scatterers within that acoustic field (Chivers, 1977).  

Thus, QUS measurements in breast tumours represent the net change in 

scatterers (i.e. dying cells).  It is also important to mention that in QUS 

modelling, the backscatter intensity calculations assume that the tumour is a 

low-density medium and that scatterers within the tumour microenvironment are 

randomly distributed (Oelze et al., 2002). Previous experiments have developed 

a framework to show the relationship between QUS parameters and scatterer 

properties (outlined below in Table 1.17) (Lizzi et al., 1997b, Insana and Hall, 

1990, Kolios et al., 2002, Feleppa et al., 1986).   
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Scatterer 
Property 

QUS 
Parameters 

Findings Reference 

Size  Spectral 

Intercept 

A two-fold increase in the 

scatterer diameter showed 

an 18 dB increase in the 

Spectral Intercept.   

(Feleppa et al., 

1986) 

Size  Spectral 

slope 

The size of the scatterer of 

less than ~20 µm has 

insignificant effects on the 

spectral slope (i.e. slope 

remains constant).   

(Feleppa et al., 

1986) 

Size Mid-band Fit The mid-band fit increases 

from an increase in the 

scatterer diameter for 

effective diameters of up to 

~60 µm 

(Feleppa et al., 

1986).   

 

(Lizzi et al., 1997b) 

Number of 

scatterers 

Spectral 

Intercept 

An increase in the number 

of scatterers increases the 

spectral intercept due to an 

increase in the number of 

scattering surfaces 

(Lizzi et al., 1997b) 

Concentration 

of scatterers 

Spectral 

Slope 

An increase in the 

concentration of the 

scatterers decreases the 

spectral slope  

(Lizzi et al., 1997b) 

Table 1.17:  QUS dependence on scatterer properties.  Scatterer properties 

such as the size, number and distribution have been shown previously to 

change the acoustic scattering in tissue 
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In general, the quality of US imaging is reliant on angle dependence, 

aliasing (indeterminate ultrasound signals) and a poor signal-to-noise ratio that 

can result from user error (Hamper et al., 1997).  Other technical considerations 

for US include breast density and breast-tissue composition (connective tissue, 

lactiferous ducts) that can affect image quality since it can alter the speed-of-

sound in tissue, cause speckle, and scattering; these factors may result in 

image artefacts (Sehgal et al., 2006).  For elastography, tissue composition can 

affect the elasticity reading between patients that demonstrate higher fatty-

tissue content and fibrosis, as these features can change the biomechanical 

properties of the breast and alter the strain measurements (Butcher et al., 2009, 

Wells and Liang, 2011).   US imaging can also be limited by penetrance, also 

known as the acoustic impedance.   This is because US imaging is dependent 

on the wavelength and frequency of the acoustic wave.  Variations in the 

ultrasound frequency may limit the quality of images if tumours are situated 

deeper into the breast tissue (Athanasiou et al., 2009).  Conventional breast 

sonography uses frequencies between 9-12 MHz, and this allows imaging axial 

distances of up to 5 cm (Athanasiou et al., 2009).  As a rule, higher frequency 

(>20 MHz) ultrasound can improve resolution but due to high scattering in 

tissue, these frequencies are better suited for superficial lesions.  Conversely, 

lower frequency ultrasound (2-5 MHz) can penetrate greater tissue depths, but 

resolution is compromised (Athanasiou et al., 2009).  Previous US clinical 

studies have employed transducers that operated at between 5-13 MHz 

(Gangeh et al., 2016, Sadeghi-Naini et al., 2013b, Sannachi et al., 2015, 

Tadayyon et al., 2016, Tadayyon et al., 2017, Amioka et al., 2016, Shia et al., 

2015).  These frequencies are consistent with clinical breast sonography but the 

variations in acoustic parameters (i.e. frequency, time-gain compensation, pulse 

repetition frequency and focal depth) limit the comparisons that can be made 

between studies since the experimental conditions (i.e. technology, biological 

measurements, image processing techniques) were different.     

 Functional imaging techniques such as contrast-based ultrasound 

(CEUS) also have limitations.  For CEUS, invasive injections are required and 

there are potential adverse reactions from using contrast agents (Stewart and 

Sidhu, 2006).  Also, the contrast agents’ lifetime in blood vessels are short and 

therefore multiple injections are needed for optimal image acquisition (Heijblom 

et al., 2011). 
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1.13.8 DOS and QUS Measurements Represent the Tumour’s Spatial and 
Biological Properties 
 
The Tumour’s Biological Architecture  

 
One mechanism by which chemotherapy agents exert their therapeutic 

effect is by committing tumour cells to apoptosis (Figure 1.22) (Bold et al., 

1997, Mizutani et al., 2005).  In comparison to other forms of cell death such as 

necrosis, apoptotic cell death is energy dependent, genetically controlled and 

morphologically distinct, i.e., developing apoptotic bodies, cell shrinking and 

nuclear condensation (Majno and Joris, 1995).  Under microscopy apoptosis is 

identified as cell shrinking, membrane blebbing, forming apoptotic bodies and 

having nuclear restructuring.   Nuclear reorganization undergoes karyolysis 

(nuclear breakdown), pyknosis (nuclear condensation), and finally karyorrhexis 

(nuclear fragmentation) (Majno and Joris, 1995).  Fragmented cellular and 

nuclear debris are engulfed by phagocytes.  Apoptosis has been identified in 

primary breast tumours treated with neoadjuvant chemotherapy in situ.  Studies 

by Chang et al. (2000) and Ellis et al. (1997) demonstrated that there was an 

increase in apoptosis in responsive tumours and detected as early as 24 hours 

after the administration of chemotherapy using immunohistochemistry analysis 

(Chang et al., 2000, Ellis et al., 1997).  Chang et al. (2000) showed that 

increased apoptosis, as assessed by serial biopsies, was linked to pathological 

complete response where there was no residual or palpable disease after 

therapy (Chang et al., 2000).  Buchholz et al. (2003) also measured the 

apoptotic activity in breast tumours after 48 hours of chemotherapy using breast 

tumour biospecimen analyses.  Patients who had a 25% increase in the 

apoptotic actively, as assessed by immunohistochemistry, had gone on to 

achieve pCR.  The apoptotic activity was significantly different to patients who 

did not achieve pCR (p<0.015)  (Buchholz et al., 2003).   These previous clinical 

experimental results suggest that apoptosis is a major biological response 

mechanism to chemotherapy response in tumours (Simstein et al., 2003, Bold 

et al., 1997, Okada and Mak, 2004).  In contrast, chemoresistant tumours show 

defects in the apoptotic pathway and have evolved to evade programmed cell 

death (Simstein et al., 2003).  A summary of previous studies that have 

evaluated apoptosis using serial biopsies is presented in Table 1.18.    
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Figure 1.22:  Apoptosis in cancer cells.  Apoptosis is characterised as an 

energy dependent mechanism where cells undergo programmed morphological 

changes.  Chemotherapies drive apoptosis in tumour cells and this results in 

cell shrinking and nuclear restructuring such as karyolysis, pyknosis and 

karyorrhexis.  These morphological changes are the basis of detection methods 

in quantitative ultrasound.     
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 Reference n Cx Time Findings/Notes/Limitations 
1 (Arpino et 

al., 2005) 

33 • A • D0  
• 24h 
• D7 
• Ds 

• Results did not demonstrate a 
significant difference between 
responders and non-responders at all 
time points.  However, the trends for 
responders and non-responders 
demonstrated a higher apoptotic index 
in responders compared to non-
responders (p=0.1).   

• Limitations:  Small sample size and 
data from study did not demonstrate 
statistical significance which contrasted 
other studies.      

2 (Buchholz 

et al., 

2003) 

25 • A 
• T 

• D0  
• 24h 
• D2 

• There was a 25% difference in the 
apoptotic index between responders 
and non-responders at 48 hours 
(p=0.015).  

• Limitations: Data based on 16 breast 
tumours only (small sample size).   

3 (Chang et 

al., 2000) 

28 • M • D0  
• 24h 
• D7 
• D21 

• Median change of 3.4% in responders 
versus -0.1% in non-responders 
(p=0.03) after 24 hours.   

• Limitations: Variable tumour types 
were included in the study sample.   

• Limitations: Mixed areas of necrosis 
and apoptosis identified in all tumours 
(risk of overestimated findings). 

4 (Symmans 

et al., 

2000) 

11 • T • D0  
• 24h 
• D3 
• D4 

• All patients were pooled for analysis.  
There was a 3.0-6.0-fold increase in the 
apoptotic activity at 4 days after one 
treatment.   

• Limitations:  No statistical tests were 
performed to compare between 
responders and non-responders and 
this was due to the small sample size.   

5 (Ellis et al., 

1997) 

27 • A 
• AL  
• M 

• D0  
• 24h 

• Responders showed >50% increase in 
the apoptotic index.  

• Non-responders showed no significant 
changes in apoptosis after 24 hours 
(p=0.22).   

• Limitations: small sample size and 
unequal responder/non-responder ratio.   

Cx (Chemotherapy): A=Anthracycline; T=Taxane; M=Antimetabolite; 
AL=Alkylating Agent.    Time (Measured relative to chemo-cycle 1): 
D0=Baseline (prior to chemotherapy starting), 24h (hours), D2=2 days (48 
hours); D3=Day 3; D4=Day 4; D7=Day 7, D21=Day 21; Ds=Surgical Specimen.   

Table 1.18: Clinical studies that used serial biopsies to measure apoptosis in 

breast tumours.  The results indicate that apoptotic tumour response may be 

initiated as early as 24 hours after giving chemotherapy.  
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Additionally, tumour cells exhibit genetic modifications that enable 

proliferation, despite unstable environments caused by hypoxia, overpopulation 

and inefficient vascularization (Jain, 2005).  Tumours have abnormal vascular 

architecture which contributes to a spatially heterogeneous environment (Jain, 

2005).  The vascular morphology and organization have been well studied; 

blood vessels are disorganized, distributed unevenly, immature and leaky, 

which also affects the tumour’s response to treatment (Dvorak et al., 1988).  

The tortuous vessel formations have been shown previously to inhibit drug 

efficacy by secreting factors that block chemotherapy effects (Gilbert and 

Hemann, 2010, Junttila and de Sauvage, 2013) .  Additionally, abnormal 

morphologies such as variable vessel diameters and weak junctions in the 

vessel walls have been shown to inhibit efficacious drug delivery since leaky 

vessels reduce drug concentrations in tumours (Hashizume et al., 2000, Damia 

and Garattini, 2014).  Additionally, the uneven vascular scaffold creates areas 

with variable and high interstitial fluid pressure, which resists the transport of 

cytotoxic agents into the stroma (Rofstad et al., 2014, Junttila and de Sauvage, 

2013, Minchinton and Tannock, 2006).  Solid tumours that respond to 

chemotherapy exhibit characteristic patterns in their vessel reorganization  

(Jain, 2005).  Jain et al. (2005) described these patterns as vascular 

“normalization” by which the vascular architecture is reconfigured to eliminate 

inefficient, saccular, leaky and immature vessel formations  (Jain, 2005).  This 

results in improved oxygen delivery and cytotoxic efficacy.   In highly responsive 

tumours, the vasculature eventually regresses and limits the nutrient supply to 

tumour cells (Jain, 2013).  Taken together, the important hallmarks in tumour 

response to chemotherapy include vascular normalization and regression, cell 

death and changes in the tissue composition and are observed explicitly under 

microscopy (Figure 1.23).  These biological changes result in spatial and 

structural reorganization in tumours which can be detected by ultrasound and 

optical imaging techniques. 
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Figure 1.23:   A comparison of the vascular organization. A.  Normal tissue 

exhibits normal sized and well-organized vasculature, which permit exchange of 

biomolecules and gas (arrows).  B.  Untreated tumours show high density 

vasculature and do not permit free exchange of biomolecules and gasses.  C.  
Normalized tumours demonstrate greater organization closer to that of normal 

tissue.  D.  In regressed tumours, the vasculature may be absent, or minimal.    

 
Detecting the Tumour’s Biology and Characterizing its Structure using DOS and 

QUS 

 
Ultrasonic and optical wave interactions in tissue are a function of the 

tumour’s biologic properties.  The tumour’s biological components, i.e. tumour 

cells, normal cells, fragmented apoptotic bodies, stromal features, vasculature 

and substructures such as mitochondria and cell nuclei can scatter light and 

sound.  Thus, these components are often termed “scatterers” in the context of 

optical and acoustic imaging.   As tumours respond to chemotherapy, 

alterations occur with respect to scatterer spacing, organization, density and 

concentration, which can affect the DOS and QUS signals that are measured.   

The current understanding of a solid tumour’s biological matrix illustrates 

a microenvironment that is made from densely arranged cells, tortuous 

vasculature, and high interstitial fluid at its onset and progression  (Nishida et 

al., 2006).  Tumours that respond to chemotherapy show opposite 

characteristics such as sparse tumour cells, low vascularity and low interstitial 
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fluid and this is the basis of optical and acoustic parameters to measure tumour 

response to chemotherapy.  

Here it is important to illustrate the biological “landscape” in solid tumours 

at initial diagnosis.   Before treatments are administered to kill the tumour, it has 

been shown that there is a high interdependency between cellularity and 

vascularity; i.e., tumour cells trigger the growth of blood vessels, and blood 

vessels support tumour cell growth by supplying vital nutrients.  Previous work 

by Muthukkarruppan et al. (1982) showed that tumours that grow beyond 2 mm3 

initiate an “angiogenic switch” to drive neovascularization (Bergers and 

Benjamin, 2003, Muthukkaruppan et al., 1982). Growing blood vessels infiltrate 

the tumour into a woven matrix that enables oxygen exchange and trafficking of 

proteins for cell signalling.  The irregular vascular distribution and variable 

tumour cell phenotypes also contribute to intratumoural heterogeneity (Polyak, 

2011).  Cancer cells may transform into more aggressive tumour cells with each 

replication cycle and this can result in morphological heterogeneity such as 

condensed and irregular nuclear bodies and enlarged or shrunken cell sizes 

(Swanton, 2012). Thus, even within short distances within the tumour’s 

subregions, tumour cells may demonstrate variable rates of cell proliferation 

and cell cycling.  Other physiological conditions that lead to spatial variances 

within the tumour stroma include fluctuating interstitial fluid, variable vascular 

perfusion and circulating biomolecules (O'Connor et al., 2015).  To compound 

the spatial complexity, the tumour stroma is also constructed from a variety of 

cell-types such as fibroblasts, immune cells, adipocytes and normal breast 

epithelial cells (Figure 1.24) (Polyak, 2011, Pietras and Ostman, 2010).  Taken 

together, tumours are composed of disorganized and aberrant cells, and 

circulating biomolecules that are “woven” into a turbulent vascular scaffold and 

environment.   These aberrations are the cause of inter- and intra-tumour 

heterogeneity and result in significant treatment challenges in breast cancer 

(Rofstad et al., 2014).  

 

Tissue-dependent Factors in Ultrasonic Backscattering 

 
QUS is a measure of the ultrasonic backscatter intensity in tissue.  

Scatterers in tissue include fibroblasts, collagen, tumour cells, blood-related 

cells, collagen, normal cells and their subcellular structures such as the nucleus 
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and proteins.  Spatial heterogeneities of those structures cause changes in 

ultrasonic scattering in tissue.  The backscatter is measured in terms of intensity 

(power) in decibels (dB) (Chivers, 1977).  The average speed of sound (c) in 

soft tissue is 1540 m/s and this is dependent on the tissue’s elastic properties 

(compressibility, k) and density (𝜌). 

 
Figure 1.24: Tumour composition.  The tumour is a complex system which is 

composed of several cell types and subcomponents which contribute to its 

spatial heterogeneity.   

 

Thus, variations in ultrasonic scattering is dependent on tissue 

biophysical properties such as its density and compressibility that are regulated 

by cells, vasculature, fluid and biomolecules.  In this study, it is hypothesized 

that changes in the tumour’s biophysical properties are a result of the spatial 

heterogeneities that can be detected by ultrasound and subsequently used to 

measure tumour response during chemotherapy.  This hypothesis is based on 

previous studies by Czarnota et al. (1999) and Kolios et al. (2002), in which the 

results showed that there was a relationship between cell structural changes 

from apoptosis that were detected from ultrasonic backscatter signals (Czarnota 

et al., 1999, Kolios et al., 2002).  In those studies, a time-course analysis (0h-

48h) under microscopy showed changes in size, number and concentration of 

the scatterers (cells and cell nuclei). The conclusions of these previous studies 

indicated that the backscattered signal was correlated to condensed nuclei 

(pyknosis), fragmented DNA (karyorrhexis) and membrane blebbing from 

apoptotic cell death (Czarnota et al., 1999).  A summary of the biological 
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correlates associated with DOS and US imaging biomarkers, as indicated from 

previous studies, is outlined in Table 1.19.   

 

 

Technique Biological Measurements Reference 
 
Diffuse Optical Spectroscopy 

DOS 

Metabolism 

Cell activity 

Vascular Density 

Oedema 

Breast tissue composition 

Cellularity 

Cell distribution 

Cell death 

Tissue contrast 

Hypoxia 

Nuclear fragmentation 

 

(Cerussi et al., 2006) 

(Cerussi et al., 2001) 

(Cerussi et al., 2011) 

(Intes, 2005) 

(Fantini and Sassaroli, 2012) 

(Cerussi et al., 2006) 

(Fantini and Sassaroli, 2012) 

(Fantini and Sassaroli, 2012) 

General Ultrasound Imaging and Quantitative Ultrasound Spectroscopy 

Elastography 

Tumour progression 

Extracellular matrix 

Collagen crosslinking 

Tissue composition (fibrosis) 

(Hayashi et al., 2012) 

(Schrader et al., 2011) 

(Evans et al., 2013) 

CEUS Vascular blood flow (Cao et al., 2012b) 

Power Doppler 

Vascular blood flow 

Blood perfusion 

Vascularity 

(Shia et al., 2015) 

QUS 

Cell Death (Apoptosis) 

Scatterer size 

Scatterer distribution 

Scatterer concentration 

(Lizzi et al., 1997a) 

(Lizzi et al., 1997a) 

(Hunt et al., 2002) 

Table 1.19.   Physiological measurements by DOS and US.  Scatterers for 

QUS include tumour cells and subcellular organelles and other cell and tissue 

types.     
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1.14 Results of DOS and US Systematic Review 
 

1.14.1 Patients 
 

Between 1975-2017, DOS (n=394 patients), US (n=294 patients) and 

QUS (n=244 patients) have been studied in 932 patients with locally advanced 

breast cancer to measure neoadjuvant chemotherapy response (Table 1.20).  
Patients from these studies exhibited breast tumours that were histologically 

and molecularly heterogeneous (ER +/-, PR+/-, HER2+/-), and were treated 

with taxane- and anthracycline-based chemotherapies (Table 1.20).  However, 

two DOS studies included a subset of patients (n=23) who were treated with 

bevacizumab, which is an anti-angiogenic agent (Cerussi et al., 2011, Roblyer 

et al., 2011).  Since DOS, CEUS, and power Doppler ultrasound measures 

blood perfusion and vascular density; it is unclear if this affected the 

comparative haematological measurements between patients treated +/- 

bevacizumab.   

 

Imaging 
Modality 

Patients 
(n) 

Drug Treatments 
Chemotherapy 
Cycles 

Response 
Measurements 

DOS 394 

Anthracyclines 

Taxanes 

Alkylating Agents 

Trastuzumab 

Bevacizumab 

3-12 cycles 

No clinical 

convention followed 

(pathologist 

evaluation) 

Radiologically 

Assessed (no 

convention) 

RECIST 1.1 

Miller-Payne 

General 
US and 
QUS 

538 

Anthracyclines 

Taxanes 

Alkylating Agents 

Antimetabolites 

Trastuzumab 

3-8 cycles 

No clinical 

convention followed 

(pathologist 

evaluation) 

Radiologically 

Assessed (no 

convention) 

RECIST 1.1 
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Miller-Payne 

RCBI Score 

Abbreviations and Legend 
 

Response Measurements:   
RECIST 1.1 (Response Criteria in Solid Tumours 1.1)  

RCBI (Residual Cancer Burden)   

NCI-EORTC (National Cancer Institute-European Organization for Research on 

Treatment of Cancer) 

WHO (World Health Organization) 

PERCIST (PET Response Criteria in Solid Tumours)  
 

 Table 1.20:  Patients, treatment and endpoints in DOS and QUS imaging 

studies.  
 

A summary of each study identified from the systematic literature search 

is presented in Table 1.21, which outlines the number of study participants, the 

chemotherapies used within each study and study results.   
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Reference 
 

N Cx 
Tumour 
Histology 

Time 
points 
(weeks)§ 

Imaging 
 

Markers 
Study 
Results 

 
Concept 1: Diffuse Optical Spectroscopy Imaging 
 
1. (Cerussi et 

al., 2007) 

11 A, T, 

+ 

1, 2, 3 B, W3, 

W6, W9, F 

DOS, FD Hb, HbO2, 

H2O, Li, 

SP 

1 

         

2. (Zhu et al., 

2008) 

11 A, T, 

+ 

1, 2, 3, 4 B, W3, 

W6, W15, 
F 

DOST HbT 

 

1,2 

         

3. (Jiang et 
al., 2009) 

7 A, T, 
+ 

1, 3, 4 B, W1, 
W3, W4, F 

DOST, FD Hb, HbO2, 
H2O, SP, 

SA, St, 

StO2 

1,2 

         

4. (Soliman et 

al., 2010) 

10 A, T, 

+ 

1, 2, 3, 4 B, W1, 

W4, W8, F 

DOST, TD Hb, HbO2, 

H20, Li, 
TOI 

1,2 

         

5. (Cerussi et 
al., 2011) 

34 
(36)a 

A, T, 
+ 

B 

N/A  B, W8, 
W9, F 

DOS, FD Hb, HbO2, 
H2O, Li, 

TOI 

1,2 

         

6. (Pakalniskis 
et al., 2011) 

11 A, T, 
+ 

B 

1, 2, 3, 4 B, W 
(N/A)b, F 

DOST, FD HbT 
 

1,2 

         
7. (Roblyer et 

al., 2011) 

23 

(24)a 

A, T, 

+ 

1, 2, 3, 4 B, D1-7 DOS, FD Hb, HbO2, 

H2O, Li 

2 

         
8. (Falou et 

al., 2012) 

15 A, T, 

+ 

1, 2, 3, 4 B, W1, 

W4, W8, F 

DOST, TD Hb, HbO2, 

HbT, St, 

StO2, SP, 
SA, H2O, 

Li, TOI 

1,2 

         
9. (Ueda et 

al., 2012) 

41 A, T, 

+ 

1, 2, 3, 4 B DOS, FD Hb, HbO2, 

HbT, 

StO2, TOI 

3 
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10. (Zhu et al., 

2013) 

32 A, T, 

+ 

B 

1, 2, 3, 4 B, W3, 

W6, W9, 

W12, 
W15, F 

DOST Hb, HbO2, 

HbT 

2,3 

         

11. (O'Sullivan 
et al., 2013) 

28 A, T, 
+ 

N/A B, W4, F DOS, FD Hb, HbO2, 
HbT, 

StO2, 

H2O, Li, 
TOI 

1 

         

12. (Jiang et 
al., 2014) 

19 A, T, 
+ 

1, 2 B, W1, 
W2, W3, 

W8 

DOST, FD HbT, 
StO2, H2O 

1,2,3 

         
13. (Schaafsma 

et al., 2015) 

22 A, T, 

+ 

1, 2, 3 B, W3, 

W6, W9 

DOST, TD Hb, HbO2 

 

2 

         

14. (Sadeghi-
Naini et al., 

2015) 

12 A, T, 
+ 

1,2,3 B, W1, 
W4, W8, F 

DOST, TD Hb, HbO2, 
HbT, H2O, 

TOI + 

Texture 

1,2 

         

15. (Tromberg 

et al., 2016) 
(ACRIN 

6691 Trial) 

34 N/A 

B 

1,2,3 B, W1, W 

(N/A)b, F 

DOS, FD Hb, HbO2, 

HbT, 
StO2, TOI 

1,2,3 

         
16. (Ueda et 

al., 2016) 

84 A, T, 

+ 

B 

1,2,3 B, W3, W6 DOS, FD Hb, HbO2, 

HbT, StO2 

1,2 

         

Concept 2a: General Ultrasound Imaging 
         

1. (Singh et 

al., 2005) 

25 A, + 1 B, F CFUS, 

CD 

Vmax, PI, 

RI 

1 

         

2. (Huber et 

al., 2009) 

17 + 1,2,5 B, F CFUS, 

CD 

CPD 1 

         

3. (Hayashi et 

al., 2012) 

55 A, T, 

+ 

1, 3, 4, 5 B CFUS, EL EG 3 

         
4. (Cao et al., 

2012b) 

31 A, T 1 B, F CFUS, 

CEUS 

MTT, 

PI(C), RT, 

TTP, WIS 

1 
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5. (Evans et 

al., 2013) 

40 A, T, 

+ 

1 B CFUS, EL ME 3 

         

6. (Falou et 

al., 2013) 

15 A, T, 

+ 

1, 2, 3, 4 B, W1, 

W4, W8, F 

CFUS, EL SD, SR 

 

1,2 

         

7. (Shia et al., 

2015) 

29 A, T, 

+ 

1, 3, 4, 5 B, W3, W6 CFUS, PD VI, FI, VFI 2,3 

         

8. (Amioka et 

al., 2016) 

63 A, T, 

+ 
B 

1, 3, 4 F CFUS, 

CEUS 

PI(C), 

TTP, AS 

1 

         

9. (Saracco et 
al., 2017) 

19 A, T, 
B 

1,2,5 B, W2, W5 CFUS, 
CEUS 

MTT, 
PI(C), 

Cmax, 

TTP, WIS 

2 

             

Concept 2b: Quantitative Ultrasound Spectroscopy 
         
10. (Sadeghi-

Naini et al., 

2013b) 

24 A, T, 

+ 

1, 2, 3, 4 B, W1, 

W4, W8, F 

CFUS, 

QUS 

MBF, SI, 

SS 

 

1,2 

         

11. (Sadeghi-

Naini et al., 
2014) 

20 A, T, 

+ 

1, 2, 3, 4 B, W1, 

W4, W8, F 

CFUS, 

QUS 

MBF, SI, 

SS, 
Texture 

 

1,2 

         
12. (Sannachi 

et al., 2015) 

30 A, T, 

+ 

1, 2, 3, 4 B, W1, 

W4, W8, F 

CFUS, 

QUS 

IBC, ASD, 

AAC 

 

1,2,3 

         

13. (Gangeh et 

al., 2016) 

56 A, T, 

+ 

1, 2, 3, 4 B, W1, 

W4, W8, F 

CFUS, 

QUS 

MBF, SI, 

SS 
 

1,2 

         

14. (Tadayyon 
et al., 2016) 

58 A, T, 
+ 

1, 2, 3, 4 B, W1, 
W4, W8, F 

CFUS, 
QUS 

MBF, SS, 
SI,  

SAS, 

ACE, 

ASD, AAC 

1,2 

         

15. (Tadayyon 

et al., 2017) 

56 A, T, 

+ 

1, 2, 3, 4 B CFUS, 

QUS 

MBF, SI, 

SS, 

3 
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ACE, 

ASD, 

AAC, 
Texture 

         

 Patients Enrolled: aNumber of tumours studied (patients with bilateral 

disease, or multifocal disease) 

Chemotherapy Strategy (Cx):  A=Anthracycline-based chemotherapies; 

T=Taxane-based Chemotherapies; +=Other chemotherapies; 

B=Bevacizumab (Avastin).  

 
Tumour Histology: 1=Invasive Ductal Carcinoma, 2=Invasive Lobular 

Carcinoma, 3=Oestrogen/Progesterone Receptor Positive, 4=Growth 

Hormone Amplification (HER2), 5=Other Types 

 
Measured Timelines: B=Baseline (Pre-Chemotherapy); D=Number of 

Days; W=Number of Weeks; F=Finish of Chemotherapy; bAuthors indicate 

“during treatment” but no times specified. Study authors report the cycle, 

and this has been converted to weeks relative to start of chemotherapy.   

 
Imaging: DOS=Diffuse Optical Spectroscopy Imaging (Topographic 2D); 

DOST=Diffuse Optical Tomography.  FD= Frequency Domain.  TD= Time 

Domain.  All optical imaging uses NIR light (600 nm-1000 nm).  

CFUS=Conventional Frequency Ultrasound. QUS=Quantitative Ultrasound 

Spectroscopy.  EL=Elastography.  CEUS= Contrast Enhanced Ultrasound.  

PD= Power Doppler Ultrasound.  CD=Colour Doppler Imaging (Velocity 

Doppler).   

 
Parameters Measured Per Study: Hb=Deoxy-haemoglobin; 

HbO2=Oxyhaemoglobin; HbT=Total Haemoglobin; St=Oxygen 

Desaturation; StO2=Oxygen Desaturation; SP=Scatter Power; SA=Scatter 

Amplitude; H2O=%Water; Li=%Lipid; TOI=Tissue Optical Index; MBF=Mid-

band Fit, SI= Spectral Intercept (0-MHz Intercept); SS=Spectral Slope; 

SAS=Spacing Among Scatterers; ESD=Effective Scatterer Diameter; 

EAC=Effective Acoustic Concentration; IBC=Integrated Backscatter 

Coefficient; ASD=Average Scatterer Diameter; AAC=Average Acoustic 
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Concentration, ACE=Attenuation Coefficient Estimate.  Vmax=Maximum 

Flow Velocity.  PI=Pulsatility Index.  RI=Resistivity Index.  

CPD=Percentage of Colour Pixels (Colour Doppler).  SR=Strain Ratio.  

SD=Strain Difference.  EG=Tsukuba Elasticity Score.  MTT=Mean Transit 

Time.  PI(C)=Peak Intensity.  RT=Rising Time.  TTP=Time To Peak.  

WIS=Wash-in Slope.  AS=Ascending Slope.  ME=Mean Elasticity.  

VI=Vascularization Index. FI=Flow Index.  VFI=Vascularization-flow Index.  

Cmax=Curve Maximum 

 
Study Results: 1=Significant parameter changes for Responders but not 

Non-Responders after NAC (95% CI, α=0.05); 2=Significant parameter 

changes for Responders but not Non-Responders during NAC (intra-

treatment monitoring) (95% CI, α=0.05); 3=Significant difference in 

parameters between Responders and Non-Responders at baseline (prior 

to NAC) (95% CI, α=0.05) 

Table 1.21:  Summary of research for DOS and US in breast cancer 

chemotherapy response. 

 

1.14.2 Quality Assessment Using QUADAS-2 and STARD 
 

For this review, 31 observational trials were identified.  Due to the recent 

use of DOS and QUS for chemotherapy response monitoring for breast cancer 

compared to other modalities, no trials were identified as randomized controlled 

trials (RCTs) and there were no RCTs for other US-based imaging.  Thus, it 

should be noted that these limitations affect the generalizability of this literature 

review.  Further, it should be noted that a single evaluator performed the quality 

assessments only (William Tran), thus limiting the objectivity of the results of 

this review.  Nevertheless, the results of the review identified areas of high risk 

for bias.  

 

1.14.3 QUADAS-2 Results 
  

A risk for bias for patient selection was identified in 26% of all studies 

and this was higher in DOS studies (5/16, 31%) compared to US and QUS 

studies (3/15, 20%).  The major weaknesses were found in signalling questions 
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surrounding case-control designs and related to the index test (48% of all 

studies), where there was a higher risk in DOS studies (11/16, 69%) compared 

to US studies (4/15, 27%).  A higher risk of bias could be due to analysis 

performed with prior knowledge of pathological response to NAC, and when 

studies were performed retrospectively.  One study demonstrated an unclear 

risk with respect to the reference standard because pathologic outcomes were 

not described clearly with current clinical standards (Huber et al., 2000).  In all 

applicability concern categories, the reference standard was reported as high 

risk for US studies (6/9, 67%).  This is due to the variabilities in which the tests 

and measurements were completed during chemotherapy (i.e. various 

measurement timelines) and technical concerns about the parameters used to 

acquire and measure the ultrasound signals.  For example, ultrasound studies 

did not indicate the ultrasound frequency (MHz) used to acquire images and 

image optimization methods were missing from the materials and methods 

section.  Additionally, DOS and US studies that measured chemotherapy 

response demonstrated variable chemotherapy regimens which could have 

affected the results of the studies as the heterogeneity of tumours (i.e. intrinsic 

molecular features) could be responsive to one treatment over another.  In 

some studies, an antivascular drug (Bevacizumab; tradename, Avastin®) was 

transiently used in some patient populations and studies and this could have 

affected the results for tests that measured haemoglobin, blood flow and 

vascularity  (Ueda et al., 2012, Zhu et al., 2013, Tromberg et al., 2016, 

Pakalniskis et al., 2011, Cerussi et al., 2011, Amioka et al., 2016, Saracco et 

al., 2017).   A summary of the QUADAS-2 results is presented in Table 1.22 

and Figure 1.25. 
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QUADAS-2 
References (Study) 

RISK OF BIAS 
APPLICABILITY 

CONCERNS 
Patient 

Selection 
Index 
Test 

Reference 
Standard 

Timing & 
Flow 

Patient 
Selection 

Index 
Test 

Reference 
Standard 

 
Concept 1: Diffuse Optical Spectroscopy Imaging 
1 (Cerussi et al., 2007) L L J L L L J 

2 (Zhu et al., 2008) J L J J J J J 

3 (Jiang et al., 2009) L L J J L J J 

4 (Soliman et al., 2010) J L J J J J J 

5 (Cerussi et al., 2011) L L J J J J J 

6 (Pakalniskis et al., 2011) L J J L L J J 

7 (Roblyer et al., 2011) J L J J J J J 

8 (Falou et al., 2012) J J J J J J J 

9 (Ueda et al., 2012) J L J J J J J 

10 (Zhu et al., 2013) J L J J J J J 

11 (O'Sullivan et al., 2013) L L L J L J L 

12 (Jiang et al., 2014) J L J J J J J 

13 (Schaafsma et al., 2015) J L J J J J J 

14 (Sadeghi-Naini et al., 2015) J J J J J J J 

15 (Tromberg et al., 2016) J J J J J J J 

16 (Ueda et al., 2016) J J J J J J J 

 

Concept 2a: General Ultrasound Imaging 
1 (Singh et al., 2005) J J J J J J J 

2 (Huber et al., 2009) L L ? J ? ? L 

3 (Hayashi et al., 2012) J L L J J L L 

4 (Cao et al., 2012b) J J L J J J L 

5 (Evans et al., 2013) L L J J L L J 

6 (Falou et al., 2013) J J J J J J J 

7 (Shia et al., 2015) L J L J L J L 

8 (Amioka et al., 2016) J J L J J J L 

9 (Saracco et al., 2017) J L L J J L L 
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Concept 2b: Quantitative Ultrasound Spectroscopy 
10 (Sadeghi-Naini et al., 2013b) J J J J J J J 

11 (Sadeghi-Naini et al., 2014) J J J J J J J 

12 (Sannachi et al., 2015) J J J J J J J 

13 (Gangeh et al., 2016) J J J J J J J 

14 (Tadayyon et al., 2016) J J J J J J J 

15 (Tadayyon et al., 2017) J J J J J J J 

 Risk of Bias and Applicability Concerns scale: 
 

    

 

 

Table 1.22. QUADAS-2 was used to study the diagnostic accuracy of previous 

studies. The QUADAS-2 evaluation tool was adapted from (Whiting et al., 

2011).     
 
 
 
 
 
 
 
 
 
 
 
 
 

J Low 
Risk 

L High Risk ? Unclear Risk 
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Figure 1.25. A. QUADAS-2 Domain (Bias); B. QUADAS-2 Domain 

(Applicability).  Proportion of studies with low, high, or unclear concerns 

regarding bias and applicability, % for DOS, US, and QUS studies.  
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1.14.4 STARD Assessment Results 
 

 For STARD results, 4/25 items scored less than 50% across all studies.  

These scores corresponded with items no. 10, 11, 20 and 24 of the STARD 

assessment.  Of the studies yielded in this literature review, test methods 

demonstrated lower reporting on the number, training and expertise of readers 

who did the imaging analysis (STARD, no. 10). (Bossuyt et al., 2003).  This was 

particularly high in QUS studies.  There was a risk of data variance which could 

have resulted from differences in tumour volume analysis, 2D versus 3D image 

acquisition and determining tumour ROIs for analysis.  Schaafsma et al. (2015) 

reported that a 5-mm displacement of DOS ROIs could affect the results of up 

to 8% depending on the size of the tumour (Schaafsma et al., 2015).   

Additionally, 45% of the studies did not report blinding readers from the 

reference standard (STARD, no.11) and these limitations are consistent with the 

QUADAS-2 assessment results.  For adverse events reporting (STARD, no.20), 

it would be expected to observe a low reporting rate for this category because 

QUS and optical imaging does not involve any contrast agents, and the risk for 

adverse effects to contrast-based ultrasound is relatively low (Stewart and 

Sidhu, 2006).  Finally, another area of concern involves the reproducibility of 

results which include inter- and intra-user variance (STARD, no. 24).  Only 42% 

of all studies reported a kappa-statistic or inter-user validation and analysis.  

This was particularly low in QUS studies that reported no such methods.  

Results of the STARD assessment are presented in Table 1.23. 
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STARD CHECKLIST RESULTS 
SECTION AND TOPIC 

Imaging Technique 

DOS US QUS ALL 

n n n n 
(%) (%) (%) (%) 

TITLE/ABSTRACT/KEYWORDS 

 1. Identify the article as a study of 

diagnostic accuracy (recommended 

MeSH heading ‘sensitivity and 

specificity’). 

15 9 6 30 

94 100 100 97 

INTRODUCTION 

 2. State the research questions or study 

aims, such as estimating diagnostic 

accuracy or comparing accuracy between 

tests or across participant groups. 

16 9 6 31 

100 100 100 100 

METHODS 

Participants 3. Describe the study population: The 

inclusion and exclusion criteria, setting 

and locations where the data were 

collected. 

15 9 6 30 

94 100 100 97 

 4. Describe participant recruitment: Was 

recruitment based on presenting 

symptoms, results from previous tests, or 

the fact that the participants had received 

the index tests or the reference standard? 

15 9 6 30 

94 100 100 97 

 5. Describe participant sampling: Was the 

study population a consecutive series of 

participants defined by the selection 

criteria in items 3 and 4?  If not, specify 

how participants were further selected. 

16 9 6 31 

100 100 100 100 

 6. Describe data collection: Was data 

collection planned before the index test 

and reference standard were performed 

(prospective study) or after (retrospective 

study)? 

13 9 6 28 

81 100 100 90 

Test 
methods 

7. Describe the reference standard and 

its rationale. 

15 8 6 29 

94 89 100 94 
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 8. Describe technical specifications of 

material and methods involved including 

how and when measurements were 

taken, and/or cite references for index 

tests and reference standard. 

16 9 6 31 

100 100 100 100 

 9. Describe definition of and rationale for 

the units, cut-offs and/or categories of the 

results of the index tests and the 

reference standard. 

15 8 6 29 

94 89 100 94 

 10. Describe the number, training and 

expertise of the persons executing and 

reading the index tests and the reference 

standard. 

9 6 0 15 

56 67 0 48 

 11. Describe whether or not the readers 

of the index tests and reference standard 

were blind (masked) to the results of the 

other test and describe any other clinical 

information available to the readers. 

4 5 5 14 

25 56 83 45 

Statistical 
methods 

12. Describe methods for calculating or 

comparing measures of diagnostic 

accuracy, and the statistical methods 

used to quantify uncertainty (e.g. 95% 

confidence intervals). 

16 9 6 31 

100 100 100 100 

 13. Describe methods for calculating test 

reproducibility, if done. 

16 9 6 31 

100 100 100 100 

RESULTS 

Participants 14. Report when study was done, 

including beginning and ending dates of 

recruitment. 

9 8 1 18 

56 89 17 58 

 15. Report clinical and demographic 

characteristics of the study population 

(e.g. age, sex, spectrum of presenting 

symptoms, comorbidity, current 

treatments, recruitment centres. 

16 9 6 31 

100 100 100 100 

 16. Report the number of participants 

satisfying the criteria for inclusion that did 
15 9 6 30 
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or did not undergo the index tests and/or 

the reference standard; describe why 

participants failed to receive either test (a 

flow diagram is strongly recommended). 

94 100 100 97 

Test results 17. Report time interval from the index 

tests to the reference standard, and any 

treatment administered between. 

15 9 6 30 

94 100 100 97 

 18. Report distribution of severity of 

disease (define criteria) in those with the 

target condition; other diagnoses in 

participants without the target condition. 

15 8 6 29 

94 89 100 94 

 19. Report a cross tabulation of the 

results of the index tests (including 

indeterminate and missing results) by the 

results of the reference standard; for 

continuous results, the distribution of the 

test results by the results of the reference 

standard. 

16 8 6 30 

100 89 100 97 

 20. Report any adverse events from 

performing the index tests or the 

reference standard. 

0 0 0 0 

0 0 0 0 

Estimates 21. Report estimates of diagnostic 

accuracy and measures of statistical 

uncertainty (e.g. 95% confidence 

intervals). 

16 9 6 31 

100 100 100 100 

 22. Report how indeterminate results, 

missing responses and outliers of the 

index tests were handled. 

 

 

14 9 6 29 

88 100 100 94 

 23. Report estimates of variability of 

diagnostic accuracy between subgroups 

of participants, readers or centres, if 

done. 

 

16 9 6 31 

100 100 100 100 

 24. Report estimates of test 

reproducibility, if done. 

9 4 0 13 

56 44 0 42 
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DISCUSSION 

 25. Discuss the clinical applicability of the 

study findings. 

16 9 6 31 

100 100 100 100 

STARD checklist for quality assessment of studies.  Studies were stratified into 

their respective imaging domains and overall score (all studies combined).  

Stratified data: DOS; n=16, Ultrasound Imaging; n=9, QUS; n=6.    
All pooled studies; n=31. 
Areas with scores of less than 50% are highlighted in orange.   

 

Table 1.23:  STARD assessment results.  The STARD assessment tool was 

adapted from (Bossuyt et al., 2003).   

 

1.14.5 Summary Findings from Literature Review 
 

 The results of the literature review showed that MRI studies were most 

frequently reported for measuring chemotherapy response in locally advanced 

breast cancer.  MRI technique included: DCE-MRI, DWI-MRI, BOLD-MRI and 

SPECT-MRI.  MRI imaging biomarkers were used to measure tumour vascular 

perfusion, tumour cellularity and tumour cell features (i.e. cell membrane 

integrity associated with cell death).  The major limitations for using MRI 

included needing contrast agents (i.e. variable contrast injection techniques 

caused variability in data) and variable image quality (i.e. using 1.5T and 3.0T 

MRI systems produced images with variable signal-to-noise ratios).  Other 

imaging studies for PET, CT, X-Ray and 99m-Tc Scintigraphy showed 

promising results that reached a classification accuracy of up to 89%; however, 

the major limitations included small sample sizes that may have caused 

overestimated results, variable definitions of tumour response endpoints (i.e. 

radiological versus pathological endpoints) and imaging results were dependent 

on the adequate uptake of contrast agents in tumours.        

For DOS and QUS, QUADAS-2 and STARD tools were used to 

systematically identify the quality of previous imaging studies. QUADAS-2 and 

STARD assessment results demonstrated that more work is required to 

optimize the index test and reference standards of future studies in DOS and 

QUS.  Based on analysis of previous studies, the experimental design of future 
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DOS and QUS studies should involve the following to optimize the quality of 

studies due to the limitations identified from previous work:   

a. Blinded analysis.  There should be no prior knowledge of the 

disease outcome or reference standard for tumour analysis.  

b. Reference standards.  Ground-truth labels (i.e. tumour response 

endpoints) should follow standard pathologic classification from 

established and accepted clinical guidelines. 

c. Expertise and Experience of Analysts.  Clinical breast images 

using DOS and QUS should be verified with expert radiologists to 

confirm correct analysis of the tumour volume; 

d. Reproducibility.   Reproducibility should be verified by using the 

same technical frameworks with DOS and QUS systems that are 

comparable.  There should also be a comparative analysis of 

tumour ROI analysis (i.e. kappa statistic) should be completed.   

e. Index Tests.  Patients should demonstrate the most 

homogenous chemotherapy treatments.   

 

1.14.6 Limitations of Literature Review 
 

 Limitations to this systematic review include the small number of studies 

available for analysis.  Additionally, this review was conducted by one observer 

with experience in QUS analysis which could result in a bias in assessing QUS 

experiments.   Taken together, since the research question was to test if DOS 

and QUS markers could be used to measure NAC response in breast cancer, it 

is acknowledged that this focused research area may limit the search results 

from the literature.  
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Chapter 2 
Methods 

 

2.0 Chapter Overview 
 
 The first section of this chapter will highlight the background and clinical 

problem, as described previously from Chapter 1.   In section two, the research 

questions to the study are presented, which will also introduce the primary and 

secondary aims of the study.  Section three outlines the ethical and regulatory 

approval, which will lead to describing the inclusion and exclusion criteria of 

patients that were enrolled in the study.  In section four, the chemotherapy 

treatment protocol and imaging schedule pertaining to the aims of the study are 

presented.  In section five, the DOS and QUS imaging methods, in terms of 

experimental analysis to the research study are outlined.   These sections cover 

DOS and QUS imaging instrumentation, data handling and the computations 

involved in DOS and QUS biomarker extraction.  In section six, the quality 

assurance methods are presented, and the chapter ends with section seven, 

which describes the statistical frameworks used to model DOS and QUS 

parameters as indicators (markers) for chemotherapy response in locally 

advance breast cancer.   
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2.1 Background 
 
 Treatment for locally advanced breast cancer (LABC) involves 

neoadjuvant chemotherapy (NAC) to reduce tumour size before surgery.  

However, tumour response to NAC is variable and only 45% of patients achieve 

sufficient down-staging prior to surgery (Cance et al., 2002) .  Measuring tumour 

response during NAC may help guide treatments and help both patients and 

physicians make the best treatment choices for improved outcomes.    

Currently, tumour response during NAC is measured by routine physical 

examination, or sometimes conventional imaging to measure the tumour size 

(Therasse et al., 2000). However, conventional imaging using MRI, CT or FDG-

PET are associated with high equipment costs and these procedures require 

contrast agents for image optimization (Eisenhauer et al., 2009).   Due to these 

limitations, major efforts have been made to explore alternative imaging 

techniques to evaluate both pre-treatment and intratreatment indicators for 

tumour response to therapy.  However clinical adoption of past and newly 

developed quantitative imaging techniques to guide chemotherapy have not 

surpassed the experimental setting (Eccles et al., 2013).     

 Recent priorities for breast cancer treatment and research were outlined 

by a UK-based working group (Eccles et al., 2013).  The group made 

recommendations for advancing biomarker discovery and integrating imaging 

biomarkers into the clinical workflow to guide therapies.  The endpoints were 

precision medicine and individualization (personalization) of treatments.   The 

recommendations were made to address the current treatment practices which 

delivers a “one-size-fits-all” chemotherapy approach.  This is problematic as this 

approach often leads to variable tumour response to treatment and have been 

shown to demonstrate higher mortality (von Minckwitz et al., 2013).   

Taken together, the potential benefits of exploring imaging biomarkers to 

help guide treatments is enticing and can potentially improve patient care.  The 

overall benefit will be to advance treatment outcomes (i.e. improve patient 

survival) and optimize healthcare economics by saving money on unnecessary 

and ineffective treatments (Eccles et al., 2013).   
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2.2 Research Design Summary 
 

2.2.1 Study Design 
 

This project was an exploratory, observational (cross sectional) study in 

human subjects.  The study was approved by the institutional ethics review 

board (IRB)7.   The research was performed to study quantitative ultrasound 

and diffuse optical spectroscopy imaging in breast tumours treated with 

neoadjuvant chemotherapy.  The results were used to examine the utility of 

DOS and QUS imaging parameters (biomarkers) as potential surrogate markers 

for pathological tumour response to chemotherapy, as assessed by Miller-

Payne pathologic response criteria.  The project was divided into two 

subprojects (described below).  

 

2.2.2 Aims of the Study 
 
Subproject one Aims 

 

v To measure the biological changes in breast tumours during 

chemotherapy using quantitative ultrasound spectroscopy (QUS) and 

diffuse optical spectroscopy (DOS).  The intratreatment measurements 

were aimed at the following times, which corresponded to the 

chemotherapy schedule:  pre-treatment, week one, week four, week 

eight, and preoperatively.   

 

v To test the relationship between multivariate QUS+DOS statistical 

models with the final pathologic tumour response as assessed by Miller-

Payne pathologic response scale (defined in Table 2.1).   

 

                                            
7 The IRB approval forms are found in Appendix 2: Supplemental Information 

to Chapter 2 (Methods).   
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v To evaluate the earliest time points when DOS and QUS measurements 

demonstrate significant differences between Miller-Payne pathologic 

response classes (i.e. responders versus non-responders).   

 
Subproject Two Aim 

 

v To identify pre-treatment DOS imaging biomarkers for significant 

differences between response classes (responders versus non-

responders), as measured by Miller-Payne pathological response criteria.  

  

v To test the utility of DOS-texture analysis for predicting chemotherapy 

responders from non-responders before treatment starts.   

 

v To investigate the accuracy of pre-treatment DOS-texture features in 

multivariate models for predicting chemotherapy response.  

 

v To evaluate the relationship between DOS imaging biomarkers and the 

tumour’s biological characteristics and treatment types.   

 
2.2.3 Research Questions (Subproject 1 and Subproject 2) 
 

v Do DOS and QUS imaging biomarkers demonstrate statistically 

significant changes over the course of chemotherapy? 

 

v Can DOS and QUS imaging biomarkers be modelled using univariate 

and multivariate parameters to measure treatment response at early time 

intervals (i.e. after one or two cycles of chemotherapy)?   

 

v Do breast tumours demonstrate significant differences in DOS-texture 

parameters between responders and non-responders, as measured 

before chemotherapy?  

 

v Can DOS markers predict chemotherapy response prior to starting 

chemotherapy? 
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v Are there differences in DOS-texture prediction models for breast cancer 

subtypes (i.e., ER+ and triple negative) and chemotherapy treatments 

(i.e. FEC-D and AC-T)? 

 

2.2.4 Endpoints 
 

Primary Endpoints 

 

v The primary endpoint of subproject one was accuracy in measuring 

chemotherapy response, in terms of its association to Miller-Payne 

pathologic response criteria, using intratreatment DOS and QUS imaging 

biomarkers.   

 

v The primary endpoint of subproject two was accuracy of predicting 

chemotherapy response, in terms of its association to Miller-Payne 

pathologic response criteria, using the pre-treatment DOS-texture 

parameters.   

 

Accuracy of Measuring Chemotherapy Response 

 

Within the patient’s standard of care, all mastectomy specimens were 

evaluated with high-magnification light microscopy by board-certified breast 

pathologists at the host institution. Mastectomy specimens were prepared in 

paraffin blocks and 5-micron-thick microtome specimens and whole-mounted 

for histological staining.  The samples were stained using standard 

haematoxylin and eosin (H&E) techniques (Figure 2.1).  Pathologic outcome 

measures were assessed using Miller-Payne response criteria by a breast 

pathologist.  The tumour response to treatment was reported in the patient’s 

electronic treatment record based on Miller-Payne assessment criteria, 

described further below. 

 

Standardized Tumour Response Endpoints (Pathologic Response Definition) 

 

  For this study, Miller-Payne Pathologic Response Criteria (MP) was 

used to define “pathologic response” outcomes in the sample population 
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(Ogston et al., 2003).  As there is no current consensus on defining “pathologic 

response” in breast cancer chemotherapy, the MP scale was chosen among 

other clinically-accepted standards, since it systematically defines the changes 

in cellularity within the primary lesion only.  This is important since defining the 

change in the primary lesion corresponds to the imaging measurements of the 

tumour only in this study.   In comparison to other pathologic response scales, 

such as the residual cancer burden index (RCBI), those scales use multiple 

variables such as lymph node status and tumour size reduction as part of the 

criteria for pathologic response (von Minckwitz et al., 2012, Symmans et al., 

2007).  

Thus, in this study, “pathologic response” were defined systematically 

using Miller-Payne (MP) pathologic response criteria (Ogston et al., 2003). A 

cut-off score was chosen within the MP scale for binary classification, based on 

the recommendation of a breast pathologist.  Tumours that were graded as 

MP1 or MP2 were classified as non-responders [NR].  Tumours graded as MP 

grade 3, 4, or 5 were classified as responders [R].  The classification decision-

tree is outlined in Table 2.1.   

 

 
Figure 2.1:  H&E-stained whole breast mounts for a representative 
responder and non-responder.  The pathologists used H&E to measure 

tumour response after neoadjuvant chemotherapy.  The cellularity of the tumour 

bed was quantified and reported using a graded score (Miller-Payne criteria).  

On the left slide (yellow contour), a responder demonstrated a significant 

reduction in the size and cellularity under microscopy.  In contrast on the right 

specimen, a patient who did not respond to chemotherapy demonstrated a 

large, bulky residual tumour (yellow contour) with high cellularity.   
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Grade Pathologic Description Binary Classification 

Grade 1 No change to overall tumour cellularity 
Non-Responders [NR] 

Grade 2 Minor loss; up to 30% loss 

Grade 3 Between 30%-90% loss in tumour cells 

Responders [R] Grade 4 Greater than 90% loss of tumour cells 

Grade 5 No remaining tumour cells. 

Table 2.1: The MP classification method is based on a comparison of the 

cellularity before and after treatment.  A binary classification was used to 

classify patients into responders (R) or non-responders (NR) based on a 

chosen cut-off point that was recommended by the breast pathologist.   

 

In addition, other histological assays were completed outside of the 

patient’s usual standard of care for this study and were approved by the 

institution’s IRB.   This included cluster of differentiation staining (CD-31), which 

was used to quantify the number of blood vessels within the tumour bed after 

chemotherapy (JC07 clone, Leica Biosystems, Concord, Ontario Canada). 

Quantification for CD-31 stained vessels were performed on the whole-mount 

specimens after staining (TissueScope, Huron Digital Pathology, Waterloo, 

Canada).  Stained vessels were counted for each specimen (counts/field) and 

the vessel counts were averaged across all respective normal or tumour 

regions.  

 

Radiologic Endpoints 

 

Radiologic endpoints were collected from the patient’s medical record to 

compare the treatment size before, and after chemotherapy only as to report 

the patient’s clinical characteristics.       

As part of the patient’s standard of care at the host institution, all patients 

who completed chemotherapy with operable tumours underwent a surgical 

planning MRI.  The surgical-planning MRI was used to compare the tumour size 

changes from before and after chemotherapy.  Radiologic endpoints were 

evaluated using standard RECIST 1.1 criteria (Eisenhauer et al., 2009).  Pre-

and post-chemotherapy tumour size measurements were recorded as part of 

the patient’s clinical data.    
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2.2.5 Overview, Research Design Summary 
 

 The research design summary is outlined in Table 2.2 and also 

presented schematically in Figure 2.2.   

 

Title Thesis Title:   
 

Measuring Chemotherapy Response in Breast Cancer 
Using Optical and Ultrasound Spectroscopy.  

 
 
 
Subproject one:  
 

Multiparametric Monitoring of Chemotherapy Treatment 
Response in Locally Advanced Breast Cancer using 
Quantitative Ultrasound and Diffuse Optical 
Spectroscopy 
 

Subproject two: 
 

Predicting Breast Cancer Response to Neoadjuvant 
Chemotherapy Using Pre-treatment Diffuse Optical 
Spectroscopic-Texture Analysis  

Aim Subproject one Aims:  
 
The purpose of this observational study was to measure breast 
tumour response to chemotherapy using DOS and QUS 
imaging.  The aims were:  
 

1. To measure the biological changes in breast tumours 
during chemotherapy using imaging biomarkers from 
quantitative ultrasound spectroscopy (QUS) and diffuse 
optical spectroscopy (DOS).  The intratreatment 
measurements were aimed at the following times, which 
corresponded to the chemotherapy schedule:  pre-
treatment, week one, week four, week eight, and 
preoperatively.   

 
2. To test the relationship between multivariate QUS+DOS 

statistical models with the final pathologic tumour 
response.   
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3. To evaluate the earliest time points when DOS and QUS 

measurements demonstrate significant differences 
between response classes (i.e. responders versus non-
responders).  

 
Subproject two Aims: 
 
The purpose of this study was to evaluate texture features of 
pre-treatment DOS functional maps for predicting LABC 
response to NAC.  The aims were:  
 

1. To identify pre-treatment DOS imaging biomarkers for 

significant differences between response classes 

(responders versus non-responders).  

 

2. To test the utility of DOS-texture analysis for predicting 

chemotherapy responders from non-responders before 

treatment starts.   

 

3. To investigate the accuracy of pre-treatment DOS-

texture features into multivariate models for predicting 

chemotherapy response.  

 

4. To evaluate the relationship between DOS imaging 

biomarkers and the tumour’s biological characteristics 

and chemotherapy type.  

Eligibility 
Criteria 

All the following criteria were met for entry to the study.  
 

• Both men and women were eligible.   
• Histologically confirmed locally advanced breast 

carcinoma.  
• All tumour molecular subtypes were eligible. 
• Patients who had not been treated with any other first-

line therapy.   
• Treatment with anthracycline or taxane based 

neoadjuvant chemotherapy.  
• The patients must have had measurable disease > 10 

mm in the breast.  This minimal size was needed to 
visualize the tumour upon DOS and QUS imaging.   
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• Scheduled for mastectomy or lumpectomy after 
neoadjuvant chemotherapy with pathologic assessment.   

• Life expectancy of at least 6 months. 
• Patients had the ability to understand and the willingness 

to sign a written consent form document in English.  
 
 

Exclusion Criteria 
 

• History of allergic reactions attributed to compounds of 
similar chemical or biologic composition to ultrasound 
gel or optical compensation medium. 

• Any condition that is unstable or could jeopardize the 
safety of the patient and their compliance in the study 
during imaging.  

• Inability to position arm above the head for ultrasound 
scanning or lay supine for QUS imaging. 

• Inability to position in the prone position for optical 
scanning. 

• Tumours deeper than 4 cm in the posterior direction of 
the breast, or tumours that were larger than 6 cm across 
the lateral distance.         

• A maximum cranio-caudal breast separation (thickness) 
of 80 mm. 

 
Study 
Design 

This study is an observational (cross sectional) study in human 
subjects. 
 

Endpoints Primary Endpoints for Observational Study 
 

• The primary endpoint of subproject one was accuracy in 
measuring chemotherapy response, in terms of its 
association to Miller-Payne pathologic response criteria, 
using intratreatment DOS and QUS imaging biomarkers 

 
• The primary endpoints of subproject two was accuracy 

of predicting chemotherapy response, in terms of its 
association to Miller-Payne pathologic response criteria, 
using the pre-treatment DOS-texture parameters.   

 
 
Primary Efficacy Endpoint 
 

• Accuracy in discriminating pathologic response classes 
is calculated using statistical measures within the 95% 
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confidence interval.  It is expected that DOS and QUS 
imaging biomarkers can be used as surrogate endpoints 
towards standardized pathologic response criteria.   

Sample 
Size 
Calculation 

A sample size calculation was completed based on the 
following: 
 
DOS 
 
Z=1.96 (Confidence interval of 95%) 
Margin of Error (ME): 20% (based on literature) 
Standard Deviation (SD): 43% (based on literature) 
 
QUS 
 
Z=1.96 (Confidence interval of 95%) 
Margin of Error (ME): 30% (based on literature) 
Standard Deviation (SD): 65% (based on literature) 
 
Thus, the calculation for the sample size in this study, given an 
expected attrition of 20% is: 
 
Sample size required: 22 patients 
 
 

Outcomes Outcome 1 (Subproject one) 
 

• Significant differences in the mean DOS and QUS 
parameters between responders and non-responders 
during chemotherapy, as measured at week one, 4, 8 
and pre-operatively.   

• Correlation to pathologic response, as defined by Miller-
Payne response criteria.  
 

Outcome 2 (Subproject two) 
 

• Pre-treatment DOS-texture parameters demonstrate 
significant differences between response classes before 
treatment begins.   

• Discrimination of responders and non-responders are 
determined prior to treatment.   

• Correlation to pathologic response, as defined by Miller-
Payne response criteria.  

Table 2.2:  Trial summaries for the study.  
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Figure 2.2:  Work-flow and methods summary.  The study entailed two 

subprojects.  The objective of subproject one was to demonstrate the utility of 

intratreatment DOS and QUS imaging biomarkers to discriminate pathologic 

response, as defined by Miller-Payne pathologic grading; while subproject two 

used pre-treatment DOS imaging biomarkers to classify pathologic response 

(Miller-Payne) before the start of chemotherapy.  Novel classification 

approaches included multiparametric DOS-QUS modelling, machine learning 

algorithms and textural analysis of DOS parameters.   
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2.3 Ethics and Regulatory Approval 
 
2.3.1 Ethics Approval 
 

All research was conducted at the host institution (Toronto, Canada). 

DOS and QUS imaging studies were approved by the institutional ethics review 

board (IRB) prior to data collection and analysis (IRB # 186-2006 and IRB# 

185-2006, documentation presented in Appendix 2).  All patients enrolled in 

this study signed a written consent form to participate in DOS and QUS studies 

prior to any data collection.  No patients were within the investigator’s circle of 

care at the time of recruitment.  

 

2.3.2   Eligibility (Inclusion/Exclusion Criteria) 
 

 Patients were approached to participate in the study based on a biopsy-

proven diagnosis of locally advanced breast cancer during their initial visit to the 

medical oncologist.  Patients were referred for participation in the clinical study 

by the medical oncologists involved in the patients’ care.  Patients were 

identified using the hospital’s electronic medical appointment system.  Both men 

and women between 18-65 years of age were eligible for this study; however, 

since men accounted for <1% of the institution’s patient population for breast 

cancer, no men were eligible during the study recruitment phase and therefore 

no male enrolments were made.  A detailed summary of the inclusion and 

exclusion criteria are outlined below: 

 

Inclusion Criteria: 
 

• Both men and women were eligible to participate in the study 

• Participants of all races were eligible to the trial.   

• Histologically confirmed locally advanced breast carcinoma (Stage IIB/III 

disease, invasive breast cancer with all histological types eligible).    

• All molecular subtypes were included: ER +/-, PR +/-, HER2-Neu +/-. 
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• Patients who had not been treated with any other first-line therapy 

(hormone therapy, other chemotherapy, surgery, radiation, or 

experimental anticancer drugs). 

• Treatment with neoadjuvant chemotherapy: fluorouracil, epirubicin, 

cyclophosphamide, docetaxel (FEC-D); or Adriamycin (doxorubicin), 

cyclophosphamide, paclitaxel (AC-T).  Patients with HER2-Neu amplified 

tumours who were scheduled for Trastuzumab were eligible to 

participate.     

• The patients must have had measurable disease > 10 mm in the breast 

and for imaging using DOS and QUS (this size is needed in order to 

visualize the tumours for analysis).  Patients’ tumours were thus 

radiologically defined by MRI or CT, or mammogram or ultrasound, prior 

to neoadjuvant chemotherapy and participation in the trial.   

• Scheduled for mastectomy or lumpectomy after neoadjuvant 

chemotherapy with pathologic assessment for response to treatment or 

eligible for surgical consultation.   

• Eastern Co-operative Oncology Group (ECOG) Performance Status of 0 

or 1. 

• Life expectancy of at least 6 months 

• Patients had the ability to understand and the willingness to sign a 

written consent form document, or in the cases where English was not 

the primary language, the patient were accompanied by a translator or a 

substitute decision maker at the time of consent. Signed informed 

consent was obtained prior to any study specific procedures.   

 
Exclusion Criteria 
 
Patients were not eligible for inclusion in the study in the event of the following 

criteria:  

 

• Past or recent history of allergic reactions attributed to compounds of 

similar chemical or biologic composition to ultrasound gel. 

• Uncontrolled or unmanaged other illnesses or medical conditions 

including, but not limited to ongoing or active infection, symptomatic 

congestive heart failure, unstable angina pectoris, and cardiac 
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arrhythmia or psychiatric disorders that could jeopardize the safety of the 

patient during the study.   

• An inability to position the arm above the head for ultrasound scanning or 

unable to lay in supine position.   

• An inability to position in the prone position for optical scanning.    

• Due to the optical absorption caused by melanin in the skin, patients with 

dark skin or freckled skin were excluded from this study.      

 

2.3.3 Sample Size Justification 
 
A sample size was calculated for each imaging modality.  The justification for 

the sample size proposed is presented below.  Separate calculations were 

performed for DOS and QUS imaging, since each imaging modality had 

separate reference data that was needed within the following statistical 

frameworks:   

1. A desired 95% confidence interval (with corresponding Z score) 

2. Margin of error (ME) permitted (based on previous works) 

3. Standard deviation of the outcome of interest. 

 
Sample size calculation (DOS imaging) 

 

The sample size for DOS imaging was determined from the following 

calculation: 

 

One sample, continuous outcome (based on oxy-haemoglobin, Cerussi et al. 

2011). 

The concentration of oxy-haemoglobin was previously reported in the literature 

as 15.3 µM ± 1.1 (STE) (Cerussi et al., 2011)8.  

 

 

                                            
8 The concentration of oxy-haemoglobin represents the value obtained in breast 

tumours, as measured at the end of chemotherapy.  The time interval 

corresponded with the desired time interval measured in the thesis study.   
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The standard deviation was calculated based on the reported population size in 

that study of n=24; therefore:  

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛	(𝑆𝐷) = 𝑆𝑇𝐸	 × 	√𝑛 

𝑆𝐷 = 1.1	 ×	√36 

𝑆𝐷 = 𝟔. 𝟔 

 

To calculate the margin of error (ME), a value of 20% was used based on 

observations of the literature; therefore: 

 

𝑀𝑎𝑟𝑔𝑖𝑛	𝑜𝑓	𝐸𝑟𝑟𝑜𝑟	(𝑀𝐸) = 20%		(15.3	µM	) = 𝟑. 𝟎𝟔 

 

Therefore, the sample size calculation would be (Eq. 2.1): 

 

𝑛 = [
𝑍 ∙ (𝑆𝐷)
𝑀𝐸 ^

_

 

𝑛 = [
1.96 ∙ (6.6)

3.06 ^
_

 

𝑛 = 17.87 ≅ 18	𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 

 

Based on the sample calculation, a total of 18 patients were required as the 

minimum sample size for DOS imaging.  However, an attrition rate of 20% was 

estimated; therefore the study was aimed to recruit 22 patients for DOS 

imaging. 

 

Sample size calculation (QUS imaging) 

 

The sample size was determined for QUS imaging using the following 

calculation: 

One sample, continuous outcome (based on MBF, Sadeghi-Naini et al. 2013). 

The MBF was reported as 9.1 dBr ± 1.2 (STE) (Sadeghi-Naini et al., 2013b).  

The standard deviation was calculated based on the reported population size in 

that study of n=24; therefore:  

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛	(𝑆𝐷) = 𝑆𝑇𝐸	 × 	√𝑛 

𝑆𝐷 = 1.2	 ×	√24 



 125 

𝑆𝐷 = 𝟓. 𝟖 

To calculate the margin of error, we use a value of 30% based on observations 

of the literature; therefore: 

 

𝑀𝑎𝑟𝑔𝑖𝑛	𝑜𝑓	𝐸𝑟𝑟𝑜𝑟	(𝑀𝐸) = 30%		(9.1	) = 2.7 

 

Therefore, the sample size calculation would be (Eq. 2.2): 

 

𝑛 = [
𝑍 ∙ (𝑆𝐷)
𝑀𝐸 ^

_

 

𝑛 = [
1.96 ∙ (5.8)

2.73 ^
_

 

𝑛 = 17.33 ≅ 18	𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 

 

Based on the sample size calculation, a minimum of 18 patients were calculated 

for imaging with QUS.  However, an attrition rate of 20% was estimated; 

therefore the study was aimed to recruit 22 patients for DOS imaging.   All 

patients were presented with the option to participate in either QUS and/or DOS 

imaging for the study.   

  

Taken together, the sample calculation indicated a minimum of 22 

patients required to obtain a significant result within the 95% confidence interval 

for either QUS or DOS imaging.  Subproject one involved DOS and QUS 

imaging; therefore, 22 subject data-points (i.e. samples) were targeted. 

Subproject two involved DOS imaging only, and therefore, the objective was to 

recruit 22 subjects.  The recruitment results of this study were:  

 

1) Subproject one; 22 patients were recruited and imaged using DOS 

and QUS.  

2) Subproject two; 15 patients were recruited for pre-treatment DOS 

imaging.  The baseline DOS images from subproject one (n=22 

patients) were included into a pooled analysis of the pre-treatment 
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DOS images.  Therefore, 37 samples were included for analysis in 

this subproject9. 

 

As previously mentioned, patients were recruited into the study by way of 

referral from the medical oncologists involved in the patients’ care. A summary 

of the recruitment scheme is outlined in Figure 2.3.   

 

 
Figure 2.3:  Schematic representation of Subproject one and Subproject 
two.  The aim of the study was to recruit 22 subjects, which was based on the 

sample size calculation.  However, this study (subprojects one and  two) 

recruited a total of 37 patients.  Subproject one included 22 samples in the 

dataset; while subproject two had 37 samples within the dataset, that was 

pooled from the baseline DOS data from subproject one.        

 

2.3.4 Access to Patient Electronic Medical Record 

 
 Patient demographics and medical information was recorded from the 

electronic medical record and included the following descriptors: age, sex, 

tumour/breast laterality, clinically and radiologically measured tumour size 

before and after treatment, tumour histological features, chemotherapies, 

                                            
9  The institution’s IRB approved a sample size of 100 patients; thus, permitting 

the inclusion of 37 patients in subproject two.   
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pathologic response criteria (MP), radiologic endpoints (RECIST 1.1 data) and 

physician notes were recorded to monitor the patient’s eligibility during the study 

and for subsequent statistical analysis (described further below).  
 
2.3.5 Research Location 

 

Data reading and analysis was carried out on specifically designed 

image-processing workstations (Dell Dimension 2400 work stations) in a locked 

examination/analysis room for data security.  The electronic DOS and QUS data 

was copied for the purposes of handling and stored electronically in a password 

protected server and a secondary copy was made for security purposes 

separately in a secured facility at the host institution.  All patient case-report 

forms (CRFs) were stored in paper-form and locked in a cabinet, inside a locked 

storage area as per institutional regulations.  All electronic imaging data for 

analysis were anonymized (de-identified) for patient confidentiality.  The data 

key was encoded only to the investigator and the investigator’s supervisor to 

ensure patient confidentiality. 
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2.4 Patients and Acquiring Imaging Data 
 

2.4.1 Chemotherapy Treatment Schedule 
 

Patients enrolled into the study received the institution’s chemotherapy 

treatment protocol which was in accordance with NCCN guidelines (National 

Comprehensive Cancer Network, 2016).  There were two chemotherapy 

treatment protocols at the host institution and the treatment course was 

determined by the medical oncologist responsible for the patient’s care.  Each 

protocol contained an anthracycline-drug for the first phase of treatment (phase 

1), followed by a taxane-drug in the second phase (phase 2).  Other 

concomitant drugs were given according to the treatment protocol and are listed 

in Table 2.3.  The chemotherapy dose and schedule are outlined in Table 2.3A, 
B.   

 

2.4.2 Imaging Schedule Based on Chemotherapy Treatment Schedule 
 

DOS and QUS imaging was completed according to the specific aims of 

each subproject.  Subproject one involved imaging patients with DOS and QUS 

(n=22) during chemotherapy (1 pre-treatment scan and 5 intratreatment scan 

points) (Figure 2.4).  The imaging timelines were: (Scan 1) baseline (prior to 

treatment), (Scan 2) week one, (Scan 3) week four, (Scan 4) week eight, (Scan 

5) preoperatively and these corresponded with the patients’ chemotherapy 

schedule (Figure 2.4, Table 2.3).  For subproject two, an additional 15 patients 

were recruited and those patients underwent only 1 scan time, which was the 

pre-treatment DOS imaging only.  A schematic summary of the imaging times in 

correspondence to the chemotherapy protocols is outlined in Figure 2.4.  
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A. Chemotherapy Treatment Protocol 1 (AC-T) 
Phase  Drug Name [Abbreviation] Drug Class Schedule 

1 
Adriamycin [A] Anthracycline • 4 cycles  

• Every 2 weeks Cyclophosphamide [C] Alkylating Agent 

2 

Paclitaxel [T] Taxane • 4 cycles  
• Every 2 weeks 

Trastuzumab [H]10 Monoclonal 

Antibody 
• Every 3 weeks 

 

B. Chemotherapy Treatment Protocol 2 (FEC-D) 
Phase  Drug Name [Abbreviation] Drug Class Schedule 

1 
Fluorouracil [F] Antimetabolite • 3 cycles 

• Every 3 weeks Epirubicin [E] Anthracycline 

Cyclophosphamide [C] Alkylating Agent 

2 

Docetaxel [D] Taxane • 3 cycles 
• Every 3 weeks 

Trastuzumab [H]2 Monoclonal 

Antibody 
• Every 3 weeks 

Table 2.3:  Chemotherapy treatment protocols. A.  Protocol 1 included AC-T 

chemotherapy.  B.  Protocol 2 included FEC-D chemotherapy.  Chemotherapy 

treatments were given in two phases.  Trastuzumab was given to patients who 

were HER2 positive in phase 2 (this was due to potential cardiac toxicity if given 

with anthracycline drugs during phase 1).     

 

2.4.3 Sequencing DOS and QUS Imaging Per Patient 
 
Subproject one (DOS + QUS serial imaging) 

 

DOS and QUS scans were completed sequentially within the same 

appointment session.  Patients were imaged with QUS first, then immediately 

following the imaging procedure, the patient was transferred onto a DOS 

imaging device for scanning. 

                                            
10 Trastuzumab was given to patients who were HER2 positive only. 



 130 

Subproject two (baseline DOS imaging (i.e. pre-treatment) only) 

 

Patients recruited into subproject two participated in one DOS scan 

which included the baseline (pre-treatment) scan only.  No QUS acquisition was 

acquired for this patient group (patients declined participation into parallel DOS 

and QUS studies).          
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Figure 2.4:  LABC patients received either FEC-D (red dots) chemotherapy or 

AC-T chemotherapy (green dots), which required two dosing schedules.  The 

types of chemotherapy drugs given are indicated as blocks in the figure.  For 

subproject one, the intratreatment imaging scans (QUS+DOS, yellow dots) 

were scheduled based on an early assessment aim of after 1 cycle of 

chemotherapy and 2 cycles of chemotherapy for both chemotherapy regimens.  

For subproject two, patients only attended for the pre-treatment DOS scan.   
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2.4.4 Quantitative Ultrasound Data Acquisition 
 

For this imaging modality, patients were positioned supine with the 

ipsilateral arm positioned over the head (Figure 2.5).  The total duration of the 

ultrasound scans were approximately 20 minutes.   

 Data was collected in both normal breast tissue and within the whole 

tumour volume by employing a continuous panoramic scan across the breast 

(Figure 2.5).  To acquire the data, a Sonix RP system (Ultrasonix, Vancouver, 

Canada) operating with a 128-element, 60 mm- linear array transducer was 

used (L14-5/60, Ultrasonix, Vancouver Canada). The ultrasound transducer 

frequency was 10 MHz, corresponding to conventional breast imaging. The 

centre frequency was ~7 MHz, 40 MHz 8-bit dynamic range radiofrequency 

digitization frequency and data collected included 512 axial radiofrequency 

scanlines.  The lateral scan distance was 6 cm and the axial depth was 4 cm.   

Also, the focal depth was placed to correspond to tumour position.  The focal 

depth remained constant throughout the ultrasound imaging series for each 

patient.  The axial resolution was 0.154 mm and the lateral resolution at the 

focus was 0.21 mm11 based on the central frequency (i.e. ~7 MHz) used during 

scans.  

The ultrasound data collected included conventional b-mode (greyscale) 

images and the radiofrequency (RF) data.  The data was stored within the 

system and subsequently downloaded for image processing on a separate 

computer workstation.    

 

 

 

 

 

                                            
11 Calculations for the axial and lateral resolution can be found in Appendix 2.   
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Figure 2.5:  QUS breast imaging.  Radiofrequency (RF) data and grey-scale 

images were acquired over the entire volume of the tumour and included normal 

breast tissue (point A-B).   

 

2.4.5 Diffuse Optical Spectroscopy Tomography Data Acquisition 
 

Patients were scanned with a commercially available diffuse optical 

tomography system to acquire DOS images (SoftScan, Advanced Research 

Technologies, Montreal, Canada).  The pre-treatment DOS data was collected 

in 37 patients (22 patients from subproject one, and 15 during subproject two).     

The patient was positioned prone and the breast was placed into an 

enclosed imaging aperture (aquarium) and stabilized by opposing plexiglass 

plates with soft compression in the cranio-caudal direction (Figure 2.6).  The 

distance (thickness) between plates was recorded at baseline (average 

thickness = 73.3 ± 10.3 mm [STD]) and this distance was maintained during the 

imaging series for each individual patient.  The optical compensation medium 

(OCM) was warmed to 23°C and then added to the imaging aperture 

(aquarium) and filled to cover the entire breast surface (Figure 2.6).  The OCM 

was used to improve light transmission between surfaces and was formulated 

as an emulsion of lipids, water, and dye to mimic optical properties of breast 

tissue.  The optical absorbance (µa) and scattering (µs) of the OCM was 

characterized prior to experimentation (µa=0.05 cm-1 and µs =11 cm1, (λ)=780 

nm) (Schaafsma et al., 2015, Intes, 2005).   
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Optical mammography employed a time-resolved system using four 

individual semiconductor diode lasers (LDH-P, PicoQuant, Berlin, Germany) 

that operated at 687, 734, 782, 834 nm.  The optical wavelengths were chosen 

to correspond to the optimal absorbance spectra of breast tissue chromophores 

such as haemoglobin, water, and lipids (Intes, 2005, Cerussi et al., 2001).  The 

pulse duration at the full width half maximum was less than 150 ps, driven at 20 

MHz.  For the optical detection system, the light was collected using a 

photomultiplier (H7422P-50, Hamamatsu Photonics, Shizuoka, Japan), which 

was opposite to the light source (Figure 2.6).  The optical detection array was a 

mobile platform that was constructed with five lens multi-mode fibres and 

arranged in an X-constellation (Intes, 2005, Falou et al., 2012). Temporal point 

spread functions (TPSF) were collected with a resolution of 10 ps within a 4s-

delay window (Intes, 2005).  The TPSF was used to calculate the optical 

absorption and scattering. The absorbance and scattering calculations are 

found in subsequent section (Section 2.5).        

DOS images were reconstructed into tomographic and parametric maps 

of the optical parameters (deoxyhaemoglobin, oxy-haemoglobin, total 

haemoglobin, %water, %lipids, scattering amplitude, scattering power, tissue 

optical index).  The calculation of these parameters is described later in Section 
2.5.   Each voxel size of the parametric image was 3 mm x 3 mm x 7 mm3.    The 

DOS image planes used for analysis were dependent the size of the breast 

which determined the volume reconstruction.  The total duration of the optical 

mammography scan was approximately 30-40 minutes.  DOS imaging data was 

stored into the system’s permanent memory drive and extracted for imaging 

analysis.   
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Figure 2.6:  DOS tomography imaging involved whole-breast (volumetric) data 

acquisition.  For DOS imaging, the whole breast is immersed into an aqua-tank 

which is filled with optical compensation medium (OCM).  The OCM is used to 

enhance the light transmission between surfaces.  The breast is compressed to 

allow for better light transmission.  The light is transmitted through the breast 

and detected on the opposite side by a mobile detector.  The detector fibre 

transmits the DOS data to a computing system for data storage.  The data is 

later extracted, processed and analysed on a separate workstation.     

 
 
 
 
 
 
 
 
 



 136 

2.5 DOS and QUS Image Processing 
 

2.5.1 Region of Interest (ROI) Selection 
 

  The ROIs were selected under the guidance of a breast radiologist with 

more than 15 years of breast imaging experience.  For QUS, conventional B-

Mode images (grey-scale) were used to guide analysis and ROI selection.  For 

DOS, the patients’ diagnostic MRI images were used to determine the location 

and extent of tumours in the breast.  The ROI contours were chosen in-plane for 

each of the volumetric DOS and QUS image datasets before knowing the 

ground-truth labels12.   

 

QUS ROI selection 

 

QUS imaging was completed in subproject one only.  The ROIs were 

selected on 10-14 equally spaced scan planes for QUS.  For QUS, 22 patients 

were analysed over five scheduled time intervals (baseline, week one, week 

four, week eight, pre-operatively).  The total number of ROIs contoured for QUS 

was 1210.   

 

DOS ROI selection 

For subproject one, 22 patients had DOS imaging over the entire course 

of chemotherapy.  There were 5-8 equally spaced scan planes for each patient; 

thus, 862 ROIs were selected. 

In subproject two, the 22 patients from subproject one were included in a 

pooled analysis.  The additional 15 patients who were recruited for subproject 

two underwent pre-treatment DOS imaging, which included an additional 120 

ROI contours that were completed for this component of the study.  

 

 

                                            
12 Ground truth labels are a statistical term for the pathological classification 

groups used in the study.  In this study, it refers to responders versus non-

responders, as assessed by Miller-Payne pathologic response criteria.   
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2.5.2 QUS: Ultrasound Radiofrequency Spectrum 
 

For the calculation of QUS parameters, spectral analysis of the acoustic 

backscatter signal was done using the radiofrequency signal within a fixed-size 

analysis window.  The ROIs were kept constant for the duration of the imaging 

series and determined from the baseline scan.  Radiofrequency data was 

analysed across 10-14 equally spaced ultrasound scan planes.  Spectral 

analysis of the ultrasound radiofrequency spectrum was previously described by 

Lizzi et al. (Lizzi et al., 1997a), and adapted for this study.  These studies 

demonstrated that the acoustic backscatter signal was correlated to tissue 

microstructure.  All spectrum analyses were performed using a MATLAB-based 

software (Matlab, MathWorks, Natick MA, USA) developed by Oelze et al. from 

the University of Illinois and based on previous work by Insana et al. (Insana 

and Hall, 1990). 

Calculation of the parameters of power spectrum is undertaken by 

applying a fast Fourier transform (FFT) of a gated radiofrequency data line 

segment to obtain the amplitude line spectrum (complete calculations can be 

found in Appendix 2).  To reduce spectral-noise artefacts, a sliding window 

algorithm was used with the settings of a Hamming window function for gating, 

where there was an 80% overlap between adjacent windows in the axial 

direction.  A reference phantom technique was used to remove system transfer 

effects from the data using a tissue-mimicking agar-embedded glass-bead 

phantom with known acoustic properties (Tadayyon et al., 2014). To normalize 

the tissue sample signal to the reference phantom, the amplitude line spectrum 

was calculated in the same manner; where the fast Fourier transform (FFT) of 

the gated radiofrequency signal was processed from the ROIs of the reference 

phantom.  The log power spectrum is computed by the average of the squared 

magnitudes of the amplitude line spectra by lateral windowing.  The depth-

dependent acoustic attenuation was employed for calculating the power 

spectrum (the normalized power spectrum calculation can be found in 

Appendix 2) (Insana and Hall, 1990).  

A linear regression line using the least squares of the normalized power 

spectrum was applied across the frequency spectrum.   Previous work from 

Lizzi et al (1983) demonstrated that the frequency bandwidth over the -6 dB 
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range from the peak amplitude were capable of characterizing tissue 

microstructure.  From the regression line of the spectral form, the mid-band fit 

(MBF), 0-MHz intercept (SI) and the spectral slope (SS) QUS parameters were 

calculated (Lizzi et al., 1983).  The MBF denotes the spectral intensity of the 

mid-point of the best-fit line; the SS is the slope of the line; and the SI is the 

interpolated line to the Y-axis (Figure 2.7).   

 

 
Figure 2.7:  Representative power spectrum.  QUS parameters were obtained 

by applying a regression line to the spectral form, within the -6 dB13 window.  

The red circles indicate the parameters obtained by analysing the regression 

line: 1) The 0-MHz intercept (spectral intercept, SI) is the interpolated line to the 

Y-axis; 2) the midband fit is the midpoint of the regression line; 3) the last 

parameter is the slope of the regression line (spectral slope, SS).    

 

2.5.3 DOS Data Calculations 
 

The optical tomography device used a time-resolved system to 

determine the absorbance and scattering properties of the sample.  These 

measurements were used to calculate the concentration of tissue 

                                            
13 dB refers to decibels.   The dB is a logarithmic unit of measurement for sound 

intensity.    
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chromophores.  The system employed short pulses of light and measured the 

photons’ arrival time and was plotted as the time-point spread function (TPSF) 

(Enfield et al., 2009) (Figure 2.8A, B).   

 
Figure 2.8.A:  Calculating the TPSF in tissue. Pulses of light are emitted 

within a discrete time (t) and frequency (f) (A).  The light pulses are attenuated 

through tissue and causes a delay and broadening of the light pulse profile (B).  
A photocathode is used to measure the delay of the transmitted light pulse (C) 
and used to plot a complete (integrated) TPSF (D).  Adapted from Handbook of 

Biomedical Optics (Boas et al., 2011).     

 

 
Figure 2.8.B: (A) The tissue properties (i.e. composition and biologic layout) 

can affect the TPSF and dictated by scattering and absorption. (B) A highly 

scattering medium will cause the TPSF to broaden since the path length is 

longer. (C) In highly absorbing mediums, the TPSF will narrow since many 

photons will be attenuated within the medium. Adapted from (Enfield et al., 

2009) 

The experimental TPSF from the tissue sample was fitted against a 

model of light propagation by curve fitting and this was previously reported by 

Patterson et al. (Sato et al., 2013, Patterson et al., 1989) .  For the DOS 

system, the attenuation coefficient (µa) was calculated from a time domain 

diffusion equation that used a Rytov approximation to characterize light 
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propagation in a medium (Intes, 2005, Intes et al., 2002). The concentration of 

dominant DOS chromophores in breast was estimated and included oxy-

haemoglobin [HbO2], and deoxy-haemoglobin [Hb] (Cerussi et al., 2006).  Their 

concentrations [C] were calculated using the Beer-Lambert law, with the known 

molar extinction coefficients [e] (Eq. 2.3): 

 

 µa = e × C (Eq. 2.3) 
 

Other DOS parameters, such as [%Water], [%Lipid], scattering power [b], and 

scattering amplitude [A] were measured using the power-law fit of the scattering 

spectra within a given wavelength bandwidth (l) (Eq. 2.4).  This relationship 

was based on a Mie scattering approximation (Tromberg et al., 2005):   

 

µs(l) = A ×	l-b (Eq. 2.4) 
 

Additionally, other optical parameters such as oxygen saturation [StO2], oxygen 

desaturation [St], total haemoglobin [HbT] and the tissue optical index [TOI] 

were calculated from the [Hb], [HbO2], [%Water], and [%Lipid], and these 

calculations are described as (Cerussi et al., 2011, Intes, 2005):   

 

Total Haemoglobin;  

HbT = Hb + HbO2 (Eq.2.5) 
 

Oxygen Saturation; 

StO2 (%) = 
HbO2

HbT
	× 	100 (Eq. 2.6) 

 

Oxygen Desaturation; 

St (%) = 
Hb

HbT
	× 	100 (Eq. 2.7) 

Tissue Optical Index;  

TOI = 
Hb x %Water

%Lipids
	 (Eq. 2.8) 

 



 141 

 
Figure 2.9:  Absorbance spectra.   Significant optical chromophores in breast 

tissue include water, lipid and oxy- and deoxy-haemoglobin.  The absorption of 

light in physiological chromophores is dependent on the optical wavelength.  

Optical imaging systems operate within a fixed optical bandwidth, denoted as 

the spectral window (dotted box in figure).  The spectral window permits the 

investigation of multiple chromophores within the medium.  The µa (cm-1) 

indicates the optical absorbance in a medium.    
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Figure 2.10:  Scattering spectra.  A power-law fit14 is applied to the scattering 

spectra to obtain other DOS parameters such as the scattering power (b) and 

scattering amplitude (A).      

 

2.5.4 DOS-GLCM (Grey-Level Co-occurrence Matrix) Texture Analysis 
 

Texture feature-extraction methods using a grey-level co-occurrence 

matrix (GLCM) can be applied to compute the probabilities of relative pixel 

intensities of images from the spatial distribution of their voxels (Haralick et al., 

1973).  This work has previously been demonstrated to provide deeper 

information about the image’s spatial and textural features in breast cancer 

using other modalities such as MRI (Chen et al., 2007).  The texture features of 

an image can quantify the heterogeneity of the tumour image and provide 

meaningful statistical frameworks that are correlated to tumour and 

histopathological characteristics (Yang et al., 2012, Davnall et al., 2012).   In 

other studies, GLCM analysis has been able to classify benign and malignant 

lesions using planar (2D) and volumetric (3D) MRI images (Chen et al., 2007, 

Gibbs and Turnbull, 2003).  For X-ray mammography, GLCM analysis has been 

                                            
14 The power-law is a mathematical expression of a power function.   
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used to segment lesion borders of stellate (malignant) breast masses (Gupta 

and Undrill, 1995).  It was also recently reported that texture-based features 

from quantitative ultrasound (QUS) imaging can be used to classify responders 

and non-responders early during NAC treatment (Sadeghi-Naini et al., 2014).  

These previous findings suggested that textural features may detect the acute, 

heterogeneous microstructural features carried in the parametric layout 

(Sadeghi-Naini et al., 2014).          

In this study, a GLCM-texture analyses were applied to whole-breast 

tomographic DOS parametric maps (Figure 2.11).  DOS images were 

constructed with an in-plane resolution of 3 × 3 mm2 and slice thickness of 7.5 

mm.   The GLCM-texture analysis was applied to the entire tumour volume and 

averaged over multiple frames of the DOS parametric maps.  The image’s 

properties are first defined by shades of grey levels (Ng) within a finite scale and 

the texture of the image describes the intensity of one pixel within a 

neighbourhood of image pixels.   A bilinear interpolation was applied to 

compensate for differences in the spatial resolutions, thus obtaining volumetric 

images with isotropic voxels (3 × 3 × 3 mm3) (Sadeghi-Naini et al., 2015).  For 

the GLCM, grey-tone intensities (Ng) were quantized into 16 grey-levels from 

the DOS parametric maps.  A symmetric GLCM was constructed based on the 

spatial relationship of each voxel’s neighbours using a displacement vector; the 

magnitude of the displacement vector was one to four voxel distances.   
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Figure 2.11:  GLCM computation.  This matrix is a representation of an ROI 

region with pixels.  Each box represents one pixel that is spatially arranged next 

to the other.   The right matrix is a representation of an image with quantized 

grey-scale values.  There are eight grey-scale levels and this is represented by, 

Ng=8 (i.e. eight grey-levels, 3-bit data).  The left is the GLCM matrix 

corresponding to the pixel relationships of the grey-scale image or within a 

region of interest.  Here, the displacement vector is used to compute the matrix, 

where its magnitude is equal to one voxel distance at an angle of 0° (highlighted 

yellow with the adjacent pixels).     

 

 A cumulative GLCM was calculated in 13 directions (45° rotations in 

each adjacent direction) relative to the central voxel (Chen et al., 2007).  The 

resulting co-occurrence features included: Energy, Homogeneity, Contrast, and 

Correlation.  These were previously defined as  (Haralick et al., 1973, Haralick, 

1979): 

 

Energy; 

 (Ene)= n	

op

)qr

n 	𝑝(𝑖, 𝑗)_
op

uqr

    (Eq. 2.9) 

 

where the energy (angular second moment) describes the textural uniformity of 

the image, 0 ≤ Ene ≤ 1.   The function p(i,j) is the probability of having two 

neighbour voxels with a grey-tone intensity (i and j) in the matrix;  
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Homogeneity; 

	(Hom)=n  n
𝑝(𝑖, 𝑗)

1 + |𝑖 − 𝑗|

 Ng

j=1

Ng 

i=1

     (Eq. 2.10) 

 

where the homogeneity (inverse difference moment) measures the diagonal 

elements within the displacement vector of the GLCM and relates the 

similarities in grey-tones between voxels;  

 

Contrast; 

 

(Con)=	 n |𝑖 − 𝑗|_
Ng-1 

|i-j|=0

× zn  n𝑝(𝑖, 𝑗)

Ng 

j=1

Ng 

i=1

 {    (Eq. 2.11) 

 

where the contrast measures the differences between the lowest and highest 

voxels’ grey-tones and lastly; 

 

Correlation; 

 

	(Cor) =
∑ 	∑ (𝑖)(𝑗)𝑝(𝑖, 𝑗) −  𝜇)𝜇u

	op
uqr

op	
)qr

𝜎)𝜎u
				(Eq. 2.12) 

 

where the correlation measures the linear dependency on neighbouring grey-

tone intensities; and si, sj are the standard deviations, and µi, µj are the means 

of the probability matrix.  Therefore, a total of 40 DOS-texture features was 

included for analysis; there were 10 DOS parameters comprised of 4 GLCM 

features for each parameter (Figure 2.12).  DOS-texture features were 

calculated using MatLab R2011b (The MathWorks Inc., Natick, MA, USA).  The 

GLCM-texture functions used in MatLab were obtained from an online tool by 

The Mathworks Inc (Uppuluri, 2008).  The function codes were adapted for DOS 

image analysis at the University of Toronto by Sadeghi et al. (2015).   
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Figure 2.12 DOS-Texture Features.  Parametric maps were generated for 

each of the pre-treatment DOS features.  In order to obtain the texture features, 

a GLCM function was used on the parametric maps to obtain the following 

texture features: Energy (ene), Homogeneity (hom), Contrast (con), and 

Correlation (cor).  A total of 40 features were extracted from texture analysis of 

the DOS parametric maps (i.e. 10 DOS features x 4 texture features = 40 total 

features).  
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2.6 Image Quality Verification 
 

 Quality verification was completed on imaging devices to ensure data 

consistency and quality throughout the imaging scans.  A description of the 

various quality procedures is described in the subsequent sections.   

 

2.6.1 Ultrasound Transducer Properties and Beam Characterization 
 

 The ultrasound beam was characterised from the Ultrasonix L5-14/60 

transducer used in this study.  Beam characterisation was completed using an 

open-access MATLAB-based software platform (Field II, Biomedical 

Engineering Group, Lyngby Denmark, (Jensen, 2017)).  The point-spread 

function was computed based on measurements obtained from several 

locations of an acoustic phantom.  The phantom had an echogenic surface and 

was constructed of plexiglass with known acoustic properties.  Beam 

characteristics obtained included the axial depth, the focal depth, centre 

frequency, frequency bandwidth, and FFT-frequency response along the axial 

waveform.  The frequency-response curve was obtained and corresponded with 

the 0-mm lateral distance.  The data presented in Table 2.4 were taken within 

the -6dB window, referenced at 0 mm lateral distance. The characterization 

features are listed below with the beam profiles (Figure 2.13, Table 2.4).      

Transducer Properties Measurements 
Number of elements (n) 128 
Kerf (distance between elements) [µm] 25 
Element width [mm]   0.48 
Element length (elevation) [mm] 4 
Elevation focus [mm] 14 
  
Beam Characteristics Measurements 
Focus position [mm] 13.8 
Centre frequency [MHz] ~7  
Frequency bandwidth range [MHz] 3-8 
Depth of focus [mm] 6.9 
Elevation beam resolution [mm] 0.77 
Lateral beam width at focus [mm] 0.21 

Table 2.4:  Transducer and Beam Characteristics.  The above characteristics 

were measured and compared to references (outlined by the manufacturer) for 

quality assurance.  
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Figure 2.13:  Transducer Beam Characteristics.  The ultrasound beam 

characteristics evaluated using a MATLAB-based software platform.  Feature 

profiles are outlined in Table 2.4. The colour maps represent the relative signal 

intensity (red; high intensity and blue; low intensity)    

 

2.6.2 Optical Imaging Characterization 
 

The diffuse optical spectroscopy tomography device was tested for data 

stability using an end-user phantom from the manufacturer (Advanced 

Research Technologies, Montreal, Canada).  The phantom was constructed of 

a polyurethane phantom suspended from a monofilament within a metal frame 

(Figure 2.14).  The phantom mimicked tissue optical properties within the near-

infrared spectrum.  
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Figure 2.14:  Optical Phantom Construction.  The phantom was constructed 

from a frame with a polyurethane cylinder material that was optically 

compatible.  The phantom permitted verification of the imaging geometry, and 

tested the quality of the light transmission of the device.  The colour maps 

represent the relative signal intensity (red; high intensity and blue; low intensity)    

 

To verify the imaging and data, the phantom was inserted into the DOS device 

for imaging.   A predefined ROI was selected with the following geometry for 

imaging to obtain the quality-check parameters (Table 2.5): 

 

Adjustment Scan Area  
 
Setting 

 
Measurement (mm) 

Phantom Width 54.0  

Phantom Offset 58.0 

Phantom Height 54.0 

Top Offset 25.0 

 Table 2.5:  Optical ROI Geometry for Quality Check. 
 

Optical scanning was completed using the same scanning protocol indicated for 

patients.  The data output was analysed on a separate workstation (ART 

Review Workstation, V. 1.07.01, Montreal Canada) (Figure 2.15, Table 2.6).  
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Figure 2.15:  DOS Data Verification.  Data verification included testing each 

transmission wavelength.  The test performance was based on verifying the 

image’s geometry and to test the transmission patterns.  The transmission 

patterns are compared to a reference image for verification.    
 

 

Analysis of the DOS data are outlined below in Table 2.6.   

 

DOS Imaging Characteristics Measurements 
Complete Scanning Area (mm) (W x H) 170 x 185 

Optical Wavelength Verification (nm) 687, 734, 782, 834 

Pixel dimension (in-plane) [mm] 3 x 3 

Contrast scale range [a.u.] 3-20 

Table 2.6:  Optical characteristics.  The DOS imaging characteristics are 

outlined with the corresponding measurements from the quality management 

process.   

 

2.6.3 Inter-Reader Variability Testing 
 

 Inter-user variability was tested on 25 DOS and 25 QUS datasets.  The 

ROI contour and volume were tested for pairwise agreement between two 

users.  Thus, each dataset had two readers analyse an ROI contour on the 

same DOS image and a QUS image (Figure 2.16).  A Cohen’s k  used to 
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compare ROI placement and this was based on the reader’s interpretation of 

whether the ROIs delineated between the “inside” and “outside” region of the 

tumour. These methods were previously used in a simulation-based study for 

PET imaging (Rucker et al., 2012).  To analyse if readers selected similar ROI 

volumes, an independent t-test was used.  A significance level of 0.05 was used 

to determine significant results.   

     

 
Figure 2.16. Inter-user agreement analysis.   For inter-user variability testing, 

the placement of the ROI was analysed by two readers for agreement statistics 

(k).   

 

Cohen’s k is expressed as: 

𝜅 = ��(�)���(6)
r���	(6)

    (Eq. 2.13) 

 

where; Pr(𝑎) denotes the observed agreement and Pr	(𝑒) represents the 

chance agreement (Rucker et al., 2012) and 0£k£1.  

The value and range of k represent the level of agreement; where 0-0.2 

demonstrate only a small probability of agreement; 0.21-0.40 is considered fair; 
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0.41-0.60 is moderate; 0.61-0.80 denotes a substantial agreement; and 0.81-

1.00 is an ideal agreement range between readers (McHugh, 2012).   A 

summary of tests and statistical measures are outlined in Table 2.7.    

 

Test Value 
n=25 DOS QUS 

(ROI Placement) [Cohen’s k] 0.779, p<0.001 0.740, p<0.001 

Volume Comparison (t-test) [p-value] NS (p=0.993) NS (p=0.839) 

Table 2.7:  Tests of comparisons (Inter-reader variability).  A Cohen’s k was 

calculated ROI placement.  Tumour ROI volumes were also compared for 

significant differences in chosen volumes between users.   
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2.7 Statistical Analysis and Machine Learning 
 

All statistical tests were performed using SPSS 20 (IBM Inc., Armonk 

New York, USA) and MatLab R2011b (The Mathworks Inc., Natick, MA, USA).  

A summary of the study workflow is outlined below.   

 

2.7.1 DOS and QUS Data 
 

Descriptive statistics were used on both DOS and QUS parameters. 

Mean value with standard deviation was calculated for each imaging dataset 

taken at each time interval when data was collected.  For QUS the change [∆] in 

QUS parameters was calculated by subtracting the measurements at each time 

interval from the value measured at baseline.  DOS measurements were 

expressed in percent changes from the baseline [% Change].    

 

2.7.2 Tests of significance between response groups (R versus NR) 
 

A comparison of each parameter mean values, using the DOS and QUS 

data were tested for significant differences between responders and non-

responders at each time interval.  First, a normality violation was tested for each 

parameter using a Shapiro-Wilk test (W).  For normally distributed parameter 

changes, an independent t-test was used (unpaired, two-sided, 95% confidence 

interval). Otherwise, an unpaired, Mann-Whitney U-test within the 95% 

confidence level was utilized (SPSS Inc., Chicago IL, USA) for parametric 

changes that were not normally distributed. The Mann-Whitney U-test is based 

on a calculation of the U-statistic for each group (Mann and Whitney, 1947).  

The U-statistic is then compared against a known distribution for which the null 

hypothesis is either accepted or rejected (Nachar, 2008).  

 

2.7.3 Tests of significance Between Time Intervals 
 

Significant changes over time were tested for each DOS and QUS 

parameter to compare its difference to baseline values using a one-way with 

repeated-measures ANOVA (analysis of variance).  For this, a Dunnett’s test 
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was used.  The statistical measures were considered significant at an alpha 

level of 0.05 or less.    

 

2.7.4 Selection of Feature Sets for Analysis 
 

Both univariate and multivariate analyses tested the performance of 

individual and combined DOS and QUS parameters against final pathologic 

endpoints, as measured by Miller-Payne response criteria.  All imaging 

parameters calculated from DOS and QUS were considered for univariate 

analysis.  For multivariate features and models, a maximum of two combined 

(binary) parameters were used and all binary forward combinations were 

considered for analysis.  The maximum feature set (multivariate model) were 

constrained by the number of data samples in this study. Using a binary feature 

model would mitigate the “curse of dimensionality” based on a maximum of 1/10 

of the data sample (Jain et al., 2000).  In subproject one, a total of 22 patients 

were analysed (maximum 2 feature sets in the multivariate model).  In 

subproject two, a maximum of 2 features was permitted within a multivariate 

model given the mathematical constraints of the prediction models used in the 

machine learning algorithm.      

 

2.7.5 Receiver Operating Characteristic Curve Analysis 
 

A receiver-operating characteristic curve (ROC) analysis was completed.   

The ROC provides the diagnostic accuracy of DOS and QUS parameters to 

discriminate between pathologic responders and pathologic non-responders 

(Metz, 2006).  The ROC is based on a distribution of the true positive fraction 

(TPF) and the false positive fraction (FPF) (Figure 2.17, Table 2.8).   
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 Disease   

Test Present n Absent n Total 

Positive 
True Positive 

Fraction (TPF) 
a 

False Positive Fraction 

(FPF) 
c a+c 

Negative 
False Negative 

Fraction  

(FNF) 
b 

True Negative Fraction 

(TNF) 
d b+d 

Total  a+b  c+d  

Table 2.8:  Measures of Diagnostic Test Accuracy. Table corresponds to 

Figure 2.17.  The TPF, FNF, FPF and TNF are used to calculate the test 

accuracy.   

 

 
Figure 2.17:  Test Distribution.    The sensitivity, specificity and accuracy of a 

diagnostic test can be calculated based on the true negative distribution and the 

true positive distribution.  The sensitivity and specificity points are employed to 

compute the ROC curve.   

 

Using the true positive distribution and the true negative distribution, predictive 

values can be expressed (using the notations in Table 2.8) as; 

 

Sensitivity; 

%𝑆𝑛 =	
𝑎

(𝑎 + 𝑏)	× 	100			(Eq. 2.14) 
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where the %Sn represents the probability that the test result is positive when 

there is disease present;  

 

Specificity; 

%𝑆𝑝 = 	
𝑑

(𝑐 + 𝑑)	× 	100			(Eq. 2.15) 

  

where the %Sp represents the probability that the test result is negative when 

the disease is not present;   

 

Accuracy; 

%𝐴𝑐𝑐 = 	
(𝑎 + 𝑑)

(𝑎 + 𝑏 + 𝑐 + 𝑑) 	× 	100			(Eq. 2.16) 

 

where the %Acc represents the number of true assessments.   

To plot the ROC curve, the sensitivity and specificity was used as 

coordinates within the curve axes (Figure 2.18).  To determine the best cut-off 

point, Youden’s index (Q-point) was used.  The area under the curve (AUC) 

was determined by calculating the integral of the ROC.  
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Figure 2.18:  Receiver-Operating Characteristic Curve.  The ROC is plotted 

based on the sensitivity and the specificity of the test.  A random classification is 

determined at 0.5; while an ideal diagnostic test is depicted where the 

sensitivity and specificity is equal to 1 (top left corner of ROC).  Youden’s index 

at the Q-point (Q-Index) denotes where the sensitivity and specificity are equal 

(optimal test).    

 

In this study, multiple statistical models were used to calculate the 

sensitivity, specificity, accuracy and AUC of DOS and QUS imaging biomarkers.  

The following sections will describe classifier models used to discriminate DOS 

and QUS imaging parameters between pathologic response groups to obtain 

the sensitivity, specificity, area under the curve and accuracy.   

 

2.7.6 Linear Discriminant Analysis (LDA) 
 
 For subproject one, a LDA was used to classify responders and non-

responders based on their univariate DOS and QUS parameters.  The linear 

function was used as the cut-off point to determine the sensitivity, specificity 

and accuracy of the individual DOS and QUS variables.       

Linear discriminant analysis is based on Fisher’s linear discriminant 

model where a linear function is used to separate binary classes; given a set of 
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variables, [x1, x2,…. xn].  The linear classifier thus separates two “species” 

based on its feature space; whereby the goal is to determine the optimal ratio of 

the means and standard deviations that would discriminate the classes within 

the feature space (dimension) (Fisher, 1936).   The discriminant linear function 

is also referred to as the “decision boundary” (Figure 2.19). 

 

 
Figure 2.19:  Linear Discriminant Analysis.  The LDA is used to calculate the 

linear function which is used to discriminate between two species (Class 1 and 

Class 2, for example responders versus non-responders).   

    

2.7.7 Logistic Regression Analysis (LRA) 
 

Following methods by Xu et al. (2015), a logistic regression analysis 

(LRA) was used to compute the probability of multivariate combinations for DOS 

and QUS imaging markers to a dichotomous response variable (Y, 

Y1=Responder; Y2=Non-Responder) (Xu et al., 2015).  The predictive 

performance of the models was evaluated by using the LRA model within the 

training set and then a test set to measure the classification error.   
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2.7.8 k-Nearest Neighbour (k-NN) Classifier Statistics 
 

The k-NN classification is a non-parametric algorithm used for 

classification.  It was chosen since it is one of the least computationally-

demanding algorithms for supervised machine-learning (as this present study is 

exploratory).   The k-NN algorithm makes no assumptions about the form of the 

data (e.g. Gaussian distribution) and therefore it is ideal for exploratory studies 

where there is no prior knowledge about the attributes and distribution of the 

data. (Dudani, 1976).  The k-NN classification uses a weighting function that 

varies in value based on the distance between a sample and its neighbour; 

seeking out patterns in the distribution of the data within a sample set (Dudani, 

1976).  The data samples (known as “instances”) are treated in groups or 

“bags” with a defined label (Wang and Summers, 2012).  The bags are 

analysed in terms of their attributes or features.  In this study, the bags were 

labelled as either pathologic responders or non-responders and the attributes 

were all baseline DOS features (Figure 2.20). 
 The k-NN algorithm first organizes the bags into a feature space based 

on the values of the attributes and this is used for the training set.  The test set 

is assigned a label according to a majority vote that is dependent on the nearest 

neighbour as determined by the Euclidean distance calculation (Eq. 2.17, 

Figure 2.20).  For baseline DOS features, the training and test set used a k 

value of k=3 (three nearest neighbours).   

 

A Euclidean distance is defined as; 

 

Euclidean distance 

 

��𝑎r
(r) − 𝑎r

(_)�
_
+	�𝑎_

(r) − 𝑎_
(_)�

_
+⋯ . �𝑎�

(r) − 𝑎�
(_)�

_
	 (Eq.2.17) 

 

where; (𝑎�
(2)) represents the number of attributes for each instance.  Since 

different attributes may have varying scales or units of measure; they are all 

normalized between 0 and 1 for analysis within the k-NN feature space.  
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Figure 2.20:  k-NN Classifiers.  The kth nearest neighbour is three in this 

representation.  The bags are labelled as responders (green) or non-

responders (red) in the training set (A).  A test sample is used to compute the 

three nearest neighbours using a Euclidean distance calculation.  Depending on 

the labels of the nearest neighbours, a vote is tabulated and the majority vote 

determines how the test sample is labelled (B).    

 

2.7.9 Naïve Bayes (Bayesian) Classifier Statistics 
 

 Naïve Bayes classification can be used to predict the probability of a 

binary class membership (i.e. chemotherapy responder versus chemotherapy 

non-responder).  The algorithm uses the probabilities of the class label and its 

attributes to compute a probability prediction of a sample.  An important 

assumption for naïve Bayes classification algorithms is that the individual 

attributes (𝑎r, 𝑎_,… 𝑎2) of a class are independent to each other (conditional 

independence) (Han and Kamber, 2006).  The naïve Bayes classifier function is 

expressed as (Eq. 2.18): 

 

Naïve Bayes Classifier 

 

𝑃(𝑋|𝐶)) = ∏ 𝑃(𝓍�|𝐶))2
�qr 				(Eq. 2.18) 
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where; 𝑃(𝑋|𝐶)) is the probability of sample (X) labelled into a class (𝐶)); and  𝓍� 

represents the value of 𝐴� attributes for sample X (Han and Kamber, 2006).  

For this study, (𝐶)) is the response class (responder versus non-responder; 𝑖	= 

1, 2) and 𝐴� corresponds to all the baseline DOS-texture features. 

 

2.7.10 Training, Test and Validation Sets 
 

Prior to training and test validation, the data set was randomly 

subsampled into 20 subsets with replacement.  Each subset had equal 

numbers of responders and non-responders; this method was used to account 

for the data imbalance between the two response groups.  Since each patient 

was represented using 40 DOS-GLCM features, and due to a limited sample 

size, in order to prevent the “curse of dimensionality” (Jain et al., 2000), a 

feature selection based on sequential forward selection (SFS) algorithm in a 

wrapper framework (Duda et al., 2001) was performed to find the best (in the 

univariate case), or at most two (in the multivariate case) features.  In order to 

prevent the peaking phenomenon due to the curse of dimensionality (Jain et al., 

2000), the number of features should be at most 1/10th of the number of data 

samples, and since in the balanced data, there were only 20 data samples, a 

maximum of two features were selected for multivariate analysis using the SFS 

algorithm.  The classifiers were evaluated using a leave-one-out cross 

validation at subject level. At each fold, the test set (one patient) remained 

unseen during the feature selection, tuning, and training of a classifier. 

Furthermore, at each fold, a leave-one-out cross validation was performed on 

the training set for the purpose of feature selection and tuning a classifier 

parameter (such as k in k-NN). Thus, at each fold, the training set was further 

divided into train and validation sets. The most discriminative feature(s) and the 

optimal classifier parameter were selected on the training set at each fold 

without involving the left-out test sample. Subsequently at each fold, the 

classifier was trained on the whole training set using the optimal classifier 

parameter and selected features, and tested on the test sample. This process 

was repeated on all samples (in the leave-one-out process) to evaluate the 

performance of the classifier. 
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2.7.11 Subgroup analysis 
 

To test if there was a correlation between DOS-GLCM features and 

tumour biology and clinical features, a multiple linear regression analysis was 

completed using methods previously reported for imaging biomarker analysis 

(Evans et al., 2013).  The following clinical variables were considered in the 

model:  Patient’s age, ER/PR status, HER2 status, tumour size, and pathologic 

response.  The regression coefficient (r) was calculated between the clinical 

variables and DOS-GLCM features.  A statistical test of significance was also 

performed using an ANOVA test with an alpha of 0.05. 

 

2.7.12 Power Analysis 
 

The statistical test of significance was performed with a relatively small 

sample size in each responding group and handling small datasets have been 

previously described (Siegel and Castellan, 1988, de Winter, 2013). In order to 

evaluate the reliability of the performed tests, the statistical power was 

calculated using PASS14 where the label with the highest sample size was fixed 

for analysis.  A power threshold of 0.70-0.80 was used (NCSS, LLC. Kaysville, 

Utah, USA). 
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Chapter 3 
Results 

 

 

3.0 Chapter Overview 
 

 In this chapter, the results of subproject one and subproject two of this 

study are presented.  The structure of this chapter is presented in three 

sections: 1) patients’ clinical and demographic characteristics; 2) measurements 

of DOS and QUS in breast tumours during chemotherapy (i.e. subproject one) 

and; 3) measurements of pre-treatment DOS in breast tumours before 

chemotherapy (i.e., subproject two).  Section one presents data on patient 

demographics (i.e. age) and the clinical presentations before chemotherapy (i.e. 

tumour size, tumour subtype, chemotherapy regimens) and after chemotherapy 

(i.e. Miller-Payne graded pathology response outcome and tumour size 

reduction).  The demographic and clinical characteristics were analysed in 

terms of its representation of cross-sectional breast cancer data (i.e. prevalence 

to cancer subtypes, age, tumour size at diagnosis).   

In section two of this chapter, the results from subproject one are 

presented within the framework of the following research questions:  

 

(Subproject one)  

 

1. Research Question 1: Do DOS and QUS imaging biomarkers 

demonstrate statistically significant changes over the course of 

chemotherapy? 

 

2. Research Question 2: Can DOS and QUS imaging biomarkers be 

modelled together to measure treatment response at early time intervals 

(i.e. after one or two cycles of chemotherapy)?   
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Here, parallel imaging time intervals using DOS and QUS are presented and 

statistical analyses are given in terms of their correlation to final pathologic 

endpoints (i.e. Miller-Payne score).  

 

In section three, the results from subproject two are presented in terms of 

addressing the following research questions:    

 

(Subproject two) 

 

1. Research Question 1: Do breast tumours demonstrate significant 

differences in DOS-texture parameters between responders and non-

responders, as measured before chemotherapy?  

 

2. Research Question 2: Can DOS markers predict chemotherapy 

response prior to starting chemotherapy? 

 

3. Research Question 3: Are there differences in DOS-texture prediction 

models for breast cancer subtypes (i.e., ER+ and triple negative) and 

chemotherapy treatments (i.e. FEC-D and AC-T)? 

 

In this section pre-treatment DOS texture results are presented and analysed 

for statistical differences between responders and non-responders using a total 

sample set of 37 patients.  To address the second and third research questions 

from subproject two, machine learning statistics and discrimination analyses 

results are presented from the 37 patients, and then subgroup analysis with 

ER+ tumours (subgroup of 27 patients), triple negative tumours (subgroup of 7 

patients), FEC-D chemotherapy-treated patients (subgroup of 16 patients) and 

finally AC-T chemotherapy-treated patients only (subgroup of 21 patients).        
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3.1 Patient Characteristics 
 

There were 37 patients recruited into the overall study.  For subproject 

one, there were 22 patients who enrolled and completed all DOS and QUS 

imaging scan times (i.e. baseline, week one, week four, week eight, pre-

operative).  For subproject two, an additional 15 patients were recruited who 

completed one DOS imaging session before starting their chemotherapy (i.e. 

pre-treatment).  All patients who signed the consent form completed their 

baseline scan for subproject two.  In the entire study, there were no study 

deviations and no attrition.  Patients were recruited consecutively.  Participants 

did not report any side-effects related to the study procedure.  A medical chart-

review showed that all participants completed their chemotherapy as scheduled.  

A summary of patient characteristics is outlined in Table 3.1 and described 

below.  

   

3.1.1 Pre-Chemotherapy and Treatment Characteristics 
 

The mean age was 50 years.  Tumour characteristics were recorded at 

the time of diagnosis.  In terms of histological type, lobular carcinoma 

accounted for 3% of patients (1 case) and the majority (97%, n=36) of cases 

were invasive ductal carcinoma in this study.  Previous studies have indicated 

that invasive lobular carcinomas account for 7.6-10% of breast cancer cases; 

while invasive ductal carcinomas were the most prominent histological type; 

accounting or 72.8% of histological types (Dossus and Benusiglio, 2015, Li et 

al., 2003).   

The search results from the patients’ electronic medical record indicated 

that 27 patients had oestrogen receptor (ER) positive tumours; while seven 

were “triple-negative” breast tumours and 12 patients had tumours that were 

HER2-positive.  Participants’ clinical characteristics in this study were 

comparable to cross-sectional breast cancer data by the National Cancer 

Institute (NCI).  The NCI database includes information on the prevalence of 

breast cancer subtypes such as, ER-expression and triple negative tumours; 

their data indicated that among 50,571 women, 72.7% of breast cancers were 

ER+, 12.2% were triple negative and 4.6-10.3% were HER2+. (Howlader et al., 



 166 

2014).  In this study, 73% of patients were ER+, 19% were triple negative and 

32% had HER2+ breast tumours. With the exception of the proportion of HER2+ 

cancers there was an otherwise good correspondence to NCI cross-sectional 

data.  

 In this study, 21 patients were given AC-T based chemotherapy and 16 

patients were given FEC-D chemotherapy.  The chemotherapy regimen was 

consistent with treatment guidelines for advanced breast cancer, as 

recommended by the National Comprehensive Cancer Network (USA) and the 

National Institute for Health and Care Excellence (UK) (National 

Comprehensive Cancer Network, 2016, National Institute for Health and Care 

Excellence, 2017).    All patients completed their chemotherapy treatments.  A 

chart-review was performed and no additional or other chemotherapy drugs 

were administered to patients.  However, in 12 patients who were HER2+, 

Trastuzumab15 was given during their taxane phase chemotherapy, as this was 

also consistent with guidelines from the NCCN and NICE (National 

Comprehensive Cancer Network, 2016, National Institute for Health and Care 

Excellence, 2017).  

 

3.1.2 Post-Chemotherapy Characteristics 
 

A review of the patients’ medical records indicated that there were 27 

patients that were classified as responders, which corresponded to Miller-Payne 

scores 3-5 (MP3= 15 patients; MP4=7 patients; MP5=5); thus, there were 5 

pathological complete responders, i.e. categorized as Miller-Payne score 516.  

There were 10 patients that were non-responders as these patients had a 

Miller-Payne score of 1 or 2 (MP1=4 patients, MP2=6 patients).  For 

responders, the mean tumour size reduction from pre- to post-chemotherapy, 

as measured by MRI was 4.8 cm; 95% CI [3.8, 5.8], p<0.0001, paired t-test); 

while for non-responders, tumours shrunk by a mean value of 0.9 cm; 95% CI 

[0.4, 1.4], p=0.0029, paired t-test).  Thus, both responders and non-responders 

                                            
15 Trastuzumab is a monoclonal antibody (targeted therapy) used for breast 

tumours that are HER2-positive.    
16 Representative pathological specimens of a responder and non-responder 

are presented in Appendix 3.   
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had a statistically significant reduction in the tumour size between the pre- and 

post-treatment times as measured by MRI.       

 

Summary of Patient and Tumour Characteristics 

 
Patient Demographic Information 

 
Number of patients =37  

(All Subjects) 

   

Patients’ Age   

  Years (Range) 
 Mean Age  50 (29-79) 

   

Pre-Treatment Clinical Characteristics 

  

Breast Tumour Size  

 cm (Range) 
Mean Tumour Size at Diagnosis (MRI) 

 

5.9 (2.1-12.8)  

  

Molecular and Histological Features 

Number of patients n, (%) 
Oestrogen Receptor (ER)+ 27, (73) 

Triple Negative/Basal-Like 7 (19) 

HER2+ 12 (32) 

Invasive Ductal Carcinoma 36 (97)  

Invasive Lobular Carcinoma 1 (3) 

  

Chemotherapy and Targeted Therapies  

 Number of patients n, (%) 
 AC-T 21 (57) 

 FEC-D 16 (43) 

 Trastuzumab1 12 (32) 
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Post-Treatment Clinical Characteristics 

 

Post-Treatment Response Classification  
(Miller-Payne Pathologic Endpoints)2 

 Number of patients n, (%) 
Responders (MP 3-5) 27 (73) 

Non-Responders (MP 1-2) 10 (27) 

  

 
Mean Tumour Size Change from Pre- to Post-Chemotherapy  
(Largest Dimension of Tumour as Measured by MRI)3 

Change cm, (%) 
Responders (MP 3-5) -4.8, (-88) 

Non-Responders (MP 1-2) -0.9, (-13) 

Table 3.1. Summary of Patient Characteristics.  Pre- and Post-chemotherapy 

characteristics were recorded.   1 Trastuzumab was given to HER2+ patients in 

the second phase of treatment (i.e. during the patient’s docetaxel (D) or 

paclitaxel (T) treatment).  2 Miller-Payne (MP) Pathologic Response Criteria was 

defined as: MP1-No reduction in overall cellularity, MP2-Up to 30% loss in 

tumour cells, MP3-30-90% loss in tumour cells, MP4-more than 90% loss, MP5-

Complete disappearance of tumour cells. 3MRI measurements were obtained 

from the patients’ electronic medical record.     
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3.2 Results of Subproject One  
 

3.2.1 Overview of Results: Subproject One, Research Question 1 
 

In this section, the results to the following research question are 

presented: Do DOS and QUS imaging biomarkers demonstrate statistically 

significant changes during chemotherapy in responders and non-responders?  

This research question was approached using two statistical methods, as 

described below.       

The first statistical approach was an independent sample t-test to 

compare the mean differences between responders and non-responders during 

early and late time intervals.  Early time intervals were defined as corresponding 

to one to two cycles of chemotherapy, i.e. week one and week four of the 

imaging timelines of this study.  Late time intervals were defined as 

corresponding to the third cycle of chemotherapy and up to the end 

chemotherapy, i.e. week eight and the pre-operative time interval.  In the 

second statistical approach, a repeated measures ANOVA (i.e. within-subjects 

ANOVA) was calculated for responders, and for non-responders.  The repeated 

measures ANOVA was used to test if the changes in DOS and QUS parameters 

were significant over the entire treatment course for each response group 

(responders and non-responders).  All statistical tests were considered 

significant at a significance level of less than 0.05.   

The following section presents the results of the independent sample t-

test and repeated measures ANOVA in the following format:  1) DOS data and; 

2) QUS data.  Lastly, representative case studies of responders and non-

responders are presented to compare the coincident changes in DOS and QUS 

parameters at early and late time intervals.  DOS data is shown as a relative 

change from baseline, which was calculated for each time interval and defined 

as the percent comparison between the mean DOS parameter at each time 

interval to the mean DOS parameter measured at baseline.   QUS data is 

presented as the change in magnitude (increase/decrease) for each of the QUS 

parameters (i.e., ∆MBF, ∆SI, ∆SS).           
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3.2.2 Results of DOS Measurements- Haematological Parameters 
 

Early Time Intervals (week one and week four) 

 

Haematological parameters included the deoxy-haemoglobin (Hb), oxy-

haemoglobin (HbO2) and the total haemoglobin (HbT).  After one week of 

treatment, there were significant differences in the HbO2 and HbT between 

responders and non-responders (p<0.01).  The HbO2 concentration increased 

to 110.7% ± 5.4% (SD17) for non-responders, compared to responders whose 

tumours had a reduction in the HbO2 concentration to 73.7% ± 2.0%.  Similarly, 

the HbT concentration increased 103.2% ± 5.5% for non-responders; while 

responders showed a reduction in the HbT concentration to 78.2% ± 3.2%.  

During the fourth week of treatment, all haematological parameters (Hb, HbO2, 

HbT) were very statistically different between responders and non-responders 

(p<0.01) (Table 3.2).  The Hb parameter showed a greater reduction in 

responders; the change in Hb concentration was reduced to 29.9% ± 6.32% 

and non-responders had a smaller reduction to 68.7% ± 7.9%.  These trends in 

which there was a greater haematological reduction in responders compared to 

non-responders, was observed in the HbO2 and HbT parameters (Figure 3.1) at 

the same time interval.  A summary of the statistical differences for each 

parameter are presented in Table 3.2.   

 

Late Time Intervals (week eight and pre-operative time interval)   

 

 All haematological parameters (Hb, HbO2, HbT) were very statistically 

different between responders and non-responders at late time intervals, as 

measured at week eight and pre-operatively (p<0.001).  After eight weeks of 

treatment, the Hb parameter showed a decrease in concentration to 21.0% ± 

2.9% for responders and non-responders had tumours with higher Hb 

concentration (81.9% ±  9.4%, relative to baseline).  The reduction in the HbO2 

and HbT parameters were greater for responders compared to non-responders; 

the HbO2 and HbT corresponded to a reduction to 10.2% ± 2.3% and 12.7% ± 

                                            
17 SD; standard deviation 
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2.2%, respectively for responders.  The pre-operative measurements showed a 

further reduction in haematological parameters for responders; the Hb 

concentration reduced to 25.4% ± 4.5%, the HbO2 reduced to 10.5% ± 2.8% 

and the HbT concentration reduced to 12.7% ± 2.1% from the baseline value.  

Non-responders at this time interval showed a lesser change in tumour 

haemoglobin; the Hb reduced to 82.9% ± 7.9%, the HbO2 reduced to 84.9% ± 

7.6% and the HbT reduced to 84.4% ± 6.8% from the baseline value.  A 

summary of changes is presented in Figure 3.1.          

 

Tests of Significance Over the Treatment Time Course 

 

The ANOVA tested if there were significant changes in haemoglobin 

parameters over the entire treatment course (i.e. from the pre-treatment time 

interval to the pre-operative scan) for responders and for non-responders.  The 

results indicated that responders and non-responders had a significant change 

in all haemoglobin parameters (Table 3.2).  Thus, both responders and non-

responders demonstrated haematological changes from chemotherapy.     
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 Comparison between responders (R) 
and non-responders (NR) 

(Independent samples t-test)1 

Within-subjects 
comparison 
(ANOVA)2 

 Early Time  
Intervals 

Late Time  
Intervals 

All Time  
Intervals 

 Week 1 Week 4 Week 8 Pre-Op R NR 
Haematological Parameters     

 p-value p-value p-value p-value p-value p-value 

Hb 0.375 0.002 0.000 0.000 0.000 0.005 

HbO2 0.000 0.001 0.000 0.000 0.000 0.015 

HbT 0.004 0.000 0.000 0.000 0.000 0.003 

       

Table 3.2:  Summary of measured p values for DOS-haemoglobin 
parameters.   1DOS parameters were also tested for significant differences 

between responders and non-responders using an independent t-test within the 

95% confidence level following a test for normality.  Otherwise, a Mann-Whitney 

test was performed. 2A repeated-measures ANOVA was used to test for 

significant changes over time (i.e. repeated measures between time intervals) 

for DOS parameters. Bold and blue fonts indicate statistically significant 
results; p<0.05= statistically significant; p<0.01 very statistically 
significant.       
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Figure 3.1:  DOS haemoglobin parameters. Changes in haemoglobin 

parameters, measured as relative percent changes from baseline values. Error 

bars = Standard deviation, n = 14 responders and n = 8 non-responders.  

Significant differences between responders and non-responders were tested at 

each time interval and parametric changes over time were tested for responders 

and non-responders (Table 3.2). 
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3.2.3 Results of DOS Measurements- Tissue Parameters 
 

Early Time Intervals (week one and week four) 

 

 Tissue parameters included the %Water, %Lipids and the tissue optical 

index (TOI).  There were no significant differences between responders and 

non-responders after one week of treatment (p>0.05).  However, after four 

weeks of treatment, the %Water, %Lipids and TOI parameters were very 

statistically different between response groups (p<0.001).  The %Water reduced 

to 53.9% ± 3.3%, %Lipids increased to 166.4% ± 1.7%, and TOI reduced to 

8.1% ± 2.9% for responders; whereas non-responder tumours had a smaller 

reduction to 86.9% ± 10.9% for the %Water, 121.1% ± 5.6% for %Lipids and 

36.6% ± 6.5% for the TOI.  A summary of results is presented in Table 3.3 and 

Figure 3.2.   

 

Late Time Intervals (week eight and pre-operative time interval) 

 

 After eight weeks of treatment, the %Lipids and the TOI demonstrated 

significant differences between response groups (p<0.001), but not the %Water 

parameter (p=0.062).  However, all tissue parameters demonstrated a 

significant difference between response groups at the pre-operative time 

interval (p<0.001).  At this late time interval (pre-op), responders’ tumours 

showed that the %Water reduced to 57.1% ± 6.5%, the %Lipids parameter 

increased to 168.77% ± 0.8% and the TOI reduced to 6.6% ± 1.11%.  In 

contrast, non-responders showed the following changes to 

the %Water, %Lipids and TOI (relative to baseline):   %Water=86.9% ± 

10.9%, %Lipids=121.1% ± 5.6% and TOI=36.6% ± 9.1%. The late changes are 

presented in Figure 3.2 and tests of significance are outlined in Table 3.3.        

          

Tests of Significance Over the Treatment Time Course 

 

 The results of the repeated measures ANOVA revealed that all tissue 

parameters demonstrated a significant change over all treatment time intervals 

for responders, but not for responders.  A summary of results is presented in 

Table 3.3.   
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 Comparison between responders (R) 
and non-responders (NR) 

(Independent samples t-test)1 

Within-subjects 
comparison 
(ANOVA)2 

 Early Time  
Intervals 

Late Time  
Intervals 

All Time  
Intervals 

 Week 1 Week 4 Week 8 Pre-Op R NR 
Tissue Parameters     

 p-value p-value p-value p-value p-value p-value 

%Water 0.495 0.008 0.062 0.001 0.000 0.241 

%Lipids 0.838 0.000 0.000 0.000 0.000 0.595 

TOI 0.339 0.000 0.000 0.000 0.000 0.058 

       

Table 3.3:  Summary of measured p values for tissue parameters.   1DOS 

parameters were tested for significant differences between responders and 

non-responders using an independent t-test within the 95% confidence level 

following a test for normality.  2A repeated-measures ANOVA was used to test 

for significant changes over time (i.e. repeated measures between time 

intervals) for DOS and QUS parameters. Bold and blue fonts indicate 
statistically significant results; p<0.05= statistically significant; p<0.01 
very statistically significant.       
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Figure 3.2:  DOS tissue parameters measured. Changes in tissue 

parameters, measured as relative percent changes from baseline values. Error 

bars = Standard deviation, n = 14 responders and n = 8 non-responders.  

Significant differences between responders and non-responders were tested at 

each time interval and parametric changes over time were tested for responders 

and non-responders (Table 3.3). 
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3.2.4. Results of DOS Measurements- Scattering Parameters 
 

Early Time Intervals (week one and week four) 

 

Scattering parameters included the scattering power (SP) and the 

scattering amplitude (SA).  Early time interval measurements showed significant 

differences between responders and non-responders in scattering parameters 

after four weeks of treatment (p<0.01) only (i.e. not at week one).  After four 

weeks of treatment, the SP reduced to 42.3% ± 1.4% and the SA increased to 

111.5% ± 0.3% for responders; whereas non-responders had a change in the 

SP to 79.9% ± 5.4% (relative to baseline) and the SA decreased to 97.7% ± 

1.8% (relative to baseline).  The early changes are presented in Figure 3.3 and 

tests of significance are outlined in Table 3.4.             

 

Late Time Intervals (week eight and pre-operative time intervals) 

 

Late time intervals showed statistically significant differences in 

scattering parameters between responders and non-responders after eight 

weeks of treatment and up to the pre-operative time interval. (p<0.01).  The SP 

reduced to 43.0% ± 0.7% and the SA increased to 112.2% ± 0.7% for 

responders after eight weeks.  For non-responders, the SP was 91.9% ± 7.9% 

and the SA was 91.9% ± 4.4%.  The SP and SA did not make a significant 

change between eight weeks and the pre-operative scan; responders had an 

SP change to 43.3% ± 0.9% and an SA change to 112.3% ± 0.7%.  For non-

responders, the SP reduced to 96.3% ± 9.5%; while the SA reduced 

insignificantly to 99.8% ± 1.8%.  The late changes are presented in Figure 3.3 

and tests of significance are outlined in Table 3.4.        

 

Tests of Significance Over the Treatment Time Course 

 

A repeated measures ANOVA of the scattering parameters showed that 

responders had a significant change between the pre-treatment interval and the 

pre-operative treatment time (p<0.001).  Non-responders did not have 
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significant change over treatment (p>0.05).  A summary of the repeated 

measures ANOVA test for significance is presented in Table 3.4.    

 

 Comparison between responders (R) 
and non-responders (NR) 

(Independent samples t-test) 

Within-subjects 
comparison 

(ANOVA) 
 Early Time  

Intervals 
Late Time  
Intervals 

All Time  
Intervals 

 Week 1 Week 4 Week 8 Pre-Op R NR 
Scattering Parameters     

 p-value p-value p-value p-value p-value p-value 

SP 0.838 0.000 0.000 0.000 0.000 0.595 

SA 0.410 0.002 0.002 0.001 0.000 0.170 

       

Table 3.4:  Summary of measured p values for scattering parameters.   
DOS parameters were tested for significant differences between responders 

and non-responders and within-groups over the course of chemotherapy.  The 

corresponding data is presented below in Figure 3.3.  Significant p-values are 

bolded.  SP (Scattering power) and SA (Scattering amplitude).   
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Figure 3.3:  DOS scattering parameters (SP and SA) measured during 
treatment.  Changes in scattering parameters, measured as relative percent 

changes from baseline values. Error bars = Standard deviation, n = 14 

responders and n = 8 non-responders.  Significant differences are presented in 

(Table 3.4). 
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3.2.5 Results of QUS Measurements   
 
Early Time Intervals (week one and week four) 

 
After one week of chemotherapy, the difference in the spectral intercept 

parameter between response groups was statistically significant (p=0.009).  

Responders showed an increase in the mean spectral intercept (∆SI) of +3.93 ± 

1.86 [SD] dBr18; whereas, non-responders showed a smaller change of +1.83 ± 

1.83 dBr (Figure 3.4).  In comparison, there were no significant differences 

between responders and non-responders for the mid-band fit (p=0.413) and the 

spectral slope (p=0.222) after one week of treatment.  The change in the mean 

mid-band fit (∆MBF) was +3.27 ± 1.40 dBr for responders; while non-

responders yielded a change of +2.29 ± 1.53 dBr.  For the spectral slope, the 

change in the mean spectral slope (∆SS) was -0.12 ± 0.17 dBr/MHz for 

responders and +0.03 ± 0.11 dBr/MHz for non-responders (Figure 3.4).  
After four weeks of treatment, there were significant differences between 

responders and non-responders with respect to the ∆MBF and ∆SI parameters 

(p<0.001), but not the ∆SS (p=0.275).  Responders had a ∆MBF increase of 

+7.91 ± 1.39 dBr; whereas, non-responders showed a smaller increase of +0.72 

± 1.44 dBr.  Similarly, the ∆SI was +8.55 ± 1.84 dBr for responders and +4.40 ± 

1.62 dBr for non-responders.  The ∆SS was -0.12 ± 0.17 dBr/MHz for 

responders and -0.67 ± 0.14 dBr/MHz for non-responders.  Tests of significance 

are summarized in Table 3.5.      
     

  

Late Time Intervals (Week eight and Pre-op) 

 

After eight weeks of treatment, there were significant differences in the 

∆MBF and ∆SI parameters (p<0.001), but not the ∆SS (p=0.116).  For the 

∆MBF, responders and non-responders showed an increase of +10.02 ± 1.48 

dBr and +1.60 ± 1.39 dBr, respectively.  The ∆SI was +12.27 ± 2.02 dBr for 

                                            
18 dBr refers to decibels (normalized); it is a measurement of the acoustic 

intensity.    
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responders and +2.81 ± 1.58 dBr for non-responders.  The ∆SS was -0.41 ± 

0.21 dBr/MHz for responders and -0.22 ± 0.13 dBr/MHz for non-responders.  

Lastly, only the ∆MBF showed a statistically significant difference between 

response groups at the pre-operative time interval (p=0.020).  Here, the ∆MBF 

was +5.44 ± 2.53 dBr for responders and +0.51 ± 1.70 dBr for non-responders.   

The mean QUS changes for the MBF, SI and SS within the measured 

time intervals is presented in Figure 3.4.  Tests of significance are summarized 

in Table 3.5.      
      

 

Tests of Significance Over the Treatment Time Course 

 

 The significant QUS changes associated with a favourable 

chemotherapy response showed a similar trend for responders, i.e. for 

responders, there was an increase in QUS parameters over time (i.e. over 

course of chemotherapy).      

 

 Comparison between responders (R) 
and non-responders (NR) 

(Independent samples t-test)1 

Within-subjects 
comparison 
(ANOVA)2 

 Early  
Time Intervals 

Late  
Time Intervals 

All Time  
Intervals 

 Week 1 Week 4 Week 8 Pre-Op R NR 
 p-value p-value p-value p-value p-value p-value 

MBF 0.413 0.000 0.000 0.020 0.000 0.474 

SI 0.009 0.001 0.000 0.306 0.000 0.113 

SS 0.222 0.275 0.116 0.375 0.161 0.127 

       

Table 3.5.  1QUS parameters were also tested for significant differences 

between responders and non-responders using an independent t-test.  2A 

repeated-measures ANOVA was used to test for significant changes over time 

(i.e. repeated measures between time intervals) for QUS parameters. Bold and 
blue fonts indicate statistically significant results; p<0.05= statistically 
significant; p<0.01 very statistically significant.       
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Figure 3.4: QUS parameters measured.  Relative changes for all patients 

grouped by treatment response are presented.  Top, Mid-band Fit (MBF); 

Middle, 0-MHz Intercept (SI); Bottom. Spectral Slope (SS).  Error bars = 

Standard deviation, n = 14 responders and n = 8 non-responders.  Tests of 

significance are presented in Table 3.5. 
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3.2.6 Representative DOS and QUS Changes During Chemotherapy 
 

DOS and QUS imaging biomarkers demonstrated coincident changes 

during chemotherapy for patients who were pathologic responders (Miller-

Payne Scores 3-5), but not for non-responders (Miller-Payne Score 1,2).    

 

Representative Pathological Responder (Miller-Payne Pathology Response 

Score 4) 

 

This post-menopausal woman presented with a locally advanced breast 

tumour in the upper inner quadrant of the right breast that measured 9x9x6 cm 

by MRI.  Core biopsy revealed a high-grade invasive ductal carcinoma that was 

oestrogen receptor (ER) and progesterone receptor (PR) positive, and negative 

for HER2-Neu (HER2) overexpression.  Neoadjuvant chemotherapy consisted 

of AC-T.   Histological examination at the time of mastectomy revealed 

pathological response to treatment.  Figure 3.5 presents representative DOS 

and QUS data for this patient.  After four weeks of treatment, this patient 

demonstrated an increase in the mid-band fit (∆MBF) of +10.0 ± 1.4 dBr (±SD).  

At the same time interval, the DOS-measured haemoglobin concentration (Hb) 

decreased to 29.1% ± 9.5%, relative to the baseline. 

 

Representative Pathological Non-Responder (Miller-Payne Pathology 

Response Score 2) 

 

A post-menopausal woman presented with a tumour in the right breast, 

which measured 5 x 4 x 2 cm by MRI.  Core biopsy confirmed the presence of 

invasive ductal carcinoma that was positive for ER, PR negative, and positive 

for HER2.  Chemotherapy treatment consisted of AC-T+Herceptin.  Pathological 

examination after mastectomy demonstrated only minimal response to 

neoadjuvant treatment (no reduction in tumour size). Representative patient 

data is shown in Figure 3.6.  This patient, in contrast to the one above, 

demonstrated a smaller change in the MBF at week four (∆MBF  = +2.3 ± 1.8 

dBr), which was coincident with a reduction in haemoglobin to 64.4% ± 10.9% 

(SD), relative to baseline values. 
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Figure 3.5:  Representative DOS and QUS data of a responder (Miller-
Payne Pathology Score 4).  (Top) Representative B-mode images and DOS 

parametric maps are presented for baseline, mid-treatment (week four) and pre-

operative scans (with contours).  This responsive patient showed an overall 

increase in QUS MBF and an overall reduction in [Hb]. Error bars = Standard 

deviation, Scale bar; 2 cm. Deoxyhaemoglobin [Hb] colour bar = 0-15 µM 

(colour bar represents the concentration of deoxyhaemoglobin as shown in top 

figure; blue=low deoxy-haemoglobin concentration, red=high deoxy-

haemoglobin concentration).   
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Figure 3.6:  Representative DOS-QUS images and data for a non-
responder (MP2).  Normalized power spectra are presented for baseline and 

pre-operative scans.  This non-responsive patient demonstrated an insignificant 

change in the mid-band fit (dBr) and lesser changes in DOS parameters (deoxy-

haemoglobin presented) during treatment. Error bars = Standard deviation, 

Scale bar; 2 cm.  Deoxyhaemoglobin [Hb] colour bar = 0-15 µM (colour bar 

represents the concentration of deoxyhaemoglobin as shown in top figure; 

blue=low Hb concentration, red=high Hb concentration).  Contours are shown in 

the ultrasound and optical figures presented.   
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3.2.7 Overview of Results: Subproject One, Research Question 2 
 

In this section, the following research question is addressed: “Can DOS 

and QUS imaging biomarkers be modelled using univariate and multivariate 

parameters to measure treatment response at early time intervals (i.e. after one 

or two cycles of chemotherapy)?”.  Evaluating early-response markers is 

important and clinically relevant because physicians need information at early 

time intervals in order to modify treatments as necessary.  In the following 

section, the results of both univariate and multiparametric models are 

presented.    

 

3.2.8 Univariate Analysis of DOS and QUS Parameters 
 

DOS and QUS Analysis at Early Time Intervals 

 

Linear discriminant analysis and ROC analysis of individual DOS and 

QUS parameters were undertaken to differentiate pathological response, as 

defined by Miller-Payne pathologic classification during treatment.  The area 

under the curves (AUCs) for individual DOS and QUS parameters (i.e. 

univariate analysis) during treatment are presented for early time intervals 

(weeks one and four) in Table 3.6.   After one week of treatment, the DOS and 

QUS parameters: SI, HbO2, and HbT indicated good response classification 

(AUC range=0.839-0.982), and this corresponded with 64.3-85.7% sensitivity, 

and 75.0-87.5% specificity.  Other DOS and QUS parameters were poorer 

predicators at this time interval, such as the SS, %Water, % Lipids, and SA 

(Table 3.6).  However, after four weeks of treatment, the QUS MBF and SI 

markers showed an increase in the AUC (range 0.920-0.982) and this 

corresponded with high sensitivity and specificity (range; 85.7-100.0%).  

DOS parameters related to tumour haemoglobin demonstrated high 

sensitivity and specificity (%Sn=85.7%, %Sp=87.5%), and an AUC of 0.911-

0.964.  Other DOS parameters such as the TOI demonstrated a sensitivity and 

specificity of 85.7% and 87.5% respectively, which corresponded to an AUC of 

0.973.   
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 Early Time Intervals  

Parameters 
Week 1  

(One Chemotherapy Cycle) 
 

Week 4  
(Two Chemotherapy Cycles) 

 

 
  %Sn %Sp AUC   %Sn %Sp AUC   

QUS         

MBF 50.0 50.0 0.607  92.9 100 0.982  

SI 64.3 87.5 0.839  85.7 87.5 0.920  

SS 28.6 25.0 0.201  57.1 62.5 0.643  

         

DOS         

Hb 64.3 62.5 0.616  85.7 87.5 0.911  

HbO2 85.7 87.5 0.982  85.7 87.5 0.938  

HbT 78.6 75.0 0.875  85.7 87.5 0.964  

%Water 50.0 50.0 0.589  85.7 75.0 0.848  

%Lipids 50.0 50.0 0.527  92.9 87.5 0.982  

SP 50.0 50.0 0.527  92.9 87.5 0.982  

SA 57.1 50.0 0.393  85.7 87.5 0.897  

TOI 64.3 62.5 0.625  85.7 87.5 0.973  

         

Table 3.6:  Sensitivity (%Sn), Specificity (%Sp), and Area Under Curve 
(AUC) for univariate DOS and QUS parameters.    DOS and QUS parameters 

were estimated from discriminant analysis, and receiver-operating characteristic 

analysis.  DOS and QUS parameters were analysed for weeks 1, 4 and 8 to 

correspond to response monitoring during treatment.  Markers for response 

classification were detected as early as one week relative to the start of 

chemotherapy.   Highlighted values indicate an AUC threshold of greater than 

0.8.   

 

3.2.9 Multivariate Analysis of Pairwise DOS-QUS Parameter Combinations 
 

Multivariate models were formulated using binary (pairwise) DOS and 

QUS parameters.  Pairwise combinations were determined from a statistical 
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framework that restricts the number of parameters that can be included in a 

model based on the number of subjects in a sample set19.       

  Table 3.7 present results of the ROC analyses of DOS-QUS pairwise 

combinations during early chemotherapy time intervals (Weeks 1, 4).  

Parametric combinations increased the sensitivity and specificity for response 

classification compared to univariate parameters alone after one week of 

chemotherapy and is represented in Figure 3.7.  At week one, combining the SI 

parameter with the %Water parameter demonstrated a sensitivity and specificity 

of 71.4-75.0% (AUC=0.866).  Also, combining the SS+TOI resulted in an AUC 

of (AUC=0.982).  At week one, the combination of the MBF with total 

haemoglobin (HbT) demonstrated an AUC value of 0.857.  All of these 

combinations demonstrated an increase in the classification performance 

compared to using the individual (univariate) parameters alone, i.e. the best 

univariate AUC was 0.839, compared to multivariate models which 

demonstrated an AUC of 0.857-1.0.   

At week four, response classification was enhanced when the MBF, SI, 

and SS were combined with the following DOS parameters: Hb, HbO2, %Water, 

SA, TOI.  Representative combinations are presented in Figure 3.8 and 

significant DOS and QUS combinations are presented in Table 3.7.   The 

combination of the MBF and Hb, or HbO2, or %Water resulted in an AUC of 1.0, 

and a sensitivity and specificity of 100% (Figure 3.8).  The SI showed an 

increase in sensitivity and specificity when combined with either HbO2, %Water, 

or SA.  Lastly, the SS showed an improvement with combinations with the TOI 

or %Water.  The performance of these combinations is presented in Table 3.7.    

 

 

 

                                            
19 This statistical framework indicates that the number of parameters permitted 

into a model is limited by the sample size; defined as 1/10 of the sample size 

Jain et al., 2000).  All possible forward combinations between DOS and QUS 

parameters were included in the statistical analysis using a brute-force search.  

Parametric combinations that yielded an AUC>0.8 were reported, as the 

likelihood ratio of 0.8 (true positive fraction)/0.2 (false positive fraction) was 

chosen (Zweig et al., 1993).    
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Multivariate Features %Sn %Sp AUC (Logistic) p-value 

     

Week 1 (One Cycle of Chemotherapy) 
   
MBF+HbO2 85.7 87.5 0.973 0.000 
MBF+HbT 71.4 75.0 0.857 0.006 
     
SI+HbO2 100 100 1.000 0.000 
SI+HbT 85.7 87.5 0.929 0.001 
SI+%Water 71.4 75.0 0.866 0.005 
     
SS+HbO2 100 100 1.000 0.000 
SS+HbT 85.7 87.5 0.955 0.000 
     

Week 4 (Two Cycles of Chemotherapy) 
   
MBF+Hb 100 100 1.000 0.000 
MBF+HbO2 100 100 1.000 0.000 
MBF+%Water 100 100 1.000 0.000 
     
SI+SA 100 100 1.000 0.000 
SI+HbO2 85.7 87.5 0.982 0.000 
SI+%Water 85.7 87.5 0.964 0.000 
     
SS+SA 100 100 1.000 0.000 
SS+TOI 92.9 87.5 0.982 0.000 
SS+%Water 85.7 87.5 0.955 0.000 
     

Table 3.7:  Sensitivity (%Sn), Specificity (%Sp) and AUC for representative 
multivariate (pairwise) DOS and QUS parameters.  Pairwise combinations 

were reported with AUC >0.8.  Analyses were performed at week one and 4 for 

combined parameters (i.e. during treatment).  Combining DOS and QUS 

parameters together demonstrated an increase in sensitivity and specificity 

compared to univariate models.   
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Figure 3.7:  Sensitivity (%Sn), Specificity (%Sp) and AUC for 
representative multivariate (pairwise) DOS and QUS parameters at week 
one. ROC curves: (Top) QUS alone; (Middle) DOS alone; (Bottom).  
Combination DOS+QUS.  Combining DOS and QUS parameters demonstrated 

an increase in sensitivity and specificity compared to the univariate parameters 

alone at this time interval.  The parameters presented here are representative; 

the performances of all multivariate models are presented in Table 3.7.   
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Figure 3.8:  Sensitivity (%Sn), Specificity (%Sp) and AUC for 
representative multivariate (pairwise) DOS and QUS parameters at week 
four. ROC curves: (Top) QUS alone; (Middle) DOS alone; (Bottom).  
Combination DOS+QUS. The parameters presented here are representative; 

the performances of all multivariate models are presented in Table 3.7.   
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3.2.10 Summary of Results and Responses to Research Questions 
(Subproject One)  
       

DOS and QUS imaging biomarkers were studied in breast cancer 

patients to report first accounts of coincident markers for tumour response 

during neoadjuvant chemotherapy.  The results of subproject one showed that 

the changes in DOS and QUS imaging biomarkers represented the biological 

alternations in the tumour and could be used to measure the tumour’s 

pathologic response.  The biological changes, as measured by QUS, include 

markers for cell death (i.e. MBF, SI); while DOS parameters showed that there 

were significant changes in the haematological properties (Hb, HbO2, HbT) and 

tissue composition (%Water, %Lipids, TOI).  The responses to the research 

questions are presented below:       

 
v Research Question 1: Do DOS and QUS imaging biomarkers demonstrate 

statistically significant changes over the course of chemotherapy? 

 

 

Over the entire course of chemotherapy (i.e. from pre-chemotherapy to pre-

surgery), the following QUS parameters showed significant increases in 

responders only: MBF and SI.  For DOS parameters, the following parameters 

showed significant decreases over chemotherapy in responders: Hb, HbO2, 

HbT, %Water, SP, TOI; while the following parameters showed significant 

increases in responders: SA, %Lipids.  There were parallel temporal changes in 

the DOS and QUS parameters.    

 

 

v Research Question 2: Can DOS and QUS imaging biomarkers be 

modelled together to measure treatment response at early time intervals (i.e. 

after one or two cycles of chemotherapy)?   

 

The results indicated that univariate DOS and QUS imaging parameters 

were good surrogate markers for pathologic endpoints (i.e. Miller-Payne 

pathologic response criteria) as early as one week after the start of 

chemotherapy (corresponding to one chemotherapy cycle).   At week one, the 



 193 

QUS-spectral intercept (SI) showed a sensitivity of 64.3% and specificity of 

87.5% (AUC=0.839).  Similarly, the DOS-haemoglobin parameters, HbO2 

demonstrated a sensitivity of 85.6% and specificity of 87.5%, and the HbT had 

a sensitivity and specificity of 78.6% and 75%, respectively.  

In multivariate models, the results demonstrated that the following DOS 

and QUS values can be predictive of chemotherapy response at early time 

intervals, as measured after one week (i.e. one cycle) of chemotherapy:  QUS 

[MBF, SI, SS] and DOS [HbO2, HbT, %Water].  A logistic regression model was 

used for multivariate DOS and QUS models and showed that DOS and QUS 

parameters could be used as surrogate endpoint markers to Miller-Payne 

pathologic response criteria, which demonstrated an accuracy of up to 100%.  
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3.3 Results of Subproject Two  
 
3.3.1.  Overview and Link to subproject one 
 
 The aim of this thesis was to investigate DOS and QUS imaging 

biomarkers to detect early indicators of chemotherapy response defined as:  

1. Early-response markers after one or two cycles of chemotherapy;  

2. Predictive markers that are measured before starting chemotherapy.   

Subproject two was motivated from the results obtained from subproject one.  In 

subproject one, it was shown that early-response markers could be obtained by 

modelling DOS and QUS imaging biomarkers as univariate and multivariate 

models within one or two cycles of chemotherapy.  The results indicated that 

DOS and QUS imaging biomarkers demonstrated high sensitivity and specificity 

as early as one week after the start of chemotherapy.  Thus, the goal of 

subproject two was to then investigate predictive markers using DOS imaging 

only; using DOS alone was based on the following rationale: 

1. Previous studies have already investigated pre-treatment QUS imaging 

biomarkers (both mean QUS and texture-based QUS imaging 

biomarkers) and have shown a high prediction accuracy (88%) to 

treatment response (Tadayyon et al., 2017); thus, this area of research 

has already been studied with promising results.    

2. Previous studies have indicated that pre-treatment DOS parameters 

related to tumour haemoglobin and oxygen saturation can predict 

chemotherapy response; however, these studies had not investigated 

DOS-texture based imaging biomarkers (Ueda et al., 2012, Tromberg et 

al., 2016).  

Thus, the work in subproject two is motivated by exploring pre-treatment DOS-

texture features within a region-of-interest of the tumour-bed only. 
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3.3.2 Overview of Results: Subproject Two, Research Question 1 
 

The first research question for subproject two was: Do breast tumours 

demonstrate significant differences in DOS-texture parameters between 

responders and non-responders, as measured before chemotherapy? All DOS-

texture parameters were tested for statistically significant differences between 

Miller-Payne pathologic responders (MP 3-5) and non-responders (MP1,2).   

The results demonstrated that only DOS-haemoglobin parameters and DOS-

oxygen parameters demonstrated significant differences between responders 

and non-responders and are presented below.   

The data are presented as box-and-whisker plots, which show the 

median DOS-texture values, the lower extreme, the lower quartile, upper 

quartile and the upper extreme.  Since grey-level co-occurrence texture features 

do not have a unit of measure20, the DOS-texture values are indicated as A.U. 

(arbitrary units).  The data in the following section is presented in two parts:  1) 

DOS-haemoglobin parameters are presented and represented in Figures 3.9, 
3.10, 3.11 and; 2) DOS-oxygen features, which correspond to Figure 3.12 and 

Figure 3.13.   

 

3.3.3 Pre-treatment Tumour Haemoglobin-Texture Features Demonstrated 
Significant Differences Between Miller-Payne Pathologic Response 
Groups  
 

Pre-treatment Deoxy-haemoglobin (Hb) Texture Features 

 

The deoxyhaemoglobin-homogeneity (Hb-hom) feature demonstrated a 

significant difference between responders and non-responders; (p=0.030).  The 

Hb-hom feature was greater in non-responders (i.e. Miller-Payne pathology 

score 1-2) compared to responders (i.e., Miller-Payne pathology score 3-5).  

Non-responders had a median value of 0.351 A.U.; 95% CI [0.288, 0.370]; 

whereas responders had a median Hb-hom value of 0.275; 95% CI [0.260, 

                                            
20 The calculations for the grey-level co-occurrence matrix uses a probability 

score that is the sum of the elements in the matrix; thus, having no units and 

expressed as arbitrary units (A.U.).   
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0.304].  However, other texture features such as the deoxyhaemoglobin- 

contrast (Hb-con), correlation (Hb-cor) and energy (Hb-ene) did not 

demonstrate a significant difference between groups (p >0.05) (Figure 3.9).  
However, the Hb-con demonstrated near significance between response groups 

(p=0.066).     

 

 
Figure 3.9:  GLCM texture features for deoxy-haemoglobin texture features.  

Box-and-whisker plots showing significant differences in DOS textural markers 

for responders and non-responders (p values indicated).   

 

 

Pre-Treatment Oxy-haemoglobin (HbO2) Texture Features 

 

For the HbO2-texture features, the HbO2-cor feature was significantly 

different between response groups; the HbO2-cor was greater for responders 
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compared to non-responders (p<0.024) (Figure 3.10).  Responders had a 

median HbO2-cor value of 0.195 A.U.; 95% CI [0.182, 0.228] and non-

responders showed a median HbO2-cor value of 0.136 A.U.; 95% CI [0.118, 

0.193], p<0.024.  The HbO2-con approached a significant difference between 

response groups (p=0.058).  For responders, the median value for the HbO2-

con feature was 20.180 A.U.; 95% CI [19.191, 21.337]; whereas for non-

responders, the median value was 23.393 A.U.; 95% CI [20.018, 24.651].  The 

HbO2-ene and HbO2-hom was not significantly different between response 

groups (p>0.05).   

 

 
Figure 3.10:  GLCM texture features for oxy-haemoglobin texture features.  

Box-and-whisker plots showing significant differences in DOS textural markers 

for responders and non-responders (p values indicated).   
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Pre-Treatment Total Haemoglobin (HbT) Texture Features 

 

The total haemoglobin (HbT) texture measurements in tumours 

demonstrated significant differences in homogeneity (HbT-hom) (p = 0.047).  

The median HbT-hom value was 0.356 A.U.; 95% CI [0.340, 0.362] for 

responders and 0.373 A.U.; 95% CI [0.345, 0.377] for non-responders.   

Additionally, the HbT-con feature approached significance (p = 0.055); 

responders had a median value of 18.876 A.U.; 95% CI [17.729, 20.803]; 

whereas for non-responders, the median value was 16.399 A.U.; 95% CI 

[13.351, 19.353].    The HbT-con was close to being significantly different 

between responders and non-responders; the median value was 18.876 A.U.; 

95% CI [17.729, 20.803] for responders and non-responders had a median 

HbT-con value of 16.399 A.U.; 95% CI [13.351, 19.353].  The HbT-ene and 

HbT-cor features were not significantly different between response groups 

(p>0.05) (Figure 3.11).   
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Figure 3.11:  GLCM texture features for total haemoglobin texture features.  

Box-and-whisker plots showing significant differences in DOS textural markers 

for responders and non-responders (p values indicated).   

 

3.3.4 Pre-treatment Tumour Oxygen-Texture Features Demonstrated 
Significant Differences Between Miller-Payne Pathologic Response 
Groups 
 

Oxygen Desaturation (St) Texture Features 

 

The St-con was significantly different between response groups (p = 

0.044); while other features such as St-hom were close to being significantly 

different (p = 0.058).  Features are presented in Figure 3.12.  St-con 

measurements were greater in responders (median value: 21.535 A.U.; 95% CI 

[20.800, 22.940] versus non-responders (median value: 20.306 A.U.; 95% CI 
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[19.416, 21.436], p=0.044).  The St-hom approached statistical significance 

between groups (p=0.058) and other features such as St-cor and St-ene were 

not statistically different between response groups (p>0.05).  

 

 
Figure 3.12:  GLCM texture features for oxygen desaturation.  The St-con was 

statistically different between response groups (p=0.044).   

 

Oxygen Saturation 

 Tumour oxygen saturation (StO2) texture features were analysed for 

significant differences between response groups and showed that only the 

StO2-con was significantly different (p=0.044) (Figure 3.13).  The StO2-con 

feature was 19.652 A.U.; 95% CI [18.681, 21.067] for responders and non-

responders had an StO2-con value of 21.932 A.U.; 95% CI [20.250-24.010].  

Other StO2 features (StO2-cor, StO2-ene, StO2-hom) were not significantly 

different between responders and non-responders (p>0.05).          

 



 201 

 
Figure 3.13:  GLCM texture features for oxy-haemoglobin texture features.  

Box-and-whisker plots showing significant differences in DOS textural markers 

for responders and non-responders (p values indicated).   
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Representative Pre-Chemotherapy DOS Parametric Maps 

 

 Representative responder and non-responder pre-chemotherapy DOS 

images are presented in Figure 3.14 and Figure 3.15, respectively.  The 

corresponding MRI images that were also acquired before treatment are also 

presented for tumour referencing.  Case descriptions are presented below as 

typical patient pathways for locally advanced breast cancer.     

 

Responder Patient (Presented in Figure 3.14) 

 

 This patient was a 51-year-old woman with right sided breast cancer.  At 

the time of diagnosis her tumour measured 2.2 cm and involved lymph nodes, 

as indicated from her MRI scan.  The breast cancer was hormone receptor 

positive (oestrogen and progesterone positive), and HER2-negative.  

Histologically, it was an invasive ductal carcinoma.  The patient underwent AC-

T chemotherapy (Adriamycin, Cyclophosphamide for four cycles followed by 

four additional cycles of Taxol).  During the course of chemotherapy, the patient 

showed clinical response (i.e., the tumour was shrinking according to physical 

palpation).  At the time of surgery, the tumour was resected, and pathologic 

evaluation was completed; the results showed a Miller-Payne pathologic 

response grade of four (responder), i.e., having greater than a 90% loss of 

tumour cells.      

 

Non-Responder Patient (Presented in Figure 3.15).   

 

 This was a 38-year-old woman with a large 5.0 cm, left sided breast 

tumour at the time of diagnosis.  Her tumour was “triple negative” (ER-, PR-, 

HER2-) and was an invasive ductal carcinoma.  Her treatment consisted of four 

cycles of AC (Adriamycin, and Cyclophosphamide), followed by four cycles of 

Taxol.  Her tumour did not respond to chemotherapy, as assessed at the time of 

surgery.  Pathology evaluation of her tumour showed that there was no 

response to treatment and no overall reduction in the overall cellularity (i.e. 

Miller Payne grade 1). 
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Figure 3.14:  Representative DOS parametric maps and contrast-enhanced 

MRI for a responder, acquired before chemotherapy.  All parametric data were 

acquired and used for texture analyses. Colour washes and colour bars indicate 

the intensity and concentration of parameters in the image.    
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Figure 3.15:  Representative DOS parametric maps and contrast-enhanced 

MRI for a non-responder, acquired before chemotherapy.  All parametric data 

were acquired and used for texture analyses. Colour washes and colour bars 

indicate the intensity and concentration of parameters in the image.     
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3.3.5 Overview of Results: Subproject Two, Research Question 2 
 

 In this section the results of the following research question are 

presented:  Can DOS markers predict chemotherapy response before starting 

chemotherapy?  The results of the section are presented in two sections; 1) 

classification results for univariate DOS-texture features and; 2) classification 

results of multivariate DOS-texture features.  The models used to predict the 

classification of patients included a logistic regression model, a naïve Bayes 

model, and a k-NN model.  Results are presented below.   

 

3.3.6 Classification Results of Univariate DOS-texture features  
 

DOS-texture features that were significantly different between response 

groups (N versus NR) were analysed using the classifier models: Logistic 

Regression, naïve Bayes and k-NN (Table 3.8).  The naïve Bayes classification 

performed the best among the classifier models used in this study.   For the 

HbT-hom, naïve Bayes classification resulted in a sensitivity of 84%, and 

specificity of 85% (AUC = 0.813), in comparison to k-NN classification which 

resulted in a classification of only %Sn = 74%, %Sp = 47%, and AUC of 0.552 

(Table 3.8).     
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Significant 
Univariate 

Feature 
Classifier/Model %Sn %Sp AUC 

p-
value 

Statistical 
Power (n2) 

Hb-
Homogeneity 

Log. Regression 60.0 60.0 0.726 
0.030 71.8 (14) naïve Bayes 82.0 82.0 0.799 

k-NN 61.5 67.5 0.577 

HbO2-
Correlation 

Log. Regression 70.0  70.0 0.756 
0.024 78.9 (11) naïve Bayes 80.0 81.0 0.778 

k-NN 66.5 74.5 0.602 

HbT-
Homogeneity 

Log. Regression 60.0 60.0 0.657 
0.047 79.9 (11) naïve Bayes 84.0 85.0 0.813 

k-NN 74.0 47.0 0.552 

St-Contrast 
Log. Regression 60.0 63.0 0.670 

0.044 73.5 (13) naïve Bayes 79.5 82.0 0.779 
k-NN 70.5 64.5 0.582 

StO2-Contrast 
Log. Regression 70.0 63.0 0.715 

0.044 85.6 
(Enough) naïve Bayes 83.0 85.5 0.803 

k-NN 70.0 66.5 0.610 
Table 3.8: Results of univariate analysis using a logistic regression model, 

naïve Bayes and k-NN classifiers.  The bolded-blue values demonstrate the 

best predictors for each parameter.  The numbers in parenthesis indicate the 

required number of additional patients needed to reach a statistical power of 

80%). 

Analysis of all DOS-texture features was also performed, independent of 

statistical significance between groups, using the three classifiers (logistic 

regression analysis, the naïve-Bayes model, or k-NN classifier).  However, 

Table 3.9 presents the DOS-texture features that demonstrated the highest 

classification prediction from all possible univariate features (d=40) extracted 

from each classifier model (i.e. best predictive feature for logistic regression, 

naïve Bayes, and k-NN). 

 

Classifier Model Best Predictive Feature of Model %Sn %Sp %Acc 

Log. Regression HbO2-Correlation 70.0 70.0 70.0 
naïve Bayes HbO2-Homogeneity 86.5 89.0 87.8 
k-NN HbO2-Contrast 81.0 73.0 77.0 

Table 3.9: Model Prediction Parameters.  Summary of best predictive 

univariate features of each of the classification methods.  The corresponding 

AUCs are presented in Figure 3.16.     
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The corresponding ROC curves with AUCs are presented in Figure 3.16.  

Classification results from significant univariate-texture features indicated an 

AUC range between 0. 756-0.821 (Figure 3.16).  A maximum AUC was 

observed for HbO2-hom (AUC = 0.821) using a naïve Bayes model.  Cross 

validated %Sn and %Sp were 86.5%, and 89.0%, respectively and 

corresponded to an accuracy of 87.8% for the HbO2-homogeneity feature 

classified using the naïve Bayes model (Table 3.9). 
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Figure 3.16:  Receiver-Operating Characteristic (ROC) curves for univariate 

DOS-texture features.  ROC curves for the best-performing single DOS-texture 

parameter are presented according to the classification model.     
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3.3.7 Classification Results of Multivariate DOS-texture features  
 

Table 3.10 presents classification results for the maximum pairwise 

DOS-GLCM feature combinations.  The accuracy of optimal pairwise 

combinations was 77.8-79.5% for classifying Miller-Payne pathologic responses 

(responders versus non-responders).  Using a logistic regression analysis, the 

combination of HbO2-cor + Hb-hom demonstrated a sensitivity of 80%, and 

specificity of 78.0%.  This corresponded to an AUC of 0.815, and an accuracy 

of 79.5%.  In comparison to the naïve Bayes model, the optimal pairwise 

combination was observed using Hb-con + HbO2-hom, which indicated a 

sensitivity and specificity of 78.0%, and 81.0%, respectively.  The AUC for these 

combined parameters was 0.773, and the accuracy was 79.5% (Figure 3.17 
and Table 3.10).  Lastly, using the k-NN classifier, the best pairwise 

combination resulted from Hb-cor, and HbO2-con, which showed a sensitivity 

and specificity of 79.5%, and 76.0%, respectively.  The corresponding AUC was 

0.802 and the accuracy was 77.8%.   

 

 

Multivariate Features Classifier/Model %Sn %Sp %Acc 

HbO2-Correlation +  

Hb-Homogeneity 

Logistic Regression 80.0 78.0  79.5 

     

Hb-Contrast +  

HbO2-Homogeneity 

naïve Bayes 78.0 81.0 79.5 

     

Hb-Correlation +  

HbO2-Contrast 

k-NN 79.5 76.0 77.8 

     

Table 3.10: Multivariate Analysis for Optimal DOS-texture Pairwise 
Combinations.   Results of multivariate analysis (using three classification 

models: Logistic regression analysis, naïve Bayes classifier, and k-NN. 
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Figure 3.17:  Receiver-Operating Characteristic (ROC) curves for multivariate 

DOS-texture features.  ROC curves for the best-performing pairwise DOS-

texture parameters are presented. 
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3.3.8 Overview of Results of Subproject two, Research Question 3 
 

In this section, the results of the following research question are 

presented: Are there differences in DOS-texture prediction models for breast 

cancer subtypes (i.e., ER+ and triple negative) and chemotherapy treatments 

(i.e. FEC-D and AC-T)?  Firstly, the results of subgroup analysis are presented 

with respect to each tumour molecular subtype and treatment regimen.  The 

results of this section are presented using a logistic regression analysis, a naïve 

Bayes classifier and a k-NN algorithm.  Secondly, the results from a linear 

regression model are presented.  Here, DOS-GLCM features are tested for 

correlation to age, molecular and intrinsic subtype, tumour size and final 

pathological grading (Miller-Payne).   

 

3.3.9 Results of Subgroup Analysis 
 

Subgroup analysis showed that the HbO2-hom feature was the best 

predictor in ER+ patients using a naïve Bayes classifier (Table 3.11).  For 

patients with triple-negative tumours, the Hb-hom was the best predictor 

resulting in an AUC of 0.917 (%Sn=75.0%, 66.7%) using a k-NN classifier.  

Patients separated according to chemotherapy groups also showed variances 

in optimal features; FEC-D treated patients classified into responders and non-

responders with a sensitivity of 100.0% and specificity of 92.3% using a logistic 

regression analysis for TOI-hom.  Patients treated with AC-T based 

chemotherapy demonstrated an AUC of 0.896 using the HbO2-hom feature with 

k-NN classification (Table 3.11).             
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Subgroup 
(n=sample size) 

Best 
Feature 

Model %Sn %Sp AUC 

      
ER+ Hb-con Log. Regression 76.2 66.7 0.746 

n=27  HbO2-hom Naïve Bayes 93.3 90.1 0.883 
  HBO2-con k-NN 85.8 82.5 0.851 
Triple Negative Hb-hom Log. Regression 100.0 33.3 0.917 
n=7 Hb-ene Naïve Bayes 100.0 66.7 0.667 

 Hb-hom k-NN 75.0 66.7 0.917 
FEC-D TOI-hom Log. Regression 100.0 92.3 0.949 
n=16 Hb-con Naïve Bayes 60.0 81.7 0.722 

 Hb-hom k-NN 80.0 80.0 0.806 
AC-T HbO2-cor Log. Regression 100.0 71.4 0.837 
n=21 HbO2-hom Naïve Bayes 96.4 90.7 0.882 
 HbO2-hom k-NN 83.6 85.0 0.896 

Table 3.11:  Subgroup analysis according to molecular subtype and 
chemotherapy treatment type. Three classification models were used (logistic 

regression, naïve Bayes and k-NN) and the best predictive features are 

presented.  The best features for each classification model are presented and 

bolded in blue for those parameters that showed an AUC of greater than 0.80. 

 

3.3.10 Results of Multiple Linear Regression Analysis  
 
 The results of the multiple linear regression demonstrated insignificant 

correlations between clinical features (Age, ER/PR status, HER2 status and 

tumour size) and DOS-GLCM features for this patient cohort.  In particular, the 

Hb-hom, HbO2-cor, and StO2-con features demonstrated significant 

correlations to Miller-Payne grading, corresponding to a regression coefficient 

value (r) of -0.358, +0.375 and -0.325 respectively (p<0.05).  Results of the 

multiple regression analysis are presented in Table 3.12.     
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DOS-GLCM Feature  Comparison r F Value P Value 

     
Hb-Homogeneity Age -0.130 0.599 0.444 

 ER/PR Status -0.087 0.267 0.608 

 HER2 Status -0.104 0.382 0.540 

 Tumour Size +0.231 1.967 0.170 

 Miller-Payne Grade -0.358 5.137 0.030 
     

HbO2-Correlation Age -0.116 0.475 0.495 

 ER/PR Status -0.003 0.000 0.988 

 HER2 Status -0.109 0.418 0.522 

 Tumour Size -0.295 3.335 0.076 

 Miller-Payne Grade +0.375 5.172 0.022 
     

HbT-Homogeneity Age -0.142 0.715 0.403 

 ER/PR Status +0.007 0.002 0.969 

 HER2 Status +0.206 1.544 0.222 

 Tumour Size +0.085 0.257 0.616 

 Miller-Payne Grade -0.233 2.015 0.165 

     

St-Contrast Age -0.231 1.972 0.169 

 ER/PR Status +0.056 0.111 0.741 

 HER2 Status +0.095 0.322 0.574 

 Tumour Size -0.164 0.971 0.331 

 Miller-Payne Grade +0.177 1.138 0.293 

     

StO2-Contrast Age -0.083 0.241 0.626 

 ER/PR Status -0.074 0.190 0.665 

 HER2 Status -0.213 1.661 0.206 

 Tumour Size +0.279 2.966 0.094 

 Miller-Payne Grade -0.325 4.140 0.050 

Table 3.12:  Regression coefficients (r) of the multiple regression analysis for 

DOS-GLCM features and corresponding regression F-value are presented.  

Significantly correlated features are bolded in blue.   
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3.3.11 Summary of Results and Responses to Research Questions 
(Subproject two)  
 

 Employing texture-based analyses of the DOS parameters showed 

significant differences in haemoglobin- and oxygen saturation-texture features 

using a grey-level co-occurrence matrix algorithm (GLCM features: contrast, 

correlation, energy and homogeneity).   Three classification methods were used 

to analyse data which included a logistic regression analysis (LRA), naïve 

Bayes classifier, and k-NN algorithm.  Both univariate and multivariate models 

were considered.  The results of subproject two are summarized according to 

the research questions below:      

 

v Research Question 1: Do breast tumours demonstrate significant 

differences in DOS-texture parameters between responders and non-

responders, as measured before chemotherapy?  

 

Texture analysis was completed on all DOS parameters using grey-level co-

occurrence (GLCM) algorithm, which included the following texture features: 

contrast, correlation, energy and homogeneity.  Texture analysis of the following 

DOS parameters were carried out:  deoxy-haemoglobin, oxy-haemoglobin, total 

haemoglobin, oxygen saturation, oxygen desaturation, lipid content, water 

content, scattering power, scattering amplitude, and the tissue optical index.   

The results showed that LABC tumours demonstrated significant differences in 

the following DOS-texture parameters between responders and non-

responders, as measured before chemotherapy: deoxy-haemoglobin-

homogeneity, oxy-haemoglobin-correlation, total haemoglobin-homogeneity, 

oxygen desaturation-contrast, oxygen saturation-contrast.    

 

 

v Research Question 2: Can DOS markers predict chemotherapy 

response prior to starting chemotherapy? 

 

The results of the subproject two study demonstrated that the pre-

chemotherapy DOS-texture parameters demonstrated high sensitivity and 

specificity for predicting Miller-Payne pathologic response endpoints.  The best 
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DOS-texture univariate model (predictor) was the HbO2-homogeneity feature 

using the naïve Bayes classifier; the sensitivity, specificity and accuracy was 

86.5%, 89.0% and 87.8%, respectively.  The best multivariate (pairwise) DOS-

texture models were the following:  HbO2-Correlation + Hb-Homogeneity 

(%Sn=80.0%, %Sp=78.0%, %Acc=79.5%) and Hb-Contrast + HbO2-

Homogeneity (%Sn=78.0%, %Sp=81.0%, %Acc=79.5%).   

 

 

v Research Question 3: Are there differences in DOS-texture prediction 

models for breast cancer subtypes (i.e., ER+ and triple negative) and 

chemotherapy treatments (i.e. FEC-D and AC-T)? 

 

Within each subgroup, as analysed by tumour molecular features and the 

treatment regimen, prediction models demonstrated that there were varying 

optimal DOS-texture features as surrogate markers for Miller-Payne pathologic 

endpoints.  The ER+ subgroup showed that the naive Bayes classifier using the 

HbO2-hom feature yielded an optimal AUC of 0.883.  Triple negative (i.e. basal-

like) patients (ER-/PR-/HER2-) had a maximum AUC of 0.917 using the Hb-hom 

feature, modelled with a logistic regression.  Patients treated with varying 

chemotherapies showed differences in the best prediction models; FEC-D 

patients optimal prediction results with the TOI-hom feature using a logistic 

regression (AUC=0.949); whereas, AC-T treated patients showed maximum 

results using the HbO2-hom feature with the k-NN algorithm (AUC=0.896). 
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Chapter 4 
 

Discussion 
 

 

4.0 Chapter Overview 
 

 Chapter 4 highlights the results of the study with a discussion of the 

significance of DOS and QUS measurements for breast tumour response 

evaluation to chemotherapy.   This chapter is divided into seven sections.  In 

the section one (Section 4.1), a thesis overview is presented to outline the 

research aims and underscore the clinical motivations behind the study.  In 

section two (Section 4.2), the results are compared to previous research from 

diffuse optical spectroscopy and quantitative ultrasound spectroscopy studies.  

Further to this, a summary of the new contributions to knowledge from this 

thesis are discussed.  In section three (Section 4.3), a discussion of DOS and 

QUS markers are examined with respect to the translational challenges, i.e. the 

present status of DOS and QUS imaging biomarker research and the steps 

needed for data validation before it can be implemented into the oncology clinic.  

Concepts such as, imaging biomarker statistical modelling and the translational 

gaps of current and previous studies are discussed.  In Section 4.4, the 

potential impact to patient care is discussed in terms of using DOS and QUS 

imaging biomarkers as a treatment decision-making tool by physicians. In 

Section 4.5 and Section 4.6, the limitations of the study and future work for 

DOS and QUS in breast cancer imaging are discussed, followed by the final 

conclusions to the study in Section 4.7.    
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4.1 Summary of Thesis and Study Motivations 
 

In this thesis, DOS and QUS imaging were studied to address two significant 

clinical problems for breast cancer patients treated with neoadjuvant 

chemotherapy:   

1. Breast cancer response to chemotherapy is variable and this 

negatively impacts subsequent treatment options and survival for 

patients.  New technologies, preferably non-invasive imaging would 

be advantageous in the clinic to guide clinicians and inform patients 

about the most appropriate treatment based on early-response 

biomarkers for the presumed pathological outcomes.  

2. Breast tumours are biologically heterogeneous; even so, a standard 

“one-size-fits-all” chemotherapy regime is given to patients. As 

patients respond to treatment in different ways, the overall effect of 

chemotherapy is that of variability in the treatment response 

outcomes.  Predictive markers are needed before the start of 

treatment to determine if the tumour is likely to respond favourably 

(tumour regression) or not, in which case the response to 

chemotherapy would be considered unfavourable.   

 

The uncertainties surrounding tumour responses to chemotherapy presents 

a real clinical problem, for the clinician as well as for the patient receiving the 

treatment, for their survival outcome will be determined by the chemotherapy’s 

efficacy.  In this study, the first approach to unravelling this treatment response 

uncertainty was to develop a framework for study and to begin with a systematic 

review of the literature; examining previous imaging methods, outcomes and 

research gaps from comparable studies using imaging biomarkers to measure 

breast tumour response to neoadjuvant chemotherapy.  The results of the 

literature review yielded 194 reports that had included MRI, PET, CT, 

conventional X-Ray and 99m-Tc imaging modalities as imaging options to 

measure the biological and functional activities of breast tumours treated with 

neoadjuvant chemotherapy.  Those studies showed variable accuracies for 

testing tumour response using imaging (AUC range=0.59-1.00).   The major 

limitations of previous studies included heterogeneities in the patient population, 

limited analyses completed in tumour subtypes, variable response endpoints 
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(i.e., radiological endpoints versus pathology endpoints) and differences in the 

statistical methods to discriminate responders and non-responders.  Technical 

limitations included imaging systems such as MRI and CT that are costly, 

require invasive procedures (i.e. injection of contrast agents) and the limited 

repeatability and reproducibility of results between studies.  However, the 

literature search also indicated that there were two major hallmarks of 

chemotherapy response mechanisms in tumours that could be detected using 

imaging: 1) QUS imaging biomarkers, previously shown to measure the rate of 

apoptotic cell death in cancer cells and; 2) DOS imaging biomarkers, shown to 

measure the changes to the tumour physiology, such vascular density and 

tissue composition (Czarnota et al., 1999, Cerussi et al., 2011).  Research has 

also suggested that both DOS and QUS imaging may help identify the changes 

in the tumour’s structural matrix during tumour response to chemotherapy.  

Therefore, the study here, aimed to combine these markers and map out 

statistical models using DOS and QUS to measure chemotherapy response.   

Therefore, the motivation of this study was to investigate the tumour response 

to chemotherapy using DOS and QUS and explore their role as putative 

biomarkers of tumour response mechanisms.  In this thesis, two approaches 

were used to address the following two overarching research questions: 

1) Can DOS and QUS imaging biomarkers be modelled to monitor 

chemotherapy response in breast cancer at early times after initiation of 

treatment intervals (i.e. after one or two cycles of chemotherapy)?  

2) Can pre-treatment DOS imaging be used to predict chemotherapy 

response before the initiation of treatment?   

 

To address the first research question (i.e. subproject one), patients were 

imaged at several time intervals during chemotherapy: before the start of 

chemotherapy (i.e. baseline), then at week one, week four, week eight during 

chemotherapy, and one week before surgery.  Locally advanced breast cancer 

patients demonstrated for the first time, coincident changes in the DOS and 

QUS imaging biomarkers during neoadjuvant chemotherapy.  Univariate and 

multivariate analyses indicated good sensitivity and specificity as early as one 

week after the start of chemotherapy.  The results of the first study (subproject 

one) indicated that markers of apoptotic cell death could be identified using 

QUS imaging and were associated with a decrease in tumour haemoglobin 
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markers on DOS imaging.  The results suggested that QUS cell death markers 

(i.e. DSI) increased in responsive tumours which was temporally aligned with a 

decrease in the haematological parameters (Hb, HbO2, HbT), as measured by 

DOS.  In the multivariate analyses conducted in the first subproject, the 

combination of DOS and QUS imaging markers provided a greater number of 

imaging signatures that could be used to measure early-responses in breast 

tumours; for example, after one week after initiating chemotherapy (i.e., one 

cycle of chemotherapy), there were seven DOS-QUS imaging signatures that 

classified tumour responses compared to only three univariate DOS or QUS 

parameters at the same time interval.  

 In subproject two of the study, pre-treatment DOS images were studied 

to predict the pathological response (i.e. Miller-Payne grade) to neoadjuvant 

chemotherapy. Here, LABC patients were imaged before treatment to measure 

the tumour’s physiological features such as, oxygenation, haemoglobin content 

and tissue composition (lipids and water content).   DOS data were analysed 

using a texture analysis approach (GLCM from second-order statistical 

methods).  The results demonstrated that DOS-texture maps of the tumour 

were significantly different between tumour's responding to chemotherapy (i.e. 

pathological responders) and non-responders as measured using Miller-Payne 

pathological response criteria. DOS-texture features showed a high 

discrimination performance between responders and non-responders using the 

following classification methods: a logistic regression model, a naïve Bayes 

machine-learning approach and a k-NN algorithm.  Additionally, in subproject 

two, a subgroup analysis was performed of tumours that were ER+, triple 

negative and patient groups that received either AC-T or FEC-D chemotherapy.   

Classification models such as Naive Bayes and k-NN machine-learning 

algorithms were also useful in discriminating patient responses (i.e. responders 

and non-responders) before treatment.  The results of subprojects one and two 

suggest a correlation between DOS and QUS imaging biomarkers and the 

tumour’s biological layout.  The results of subproject two also indicated that the 

pre-treatment DOS parameters can be used to predict breast tumour response 

to chemotherapy.   
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4.2 Comparison to Previous DOS and QUS Studies 
 
4.2.1 Overview 
 

The results presented in the thesis agree with previous reports that show 

a strong correlation between tumour biology, breast cancer response to 

chemotherapy, and imaging biomarkers obtained from DOS and QUS imaging.   

It has been shown that the tumour’s biological composition, as measured by 

DOS and QUS, over the course of chemotherapy or before treatment, can be 

used as early-response, or predictive markers to pathological endpoints as 

measured by Miller-Payne pathologic response criteria.  Underpinning these 

criteria, are a series of biological characteristics; haematological features, 

changes in tissue parameters (i.e., interstitial fluid (water content), lipid 

measurements and tumour cellularity). 

Of the 16 DOS studies identified in Chapter 1 (Literature Review), four 

studies demonstrated predictive DOS markers using various physiological 

measurements and one study showed that both predictive and early-response 

DOS markers were correlated with pathologic endpoints (various endpoints 

were used across several studies).  The remaining 11 DOS studies reported 

significant differences between responders and non-responders during 

treatment.  For QUS only, one study (Taddayyon et al. 2017) showed that QUS 

could be used to predict treatment response before starting chemotherapy; 

while the remaining five studies reported that QUS imaging biomarkers could be 

used as markers for final pathological outcomes21.   The present study 

(subproject one of this thesis) demonstrated for the first time, that there were 

coincident temporal changes in the DOS parameters with QUS imaging 

markers.  It was also shown that DOS and QUS parameters could be used to 

measure intra-treatment changes in the tumour as a link to the patient’s 

treatment response.  Also, for the first time, this was completed using a 

                                            
21 Pathologic response endpoints in these previous QUS studies were either 

systematically assessed (i.e. Miller-Payne pathologic response criteria) or by 

using non-systematic evaluation (assessment from pathologist based cellular 

features and identification of residual cancer cells).   
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systematic pathological response criteria endpoint and here, the Miller-Payne 

pathological response grading system was used.   

The work in subproject two in this thesis used a novel technique by 

employing a GLCM analysis (i.e. texture) to the tumour-only ROI of baseline 

(pre-treatment) DOS images.  The pre-treatment DOS-texture features were 

analysed and showed a correlation to Miller-Payne pathological response in 

patients with locally advanced breast cancer.  A discussion about this present 

study, in comparison to other major DOS and QUS works is presented in the 

following sections.     
 

4.2.2 Comparisons to other DOS Studies  
 

Previous DOS studies have confirmed that there are significant 

biophysical and biochemical alterations in breast tumours during chemotherapy 

that can be optically measured (Enfield et al., 2009).  Additionally, previous 

results have shown that the tumour’s biochemical composition, as measured by 

DOS before treatment, can be used to predict chemotherapy response in 

tumours, as measured either by radiological or pathological endpoints.  

However, this present study is unique from previous DOS studies in terms of 

using volumetric tumour analysis, GLCM-texture analysis in pre-treatment DOS 

images, using a systematic pathological response criteria and machine learning 

algorithms for predicting tumour response.  This following section compares the 

results of the present study and previous DOS studies.  A summary is 

presented at the end of the section, in Table 4.1A, B, C.   

 

Comparison of DOS-measured Haemoglobin Content 

 

  One significant alteration in the biology of the tumour during and after 

treatment includes significant reductions in haemoglobin content in tumours 

responding to chemotherapy.  These alterations represent a diminution in the 

vascular density and the decreased metabolic activity of tumours (Roblyer et al., 

2011). Thus, the reductions in deoxy-haemoglobin, oxy-haemoglobin and the 

total haemoglobin can be strong indicators for chemotherapy response.  

Several studies have indicated that these changes occur early, after the 

initiation of treatment.  Roblyer et al. (2011) reported an “oxy-haemoglobin flare” 
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in responsive tumours with an increase of 38% in HbO2 compared to non-

responders within the first 24 hours (p<0.0001) (Roblyer et al., 2011).  The data 

also showed a significant change in the HbO2 up to seven days after the start of 

chemotherapy for responders (Roblyer et al., 2011).  When whole-breast 

parametric haemoglobin maps were analysed using texture analysis, Sadeghi-

Naini et al. (2015) showed that the oxy-haemoglobin, deoxy-haemoglobin, and 

the total haemoglobin parameters could discriminate treatment responses with 

high sensitivities and specificities (80%-100%) within the first week of treatment 

(Sadeghi-Naini et al., 2015).  Cerussi et al. (2007) previously reported a 

significant difference in haemoglobin content between responders and non-

responders after 7 days of initiating chemotherapy. The relative (normalized) 

differences in deoxy-haemoglobin between responders and non-responders 

were 0.73 ± 0.17 and 1.02 ± 0.05, respectively, and the oxy-haemoglobin 

measured 15% less in responders compared to non-responders at the same 

time interval (Cerussi et al., 2007).  By comparison, the data from the present 

study supports previous work demonstrating a significant difference in the 

haemoglobin content between responders and non-responders (p<0.01). 

However, it should be noted that in the present study, the oxy-haemoglobin 

content for non-responders increased to 110.7% ± 5.4% after 7 days and this 

contrasts with a previous report by Cerussi et al. (2007) where increases in Hb 

(but not HbO2) were shown.  This is possibly explained by differences in the 

metabolic activity of tumours, as the rate by which the HbO2 converts to Hb 

during tumour activity (and metabolism) within the first week of therapy.      

The haematological differences between responders and non-

responders are also evident after chemotherapy.  The results from several 

studies have indicated a significantly higher haemoglobin content in patients 

who did not achieve pathological complete response (pCR) compared to those 

patients who had chemoresistant tumours (Cerussi et al., 2011).  Cerussi et al. 

(2011) showed that the deoxy-haemoglobin concentration significantly differed 

in pCR patients compared to non-pCR patients.  The relative changes were a 

1.01-fold in increase in pCR compared to a 1.32-fold increase in non-pCR 

patients (p<0.05); suggesting that a lower vascularity is associated with better 

pathologic response to chemotherapy.   Similar trends were also observed for 

oxy-haemoglobin after therapy and showed a 20% lower value in pCR patients 

compared to non-pCR patients (Cerussi et al., 2011).  A comparable report by 
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Soliman et al. (2010) and Falou et al. (2012) showed a reduction in 

haemoglobin parameters, however there was a notable difference in the 

measured values and thus showed that there was a greater reduction in 

haemoglobin measured at the end of chemotherapy compared to other groups.  

Responders’ deoxy-haemoglobin concentration reduced to 20%-25% of the 

baseline value (i.e. an ~80% reduction); while the oxy-haemoglobin dropped 

considerably more to only 5% of the baseline value (Soliman et al., 2010).  By 

contrast, although there was a change in the haemoglobin in non-responders, 

those changes were statistically insignificant  (Falou et al., 2012, Soliman et al., 

2010).  The results in this present study (subproject one of thesis) agreed with 

reports by Falou et al. (2012) and Soliman et al. (2010).  In this thesis, a 

significant reduction in haemoglobin was also observed after therapy and in 

general, responders had a lower tumour haemoglobin concentration compared 

to non-responders.  Tumour deoxy-haemoglobin was reduced to 25.39% ± 

4.50% in responders compared to non-responder tumours which showed a 

greater relative concentration of 82.99% ± 7.87%. Similarly, oxy-haemoglobin 

was 10.46% ± 2.57% for responders and non-responders had a relative 

concentration of 84.87% ± 7.63%.  Total haemoglobin at the end of 

chemotherapy was 13.85% ± 2.11% in responders and 84.36% ± 6.83% in non-

responders.  Although the measured haemoglobin concentrations varied 

between studies, it is important to note that there were similar trends observed 

in terms of an overall reduction in responders and insignificant changes in non-

responders after starting therapy.   

Some exploratory studies have indicated that pre-treatment DOS 

markers were good predictors for tumour response.  Zhu et al. (2013) used the 

pre-treatment HbT measurements and the data showed that the AUC reached 

as high as 0.87, which was a strong predictor to pathologic endpoints (Zhu et 

al., 2013).  Similarly, data from Jiang et al. (2014) showed that the pre-

treatment HbT was significantly different between responders and non-

responders; also showing that the HbT was a strong predictor for treatment 

response (AUC=0.92) (Jiang et al., 2014).  Other DOS studies that examined 

the pre-treatment haemoglobin content did not show a significant predictive 

value at the pre-treatment time interval (Sadeghi-Naini et al., 2015).  In 

comparison to these other studies, the average haemoglobin measurements 

from tumours did not demonstrate a significant result in this study.  However, by 
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employing texture analysis to the parametric maps of tumours, a significant 

difference was observed between responders and non-responders using the 

deoxy-haemoglobin-homogeneity (p=0.030), the oxy-haemoglobin-correlation 

(p=0.024) and the total haemoglobin-homogeneity (p=0.047) parameters.  To 

our knowledge, only one other study to date has used texture-based techniques 

to analyse DOS data for breast cancer response to chemotherapy (Sadeghi-

Naini et al., 2015).  In this previous study by Sadeghi et al. (2015), the baseline 

haemoglobin content did not demonstrate a significant difference between 

groups before chemotherapy (i.e. pre-treatment).  An important difference 

between this study and the previous work from colleagues at the University of 

Toronto include differences to their analysis approach.   Specifically, their work 

involved whole breast ROIs; whereas here, textural features were analysed 

within the parametric maps of tumours only (i.e. tumour-only ROI) (Sadeghi-

Naini et al., 2015, Tran et al., 2017).   Here, it is also reported that multivariate 

analysis using DOS-texture features demonstrated an increase in the predictive 

accuracy using DOS-haemoglobin parameters.  The best combination feature 

sets yielded an accuracy of 79.5% from the GLCM-deoxy-haemoglobin and 

oxy-haemoglobin parameters. Comparable studies that used multivariate DOS 

features were conducted by Cerussi et al. (2007) and Sadeghi-Naini et al. 

(2015).  Cerussi et al. (2007) used a discriminant function to predict treatment 

outcomes from multivariate DOS features.  Their analysis yielded an accuracy 

of 100% after one week of treatment (Cerussi et al., 2007) from the deoxy-

haemoglobin using binary DOS feature sets.  Similarly, Sadeghi-Naini et al. 

(2015) used multivariate texture features and showed a significant result after 

one week.  

 

Comparison of DOS Tissue Composition Parameters 

 
Tissue composition parameters included %Lipids, %Water, TOI, oxygen 

saturation (StO2) and oxygen desaturation (St).  In the present study, analysis 

of the absolute DOS parameters, %Lipids, TOI, oxygen saturation and oxygen 

desaturation demonstrated a significant difference (p<0.01) between 

responders and non-responders after the second cycle of chemotherapy (week 

four) and up to the pre-operative time-point (p<0.01).  The %Water was 

significantly different between response groups after week four, and at pre-
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surgery.  However, at week eight the water content only approached 

significance (p=0.062) between groups.  The research here also analysed 

tissue composition parameters at baseline (pre-treatment) using a GLCM 

algorithm.  Responders and non-responders had a significant difference in the 

baseline oxygen saturation-contrast (p=0.044) and the oxygen desaturation-

contrast (p=0.044).  In terms of classification results, univariate discriminant 

analysis of the absolute DOS parameters performed well at classifying 

responders from non-responders after four weeks of treatment.  The best DOS 

feature was the %Lipids which showed an AUC of 0.982.   For all time intervals, 

the maximum AUC was observed again in the %Lipids parameter after 

chemotherapy was completed (pre-surgery) (AUC=1.00).  Other analyses 

included studying the textural features of baseline oxygen saturation and 

oxygen desaturation parameters.  The results showed that the oxygen-

saturation-contrast was a good marker for pathologic response before 

chemotherapy (AUC=0.803; %Sn=83.0% and %Sp=85.5%).  

In comparison to other reports, the measured changes in tissue-based 

parameters, %Water and % Lipid did not agree with the results of two previous 

studies that measured those parameters during chemotherapy.  Cerussi and 

colleagues showed insignificant differences (z=0.41) after one week of 

treatment for %Water and % Lipid (Cerussi et al., 2007).  However, it should be 

noted that the same group reported a significant difference in the %Water at the 

end of treatment in a follow up study with a larger patient set (n=36) (Cerussi et 

al., 2011).  Results from the Dartmouth group (Jiang et al. (2009)) reported 

insignificant differences between response groups for the %Water (p=0.41) 

after four weeks of treatment (Jiang et al., 2009).  These results agreed with a 

previous report by Soliman et al. (2010) that demonstrated an insignificant 

difference (p<0.60) at the same time interval (Soliman et al., 2010).    Other 

parameters such as the TOI (tissue optical index), which is a ratio between 

the %Water, %Lipids and deoxy-haemoglobin showed similar data trends 

between this study, compared to others.  The present study showed that there 

were significant changes in the TOI in responsive tumours after four weeks of 

treatment (p<0.0001).  These results compliment previous findings from the 

ACRIN 6691 trial (Tromberg et al., 2016), that showed intra-treatment 

differences in the TOI between response groups (Tromberg et al., 2016).  

However, an important distinction in Tromberg et al.’s work included subjects 
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that were selected based on a StO2 threshold cut-off (StO2 >76.9%).  Effectively 

in that study, only tumours that had high baseline oxygen saturation were used 

in their analysis (Tromberg et al., 2016).    Indeed, tumour hypoxia and oxygen-

availability has been shown to affect tumour response to cytotoxic agents; i.e. 

hypoxic tumours are more chemoresistant compared to well-oxygenated 

tumours (Ward et al., 2013).  The intra-treatment changes in tumour oxygen 

content was correlated to pathologic response in one DOS study (Falou et al., 

2012).   Data from this small cohort of patients (n=15) showed that the oxygen 

desaturation (St) of the whole-breast was significantly different (p=0.0002) at 

intra-treatment (four weeks) between responders and non-responders (Falou et 

al., 2012).  Their study also showed that the tumour oxygen saturation (StO2) of 

the whole-breast was not significant between response groups (p=0.1) after four 

weeks of treatment and this agreed with a previous study by Jiang et al. (2009) 

(p=0.47).   

The pre-treatment analysis in the present study agrees with previous 

DOS data showing that baseline oxygen saturation can predict chemotherapy 

response (Ueda et al., 2012, Jiang et al., 2014).  Jiang et al. (2014) showed that 

the pre-treatment StO2 could reach an AUC of 0.8.  Similarly, data from Ueda et 

al. (2012) were comparable; the tumour StO2 showed an AUC of 0.72 (Ueda et 

al., 2012). In their study also, when the StO2 was modelled with intrinsic 

molecular features (ER+ and PR+) in a linear discriminant function, the AUC 

increased to 0.80-0.93 (Ueda et al., 2012). 

  

Data Comparison of Optical Scattering Parameters 

 
Optical scattering parameters included the scattering power (SP) and the 

scattering amplitude (SA).  These features correspond to the size of the 

scattering particle, relative to the wavelength (Cerussi et al., 2007).  Tumours 

have been shown to have higher optical scattering (i.e. larger scattering power) 

compared to the surrounding normal tissue and this is due to the complex 

cellular and stromal organization within the tumour’s microenvironment that act 

as scatterers (Tromberg et al., 2005, Cerussi et al., 2007, Soliman et al., 2010). 

In the present study, the scatter power and the scatter amplitude 

demonstrated a significant difference between response groups after four 

weeks of treatment (p<0.01) and there was a significant decrease in the scatter 
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power in responders during treatment.  This corresponded to a high predictive 

value (AUC range=0.897-0.982).  The results of this study agree with other 

studies that also showed a significant difference in the scattering power 

between responders and non-responders; Soliman et al. (2010) reported a 48% 

difference in the scattering power after four weeks of treatment (p<0.036).  In 

the present study, the difference in the scattering power parameter was 34.7% 

only between groups (p<0.05); in comparison to another study by Falou et al. 

(2012), their data indicated a difference of 35% between response groups after 

four weeks of treatment (p<0.046), which was similar to this present work 

(Falou et al., 2012).  On the other hand, in a study by Jiang et al. (2009), there 

was no difference in scattering parameters (scatter amplitude and scatter 

power) after four weeks of treatment, although the scattering power approached 

significance (p=0.06) at this time interval (Jiang et al., 2009).   Another study by 

Cerussi et al. (2007) examined earlier time intervals (i.e. after one week of 

treatment) in the scattering parameters and there were no significant results, 

differences in the scattering parameters, which corresponded with the data in 

this study (Cerussi et al., 2007).   

 

4.2.3 Analysis of Data Variances in DOS  
 

DOS Topography versus Tomography 

 

DOS systems can be built as topography systems (2D-image acquisition) 

or tomography systems (3D-image reconstructions) which can yield varying 

DOS datasets (i.e. 2D planar images may carry limited DOS data since only a 

portion of the tumour is measured, depending on the size).  Systems developed 

by the UC Irvine group (Cerussi, Tromberg, Ueda) and the University of 

Connecticut (Zhu, Hegde) used handheld topography devices that employs a 

reflectance geometry (Zhu et al., 2014).  Other research groups from Dartmouth 

University (Jiang, Paulsen, Pogue) and the University of Toronto (Falou, 

Soliman, Czarnota) used tomographic systems which provide cross-sectional, 

volumetric DOS datasets of the breast.  The differences between the two 

systems are that one produces 2-D maps (topographic); whereas the other, 3-D 

maps (tomographic) of the chromophores of interest (i.e. haemoglobin, water 

and lipids) are constructed.   
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Hand-held topography devices and DOS tomography systems have their 

respective advantages and disadvantages.  Hand-held systems are portable 

and are advantageous for imaging lesions in harder-to-reach areas such as the 

axilla.  It uses reflectance geometries that have an average imaging penetration 

depth of 10-22 mm below the skin surface (Cerussi et al., 2011).  As a result, 

the penetration depth limits the imaging of large locally advanced breast 

tumours that are bigger than 5 cm in the posterior dimension.  Since there are 

often intratumoural heterogeneities in breast tumours, topography systems are 

potentially constrained by under-sampling, i.e. the entire tumour volume is not 

measured due to limited penetration depth or limited field-of-view from the 

geometry of the imaging device.  Thus, errors can arise for tumours with deep 

posterior margins and the major consequence is that it may not represent the 

tumour’s entire biological properties given the limitations in device geometry.  In 

contrast, tomographic systems provide volumetric data (3-D), for it uses light 

transport calculations that are captured across the breast tissue (Dehghani et 

al., 2009).   DOS tomography is capable of high imaging contrast and yields 

more data points; yet the major disadvantage is the coarse spatial resolution 

(i.e. large voxel sizes) as a result of limitations in reconstructing data from 

diffuse light propagation in tissue (i.e. greater scattering during light transport 

across the longer tissue distance) (Dehghani et al., 2009).  Given these 

differences in technology, 2-D versus 3-D DOS imaging can yield varying 

results and this was apparent between research studies.  Analysis conducted 

by the UC Irvine and University of Connecticut group, who used hand-held 2D-

planar imaging demonstrated higher haemoglobin levels at the conclusion of 

therapy.  This may have been caused by measuring only a fraction of the 

tumour’s total bulk volume (i.e. anterior aspect).  In those studies, tumour 

analysis was based on two-dimensional datasets that had a fixed depth and 

area.  In comparison, researchers at the University of Toronto (the present 

study) and at Dartmouth University used DOS tomography which measured the 

optical properties of the whole tumour and the entire breast; thus, the 

chromophore concentrations were based on the sum of measurements in all 

spatial directions across the entire breast volume in some studies.  Measuring 

the whole tumour (and whole breast) versus a smaller tumour segment may 

have resulted in the variances in changes at the end of treatment; known as 

signal “washout”.  Other contributing factors to data variance include a partial-
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volume effect which is the loss of quantitative accuracy based on the DOS 

resolution (Santago and Gage, 1995, Durduran et al., 2010).  The result is an 

underestimation of the chromophore concentration changes and problems with 

assigning absolute optical properties within the region of interest  (Durduran et 

al., 2010).  The lower haemoglobin values calculated from this present study 

and other studies by Soliman et al. (2010) and Falou et al. (2012) could have 

been caused by a partial-volume effect (Falou et al., 2012, Soliman et al., 

2010).  The partial-volume effect is highly possible given the resolution of the 

DOS tomography system used here (3 mm x 3 mm) is large in comparison to 

the size of chromophores (i.e. haemoglobin) (Durduran et al., 2010).  

 

 

DOS Regions of Interest 

 

An important comparison between research reports involves discussing 

the methods in selecting the region-of-interest.  Indeed, there is great interest in 

studying the effects of adjusting the size, boundary and computing methods to 

contour the ROI in DOS data processing and analysis since it can impact the 

measured and absolute DOS values (Hylton, 2009).  Jiang et al. (2009) report 

results on using two ROI segmentation schemes that compared fixed-sized 

versus variable-sized ROIs  (Jiang et al., 2009).  In the first approach, a 

radiologist selected the ROI with a priori knowledge of the tumour’s location 

based on MRIs.   The size and dimension of the ROI was kept constant for the 

duration of the imaging series during the patients’ treatment.  In the second 

approach, an automated and computer-assisted method was utilized using the 

intensity distribution of the DOS image maps. The ROI was determined based 

on the position of the chromophore’s maximum intensity and a contour 

boundary was calculated around that position for values that were above the 

half of the maximum value.  This method is referred to as the full-width-half-

maximum (FWHM) approach (Jiang et al., 2009).  In a small dataset (n=7), 

Jiang and colleagues showed that variable-sized ROIs showed a greater 

normalized decrease in the total haemoglobin in pCR patients compared to 

using a fixed-sized ROI (HbT fixed = -64.2 ± 50.8 versus HbT variable = -96.7 ± 

91.8) (Jiang et al., 2009).       
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Another study by Falou et al. (2012) reported results using whole-breast 

analysis versus volume-adjusted ROIs using tomographic datasets.  Whole-

breast analysis involved calculating the integrated optical parameters across the 

entire breast, which included tumour and normal breast tissue.  For volume-

weighted analysis, the tumour volume was determined by referencing clinical 

imaging (i.e. MRI, CT) and the ROI was placed manually.  The optical 

parameters were calculated within the region of interest only.  The major 

advantages to whole-breast analysis is that it can be done without any 

knowledge of the size and location of the tumour and thus mitigates inter-user 

variability.  A major disadvantage however is that as tumours regress during 

treatment the optical parameters may reflect a greater ratio of breast to the 

tumour optical properties, thus “washing out” the tumour optical measurements.  

Falou et al. (2012) showed a significant difference in optical properties between 

whole-breast analysis and volume-weighted analysis.  Measuring the deoxy-

haemoglobin in responders after four weeks of treatment showed a reduction to 

32% ± 7% for volume-weighted ROIs; while whole-breast ROIs showed an 

increase of 114% ± 6% relative to the baseline concentration (Falou et al., 

2012).  These studies demonstrated that ROI placement and contouring 

methods have a significant impact on the reported optical properties in tumours.  

Importantly, other tissue composition features such as %Lipids demonstrated 

insignificant changes over the course of treatment and did not discriminate 

responders and non-responders.  This could be explained since breast tissue is 

highly composed of adipose tissue which could “wash out” any measurable 

changes in the tumour.     

Schaafsma et al. (2015) showed that displacing the ROI by 5 mm could 

result in a 2% change in the deoxyhaemoglobin and oxy-haemoglobin 

measurements for tumours that are 30 cm3 and an 8% change for tumours 

approximately 5 cm3.  Their data suggests that smaller tumour sizes (either on 

initial presentation or regressing from treatment) are susceptible to greater 

variability depending on the ROI placement (Schaafsma et al., 2015).  This 

phenomenon may explain some of the data variability in the haemoglobin 

changes at the end of treatment since tumour dimensions are generally smaller 

(for responsive patients) and therefore positioning the ROI around these smaller 

lesions may cause variability; caused also by the lower resolution of DOS 

images.   
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Wavelength (nm) Near Infrared (600-1100) x x x x x x x 

Image Type Topographic (2D)  x x x  x  
Tomographic (3D) x    x  x 

ROI Analysed Tumour x  x  x   x x  x  x  
Whole-Breast         

Time Measures Pre-Treatment x  x x  x  x 
Intra-Treatment   x  x   x  x  x   

Imaging Parameters 
Studied 

Haemoglobin  x  x  x  x  x  x x  
Oxygen Saturation x x  x      
Tissue Parameters x x  x x  x  
Scattering Parameters x x  x   x   
GLCM-Textures x       

Tumour Parameters 
ER/PR  x  x x x  x  
HER2 x  x x x  x 
Triple Negative x  x   x  x 

Multimodalities Other biomarkers  x        

Classification 
Models 

Logistic Regression x        
Linear Discriminant   x          

Machine 
Learning 

k-NN x         
SVM         
N. Bayes x        
Others         

Univariate Models x  x            
Multivariate Models x  x           

Tumour Response 
Endpoints 

RECIST 1.1 (Radiology)        
Miller-Payne (Pathology) x   x     
Residual Cancer Burden        
NSABP Protocol        
Other Radiological      x  

 Other Pathological  x  x x x x 
Table 4.1A.  Summary of comparisons between DOS studies.  A significant 

difference between the present study (thesis) and previous studies include 

using GLCM-texture analysis on baseline DOS parameters.   Yellow boxes 

represent the major differences and limitations of previous studies.   
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Wavelength (nm) Near Infrared (600-1100) x  x  x  x  x x  x 

Image Type Topographic (2D) x  x  x   
Tomographic (3D)  x  x  x x 

ROI Analysed Tumour x  x x  x   x x    
Whole-Breast  x       

Time Measures Pre-Treatment   x x  x   
Intra-Treatment x   x      x x   

Imaging Parameters 
Studied 

Haemoglobin   x  x  x x  x  x  
Oxygen Saturation x x x x x  x   
Tissue Parameters  x    x  x  
Scattering Parameters  x     x   
GLCM-Textures        

Tumour Parameters 
ER/PR  x x x x  x x  
HER2 x x x x  x x  
Triple Negative x x x x   x x 

Multimodalities Other biomarkers     x     

Classification 
Models 

Logistic Regression    x x   x 
Linear Discriminant   x  x     x   

Machine 
Learning 

k-NN          
SVM         
N. Bayes         
Others         

Univariate Models   x  x      x   x 
Multivariate Models      x x        

Tumour Response 
Endpoints 

RECIST 1.1 (Radiology)       x 
Miller-Payne (Pathology)     x   x 
Residual Cancer Burden        
NSABP Protocol x       
Other Radiological     x   
Other Pathological   x x   x  

Table 4.1B.  Other DOS studies demonstrated significant differences in the 

classification algorithms used (i.e. machine learning) to predict treatment 

response.  Yellow boxes represent the major limitations and differences of 

previous studies.   
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Wavelength (nm) Near Infrared (600-1100) x   x x       

Image Acquisition Topographic (2D)  x x     
Tomographic (3D) x       

ROI Analysed Tumour   x  x         
Whole-Breast x        

Time Measures Pre-Treatment  x        
Intra-Treatment x  x  x         

Imaging Parameters 
Studied 

Haemoglobin  x  x  x        
Oxygen Saturation x         
Tissue Parameters x x        
Scattering Parameters x         
GLCM-Textures x       

Tumour Parameters 
ER/PR  x  x      
HER2 x  x      
Triple Negative   x      

Multimodalities Other biomarkers          

Classification 
Models 

Logistic Regression         
Linear Discriminant x  x  x       

Machine 
Learning 

k-NN          
SVM         
N. Bayes         
Others         

Univariate Models x  x  x         
Multivariate Models x            

Tumour Response 
Endpoints 

RECIST 1.1 (Radiology)        
Miller-Payne (Pathology)         
Residual Cancer Burden        
NSABP Protocol        
Other Radiological x       
Other Pathological x  x x     

Table 4.1C:  The significant contribution of this thesis includes modelling QUS 

parameters with DOS features during chemotherapy.  Yellow boxes represent 

the major limitations and differences of previous studies.   
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4.2.4 Comparison of QUS studies 
 
 Quantitative ultrasound spectroscopy in breast cancer is a relatively new 

technique under clinical investigation.  Current research is underway for its use 

in classifying tumour response to treatment and also as a method for identifying 

malignant and benign breast lesions at diagnosis.   To our knowledge, the 

research group from the University of Toronto is unique in conducting clinical 

(human) research in breast cancer response to neoadjuvant chemotherapy.  

Indeed, other researchers have used QUS in the clinical research setting for 

other aims such as characterizing liver disease (Lu et al., 1999); (Lin et al., 

2015); however a large body of this other work is still focused on laboratory and 

animal-based research. 

 The previous breast studies presented from the University of Toronto 

demonstrated promising clinical results; the aims being to acquire both pre-

treatment and intra-treatment QUS parameters to measure breast cancer 

response to chemotherapy.  Taking the work of our group forward, the analysis 

in this thesis aimed to measure intra-treatment QUS changes and to use QUS 

parameters for combined DOS parametric models; whereas previously our 

group had included analysis of QUS alone, on both pre-treatment and intra-

treatment QUS parameters.  The forward innovation here, sought to correlate 

the biological measurements such as haemoglobin and tissue composition 

changes with the previous QUS work.  Additionally, this work differs from 

previous intra-treatment QUS studies since now, QUS imaging biomarkers were 

studied for correlation to a systematic pathological response criteria (i.e. Miller-

Payne grading); whereas previously QUS studies have used a non-standard 

pathological method or relied principally on radiological endpoints.   Table 4.2 

outlines the significant differences in methods and approaches between the 

present study, and previous QUS studies.  As indicated from Table 4.2. The 

work here is novel since to date, no other QUS study has included a 

multiparametric model using other imaging modalities.          

In comparing the QUS data only, the results here were consistent with 

data from Sadeghi-Naini et al. (2013), where there were similar temporal QUS 

changes observed in responders after four weeks of treatment.  Responders 

also showed a significant increase in the mid-band fit and spectral intercept; 

whereas non-responders showed insignificant change throughout the course of 
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treatment (Sadeghi-Naini et al., 2013b).  In comparison to the study by Sadeghi 

et al. (2013), there were two important distinctions in the methods and analysis; 

the first being a probability density function analysis of the MBF feature.  This 

analysis was carried out by analysing the MBF parametric maps and fitting a 

generalized gamma (GG) distribution of the MBF intensity histogram for feature 

extraction (Sadeghi-Naini et al., 2013b).  The second, multiparametric QUS-

features analysis was performed using combinations of QUS features only.  It 

was shown in their study that the generalized gamma distribution did not 

improve the accuracy of measuring chemotherapy response at intra-treatment; 

the sensitivity and specificity of the MBF was 100% and 72.2% at week four, 

respectively, compared to the 66.7% and 66.7% for the generalized gamma 

model (Sadeghi-Naini et al., 2013b).  Also, by using a multiparametric model 

(mid-band fit and the 0-MHz intercept), their study showed an improvement in 

discriminating responses (%Sn=100.0% and %Sp=83.3), compared to using 

those individual features alone (Sadeghi-Naini et al., 2013b).  A follow-up study 

by the same author used QUS-texture analysis and showed that alterations in 

the texture features separated responders and non-responders as early as one 

week after starting chemotherapy (Sadeghi-Naini et al., 2014).  This study also 

showed that QUS-textural biomarkers were significantly correlated to patient 

survival (p=0.0007) (Sadeghi-Naini et al., 2014).  By comparison, in this thesis, 

texture analyses were not completed since the focus here, was to explore the 

coincidence between mean DOS and QUS biomarkers only.  Additionally, 

survival analysis could not be completed for this patient cohort since the current 

follow up time is insufficient for long-term analysis (i.e. a minimum of 5-years is 

typically reported). 

Recently, Tadayyon et al. (2016) examined a larger patient cohort (n=58) 

and expanded QUS analysis to include predictive modelling with acoustic 

backscatter parameters (Tadayyon et al., 2016).  This analysis was developed 

from a previous study by Sannachi et al. (2015) where 30 LABC patients were 

studied.   The methods included a machine-learning algorithm (k-NN) for 

tumour-response classification, in addition to modelling intra-treatment and pre-

treatment QUS parameters together.  The results of that study showed a 

significant increase in QUS parameters (MBF, SI, ACE) after one week of 

treatment for responders; however, the diagnostic accuracies were poor for 

measuring treatment response (%Acc range = 54%-61%).  When more than 
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one parameter was employed (multiparameters), it was shown that the 

combination of intra- (week one)- and pre-treatment QUS features improved the 

diagnostic accuracy (%Acc=70.0%) (Tadayyon et al., 2016).  It should be noted 

however that this combination model did not show a significant result after four 

weeks of treatment.  In a subsequent QUS-based study by Tadayyon et al. 

(2017), pre-treatment QUS parameters were studied further to improve QUS 

analysis techniques (Tadayyon et al., 2017).  There were three important 

methodological differences to this present study:  1) a modified segmentation 

scheme of the tumour was used in their study, which included an expansion 

margin (5-10 mm) around the peritumour region (Tadayyon et al., 2017); 2) 

molecular tumour markers were used in their predictive models; and 3) machine 

learning techniques were used for response classification.  Their study showed 

that expanding the ROI margin by 5 mm around the tumour predicted response 

with an accuracy of 88%; yet including molecular subtypes did not improve the 

accuracy (%Acc=82%) (Tadayyon et al., 2017).  The ROI-expansion technique 

was not employed in the current study since the scope of the research was to 

compare coincident DOS and QUS markers of the tumour-volume only.  

Additionally, the image resolution for QUS is finer compared to DOS; where the 

in-plane resolution for DOS was 3 x 3 mm2 and thus an expansion margin 

would not permit a geometric comparison between DOS and QUS images.      

 Other QUS studies in breast cancer include a study by Gangeh et al. 

(2015); where the focus was based on using QUS parameters within the 

framework of computer-assisted theragnostics (CAT) (Gangeh et al., 2016).  

CAT is centred around complex machine-learning computations that are used to 

measure tumour response to therapies (i.e. theragnosis) (Gangeh et al., 2016).  

It works by implementing pattern-recognition algorithms within a feature space; 

using attributes or biomarkers, such as those found in QUS parameters, texture 

features, or morphological tumour characteristics (Gangeh et al., 2016).  The 

scope of that study was primarily exploratory and focused on computational 

theory that is beyond the scope of the current thesis.  In the next section, is a 

summary of comparisons between this present study and previous QUS studies 

presented.     
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4.2.5 Analysis of data variances in QUS Studies 
 

 The data variance between the results presented in this thesis and 

previous QUS reports can be explained by the different methodological 

approaches used.   

 

Ultrasound Imaging Parameters 

 

Two reports (Tadayyon et al., 2016, 2017) used lower-frequency 

ultrasound (transducer frequency = 6 MHz, central frequency = 5.5 MHz), 

compared to the present study that used a transducer frequency of 10 MHz, 

central frequency = 7 MHz.  The differences in ultrasound parameters changes 

the resolution and thus affects the absolute changes measured in the QUS 

parameters.   

In terms of ROI selection, all studies analysed the tumour volume except 

for one study by Tadayyon et al. (2017) which used an expansion volume (3-10 

mm) around the peritumour region.  This method contributed to a better 

prediction value for pre-treatment QUS parameters based on backscatter co-

efficient parameters and spectral parameters.  The data variance between this 

study and the work by Tadayyon et al. (2017) was due to the differences in 

computing different anatomical volumes.  In their study, QUS parameters were 

calculated on both malignant lesions and the normal breast parenchyma which 

alters the acoustic scattering measurements.   

 

Parameters of Interest and Modelling Features 

 

All studies but one (Sannachi et al., 2016) reported the linear fit 

parameters of the power spectrum (MBF, SI, SS).  The linear-fit model 

parameters that were measured in patients for this present study agreed with 

previous studies in terms of the observed trends and relative changes 

measured in response groups during chemotherapy.  However, there were 

variances in the predictive values for univariate and multivariate models 

between studies (sensitivity, specificity, accuracy, AUC) and this was caused 

from differences in the statistical frameworks used (i.e. classification algorithms 

used).  Univariate and multivariate analysis of the QUS linear-fit parameters 
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included a linear discriminant function, a logistic regression model and a k-

nearest neighbour classification algorithm among studies (Sadeghi-Naini et al., 

2013b, Tadayyon et al., 2016).  The predictive values are calculated from 

several factors: 1) the number of variables included into the model; 2) the 

sample size; and 3) the distribution of data samples.  Multivariate models from 

previous reports have included tumour molecular features and a combination of 

other QUS features together (Tadayyon et al., 2017, Sadeghi-Naini et al., 

2013b) 
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US Transducer 
Frequency (MHz) 

10 MHz (central f = 7 MHz) x x x x  x  
 6 MHz (central f = 5.5 MHz)     x  x 

ROI Analysed Tumour Volume x x x x x x x 
Other Volumes       x 

Time Measures Pre-Treatment       x 
Intra-Treatment x x x x x x  

Imaging 
Parameters 
Studied  
(Spectral 
Analysis) 

Linear Fit (MBF, SI, SS) x x x  x  x 

Backscatter 
coefficient 
model 
parameters 

ACE     x  x 
ASD    x x   
AAC    x x   
BSC    x    
SAS     x   

GLCM-Textures   x    x 
LBP-Textures      x  

Tumour 
Parameters 

ER/PR  x x x x x x x 
HER2 x x x x x x x 
Triple Negative x x x x x x  

Multimodalities Other imaging  x       

Classification 
Models 

Logistic Regression x       
Linear Discriminant x x x x   x 

Machine 
Learning 

k-NN     x  x 
SVM       x 
N. Bayes      x  
Other      x  

Univariate Models x x x x x x x 
Multivariate Models x x x x x  x 

Tumour 
Response 
Endpoints 

RECIST 1.1 (Radiology)  x   x x  
Miller-Payne (Pathology) x      x 
Other Radiological    x    
Other Pathological   x   x  

Table 4.2: QUS study comparisons.  Significant differences between the 

present study and previous QUS studies include the methods for spectral 

analysis (linear fit model compared to backscatter co-efficient model).  Other 

major differences include using concurrent DOS imaging and statistical 

modelling.  Lastly, this study used a systematic approach to pathological 

response criteria (i.e., Miller-Payne criteria).  LBP=local binary pattern.   Yellow 

boxes represent the major differences and limitations of previous studies.  



 240 

4.2.6 Modelling DOS and QUS Parameters as Complementary Response 
Markers 
 

In the present study, combined analysis was completed for DOS-QUS 

parameters to measure NAC response at early time intervals in locally 

advanced breast cancer.  To our knowledge, this is the first study that has 

completed serial and coincident imaging with DOS and QUS in locally advanced 

breast cancer.  The coincident biomarkers measured from DOS and QUS show 

that there are also coincident cellular, biochemical, haematological and 

morphological changes with treatment (Jakubowski et al., 2004, Srinivasan et 

al., 2006, Jiang et al., 2009).  Of note, QUS parameters have been 

demonstrated in tumours that exhibit apoptotic cell death from chemotherapy 

(Kolios et al., 2002, Sadeghi-Naini et al., 2013b).  These DOS and QUS 

parameters have also been correlated to pathologic characteristics and 

outcomes (Cerussi et al., 2011, Cerussi et al., 2007, Sadeghi-Naini et al., 

2013b, Tadayyon et al., 2014).  Previous work by Cerussi et al., (2011) used 

DOS to measure tumour water content, and tumour haemoglobin concentration 

at multiple times during chemotherapy treatment (Cerussi et al., 2011).  The 

results of that study indicated a significant reduction in %Water and tumour 

haemoglobin at the end of chemotherapy when compared to the baseline 

measurements, and this corresponded to patients who demonstrated 

pathological complete response  (Cerussi et al., 2011).  The results in the study 

here are consistent with their findings and in addition, DOS data is 

supplemented with QUS biomarkers (MBF, SI) that indicated an increase in cell 

death within the tumour region.  Specifically, after four weeks, where there is an 

increase in the MBF and SI in responders, the total haemoglobin (HbT) in 

responders reduced significantly.  A possible explanation in responders could 

be due to decreased vessel viability within the tumour (measured by DOS), 

which also corresponded to an increase in cell death that resulted in spatial 

changes within the tumour (measured by QUS) (Zhu et al., 2008, Ueda et al., 

2012).  Conversely, non-responding patients may have had tumours with more 

aggressive malignant cells that prompted blood vessel growth to support the 

metabolic demands.   

In principle, tumour metabolic information, reflected by markers for 

deoxy-haemoglobin and oxy-haemoglobin parameters is closely linked to 
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tumour cellular activity (Roblyer et al., 2011, Falou et al., 2012).  This is 

explained by the conversion of oxy-haemoglobin to deoxy-haemoglobin during 

tumour cell cycling, and activity (i.e. metabolism).  After eight weeks of 

treatment, responders demonstrated a significant reduction of HbO2 and Hb and 

this corresponded with an increase in MBF of +10.0 ± 1.5 dBr, suggesting a 

coincident increase in dying cells within the tumour bed.  Non-responders 

however, demonstrated less significant decreases in the tumour haemoglobin, 

relative to the pre-treatment value and this was also correlated to a lesser 

change in the MBF and SI.  Together, DOS and QUS data suggest that 

chemotherapy-responsive tumours decrease in metabolism as linked to blood-

based parameters in comparison to non-responding tumours; potentially 

because of dying tumour cells.  QUS parameters, such as the SI and SS were 

not significantly different at the pre-operative time-point. This was expected 

since QUS measurement are sensitive to cell death induced by treatment which 

occurs in responsive patients early on, rather than many months later after 

chemotherapy.  Pre-operative measurements were obtained 4-6 weeks after the 

last chemotherapy infusion and therefore, cell death is expected to diminish 

within the tumour bed in responsive patients, due to a large reduction in tumour 

cells after many months of chemotherapy. 

Tumour structure was further characterized by measuring the tissue 

optical index (TOI) parameter which has been shown to demonstrate contrast 

between tissue types (Fantini and Sassaroli, 2012, Cerussi et al., 2006).  The 

TOI reflects the optical properties of breast tumours in reference to its 

pathological state (Fantini and Sassaroli, 2012).  In the work here, the TOI 

demonstrated significant differences (p=0.000) between responders and non-

responders after four weeks of chemotherapy and differed significantly 

(p<0.001) after completing chemotherapy (pre-surgery).  The change in TOI is 

dependent on the concentration of water and lipid content within the tumour and 

thus responsive tumours that demonstrated a larger reduction in water content 

would also result in a diminished TOI value (Fantini and Sassaroli, 2012, 

Tromberg et al., 2005).  Cerussi et al. 2007 previously suggested that this 

reduction in water fraction in responsive tumours might represent variations in 

tumour cell density, and cellularity within the tumour bed (Cerussi et al., 2007), 

and this was supported by clinically reported histological data that 

demonstrated cellular changes in the tumour after NAC.  Although the 
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relationship between water fraction and tumour cellularity is not entirely clear; it 

may be related to inflammatory response mechanisms within the tumour 

parenchyma (Coussens and Werb, 2002).  Further, in the work here the %Lipid 

also increased for responders, which can affect the TOI.  The increase in lipid 

content within the tumour bed could represent the changes in lipid composition 

closer to that of normal breast tissue and its relationship to QUS markers would 

suggest that there were cellular changes concurrently.           

DOS-QUS combined parameters enhanced chemotherapy response 

classification in comparison to single modality parameters as early as one week 

after the start of NAC.  However, it should be noted that not all combinations 

increased the sensitivity and specificity of response assessment, and this could 

likely be caused by the relatively small sample size in this first study.  Many 

single parameters classified patients with higher accuracy at weeks four and 

eight.   This is likely due to the cumulative effects of treatment and the 

concurrent biological changes in tumours at those times.  However, some 

parameters such as the SS benefited from multivariate DOS-QUS 

combinations.   It was expected that combining highly sensitive and/or specific 

parameters would increase the accuracy and prediction of treatment outcomes.  

In contrast, weaker predictors (such as the slope) would benefit from pairing 

with stronger predictive parameters with increases in sensitivity and specificity 

because more parameters carry complementary information about tumour 

physiology or cell death.  The results of this study suggest that DOS-QUS 

pairwise combinations may be useful for clinical application when modelled at 

one week of NAC treatment, using a combination of parameters that include: SI, 

SS, HbO2, HbT, SP, SA, %Water, and TOI, since many of these parameters 

demonstrate poor sensitivity and specify on their own at that time.  This may 

potentially be followed by treatment response verification and validation by 

using several other DOS-QUS parameters at weeks four and eight.   

Other strategies for combined systems to compliment tumour response 

measurements include US-guided optical imaging developed by Zhu et al., from 

the University of Connecticut (Xu et al., 2015, Zhu et al., 2013, Zhu et al., 

2008).  These systems have been studied to measure NAC response in breast 

tumours.  US grey-scale imaging was used there to localize breast tumours, 

and optical tomography to map tumour haemoglobin changes during treatment 

(Zhu et al., 2013, Zhu et al., 2008).  The technical benefits of that approach use 
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co-registered US images to verify posterior (deeper) tumour margins, where 

optical image resolution is poorer (Zhu et al., 2008).   For the current study, 

conventional US and DOS images were not co-registered since there were 

differences in the spatial geometries of the DOS and QUS images but averaged 

values over the tumour volume were used.  This was due to patient positioning 

for each scan modality (i.e. supine versus prone), and breast shape from DOS 

breast compression.  Another study from Ueda et al. used multivariate analyses 

for baseline DOS parameters combined with tissue biomarkers from 

immunohistochemistry (Ueda et al., 2012).   Markers for cell proliferation (Ki67), 

and molecular features (oestrogen and progesterone receptor) were combined 

with optical measurements such as (HbO2), (Hb), or the tumour oxygen 

saturation (StO2).  Multivariate discriminant analysis of the combined 

parameters demonstrated an increase in the sensitivity and specificity for 

predicting NAC response.  The results of this study from Ueda et al. support the 

need for further exploration into combination analysis to improve the predictive 

performance of multiple imaging and clinical biomarkers (Ueda et al., 2012).   

 

4.2.7 Significance of Texture-Analysis of Pre-Treatment DOS parameters 
 

Texture analysis is a general term for mathematical methods and models 

used to analyse images based on the image pixels’ spatial relationship to other 

neighbouring pixels (Davnall et al., 2012).  It has been used as a second-order 

statistical approach to analyse DOS parametric images; yielding DOS-texture 

features to aid in discriminating tumour response during NAC (Sadeghi-Naini et 

al., 2015, Davnall et al., 2012).  Texture feature-extraction methods such as 

those based on grey-level co-occurrence matrices (GLCM) can be applied to 

compute the probabilities of relative pixel intensities of images from the spatial 

distribution of their voxels (Haralick et al., 1973).  In discussing the advantages 

of applying texture analysis to DOS images, it is important to emphasize that 

the texture of the image carries important information about the images’ 

properties; specifically, between one pixel region to the next and giving insight 

about the “roughness”, “softness” or “smoothness” of the image itself.  In 

medical imaging, these qualities can help discern tumour heterogeneity which is 

represented by the biological measurements captured within the breast image 

(Gupta and Undrill, 1995). 
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There are several GLCM texture features but recently studied 

parameters in DOS include the following GLCM-textural features: contrast 

(con), correlation (cor), homogeneity (hom), and energy (ene).  These features 

are dependent on the number of grey-levels (Ng) in the image or within the 

region of interest (ROI).  Such techniques have been applied in computer-

assisted diagnostics in mammographic imaging and have been extended for 

use in several modalities, such as X-ray mammography (Li et al., 2005), MRI 

(Chen et al., 2007, Lerski et al., 1993), positron-emission tomography (PET) 

(Chicklore et al., 2013), and ultrasound (Yang et al., 2012).   Its use has also 

shown promising results for discriminating and characterizing tissue types 

(Castellano et al., 2004).  In breast studies, GLCM analysis has been able to 

classify benign and malignant lesions using planar (2D) and volumetric (3D) 

MRI images (Chen et al., 2007, Gibbs and Turnbull, 2003).  For X-ray 

mammography, GLCM analysis has been used to segment lesion borders of 

stellate (malignant) breast masses (Gupta and Undrill, 1995).  As previously 

shown, it was also reported that texture-based features from quantitative 

ultrasound (QUS) imaging can be used to classify responders and non-

responders early during NAC treatment (Sadeghi-Naini et al., 2014).  These 

previous findings suggested that textural features may detect the acute, 

heterogeneous microstructural features carried in the parametric layout not 

otherwise detected using the mean measurements (Sadeghi-Naini et al., 2014).    

 

4.2.8 Summary of Novel Contributions  
 

Novel contributions for Subproject One 

 

In terms of the novelty of the work presented in this thesis, there were three 

significant and new contributions in subproject one22: 

 

1. New DOS and QUS imaging marker signatures were identified for the 

first time, at early treatment time intervals (i.e. after one cycle of 

chemotherapy), by combining DOS and QUS parameters together in a 

                                            
22 A summary of published contributions for subproject one is presented in 

Appendix 4 and Appendix 5.   
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pairwise model; these included, MBF+HbO2, MBF+HbT, SI+HbO2, 

SI+HbT, SI+%Water, SS+HbO2, SS+HbT.   

 

2. Intra-treatment DOS and QUS parameters were used to demonstrate the 

likelihood of patients achieving pathologic endpoints, as defined 

systematically by Miller-Payne pathological response criteria, for the first 

time. This is novel compared to other QUS studies using radiological 

endpoints (Sadeghi-Naini et al., 2013b).   

 

3. Combining DOS and QUS parameters into pairwise models improved the 

classification performance compared to using the univariate parameters 

alone at early time intervals.  For example, the AUC of the QUS-SS 

parameter was 0.201 after one cycle (i.e. one week) of chemotherapy. 

The HbO2 AUC was 0.982 and the HbT AUC was 0.875; whereas 

combining the SS+HbO2 resulted in an increase of the AUC to 1.00 and 

the SS+HbT resulted in an increase of the AUC to 0.955.      

 

The coincident DOS and QUS parameters may have represented concurrent 

biological responses in the tumour.  The findings would suggest that the 

following coincident biological changes were processed in responsive tumours:  

1) tumour cell death; 2) haematological and vascular regression and; 3) tumour 

morphological changes (i.e. decreases in stromal and cellular properties) and 

thus suggests that tumour responses to cytotoxic agents involves multiple 

biological processes as mentioned above  (Coley, 2008). 

 

Novel Contributions for Subproject Two23 

 

In terms of novel work in subproject two, there were three new and significant 

contributions:  

 

1. For the first time, a tumour ROI-only GLCM analysis was completed on 

DOS tomographic images using machine learning classifiers.  The pre-

                                            
23 A summary of published contributions for subproject two is presented in 

Appendix 4 and Appendix 5.   
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treatment DOS parameters were studied using GLCM texture analysis 

and showed that for the first time, that there were significant differences 

between pathologic non-responders (MP1,2) and pathological 

responders (MP3-5) from DOS-texture features: Hb-homogeneity, HbO2-

correlation, total-haemoglobin-homogeneity, oxygen desaturation-

contrast, oxygen saturation-contrast.      

 

2. The second novel contribution included identifying DOS-texture 

signatures that could predict breast cancer response according to 

chemotherapy types; for FEC-D chemotherapy, the DOS-texture 

parameter, TOI-homogeneity demonstrated the highest predictive value 

(AUC=0.949), whereas the HbO2-homogeneity showed an optimal AUC 

of 0.896 for AC-T chemotherapy.        

 

3. The third novel contribution included analysis of DOS-texture parameters 

to characterize the likelihood of pathological response according to the 

tumour molecular subtypes. The results demonstrated for the first time, 

that the HbO2-homogeneity could optimally predict response in ER+ 

breast cancers (AUC=0.883) and that the Hb-homogeneity parameter 

could optimally predict tumour response in triple negative breast cancers 

(AUC=0.917).     
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4.3 DOS and QUS Clinical Translation 
 

4.3.1 Current Challenges for DOS and QUS Imaging as a Clinical Tool 
 

 Developing imaging biomarkers to produce a clinical decision-making 

tool (i.e. using biomarker information to guide and adapt treatments) requires 

several steps that begin with biomarker discovery, followed by validation in the 

clinical research setting.  Subsequently, further steps are needed to test the 

imaging biomarkers within heterogeneous tumour subtypes in order to 

determine if the biomarkers are generalizable.  These steps are referred to as 

the imaging biomarker pathway and this is analogous to the processes involved 

in clinical and translational research.  The similarities include moving laboratory-

based discoveries along a pipeline that is ultimately validated for either 

diagnostic or therapeutic interventions in patients and diseases (Drucker and 

Krapfenbauer, 2013, O'Connor et al., 2016).  The processes involved in the 

imaging biomarker pathway require a discussion about the current demand by 

physicians and patients for using imaging biomarkers as a clinical tool to help 

guide physicians and inform patients about the progress of chemotherapy 

treatments.  Also, it is pertinent to explore the challenges in study design and 

validation from laboratory testing to clinical implementation within the context of 

DOS and QUS imaging biomarkers.    

The clinical demand for imaging biomarkers, and thus using DOS and QUS 

in oncology, has been highlighted recently by a UK-based working group which 

identified critical research gaps and translational priorities for breast cancer.  

Their report highlighted the importance of exploiting both biospecimen-based 

markers and imaging for guiding breast cancer treatment.  Below are the major 

considerations outlined by their group (Eccles et al., 2013): 

 

1. Selection of therapies should be offered on an individual basis and 

using level one evidence.  Personalized treatments are the best 

approach.  Important considerations include optimizing the treatment 

time-course from individual tumour and patient data.  Currently, 

overtreatment is a clinical challenge. 

2. An assessment for the tumour’s underlying biology is essential.  

Tumour metrics may help assess the patient’s metastatic risk and 
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predict drug resistance.  The tumour’s behaviours from its cellular 

characteristics, molecular features, angiogenic pathways and stromal 

conditions (i.e. hypoxia, altered metabolism) may aid in understanding 

the impact on therapeutic interventions.  This may be achieved by using 

functional and metabolic medical imaging modalities.   

3.  Clinical decision-making tools will be integral in the management and 

treatment of breast cancer patients.  For example, imaging biomarkers 

could be used to predict prognosis and response to chemotherapy.  

Imaging modalities will permit potentially non-invasive, serial 

measurements that show the dynamic tumour changes over time.          

4. High risk populations include triple negative breast cancer patients and 

research needs to address prognostic and predictive biomarkers for this 

patient population.  In general, tumour heterogeneity is a treatment 

challenge and stratification of patients is needed in future studies for 

better treatment strategies.  

5. Both clinical and financial effectiveness should be considered while 

implementing new decision-making tools for clinical use.  

 

The need for biomarkers in medicine have been identified for decades.  In 

the early 2000s, the human genome project was completed to identify and map 

out thousands of genes in human cells (Cooper and Psaty, 2003, Chin et al., 

2011).   Since then, great efforts have been made in cataloguing and identifying 

gene signatures involved in disease progression, drug metabolism and 

treatment resistance across several disorders like cardiovascular disease, 

infectious diseases and cancer (Wang et al., 2011).  A major focus in genomic 

oncology has been to identify predictors for chemotherapy-resistance in breast 

cancer (Wang et al., 2011, Straver et al., 2010).  Indeed, thousands of genes 

have been studied as predictors to therapy response in cancer.  Yet, one 

notable example of these studies includes the validation of a 21-gene assay 

(Oncotype-DX) that predicts the probability of patients that would benefit from 

adjuvant chemotherapy.  The assay studies genes that have been shown to 

potentiate higher prognostic risk factors (Straver et al., 2010).  The 21-gene 

signatures included have undergone validation in over 10,000 patients.  The 

NSABP study B-14 trial demonstrated that Oncotype DX shown to predict 

recurrence in patients treated with Tamoxifen (Paik et al., 2004); while a parallel 
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study (NSABP study B-20) showed the benefit of the assay for predicting 

chemotherapy response (Paik et al., 2006).   Yet, a meta-analysis demonstrated 

variability in recurrence data between 23 studies and there were concerns over 

the test’s generalizability (Straver et al., 2010, Carlson and Roth, 2013).   

Patients who had intermediate risk breast cancer were not shown to benefit 

from Oncotype DX and it was also shown that only a subset of breast patients 

benefits from the assay; namely, in hormone-receptor-positive, HER2-negative, 

axillary node-negative breast cancer (Sparano et al., 2015, Carlson and Roth, 

2013).  The Oncotype-DX assay is one example of how biomarker discoveries 

have been adopted by clinicians to guide treatment.  It also demonstrates that 

biomarkers themselves may not be generalizable for all breast cancer subtypes 

and that it may not be suitable for all patients.  To date, no imaging biomarkers 

(excluding imaging tumour size) have reached the clinical adoption stage 

equivalent to biospecimen-based markers to monitor or predict breast cancer 

response to neoadjuvant chemotherapy.  The reasons for this are because 

imaging biomarkers have yet to undergo large-scale clinical studies and the 

availability of imaging technologies across geographical regions is still limited 

due to their high costs.  Additionally, advancing the use of imaging biomarkers 

also requires personnel expertise that are not always available (O'Connor et al., 

2016).  Thus, despite great efforts to investigate imaging biomarkers for clinical 

use, many studies involving novel imaging methods have not surpassed initial 

research hypothesis testing; thus, never reaching large-scale clinical trials for 

robust validation and translation into the clinic.  In fact, emerging research that 

could potentially guide treatments often fall through translational gaps, defined 

as not sufficiently meeting the following criteria and stages below (O'Connor et 

al., 2016).    

 

Discovery 

  

This involves the identification, selection and derivation (i.e. calculation) 

of imaging biomarkers from the imaging modality.  Biomarker discovery can be 

driven by computer-assisted technologies that permit high computing tasks, 

such as spectral analysis for MRI, CT or US data, which was not possible 

before the recent developments in high-throughput computing.  Other examples 

of extracting imaging biomarkers include the development of mathematical 
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models, for example using texture analysis that emerged in the 1970s (Haralick 

et al., 1973).  Only after several years, has texture analysis of medical images 

been applied to modern imaging from MRI and ultrasound.  Thus, biomarker 

discovery is dependent on technological advances and imaging constraints 

such as resolution and sensitivity of the detection system (e.g. detection of 

radiotracers).    

 
Technical Validation  

 

This stage involves ascertaining the repeatability and reproducibility of 

the imaging biomarkers.  Repeatability validation involves measuring the 

imaging biomarkers from the same subject (i.e. patient), equipment, software 

and by employing only one operator to ensure that the measurements are 

similar from one test series to the next.  In contrast, reproducibility uses the 

same subject or multiple subjects, tests multiple imaging devices of the same 

technology, studies the measurement accuracy with different users, or uses 

various software.  Reproducibility can be evaluated by conducting studies at 

multiple clinical research sites.  Also, system- and user-dependent errors can 

cause technical biases, defined as the difference between the measured 

biomarker value and the true value for example, the concentration of a 

substance such as oxy-haemoglobin in tissue (Kessler et al., 2015).  These 

biases must be reduced within the study design and can be achieved by 

conducting experiments in phantoms where the measurements can be 

confirmed based on reference values known about the phantom’s imaging 

properties (O'Connor et al., 2016).     

Lastly, technical validation requires that the imaging biomarkers are 

tested for safety for the intended patient population.  For example, important 

safety considerations include assessing if the imaging modality can induce 

harmful biological changes (e.g. ionizing radiation causing genetic mutations) or 

if the imaging procedure causes other health risks or effects (i.e. nausea, 

physical discomfort, allergies).   Subsequently, as the studies become validated 

for safety, approval for its use in patients must be obtained from the appropriate 

regulatory bodies such as, Health Canada, The Food and Drug Administration 

of the United States (FDA), or The Medicines and Healthcare Products 

Regulatory Agency of the United Kingdom (MHPRA).  
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Biological Validation, Clinical Validation and Evaluation of Clinical Utility  

 

 Biological validation confirms that the imaging biomarker represents an 

underlying biological process, for example, measuring the rate of apoptosis in 

tumour cells that have been treated with chemotherapy.  An extension of 

biological validation is clinical validation, which is defined as evidence of a link 

between the measured imaging biomarkers and the clinical outcomes, such as 

pathology endpoints (i.e. pathological complete response , defined as a 

complete disappearance of tumour cells after chemotherapy).  Biological and 

clinical validation lead to building evidence for clinical utility which evaluates the 

clinical benefits of using the imaging biomarkers in patient care.  Clinical utility is 

measured by improvements in patient outcomes, such as longer survival 

periods (i.e. >5-year intervals); or by optimizing the therapeutic effect by 

choosing therapies that are indicated for specific tumour types, for example 

using antivascular drugs in tumours where imaging biomarkers indicate high 

vascular density.  Recommendations and guidelines to achieve robust clinical 

validation were previously outlined by the National Cancer Institute and the 

European Organization for Research and Treatment of Cancer (NCI-EORTC) 

(McShane et al., 2005).  The NCI-EORTC guidelines made recommendations 

such that results could be compared across multiple studies and that 

conclusions could be drawn from multiple studies with the same imaging 

objectives.  The recommendations included the following highlights (McShane 

et al., 2005):    

1. Describing the clinical characteristics of patients (i.e. age, sex, disease 

stage, and the disease laterality where relevant, such as breast 

cancer). 

2. Indicate all treatments to patients. 

3. The method for case selection (inclusion and exclusion criteria) and 

stratification of disease types. 

4. Precisely defining the clinical endpoints, for example, pathologic 

complete response (pCR) and indicate the standard grading systems 

used.  If the endpoints are survival, the survival data should include 

time intervals from at least 3-5 year intervals (O'Connor et al., 2016).   
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5. Indicate the statistical methods used.  This includes an analysis of the 

relation of the imaging markers to the endpoints, as defined within the 

study.   

Lastly, for clinical validation and clinical utility, a consensus statement that 

includes all disciplines (medicine, scientific, technical) should be developed to 

establish standard imaging protocols that can be used and adapted across any 

treatment site (O'Connor et al., 2016).   

 

Cost Effectiveness Analysis 

 

 Using imaging biomarkers should be aimed for cost-savings to the 

healthcare system.  Using imaging biomarkers to guide chemotherapy and 

adapt treatments could potentially confer an economic benefit since imaging 

biomarkers could potentially identify ineffective chemotherapies; therefore, 

eliminating unnecessary treatments.   Additionally, in cases where tumours are 

highly responsive, the number of chemotherapy cycles could be potentially 

reduced since the desired therapeutic effect may be achieved earlier than 

conventionally scheduled treatments.  In developing imaging biomarkers, it is 

important to consider that the costs of imaging should not exceed the cost of 

the therapy or medical procedure itself.  Cost effectiveness analysis also 

includes a careful evaluation of the research costs associated with developing 

the imaging biomarkers.  Imaging studies are by its inherent nature, very 

expensive to conduct since there are high costs associated with imaging 

equipment.  With the expenses associated with high equipment costs, and the 

considerable research time involved in developing imaging biomarkers, 

translating imaging biomarkers to clinical implementation are a very costly 

endeavour (O'Connor et al., 2016).  

 

Conclusions of Biomarker Discovery Pathway 

 

Taken together, integrating and using imaging biomarkers in clinical 

practice requires robust marker validation through single- and multi-institutional 

testing, establishing the generalizability of the tests to the patient population 

and cost effectiveness analysis to demonstrate that the imaging biomarkers will 

have an economic benefit to the healthcare system (O'Connor et al., 2016, 
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Eccles et al., 2013).  These translational stages and the associated challenges 

are discussed further below with respect to the status of DOS and QUS imaging 

within the imaging biomarker development pathway.     

 

4.3.2 Status of DOS and QUS Biomarkers for Breast Cancer Treatment 
 

 The status of DOS and QUS imaging biomarkers have not reached 

clinical implementation for locally advanced breast cancer, i.e. clinicians are not 

currently using DOS and QUS as clinical decision-making tools for guiding and 

adapting chemotherapy treatments in locally advanced breast cancer.  To date, 

the advantages of using DOS and QUS imaging biomarkers have been well 

established for locally advanced breast cancer, which include: 1) non-invasive 

imaging; 2) minimal risk for adverse reactions because contrast agents are not 

required; 3) no exposure to ionizing radiation; 4) lower-cost instrumentation that 

permit serial imaging during chemotherapy; and 5) whole-tumour analysis that 

permits measurements across the heterogeneous tumour volume.  Despite 

these advantages, DOS and QUS studies to date have not undergone sufficient 

validation and large-scale studies to have gained physician confidence to use 

as a clinical decision-making tool, i.e. to adapt treatments based on the imaging 

biomarker information provided by DOS and QUS.  The criteria considered for 

the imaging biomarker development pathway are outlined below with respect to 

DOS and QUS.  

 

DOS and QUS Biomarkers Discovery 

 

 Previous DOS imaging biomarker discoveries originated from continuous 

wave, time-domain and frequency-domain imaging techniques that emerged in 

the 1990s (Tromberg et al., 2008).  DOS biomarker discoveries at that time 

included measurements of intrinsic (i.e. naturally occurring) optical absorbers 

that could be used to characterize tissue components and optical scattering 

(previously outlined in Chapter 1) (Tromberg et al., 2008).  The present status of 

DOS imaging biomarkers, in terms of new discoveries, has shown new DOS 

biomarker discoveries that measure metabolic activity.  These include the 

bound water index (BWI), which measures the quantity of bound water 

molecules to macromolecules such as protein (Chung et al., 2008). Kukreti et 
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al. (2010) identified another new imaging biomarker, termed the specific tumour 

component parameter (STC).  The STC is capable of characterizing tissue 

types by comparing the spectral patterns, i.e. the shape of the absorption 

spectral form between normal breast tissue and tumours  (Kukreti et al., 2010).   

To date however, the BWI and STC have not been used to measure 

chemotherapy response in breast cancer.  It is also important to mention 

discoveries in exogenous fluorophores (i.e. probes that emit light after optical 

excitation) used as DOS imaging biomarkers.  Exogenous agents in DOS 

imaging (within the near-infrared spectrum, NIR) include excitable fluorescent 

agents (NIR-EFAs) (Sevick-Muraca et al., 2002).  Examples of NIR-EFAs 

include tricarbocyanine dye, which absorb NIR wavelengths at ~800-840 nm.  

Tricarbocyanine dye is readily taken up by blood albumin and thus can serve as 

a vascular tracer, but has not been found to be useful in cancer studies 

(Richards-Kortum and Sevick-Muraca, 1996).         

Other recent DOS discoveries are using texture-based analysis which 

can yield hundreds of texture parameters from the DOS parametric layout.  The 

number of possible texture features is dependent on the statistical technique 

used such as: 1) histograms; 2) absolute gradients; 3) run-length matrix, 4) 

auto-regressive model; and 5) wavelets (Castellano et al., 2004).  Recently, 40 

additional texture features were yielded from GLCM analysis of DOS breast 

images (Sadeghi-Naini et al., 2015).     

 Previous QUS biomarker discoveries include parameters from the 

spectral form of the backscatter signal, which was first introduced by Frederic 

Lizzi in the 1970s (Mamou and Oelze, 2013, Feleppa et al., 2011).  Subsequent 

works by Insana et al. (1990) continued to develop spectral analysis to obtain 

parameters that represented the scatterer properties, i.e. size, concentration 

and distribution of scattering particles in tissue, by using estimates of the 

backscatter co-efficient from the power spectra (Insana and Hall, 1990).  The 

present status of QUS imaging biomarkers, in terms of new discoveries, involve 

improvements in mathematical models that estimate the size and concentration 

of scatterers in tissue (Oelze and Mamou, 2016).  Other innovative techniques 

are using texture-based analysis as previously described with DOS features 

above (Sadeghi-Naini et al., 2014).     
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DOS and QUS Technical Validation 

 

 In terms of technical validation, both DOS and QUS imaging biomarkers 

have been tested in laboratory studies for decades, thus having shown 

repeatability and robust methodologies in measuring and extracting biomarkers 

from biological specimens (Feleppa et al., 2011, Tromberg et al., 2008).  

Indeed, the evidence supporting the reliability of DOS imaging measurements 

has led to commercially available DOS mammography systems manufactured 

from Imaging Diagnostic Systems, (Florida, USA), Philips Healthcare 

(Amsterdam, Netherlands) and Advanced Research Technologies (Montreal, 

Canada, currently discontinued) (Leo et al., 2017). However, these devices 

have been classified under regulatory bodies for use in diagnostic 

mammography and are not indicated for evaluating treatment response.  

Similarly, ultrasound imaging systems are ubiquitous in radiology clinics, but are 

not yet approved for using QUS imaging biomarkers for treatment response 

assessment.    

 Validating the utility of DOS and QUS imaging biomarkers for 

chemotherapy response evaluation is still in its research phase.  A limitation of 

translating these imaging biomarkers into clinical implementation is the need to 

validate the data reproducibility through multicentre clinical trials.  This was 

identified in the early 2000s for DOS imaging in which the National Cancer 

Institute (NCI) initiated a consortium of health institutions, physicians and 

scientists to further develop DOS imaging for breast cancer (Network for 

Translation Research for Optical Imaging, NCI-NTROI) (Clarke et al., 2003).  

The NCI-NTROI is currently supporting multicentre trials in the United States by 

funding core institutions at Washington University, University of Texas, 

University of Michigan, and Stanford University.   Other networks include the 

American College of Radiology Imaging Network (ACRIN).  The ACRIN 6691 

trial was completed in 2013 and included six clinical research sites across the 

USA (Tromberg et al., 2016).  The aim of the ACRIN 6691 trial was to measure 

intratreatment chemotherapy response in LABC patients at the following time 

intervals: pre-treatment,  5-10 days after the first cycle, mid-therapy, and before 

surgery (American College of Radiology Imaging Network, 2017).  The study 

however, only reported evaluable cases of only 34 patients; thus, not having 

sufficient statistical power to translate the results for clinical implementation 
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(Tromberg et al., 2016).  To date, the ACRIN 6691 trial is the only DOS-based 

multisite trial for LABC response evaluation.   

 QUS studies for measuring chemotherapy response in LABC is currently 

led by the University of Toronto (Ontario, Canada).  Studies to date have only 

indicated results from single-institution trials.  However, for other disease types 

such as prostate cancer, and for the purpose of diagnostics, QUS trials have 

been conducted at other institutions led by Riverside Research (New York, 

USA) (Feleppa et al., 2011).    

 

DOS and QUS Biological Validation and Clinical Validation 

 

DOS measurements to quantify biological chromophores in tissue, such 

as haemoglobin, lipids and water are based on mathematical modelling that 

uses a photon transport model and diffusion theory24 (Dehghani et al., 2009, 

Gibson et al., 2005).  Biological and clinical validation studies using DOS have 

indicated that DOS measurements for haemoglobin are linked to vascular 

abundance in tumours and can serve as indicators for final pathologic endpoints 

such as pCR at mid-treatment (Choe et al., 2005, Cerussi et al., 2007, Cerussi 

et al., 2011).  There are previous studies that have shown a correlation between 

DOS imaging parameters and tissue features, as tested histologically (Pogue et 

al., 2001). Pakalnikis et al. (2011) reported that the total haemoglobin measured 

in breast tumours (HbT=45 µmol/L) was significantly correlated (p=0.001) with 

the tumour’s vascular density as measured using histology (CD105 blood 

vessel staining) (Pakalniskis et al., 2011).  Similarly, data by Zhu et al. (2008) 

demonstrated a nearly significant correlation (P=0.056) between DOS-

measured HbT and vascular density, as stained with CD-31 in the post-

treatment breast samples (Zhu et al., 2008).  

 For QUS studies, biological validation was completed both in vitro and in 

vivo.  Previous in vitro experiments demonstrated an increase in QUS 

parameters which corresponded to an increase in apoptosis in acute myeloid 

leukaemia cells treated with chemotherapy (Czarnota et al., 1999, Kolios et al., 

2002).  Also, Brand et. al (2008) showed that other cancer cell types such as, 

                                            
24 These models are used to determine the scattering and absorption co-

efficient to measure tissue parameters.   
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HeLa (human cervical cancer) cells treated with chemotherapy were linked to 

an increase in QUS features (SI and MBF) (Brand et al., 2008)  In vivo studies 

used mouse models that were transplanted with human breast tumours; 

Tadayyon et al. (2015) showed that QUS biomarkers, such as the average 

acoustic concentration (AAC) were correlated to increases in cell death, as 

demonstrated in histological analysis of excised tumours (r2=0.40) (Tadayyon et 

al., 2015).  Similarly, Sadeghi-Naini et al. (2013) showed that texture analysis of 

QUS parameters (MBF, SI) demonstrated a high correlation (r2=0.97) to cell 

death using the same experimental mouse and treatment model (Sadeghi-Naini 

et al., 2013a).  

 

DOS and QUS Cost-Effectiveness Analysis 

 

 A recent study demonstrated that Americans pay about $34,000 USD per 

chemotherapy visit for drugs and medical care to treat advanced breast cancer 

(i.e. stage 3) (Blumen et al., 2016).  Over the entire course of the chemotherapy 

treatment, over $200,000 USD would be spent for 6-8 chemotherapy cycles.  

Indeed, the cost of health care is dramatically lower in Canada and the United 

Kingdom; a study by Hall et al. (2015) reported significantly lower costs for the 

entire chemotherapy treatment for breast cancer, on average, approximately 

£16,000 GBP (Hall et al., 2015).  It can be appreciated that there is a huge 

economic problem when ineffective chemotherapies are given to cancer 

patients.  Therefore, using imaging biomarkers to evaluate the efficacy of 

chemotherapy, i.e. prognosticate if the tumours will respond to treatment, has 

an enormous economic benefit to the health system.    

To date, no cost-effectiveness analysis has been completed for QUS 

imaging.  However, Schegerin et al. (2009) previously analysed the cost 

effectiveness of prognostic DOS imaging in LABC patients treated with 

neoadjuvant chemotherapy (Schegerin et al., 2009).  The cost-effectiveness 

model was used to test if implementing DOS in the patient’s chemotherapy 

treatment would be cost-beneficial and included the following variables in their 

cost-model:     

1. The cost of the device (operational and capital) 

2. The chemotherapy treatment course 
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3. The prevalence of chemotherapy response in women, defined as 

pathologic complete response.  

4. The sensitivity and specificity of the imaging device and the 

potential gains in lives saved from adapting treatment based on 

biomarker information. 

5. The life expectancy of patients   

 

The results of their study indicated that a device cost of $1M for a DOS 

system would be cost-effective under the condition that DOS imaging could 

increase the cure rate by at least 1%, and that chemoefficacy rates would not 

exceed 90% (i.e. there is no utility for using DOS imaging biomarkers to guide 

treatment if chemotherapies are already effective) (Schegerin et al., 2009).       

  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 259 

4.4 Potential Impact to Patient Care 
 

The body of research to support using DOS and QUS imaging 

biomarkers by physicians to evaluate breast tumour response to NAC is limited 

by small datasets (i.e., not enough patients for sufficient statistical power), 

variable imaging protocols and identifying biomarkers that yield an optimal 

correlation to final pathologic endpoints such as, Miller-Payne grade or the 

Residual Cancer Burden Index.   

However, using DOS and QUS parameters to accurately screen patients 

either before or during chemotherapy for treatment endpoints such as, pCR and 

partial pathologic response (pPR) can be achieved by increasing multicentre 

studies with sufficient power and sample size.  This will also lead to identifying 

salient DOS and QUS imaging biomarkers that can be used clinically; in 

contrast to the current status, where there are hundreds of experimental DOS 

and QUS imaging biomarkers available for analysis.  Before clinical 

implementation, it is also important to develop a consensus statement from an 

expert panel that may include imaging scientists, radiologists, oncologists, 

nurses and technicians.  This multidisciplinary approach will result in compiling 

a standard imaging protocol that outlines the imaging procedures, interpreting 

test cut-off points and optimal imaging time intervals.  This will effectively 

establish a decision-making algorithm that outlines how physicians would use 

DOS and QUS biomarker information to guide their treatment decisions.   The 

potential impact of prediction-guided and response-adaptive chemotherapy 

treatments could significantly improve treatment outcomes for patients, for 

example, increased pCR rates and improved patient survival from more 

efficacious treatments.  The approach by which treatments are customized for 

each individual based on biological and patient-based information is termed 

personalized medicine.         

  

4.4.1 Using Biomarkers to Make Treatment Decisions for Personalized 
Medicine 
 

 Personalized medicine refers to using biological, imaging, or individual 

patient characteristics to customize and administer the most precise diagnostic 

procedure or therapeutic intervention in medicine.   Personalized medicine is 
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predicated on gathering the most sensitive, specific and individualized 

information obtainable. Indeed, access and availability of useful and meaningful 

information (i.e. biomarkers) is the rate limiting factor since biomarker discovery 

and validation is highly dependent on the available technology. 

In current oncology practice, treatments that are given to patients are to 

some degree personalized, for example, tailoring the chemotherapy dose based 

on the patient’s height and weight, or discontinuing chemotherapy due to a 

patient’s low blood counts or other toxicities.  Medical imaging continues to play 

an important role in personalized treatments in other specialties like radiation 

oncology.  Imaging modalities like CT, MRI, and PET are being used in the 

clinic to map tumour response (i.e. size changes, and metabolic data) during 

radiation treatments and the information is used to adapt radiation treatment 

plans to conform to the dynamic changes in the tumour (Metcalfe et al., 2013).  

For personalized treatment in locally advanced breast cancer, existing methods 

include collecting tissue samples to extract biomarkers such as HER2-

expression.  Tailored treatments for HER2-overexpressed tumours (i.e. HER2+) 

include prescribing targeted therapies such as Trastuzumab.  Other biomarker 

screening approaches include testing for oestrogen-receptor positive (ER+) 

tumours, where endocrine therapies are administered to increase the 

therapeutic efficacy.  In these examples, biomarkers can be used to personalize 

drugs and the treatment course for patients; yet the challenge currently is to 

also understand if anticancer therapies are optimally effective.  Within this 

framework, biomarkers can be used in three ways to personalize treatment 

(below).  Understanding the different biomarker types will facilitate the 

discussion on the potential and future impact of DOS and QUS biomarkers for 

personalized treatments for patients with locally advanced breast cancer  

(Hricak, 2011): 

 

1) Prognostic biomarkers:  Indicators for the likelihood of the tumours 

to progress (i.e. identifies aggressive disease) without considering 

treatment interventions.  Population-based statistics can be used to 

identify prognostic biomarkers, for example, observing biomarkers for 

high proliferation (Ki67) and the prevalence of aggressive cancers 

within the sample population.     
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2) Predictive biomarkers: Predictive biomarkers indicate the probability 

of the tumour’s response to treatment (usually before treatment), for 

example, tumours with biomarkers for hypoxia are susceptible to 

chemoresistance.    

3) Early-response biomarkers:   Early response biomarkers are 

collected during the treatment course and indicates the likelihood of 

the tumour’s response to the post-treatment gold-standard 

assessment.   For example, breast tumours could be measured using 

DOS after the 2d cycle of chemotherapy and the output parameters 

are used to statistically evaluate a link to pathologic complete 

response in the tumour.        

 

Potential Impact to Patients: Confirming chemotherapy response before and 

during treatment using DOS and QUS imaging biomarkers 

 

Not all patients are good candidates for chemotherapy because of 

tumour heterogeneity.  The response to chemotherapy can influence the 

subsequent treatment course for patients, as outlined by the NCCN (USA) or 

NICE (UK) (National Comprehensive Cancer Network, 2016, National Institute 

for Health and Care Excellence, 2017, National Institute for Health and Clinical 

Excellence (NICE), 2009b, National Institute for Health and Clinical Excellence 

(NICE), 2009a) (Figure 4.2).  Since these standard therapies are not always 

effective, clinicians are interested in confirming chemoefficacy for their patients 

either before or during treatment.  To address this problem, this study 

demonstrated that DOS and QUS imaging biomarkers were potentially useful as 

either predictive biomarkers or early-response biomarkers in LABC.   Here, pre-

treatment DOS parameters were shown to be predictive biomarkers for 

chemotherapy response; whereas both DOS and QUS were modelled as early-

response biomarkers (i.e. intratreatment response evaluation).  The potential 

impact to patients by using DOS and QUS imaging biomarkers could 

personalize the patient’s treatment course by mapping out the best therapy at 

the early onset of treatment planning.  Additionally, serial DOS and QUS 

measurements during chemotherapy can provide physicians with real-time 

“feedback” to confirm that the treatment is appropriate for the patient and that 

the course can continue as planned.   
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 In comparison to other biomarker technologies, predictive biomarkers 

using genes, are currently personalizing the treatment course for patients with 

early stage breast cancer who undergo surgery first, then are considered for 

chemotherapy (Straver et al., 2010).  Predictive biomarkers include the 

MammaprintTM assay, which is a clinically validated assay that extracts 70 gene 

markers from the surgical tumour specimen.  The MammaprintTM assay 

provides physicians with an analysis about the potential risk of breast tumour 

recurrence.   Doctors use this analysis to decide on the potential benefit of 

patients receiving chemotherapy since the risk of recurrence is also linked to 

lower chemosensitivity and more aggressive tumours (Straver et al., 2010).  

The MammaprintTM test provides a framework for using pre-treatment DOS 

biomarkers to non-invasively evaluate LABC patients before chemotherapy to 

test if there is a potential clinical benefit for patients.  As can be seen in Figure 
4.1, patients who do not respond to chemotherapy in their “first-line” may go on 

to receive additional chemotherapy.  DOS and QUS imaging biomarkers could 

also be used to assess the potential clinical benefit during each phase of 

treatment.     

 It should be noted that other markers such as the tumour’s grade are 

associated with pathological response to neoadjuvant chemotherapy (Huober et 

al., 2010).  Research from the GeparTrio trial investigated 2,072 breast cancer 

patients treated with neoadjuvant anthracycline-taxane chemotherapy.   The 

results showed a higher pCR rate in grade three tumours (211 patients, 28.1%) 

compared to grade one and grade two tumours (156 patients, 13.0%, p<0.001) 

(Huober et al., 2010).  The results of the study suggest that there are several 

biological and clinical variables that are involved in tumour response; thus, 

using this framework as a guiding principle for well-designed clinical trials can 

significantly improve the quality of imaging biomarker research.  Such 

frameworks could include stratifying patients by initial tumour grade, hormone-

receptor status or by tumour size at the time of diagnosis.     
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Figure 4.1.  LABC patients are treated using a complex treatment decision-tree 

as outlined by the NCCN (USA) and NICE (UK). For patients who do not 

respond to first-line chemotherapy, additional chemotherapies may be given, or 

other targeted therapies (e.g. endocrine therapy) may be offered.  
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4.4.2 Adapting Chemotherapy Dosing Schedules to Optimize Tumour 
Response and Survival Outcomes 
 

 Using DOS and QUS as early-response biomarkers could help adapt 

chemotherapy doses (i.e. frequency of dose scheduling) according to tumour 

response.  Tumours that demonstrate early response could be given fewer 

chemotherapy cycles in contrast to non-responding tumours that could be 

recommended for more chemotherapy.  Adapting the chemotherapy dose 

according to response using information from radiology, biomarkers, or physical 

examination is called response-guided therapy (von Minckwitz et al., 2013).  A 

recent phase three randomized study (GeparoTrio) from the German Breast 

Group recently reported an increase in survival for patients who underwent 

response-guided neoadjuvant chemotherapy in breast cancer (von Minckwitz et 

al., 2013).  The GeparoTrio study included analysis of 2,072 breast cancer 

patients who received neoadjuvant chemotherapy.  In this study, the standard 

chemotherapy was defined as 6 cycles of anthracycline-taxane (TAC).  Patients 

were assessed as early responders or early non-responders using conventional 

ultrasound; early responders were defined as a having a reduction of at least 

50% of the tumour size after the second cycle of chemotherapy.  Early 

responders were then randomized into two arms. In the first arm, patients 

completed the conventional chemotherapy (6 cycles of TAC in total).  In the 

second arm (response-guided arm), patients were given two additional TAC 

chemotherapy cycles (8 cycles total).  For early non-responders, patients were 

randomized to receive the conventional chemotherapy (6 cycles of TAC) in the 

first arm; whereas the response-guided arm, patients were switched to other 

chemotherapy types (vinorelbine and capecitabine) for 4 cycles (von Minckwitz 

et al., 2013).  There were two significant outcomes from this study:  

 

1) Early response group: Patients that were randomized to the response-

guided treatments (i.e. 8 cycles of TAC) compared to those in 

conventional treatments, had better survival outcomes (Hazard ratio, 

0.78; P=0.026).            

2) Early non-response group:  Patients that were randomized to the 

response-guided treatments (2 cycles of TAC, then switched to 4 cycles 

of vinorelbine and capecitabine) lived longer compared to patients who 



 265 

were randomized to receive the conventional treatment (Hazard ratio, 

0.59; P=0.001).      

 

The results presented by the German Breast Group suggested that response-

guided, and response-adapted chemotherapy may improve survival outcomes 

for patients.  Their study has also opened potential opportunities for further 

studies on using imaging biomarkers to guide chemotherapies, instead of using 

conventional imaging (e.g. grey-scale ultrasound) that was used previously to 

guide treatments (von Minckwitz et al., 2013).  Using imaging biomarkers such 

as from DOS and QUS during treatment, that are more sensitive and specific 

compared to conventional imaging, could thus optimize treatment endpoints 

such as survival, for both responding and non-responding patients.  In terms of 

adapting the GeparoTrio study’s framework into the current study, using DOS 

and QUS imaging biomarkers after two cycles of chemotherapy (in this present 

study, indicated as “Week 4”), could potentially impact patients by 

intratreatment response monitoring and by administering either more 

chemotherapy or adjusting the types of chemotherapies that could increase the 

therapeutic index.        

 
4.4.3 Potential Applications for Chemotherapy Drug Trials 

 
 Each year, approximately 10,000 new biochemical compounds are 

identified for potential drug development. It costs $800,000 million USD to 

develop the compounds into pharmaceutical agents which includes extensive 

testing and validation along the development pipeline (Willmann et al., 2008).  

DOS and QUS imaging biomarkers can be a cost-effective validation tool to test 

drug effectiveness and safety.  Implementing DOS and QUS imaging 

biomarkers during animal and human testing can help measure the biological 

effects of anticancer drugs such as cell death, vascular regression and changes 

to tissue composition (Pien et al., 2005).   DOS and QUS imaging biomarkers 

could be used along-side traditional evaluation methods such as biospecimen-

based immunohistochemistry to help identify and select those compounds that 

demonstrate a high therapeutic potential.  The impact to patient care includes 

expediting the drug-development process to bring new anticancer drugs to 

patients faster (Rudin and Weissleder, 2003).  Increased use of imaging 
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biomarkers in the drug development process has resulted from technological 

advances; for example, the ability for radiolabelled PET imaging to measure the 

accumulation of candidate drug compounds in tissue and permitting 

pharmacokinetic measurements (Pien et al., 2005).  Other methods, such as 

MRI have also been used to measure the reduction in the tumour blood flow 

and changes to the vascular volume from testing anti-vascular drugs (O'Connor 

et al., 2008).     

 The specific uses for DOS and QUS imaging biomarkers in cancer drug 

development include investigating drug effects in pre-clinical (i.e. animal) 

models to detect the cellular and physiological characteristics of tumours 

treated by the new drug compounds.  Previous animal experiments using 

xenografted human tumours have shown that QUS imaging biomarkers could 

be used for high resolution tumour imaging (50 microns), and that the spectral 

parameters were correlated to an increase in tumour cell death after 24 hours of 

treatment from radiation, chemotherapy and novel antivascular agents, such as 

microbubbles  (Vlad et al., 2011, Sadeghi-Naini et al., 2013a, Tran et al., 2016).   

Thus, QUS analysis of new drug candidates in animal models could permit non-

invasive and serial imaging of tumours to understand the effective doses 

needed to achieve a useful therapeutic index in tumours.  For applications in 

drug development trials in humans, the work presented in this present study 

could provide a framework to monitor tumour responses to new drug 

compounds and could provide a useful adjunct tool to assess the physical 

properties that are related to tumour cellularity.  To demonstrate other important 

tumour-response features such as vascular density, DOS imaging can play an 

important role in clinical trials by measuring the effects of new drugs to the 

tumour vasculature.  Other parameters such as the scattering power could be 

used to measure the tumour cellularity and the models presented in this current 

study could be used to measure the intratreatment response.  Therefore, DOS 

(like QUS) can also evaluate important resistance factors in tumours such as 

hypoxia and interstitial fluid and this can potentially affect the validation and 

interpretation of results in drug trials, not otherwise detectable serially using 

traditional invasive procedures such as biopsies.     
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4.5 Study Limitations 
 

4.5.1 Sample Size 

 
Limitations for subproject one included a small study (n=22 patients), 

which could have resulted in an overestimation of the sensitivity and specificity 

and this is an inherent statistical limitation.   For subproject two, a small sample 

size of n=37 was also an important limitation to the subproject in terms of 

statistical testing, i.e., the statistical test of significance was performed with a 

relatively small sample size in each responding group (n1 = 27 and n2 = 10) 

(Siegel and Castellan, 1988, de Winter, 2013). To evaluate the reliability of the 

performed tests, the statistical power was calculated using PASS14 (NCSS, 

LLC. Kaysville, Utah, USA).  As can be seen from the results, the statistical 

power for the statistically significant parameters varied between 71.8% and 

85.6%. This was one of the limitations of this study, as a threshold of 70% was 

chosen for the statistical power, instead of a commonly used threshold of 80%. 

By fixing the number of responders (n1 = 27), we have also estimated the 

number of non-responders (n2) required to achieve a minimum statistical power 

of 80%.  Analysis showed that at minimum, 4 additional non-responders were 

needed to achieve an 80% statistical power. This change would permit stronger 

conclusions to be drawn from this subproject.  This limitation could have been 

addressed by approaching the study in two ways: 1) increasing the recruitment 

period in order to enrol four non-responders using the chosen Miller-Payne 

response criteria or; 2) redefining the ground-truth labels; i.e. a modified cut-off 

point in the Miller-Payne grade to classify responders and non-responders.     

 

4.5.2 Sample Heterogeneity 
 

 Patient-related factors that could affect DOS measurements include 

increased body mass index (BMI25), higher breast density, and the larger 

breasts for imaging (Srinivasan et al., 2003, Intes, 2005, O'Sullivan et al., 2013).  

A study by Srinivasan et al. (2003) showed a significant negative correlation 

                                            
25 Body mass index (BMI) was not recorded in the patient’s medical record. 
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(p<0.05) between BMI and the total haemoglobin, breast size and the scattering 

amplitude, and age with the scattering power (Srinivasan et al., 2003).  Also, 

women with radiologically dense breasts showed an increase in the scattering 

power and scattering amplitude (Srinivasan et al., 2003).  The results of these 

studies demonstrate some potential limitations in the present study in terms of 

breast and patient heterogeneity that can affect the DOS measurements.  

However, the advantage of using the DOS tomographic device in the present 

study is the ability to apply a soft compression to the breast, as to maintain an 

equal breast thickness during the scanning process to mitigate the scattering 

effects from light transport across larger distances in the breast.          

 Patients included in this study also demonstrated differences in 

molecular features (oestrogen receptor, progesterone receptor, and HER2 

status).  The major limitations to tumour heterogeneity include patients who 

were HER2+, who also received Trastuzumab during their second phase 

(taxane) therapy.  Improved treatment response has been observed in HER2+ 

patients for two reasons: 1) HER2+ tumours are highly responsive to 

anthracycline and taxane chemotherapies and; 2) data from the German Breast 

Group (GeparoQuattro trial) showed that targeted therapies given in the 

neoadjuvant setting, such as Trastuzumab, demonstrate a 16% increase in pCR 

rates in breast cancer treatment (Untch et al., 2010, Andre et al., 2008).  

Therefore, the major limitations in having variable tumour subtypes within the 

study population, and the consequences of variable responses within these 

tumour subtypes can affect the DOS and QUS measurements.   

 

4.5.3 Pathologic Endpoints (Ground Truth Labels) 
 

 Another limitation in this study included classifying patients into binary 

response categories (i.e. responders versus non-responders) and this approach 

was necessary for statistical modelling.  However, in clinical practice, tumours 

do not respond to chemotherapy in a binary mode; rather, tumour response to 

chemotherapy is dynamic and graded within a continuum, i.e. there is a 

spectrum between pathological complete response (pCR), to partial response, 

to progressive disease (Marchio and Sapino, 2011).  There is added complexity 

since other classification systems such as the residual cancer burden index 

(RCBI) and TNM system (tumour, node, metastasis) include lymph node status 
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within their definitions of pathological complete response and in pathological 

complete response (Symmans et al., 2007, von Minckwitz et al., 2012).   Some 

response criteria, such as the RCBI and TNM are useful endpoints since those 

scores have been linked also to long-term survival in some cancer subtypes 

such as triple negative breast cancers and HER2+ breast cancers (Symmans et 

al., 2007, von Minckwitz et al., 2012).    

 In this study, Miller-Payne (MP) response criteria was used.  As 

previously discussed in Chapter 2 (Methods), Miller-Payne response criteria is a 

five-scale system that measures the reduction in cellularity from before and 

after chemotherapy in the primary tumour (Ogston et al., 2003).   It is defined 

as:  grade 1 (no change to cellularity); grade 2 (up to 30% loss in cellularity); 

grade 3 (between 30-90% reduction in cellularity); grade 4 (small clusters of 

tumour cells and greater than 90% loss in cellularity) and; grade 5 

(disappearance of tumour cells).  In this study, responders were defined as 

having a MP grade of 3-5; whereas non-responders were defined as having an 

MP grade of 1-2.  This was chosen based on the advice and discussion with the 

host institution’s breast pathologist and also demonstrated good statistical 

modelling from other DOS studies (Zhu et al., 2014).  Also, Miller-Payne criteria 

is used to evaluate tumour-only response and thus provided a good system as 

DOS and QUS imaging analysis was only of the tumour alone.   Using Miller-

Payne criteria here, still has important clinical relevance, i.e., clinicians will still 

indicate continuing with chemotherapy, if there is partial response in the tumour.  

The natural follow-up question to this limitation is to inquire about the link 

between pCR/ pPR and long-term survival and if measuring partial response is 

still a clinical benefit in terms of survival outcomes to patients.  Indeed, pCR has 

been shown to be linked to long term (+5 years) survival by the German Breast 

Group (von Minckwitz et al., 2012).  However, achieving partial response is also 

an important clinical indicator; a study by Symmans et al. (2007) showed that up 

to 80% of patients who achieved partial response to chemotherapy may still live 

up to 5 years without distant relapse (Symmans et al., 2007).     
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4.5.4 Limitations of DOS and QUS Imaging 
 

Signal-to-Noise Ratio 

 

 A major challenge with all types of imaging (i.e. MRI, CT, PET, 

ultrasound, optical imaging) involves optimizing the signal-to-noise ratio (SNR) 

to obtain the intrinsic or “true” measurement.  The SNR is defined as the ratio 

between the strength (power) of the image signal to the strength of the 

unwanted signal (noise); thus, a greater SNR is desirable in medical imaging.  

Obtaining a high SNR in DOS imaging can be a challenge since light from the 

surrounding environment (i.e. room light or background illumination) can cause 

unwanted light signals detected and this can result in a contaminated DOS 

measurements or low SNR (Gibson et al., 2005)26.  Other challenges 

associated with optimal SNR in optical imaging include measuring the 

absorption co-efficient across large tissue distances (Gibson et al., 2005).  

Measurements of DOS imaging parameters such as the total haemoglobin 

concentration are dependent on the absorption co-efficient; yet the limitation is 

that scattering dominates over absorption as the photon path length increases 

(Gibson et al., 2005).  It has been shown previously that there is a negative 

correlation between the path length and the total haemoglobin measurement 

(r=-0.34); thus, as the photon path length (e.g. breast thickness) increases, the 

total haemoglobin decreases (Intes, 2005, Gibson et al., 2005).  To limit these 

challenges, a maximum breast thickness of 80 mm was used with the DOS 

tomography system in this thesis study.   Another limitation with DOS systems 

include the need to ensure adequate surface coupling between the light source 

and the breast.  In this study, optical compensation medium was used; but 

heterogeneities in the medium, such as air bubbles, inhomogeneous distribution 

of its components (lipid and dye), may result in a lower SNR.  However, a 

quality check was completed before each scan to remove air bubbles in the 

imaging aquarium and each OCM batch was characterized as described by 

Intes et al. (2005) prior to DOS imaging (Intes, 2005).  One major limitation for 

                                            
26  

Note that in this thesis study, DOS data was acquired in a dark-room. 
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optical imaging is skin pigmentation since intrinsic chromophores such as 

melanin in the skin can absorb the transmitted light at the skin surface.  

 For QUS, a low SNR can be caused by imaging deep (posterior) tumours;  

large breast tumours that extend into the posterior margin results in increased 

acoustic attenuation which can affect the quality of the echo signal (Lizzi et al., 

1983).  The study here used an attenuation correction (i.e. an attenuation co-

efficient was calculated per unit depth of QUS imaging) to compensate for the 

attenuation effects of deeply-located tumours (Lizzi et al., 1997b).    

    

Image Resolution and Region of Interest 

 

The accuracy of DOS and QUS imaging modalities is limited by the finite 

resolution size, which is greater than the physiological structures being 

measured (i.e. blood vessels, haemoglobin, cell substructures).  In medical 

imaging, this limitation is called the “partial volume effect”; defined as an 

underestimation of the measured value (i.e. concentration of a tracer or signal 

strength) due to the finite information that can be carried within the resolution 

parameters of a pixel or voxel.  For example, high resolution imaging can carry 

greater information compared to lower resolution imaging since in high 

resolution imaging,  the greater number of pixels (or voxels) within the image 

can better represent the spatial layout (Soret et al., 2007).  For DOS, the voxel 

size was 3 mm x 3 mm, which can capture information on larger blood vessels 

and even represent clusters of smaller blood vessels.  The limitation here is that 

image reconstruction is poor, yet the quantitative measurements may still 

represent the biological properties very well.     

 Another limitation for DOS and QUS imaging is the repeatability and 

reproducibility in ROIs; as the resolution of the images were relatively lower 

compared to other modalities such as MRI and CT imaging.  Variations in 

contouring the ROI could have resulted in differing results.  In this study, we 

employed a semi-automated contouring approach which was software driven 

(thus, minimizing potential user-variations).  Additionally, interuser variability 

testing was completed to ensure that there was consistency between readers.    
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Cross-validating DOS and QUS Parameters with Biospecimen Assays 

 

An important limitation was that it was not possible to validate intratreatment 

tumour biology with histology.  Using immunohistochemistry could have 

correlated biospecimen evaluation of tumour cell death, cell proliferation, 

vascular changes or hypoxia with DOS and QUS measurements.  For example, 

biological assays for apoptotic cell death could have used TUNEL (Terminal 

deoxynucleotidyl transferase (TdT) dUTP Nick-End Labelling); while using Ki-67 

could have been used to assess the proliferative rate in tumour cells.  Vascular 

assessment could have included serial biopsies to stain tumours with CD-31 

(Cluster of differentiation-31); whereas using CA-9 (carbonic anhydrase-9) 

could have been used to validate hypoxia and tumour oxygenation.  The above 

biological assays could have been used to compare with DOS and QUS 

markers.  However, it should be noted that serial biopsies during chemotherapy 

is difficult for patients and may also cause discomfort, pain and inflammation in 

the tumour site which may also cause the patient undue harm.  Also, in some 

patients, invasive procedures such as biopsies may cause breast swelling and 

injury to the breast which could also affect haematological measurements from 

DOS.      
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4.6 Future Work 
 

4.6.1 Future work for Locally Advanced Breast Cancer 

 
 Future work could be directed to allow stratification of patients to tumour 

subtypes based on measures/markers of the tumour responses to 

chemotherapy using DOS and QUS.  Such work could further examine the DOS 

and QUS imaging biomarker signatures associated with NAC responses in 

tumour subtypes27 such as triple negative breast cancer, luminal A, luminal B 

breast cancer, HER2-positive breast cancer and by tumour grade.  This future 

work is important since previous study results by the German Breast Group 

indicated that there were significant increases in long-term survival (10 years) 

for patients with HER2-positive (non-luminal), and triple negative breast 

tumours (von Minckwitz et al., 2012).  Thus, further studies using DOS and 

QUS could be used to measure the responses in these subtypes and link DOS 

and QUS imaging biomarkers to other endpoints such as overall survival.   

 With a larger patient cohort, further work could be completed correlating 

DOS and QUS parameters within multinomial categories; for example, 

classifying patients into MP1, MP2, MP3, MP4, and MP5.  This graded 

response classification could increase the information given to clinicians.  Also, 

other response classification models could be used such as TNM, Sataloff 

index, or residual cancer burden index.  These response indices are important 

since they also consider lymph node status in their response criteria, as 

involved lymph nodes after chemotherapy have been shown to decrease overall 

survival (von Minckwitz et al., 2012).  Thus, future work could also include DOS 

and QUS measurements of lymph nodes as surrogate endpoints for overall 

survival.  Evaluating lymph nodes would also give further insight to the risk of 

metastatic disease.  Assessing the risk of metastatic lymph node involvement 

after neoadjuvant chemotherapy is a subject of great interest to clinicians; as 

lymph node metastasis after primary treatment is linked to higher mortality 

(Symmans et al., 2007).  A recent study by Hieken et al. (2013) studied sentinel 

                                            
27 The subtypes are defined as: Luminal A: ER+/PR+/HER2-; Luminal B: 

ER+/PR+/HER2+/-/Ki67 high; Triple Negative: ER-/PR-/HER2- 
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lymph node involvement after NAC using conventional ultrasound, MRI, and 

PET and showed low sensitivity (range; 61.0%-69.8%) to gold-standard biopsy 

evaluation (Hieken et al., 2013).  Thus, there is an opportunity to improve the 

accuracies from current imaging techniques to assess lymph node metastasis 

after NAC using QUS.  

In terms of developing further clinical relevance using DOS and QUS, 

further work can be completed for analysing patients who are pCR and non-

pCR; since pCR patients have been shown to demonstrate a lower tumour 

recurrence rate and are also more likely to live longer (i.e. >5 years) (von 

Minckwitz et al., 2012).   

 

4.6.2 Applications to Early Stage Breast Cancer and Other Cancers 
 

 Neoadjuvant chemotherapy is becoming increasingly indicated for early 

(stage 1 and stage 2), operable invasive breast cancer (Cain et al., 2017).  

Patients with early breast cancer (EBC) are recommended for neoadjuvant 

chemotherapy upon presentation of the following clinical characteristics (Cain et 

al., 2017):  

1. large tumours relative to the breast size; as to downstage the tumour for 

either total mastectomy or lumpectomy (breast conserving surgery) 

2. higher risk breast cancer, i.e., positive lymph node status 

3. high grade tumours, HER2+ and triple negative disease 

4. women of younger age.   

In a Japanese study, women with HER2-negative breast cancer (median age; 

48 years old) were also indicated for neoadjuvant chemotherapy since in this 

tumour subgroup, the risk of tumour relapse is high and there is a low rate of 

pathological complete response (Masuda et al., 2017).  The opportunity for 

future work includes using DOS and QUS to measure the chemotherapy 

responses in early breast cancer with the primary endpoint of surrogate imaging 

biomarkers for incomplete pathologic response28, as opposed to measuring for 

complete pathologic response.  Identifying patients for incomplete pathologic 

response, (i.e., residual tumour cells after NAC) could build on the recent 

                                            
28 Incomplete pathological response is defined as the presence of residual 

cancer cells after primary treatment. 
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CREATE-X study by Masuda et al. (2017).  In this study, it was shown that 

incomplete responders benefited from additional chemotherapies, such as 

capecitabine29 after surgery (Masuda et al., 2017).  The results indicated that 

the major benefit to administering adjuvant capecitabine increased overall 

survival (the hazard ratio was 0.70 for patients who received capecitabine 

versus control group) (Masuda et al., 2017).  The potential benefit of using DOS 

and QUS to collect early-response markers could identify incomplete 

responders early, so that patients could potentially receive capecitabine upfront 

before surgery, to downstage tumours and improve tumour response.    

QUS could be used to monitor treatment response in other tumours.  

QUS is more ideal than DOS for imaging in other tumour types, since QUS 

imaging can achieve high resolution imaging in comparison to the current 

technology for DOS imaging that has a low resolution.  Indeed, current studies 

are underway to use QUS imaging biomarkers to measure radiotherapy 

response in head and neck cancer (Tran et al. (2017), unpublished data, under 

review).  Other disease sites, such as prostate cancer and bladder cancer could 

potentially benefit from using QUS imaging biomarker assessment for 

radiotherapy response, as pre-clinical studies are demonstrating promising 

results in mice models (Kim et al., 2014, Tran et al., 2016).  However, one major 

consideration for future projects is the requirement to use high resolution QUS 

imaging, due to the disease presentation in prostate and bladder tumours (i.e., 

diffuse cancer cells), which would require intensive work on partitioning the 

QUS signals between normal and tumour cells.      

 
4.6.3 Other Frameworks for Future Studies   
 

Collaborative Frameworks Toward Biomarkers Validation and Clinical 

Implementation 

 

Using DOS and QUS as a routine decision-making tool to guide therapy 

in oncology will require further investigation in terms of validating the results 

with a greater sample size.  Therefore, there is a motivation for future work to 

                                            
29 Capecitabine is an antimetabolite chemotherapy drug. 



 276 

confirm DOS and QUS data reproducibility across several research centres and 

hospitals.  To achieve this, collaborations through imaging networks such as the 

NCI-based, Quantitative Imaging Network (QIN), Quantitative Imaging 

Biomarkers Alliance (QIBA), and the American College of Radiology Imaging 

Network (ACRIN) and Cancer Research UK (CRUK) could help with linking 

expertise and future work with collaborating scientists and physicians (O'Connor 

et al., 2016).  Collaborative multicentre trials have been carried out to 

investigate DOS imaging in breast cancer through the ACRIN network.  Future 

work could include participating in those multicentre trials with other research 

groups (Tromberg et al., 2016).   

 

Technical Frameworks 

 

 To address the limitations of correlating DOS and QUS measurements 

with histological assays during treatment, potential cross validation could be 

completed by performing parallel imaging with other modalities such as BOLD-

MRI30; to measure tumour blood perfusion and oxygenation to complement the 

physiological inferences by DOS parameters that measure haemoglobin and 

oxygen saturation (Jiang et al., 2013).  Additionally, some early imaging studies 

have shown a link between 99mTcAnnexin V imaging biomarkers and the rate of 

apoptosis; thus, it would be interesting if complementary QUS and 99mTcAnnexin 

V imaging biomarkers could be modelled together in multivariate analyses 

(Blankenberg et al., 1999).         

 A potential opportunity for future work could be to explore image co-

registration using other modalities such as MRI and conventional ultrasound.  In 

previous studies, US-guided optical imaging has been studied and developed 

by Zhu et al., from the University of Connecticut (Xu et al., 2015, Zhu et al., 

2013, Zhu et al., 2008).  In these studies, US grey-scale imaging was used to 

localize breast tumours, and diffuse optical imaging to map tumour haemoglobin 

changes during treatment (Zhu et al., 2013, Zhu et al., 2008, Xu et al., 2015, 

                                            
30 MRI-based functional imaging techniques, such as blood oxygenation-level 

dependent (BOLD) contrast, have indicated some promising results to measure 

vascular oxygenation as a marker for treatment response in tumours (Jiang et 

al. 2013). 
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Zhu et al., 2014).  The technical benefits of that approach use US guidance to 

verify posterior (deeper) tumour margins, where optical image resolution is 

poorer (Zhu et al., 2008).  Due to the differences in patient positioning in this 

present study (i.e. prone and supine for DOS and QUS, respectively), it was not 

possible to use ultrasound images to guide DOS, but MRIs were used to help 

demonstrate the extent of the tumour since patients were positioned in prone 

position for both imaging techniques.  A future project would investigate image 

co-registration and fusion, which is different from image guidance.   Image co-

registration and fusion involves correcting for the geometric transformations 

between two images; as to match the spatial coordinates between objects in the 

images.   

 Lastly, an opportunity exists for modelling DOS and QUS imaging 

markers with bio-specimen markers, such as oestrogen receptor, progesterone 

receptor, HER2, proliferation markers such as Ki67, or vascular markers such 

as CD-31 using the pre-treatment breast biopsies.  Previous work by Ueda et al. 

(2012) used multivariate analyses for baseline DOS parameters combined with 

tissue biomarkers from immunohistochemistry (Ueda et al., 2012).   Markers for 

cell proliferation (Ki67), and molecular features (oestrogen and progesterone 

receptor) were combined with optical measurements such as HbO2, Hb, or the 

tumour oxygen saturation (StO2).  Multivariate discriminant analysis of the 

combined parameters demonstrated an increase in the sensitivity and specificity 

for predicting NAC response.  The results from Ueda et al. (2012) support the 

need for further exploration into combination analysis to improve the predictive 

performance of multiple imaging and clinical biomarkers (Ueda et al., 2012).   
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4.7 Conclusion 
 

In this study, DOS and QUS imaging was explored for the potential to 

extract imaging biomarkers in locally advanced breast cancer patients to report 

first accounts of coincident expression during neoadjuvant chemotherapy.  The 

results from the present study support, and build on, the previous body of work 

suggesting that DOS and QUS imaging biomarkers may be extracted from 

breast tumours either before, or during, chemotherapy.   

In this study, baseline DOS functional maps were also examined using 

GLCM-texture analysis to predict patient response to NAC.  The results of this 

study demonstrated that an increase in cell death markers from QUS correlated 

with a decrease in tumour haemoglobin markers from DOS; suggesting that cell 

death and vascular remodelling were typically predictive of a favourable 

treatment response.  The results of subproject two also indicated that DOS-

texture features differentiated between response groups before the start of 

treatment, based on the biological features of breast tumours. Here, high 

sensitivity and specificity with pathologic endpoints as measured using Miller-

Payne pathologic response criteria were shown in this study.  

 Using DOS and QUS imaging modalities together and deriving 

combined acoustic and optical spectral data could provide more powerful 

imaging signatures to help guide treatment decisions and improve outcomes for 

patients.  With further validation studies, it would be plausible to use DOS-QUS 

markers as biological surrogates to predict tumour response to neoadjuvant 

chemotherapy.  These imaging modalities are lower in cost compared to MRI 

and CT, non-invasive and can be acquired quickly and in series within the 

patient’s treatment schedule.  Coincident DOS and QUS changes are important 

to understand the pathophysiological traits in tumours for better treatment 

response evaluation.  Although further studies are required, this first report 

demonstrates promising potential for DOS-based textural parameters to 

evaluate baseline tumour vascular heterogeneity, and subsequently as markers 

for response to chemotherapy.  The use of DOS and QUS markers may help 

guide treatments to personalize patient care plans by potentially predicting 

chemoresponse and to extract early-response indicators to help physicians 

make decisions about the patient’s treatment.  Ultimately if used to guide 
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therapy, validated DOS and QUS imaging biomarkers may help improve breast 

cancer therapeutics and may be further studied to potentially improve overall 

disease-free survival.      
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Appendix 1 
 

Supplementary Information to Chapter 1 
 

A1.1 Radiological Tumour Response Endpoints 
 
A1.1.1 WHO Tumour-response Imaging Guidelines 
 

 The standards set by the WHO were developed in the early 1980s and 

measures the changes in tumour dimensions to classify treatment response 

(Figure A1.1) (Park et al., 2003).  Tumour measurements are taken from 

radiographs, and a value is calculated from the product of the longest overall 

tumour diameter, and the longest perpendicular diameter (mm x mm).   This 

calculation is known as the sum of the products of diameters (SPD) (Figure 

A1.1).  In order to quantify tumour response, a relative percent change from the 

baseline SPD is computed.   Response categories are based on the overall 

percent changes and are classified as (Tirkes et al., 2013):  

1. Complete response (CR).  There is no detectable tumour on 

imaging for at least four weeks.  

2. Partial response (PR).  There is a ³50% reduction in the SPD at four 

weeks relative to baseline.  

3. Progressive disease (PD).  There is a ³25% increase in the SPD.  

4. Stable disease (SD).  There is no significant change; neither partial 

response, or progressive disease.   

 

A1.1.2 RECIST 1.1 Guidelines 
 

 RECIST guidelines were introduced in the early 2000s and have been 

updated recently to simplify the recommendations on tumour measurement 
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techniques and to include CT-based imaging (RECIST Version 1.1)(Eisenhauer 

et al., 2009, Therasse et al., 2000).  Significant differences between RECIST 

1.1 and WHO guidelines include changes in the classification cut-off points and 

modifying the way tumours are measured. For breast tumours, RECIST 1.1 

guidelines require only unidimensional tumour measurements and optimal 

analysis is recommended on axial CT images (Figure A1.1).  Tumour response 

is classified based on the relative percent changes from the baseline 

(Eisenhauer et al., 2009): 

1. Complete Response (CR): Disappearance of all target lesions.  Any 

pathological lymph nodes (both target and non-target lesions) have been 

reduced to less than 10 mm in the short axis.   

2. Partial Response (PR):  ³30% decrease in the sum of the longest 

diameter of the target lesion compared to baseline.   

3. Progressive Disease (PD):  ³20% increase in the sum of the shortest 

diameter of the target lesion compared to baseline   

4. Stable Disease (SD): No significant change to tumour dimension.  

Neither PR or PD.   

 
Figure A1.1: CT of the chest indicating a right breast tumour.   (Left) WHO 

guidelines use the cross-product of the longest tumour measurement (Arrow A) 
and the perpendicular longest measurement (Arrow B).  The sum of the 

product of diameters (SPD) is used to measure relative percent changes from 

baseline.  (Right) RECIST 1.1 guidelines measure the sum of the longest 

tumour dimension to calculate the relative changes in tumour size during 

treatment (Arrow A). (Image taken from clinical breast patient at Sunnybrook 

Health Sciences Centre, Toronto, Canada).       
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A1.1.3 Limitations of using Radiological Response Endpoints 
 

Limitations for WHO and RECIST 1.1 methods include variability among 

readers were previously shown in determining the longest tumour measurement 

and errors increased when readers were measuring multifocal malignant lesions 

(Kang et al., 2012). Also WHO guidelines have been limited in describing the 

utility of three-dimensional imaging such as computed tomography (CT) and 

magnetic resonance imaging (MRI) (Kang et al., 2012).  Size-based 

measurements to monitor treatment response have shifted towards using 

updated guidelines such as RECIST since it has shown greater applicability 

with newer imaging modalities such as MRI and CT (Schwartz et al., 2016).  

Limitations for RECIST criteria include the spatial resolution constraints for CT 

imaging which restrict imaging for lesions > 1 cm only (Eisenhauer et al., 2009).  

Other significant limitations include the overestimation of the tumour’s size on 

imaging due fibrosis and scattered residual nodules that can appear as 

enhanced imaging features on MRI and CT (Pritt and Weaver, 2005). 
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Appendix 2 
 

Supplementary Information to Chapter 2 
 

A2.1 Institutional Ethics Review Board Approval Letters 
 
Inquiries regarding ethics approval may be sent to: 

 

Human Research Protections Program, Sunnybrook Health Sciences Centre 

C825, 2075 Bayview Avenue 

Toronto, Ontario, M4N3M5 

Tel: 416 480 6100 x 88144 

Fax: 416 480 5385 
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A2.2 Image Processing 
 

A2.2.1 Fast Fourier Transform (FFT) (QUS) 
 

Fast Fourier Transform (FFT) of the amplitude line spectrum; 

 

Al(f,zl)= �
γ
2
�

2 As(f,zl)
Ar(f,zl)

    

Calculation of the power spectrum is done by applying a fast Fourier 

transform (FFT, As(f,zl)) of a gated radiofrequency data line segment (zl) to 

obtain the amplitude line spectrum (Al(f,zl)) 

 

To reduce spectral-noise artefacts, a sliding window algorithm was used 

with the settings of a Hamming window function for gating, where there was an 

80% overlap between adjacent windows in the axial direction.  A reference 

phantom technique was used to remove system transfer effects from the data 

using a tissue-mimicking agar-embedded glass-bead phantom with known 

acoustic properties (Tadayyon et al., 2014).  

 

Calibration using a reference signal; 

S(f)= log10
1
Nn|Al(f,zl)|2e-4(αs-αr)(R+∆z

2 )
N

l=1

 

 

To normalize the tissue sample signal to the reference phantom, the 

amplitude line spectrum is calculated in the same manner; where Ar(f,zl) is the 

FFT of the gated radiofrequency signal from the ROIs of the reference phantom.  

The log power spectrum S(f) is computed by the average of the squared 

magnitudes of the amplitude line spectra by lateral windowing.  The depth-

dependent acoustic attenuation (α) is employed for calculating the power 

spectrum, where αs and αr refer to the attenuation of the tissue and reference, 

respectively.     The resulting normalized power spectrum was calculated; where 

R is the on-axis distance between the transducer and the proximal gated 

window, and ∆z is the range of the axial distance of the gated window (Insana 

and Hall, 1990).  
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A2.2.2 Calculation for Sound Intensity (dB) 
 

𝑑𝐵 = 10𝑙𝑜𝑔r�
(�����)�

(�����)�
	  

 

where; 𝑍r and 𝑍_  corresponds to the characteristic impedance of a medium (1) 

and medium (2), respectively.  The characteristic impedance, Z, is defined as;  

 

𝑍 = 𝜌𝑐 
 

where 𝜌	= density of the material, and 𝑐 = speed of sound in the medium.   

 

 

A2.2.3 Calculation for Average Speed of Sound in Soft Tissue 
 

𝑐 = � r
��

     (Madsen et al., 1978):  

 

 

A2.2.4 QUS Axial Resolution 

 
The SPL is expressed as; 

 

𝑆𝑃𝐿 = 𝑁𝜆   

 

To determine the “best” axial resolution, a mathematical function is expressed 

that is derived from the SPL:  

 

𝑅(��)� ) = 	
¡
¢∆¤

	(𝑚𝑚)    

   

Axial resolution was calculated as:  

  

𝑅(��)� ) = 	
�.¦¦
∆¤
	  ;   
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where the frequency bandwidth was 3-8 MHz, (∆𝑓)	= 5 MHz 

 

𝑅(��)� ) = 	
�.¦¦
§	¨©ª

  ;   

therefore,  

𝑹(𝒂𝒙𝒊𝒂𝒍) = 	𝟎. 𝟏𝟓𝟒	𝒎𝒎    

 

Assumptions: The average speed of sound in soft tissue (i.e. breast) is 1540 

m/s, the best axial resolution would be expressed mathematically as,  𝑅(��)� ) =

	�.¦¦
∆¤
		(O'Brien, 2007), where ∆𝑓 is equal to the system bandwidth (frequency 

range) in MHz.    

 

A2.2.5 QUS Lateral resolution (at focus) 
 

𝑅 �067�  = 𝐹	 × 	𝜆   ;   

 

where the speed of sound was 1540 m/s and central frequency was 7 MHz and 

F31 is the Fnumber: 

 

𝑅 �067�  = 0.98	𝑥	0.22	𝑚𝑚  ;   

therefore, 

𝑹𝒍𝒂𝒕𝒆𝒓𝒂𝒍 = 𝟎. 𝟐𝟏	𝒎𝒎  
 

 

The optimal lateral resolution of the imaging system used was 0.21 mm.   

 

 

 

 
 

                                            
31 The F number was obtained from the settings profile of the ultrasound 

system. 
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Appendix 3 
 

Supplementary Information to Chapter 3 
 

A3.1.   Pathological Assessment 
A.3.1.1 Pathological responder versus Pathological non-responder 
Representative immunohistochemistry staining.   

 

      

 
Figure A3.1. Light microscopy of a responder’s breast tumour (Patient #10) 
and a non-responder’s breast tumour after chemotherapy (Study Patient # 
21).   Tumour specimens were stained with haematoxylin and eosin and cluster 

of differentiation-31 (CD-31) for vascular detection.   Biophysical features 

demonstrated differences in the tissue composition. Spatial heterogeneity 

between responders and non-responders were observed. Legend: (A) 
Adipocyte; (B) Blood Vessels; (F) Fibroblasts; (T) (Tumour Cells).       

A.3.1.2 Mastectomy histology demonstrated a significant difference in vascular 

density between responders and non-responders as assessed by CD31 

immunohistochemistry staining.  
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Appendix 4 
 

Supplementary Information to Chapter 4  
A4.3 Summary of Contributions of Thesis Study 
 

Description of Studies Published from Thesis 

No. Reference Summary of Work/Significant Findings/Optimal 
Markers 

23 Tran et al.  

(2016) 
• DOS and QUS measurements were obtained in 

parallel, at the same time intervals (baseline, week 
one, week four, week eight, preoperatively).  

• Results demonstrated that univariate QUS (SI) and 
DOS (HbO2) markers were significantly different 
between responders and non-responders after one 
week of treatment (p<0.01).  The %Sn and %Sp for 
the SI was 64.3% and 87.5%, respectively and for 
HbO2, the %Sn and %Sp was 85.7% and 87.5%, 
respectively.   

• The best multivariate (pairwise) combinations 
included the SI + HbO2 which resulted in an AUC of 
1.00 after one week (p<0.001) 

24 Tran et al.  

(2017) 
• Pre-treatment DOS-texture markers demonstrated 

significant differences between responders and non-
responders.   

• The HbO2 homogeneity resulted in the highest 
accuracy among univariate parameters in predicting 
response to chemotherapy; corresponding to a %Sn 
and %Sp were 86.5% and 89.0%, respectively, and 
accuracy was 87.8%. The highest predictors using 
multivariate (binary) combination features were the 
Hb-contrast + HbO2-homogeneity, which resulted in 
a %Sn/ %Sp¼78.0/81.0% and an accuracy of 79.5%. 

 

Table A4.4:  Significant contributions related to the work outlined in the thesis.  

The major contributions include using DOS and QUS at the same temporal time 

intervals, and using pre-treatment DOS-texture features to predict 

chemotherapy response.   
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Appendix 5 
 

Academic Output from PhD 
A5.1 Overview and Summary 
 

OUTPUT TYPE COUNT 

Primary Author Publications 3 

Contributing Author Publications 9 

Book Chapters 1 

Conference Presentations 6 

 

A5.2 Publications (Primary Author) 
 

1. Tran WT, Gangeh MJ, Sannachi L, Chin L, Watkins E, Bruni SG, 
Rastegar RF, Curpen B, Trudeau M, Gandhi S, Yaffe M, Slodkowska E, 
Childs C, Sadeghi-Naini A, Czarnota GJ. Predicting breast cancer 
response to neoadjuvant chemotherapy using pre-treatment diffuse 
optical spectroscopic texture analysis. Br J Cancer. 2017 Apr 18. doi: 
10.1038/bjc.2017.97. [Epub ahead of print] PubMed PMID: 28419079. 
Impact Factor: 5.57 

 

2. Tran WT, Childs C, Chin L, Slodkowska E, Sannachi L, Tadayyon H, 
Watkins E, Wong SL, Curpen B, El Kaffas A, Al-Mahrouki A, Sadeghi-
Naini A, Czarnota GJ. Multiparametric monitoring of chemotherapy 
treatment response in locally advanced breast cancer using 
quantitative ultrasound and diffuse optical spectroscopy. 
Oncotarget. 2016 Apr 12;7(15):19762-80. doi: 
10.18632/oncotarget.7844. PubMed PMID: 26942698; PubMed Central 
PMCID: PMC4991417.  Impact Factor: 5.00 

 

3. Tran WT, Childs C, Probst H, Farhat G, Czarnota GJ.  Commentary:  
Imaging Biomarkers for Precision Medicine in Locally Advanced Breast 
Cancer.  Accepted September 2017.  In Press.  Journal of Medical 
Imaging and Radiation Sciences.  Impact Factor:  N/A  
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A5.3 Publications (Contributing Author) 
 

1. Sadeghi-Naini A, Sannachi L, Tadayyon H, Tran WT, Slodkowska E, 
Trudeau M, Gandhi S, Pritchard K, Kolios MC, Czarnota GJ.  
Chemotherapy-Response Monitoring of Breast Cancer Patients Using 
Quantitative Ultrasound-Based Intra-Tumour Heterogeneities.  Sci 
Rep. 2017 Sep 4;7(1):10352. doi: 10.1038/s41598-017-09678-0.  
PMID: 28871171. Impact Factor: 5.23  

 

2. Tadayyon H, Sannachi L, Gangeh MJ, Kim C, Ghandi S, Trudeau M, 
Pritchard K, Tran WT, Slodkowska E, Sadeghi-Naini A, Czarnota GJ. 
A priori Prediction of Neoadjuvant Chemotherapy Response and 
Survival in Breast Cancer Patients using Quantitative 
Ultrasound. Sci Rep. 2017 Apr 12;7:45733. doi: 10.1038/srep45733. 
PubMed PMID: 28401902; PubMed Central PMCID: PMC53 50. 
Impact Factor: 5.23 

 

3. Pasternak M, Doss L, Farhat G, Al-Mahrouki A, Kim CH, Kolios M, 
Tran WT, Czarnota GJ. Effect of chromatin structure on 
quantitative ultrasound parameters. Oncotarget. 2017 Mar 
21;8(12):19631-19644. doi: 10.18632/oncotarget.14816. PubMed 
PMID: 28129644; PubMed Central PMCID: PMC5386710. 
Impact Factor: 5.00 

 

4. Tadayyon H, Sannachi L, Gangeh M, Sadeghi-Naini A, Tran W, 
Trudeau ME, Pritchard K, Ghandi S, Verma S, Czarnota GJ. 
Quantitative ultrasound assessment of breast tumour response 
to chemotherapy using a multi-parameter approach. Oncotarget. 
2016 Jul 19;7(29):45094-45111. doi: 10.18632/oncotarget.8862. 
PubMed  PMID: 27105515; PubMed Central PMCID: PMC5216708. 
Impact Factor: 5.00 
 

5. Tadayyon H, Sannachi L, Sadeghi-Naini A, Al-Mahrouki A, Tran WT, 
Kolios MC, Czarnota GJ. Quantification of Ultrasonic Scattering 
Properties of In Vivo Tumour Cell Death in Mouse Models of 
Breast Cancer. Transl Oncol. 2015 Dec;8(6):463-73.  doi: 
10.1016/j.tranon.2015.11.001. PubMed PMID: 26692527; PubMed 
Central PMCID: PMC4701005. 
Impact Factor: 3.01 
 

6. Gangeh MJ, Tadayyon H, Sannachi L, Sadeghi-Naini A, Tran WT, 
Czarnota GJ. Computer Aided Theragnosis Using Quantitative 
Ultrasound Spectroscopy and Maximum Mean Discrepancy in 
Locally Advanced Breast Cancer. IEEE Trans Med Imaging. 2016  
Mar;35(3):778-90. doi: 10.1109/TMI.2015.2495246. Epub 2015 Oct 
27. PubMed PMID: 26529750. 
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Impact Factor: 3.76 
 

7. Sadeghi-Naini A, Vorauer E, Chin L, Falou O, Tran WT, Wright FC, 
Gandhi S, Yaffe MJ, Czarnota GJ. Early detection of 
chemotherapy-refractory patients by monitoring textural 
alterations in diffuse optical spectroscopic images. Med Phys. 
2015 Nov;42(11):6130-46. doi: 10.1118/1.4931603. PubMed PMID: 
26520706. 
Impact Factor: 2.64 

 

8. Sannachi L, Tadayyon H, Sadeghi-Naini A, Tran W, Gandhi S, Wright 
F, Oelze M,  Czarnota G. Non-invasive evaluation of breast cancer 
response to chemotherapy using quantitative ultrasonic 
backscatter parameters. Med Image Anal. 2015 Feb;20(1):224-36. 
doi: 10.1016/j.media.2014.11.009. Epub 2014 Nov 25. PubMed 
PMID: 25534283.  
Impact Factor: 4.57 

 

9. Sadeghi-Naini A, Falou O, Tadayyon H, Al-Mahrouki A, Tran W, 
Papanicolau N, Kolios MC, Czarnota GJ. Conventional frequency 
ultrasonic biomarkers of cancer treatment response in vivo. 
Transl Oncol. 2013 Jun 1;6(3):234-43. Print 2013 Jun. Erratum in: 
Transl Oncol. 2013 Dec;6(6):erratum. PubMed PMID: 23761215; 
PubMed Central PMCID: PMC3678128. 
Impact Factor: 3.01 

 

A5.4 Conference Presentations and Posters 
 

1. Tran W. and Czarnota GJ.  DOS and QUS imaging biomarkers in 
locally advanced breast cancer. Canadian Consensus Meeting on 
Locally Advanced Breast Cancer. 2017.  Podium Presentation.  

 

2. Tran WT, Gangeh M, Suraweera H., Hadizad F., Watkins E.,  
Czarnota GJ.  DOS and QUS multiparametric modelling to measure 

neoadjuvant chemotherapy response in locally advanced breast 

cancer.  Terry Fox Research Institute Cancer Symposium.  

Vancouver BC.   2016.   Poster Presentation.     
 

3. Tran WT, Gangeh M, Suraweera H., Hadizad F., Watkins E., 
Czarnota GJ.  Multiparametric analysis of DOS and QUS imaging 
biomarkers to monitor chemotherapy response in breast cancer.  
Ultrasonic Imaging and Tissue Characterization Symposium.  
Washington DC, USA. 2015.   Podium Presentation.    
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4. Tran W., Kim C. Czarnota GJ.  Cell death detection in locally 
advanced breast cancer using quantitative ultrasound and diffuse 
optical spectroscopy.  IEEE International Ultrasonics Symposium, 
Chicago USA. 2014.   Poster Presentation 
 

5. Gangeh M, Tadayyon H., Sannachi L., Sadeghi-Naini A., Tran W., 
Czarnota GJ.  Texton-Based Method in Clinical  Cancer Response 
Monitoring.  IEEE International Ultrasonics Symposium, Chicago 
USA. 2014.   Poster Presentation 

 

6. Gangeh M, Tadayyon H., Sannachi L., Sadeghi-Naini A., Tran W., 
Czarnota GJ.  Computer-Aided Theragnosis Using Quantitative 
Ultrasound Spectroscopy and Maximum Mean Discrepancy in Locally 
Advanced Breast Cancer.  IEEE International Ultrasonics 
Symposium, Chicago USA. 2014.   Poster Presentation 

 

 

A5.5 Book Chapters 
 

1. Gangeh M., Tadayyon H., Tran W., Czarnota G.  Machine Learning 

Applications in Cancer Therapy Assessment and Implications on 

Clinical Practice.  Handbook of research on data science for effective 

healthcare practice and administration.   Editors:  Far, Behrouz H, 

1959-; Albadvi, Amir, 1961-; Raahemi, Bijan, 1964-; Noughabi, 

Elham Akhond Zadeh. Hershey, PA: Medical Information Science 

Reference, [2017]. NLM ID: 101699768.  ISBN13: 

9781522525158|ISBN10: 1522525157|EISBN13: 

9781522525165|DOI: 10.4018/978-1-5225-2515-8 
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