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ABSTRACT
Model-checking resource logics with production and consumption

of resources is a computationally hard and often undecidable prob-

lem. We show that it is more feasible under the assumption that

there is at least one diminishing resource, that is, a resource which
is consumed by every action.
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1 INTRODUCTION
There has been a considerable amount of work on resource log-

ics interpreted over structures where agents’ actions produce and

consume resources, for example [2, 3, 6–9, 12–14, 17–19]. There

exists also a large body of related work on reachability and non-

termination problems in energy games and games on vector addi-

tion systems with state [1, 11, 15, 16, 21]. The resource logics consid-

ered in this paper are extensions of the Alternating Time Temporal

Logic (ATL), [10]. For ATL under imperfect information and with

perfect recall uniform strategies, ATLiR , the model-checking prob-

lem is undecidable for three or more agents [20]. It is however

decidable in the case of bounded strategies [23].

In this paper we introduce a special kind of models for resource

logics satisfying a restriction that one of the resources is always

consumed by each action. This is a very natural setting that occurs

in many verification problems. One obvious example of such a

resource is time. Other examples include systemswhere agents have

a non-rechargeable battery and where all actions consume energy,

e.g., nodes in a wireless sensor network; and systems where agents

have a store of propellant that cannot be replenished during the

course of a mission and all actions of interest involve manoeuvring,

e.g., a constellation of satellites. We call this special resource that is

consumed by all actions a diminishing resource.
We study RB ± ATL

#
and RB ± ATL

#

iR , diminishing resource

versions of Resource-Bounded Alternating Time Temporal Logic

(RB±ATL) [5]. The model-checking problem for RB±ATL is known

to be 2EXPTIME-complete [6], while RB±ATL# model-checking is

in PSPACE if resource bounds are written in unary. In the case of
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RB ± ATL#iR , the result of [23] does not apply immediately because

the bound is not fixed in advance, but its model checking problem

is decidable in EXPSPACE given encoding in unary. We also study

RAL
#
, a diminishing resource version of Resource Agent Logic

(RAL) [13]. Decidability of RAL
#
follows from the result on the

decidability of RAL on bounded models [13], but the PSPACE upper

bound (for unary encoding) is new.

2 RB ± ATL#

The syntax of RB ± ATL# is defined relative to the following sets:

Aдt = {a1, . . . ,an } is a set ofn agents,Res = {res1, . . . , resr } is a set

of r resource types, Π is a set of propositions, and B = NRes
Aдt

is a

set of resource bounds (resource allocations to agents). Elements of

B are vectors of length n where each element is a vector of length

r . We will denote by BA (for A ⊆ Aдt ) the set of possible resource
allocations to agents in A. Formulas of RB ± ATL# are defined by:

ϕ,ψ ::= p | ¬ϕ | ϕ ∨ψ | ⟨⟨Ab ⟩⟩⃝ϕ | ⟨⟨Ab ⟩⟩ϕU ψ | ⟨⟨Ab ⟩⟩ϕ Rψ

where p ∈ Π, A ⊆ Aдt , and b ∈ BA. ⟨⟨A
b ⟩⟩ ⃝ϕ means that a

coalition A can ensure that the next state satisfies ϕ under resource

boundb. ⟨⟨Ab ⟩⟩ϕU ψ means thatA has a strategy to enforceψ while

maintaining the truth of ϕ, and the cost of this strategy is at most

b. ⟨⟨Ab ⟩⟩ϕ Rψ means that A has a strategy to maintainψ until and

including the time when ϕ becomes true, or to maintainψ forever

if ϕ never becomes true, and the cost of this strategy is at most b.
The language is interpreted on the following structures:

Definition 2.1. A resource-bounded concurrent game structure

with diminishing resource (RB-CGS
#
) is a tuple M = (Aдt , Res ,

S,Π,π , Act , d, c,δ ) where:

• Aдt , Res and Π are as above; the first resource type in Res is
the distinguished diminishing resource;

• S is a non-empty finite set of states;

• π : Π → ℘(S ) is a truth assignment that associates each

p ∈ Π with a subset of states where it is true;

• Act is a non-empty set of actions;

• d : S ×Aдt → ℘(Act ) \ {∅} is a function that assigns to each

s ∈ S a non-empty set of actions available to each agent

a ∈ Aдt .
• c : S ×Act → Zr is a partial function that maps a state s and
an action σ to a vector of integers, where a positive (negative)

integer in position i indicates consumption (production) of

resource ri by the action. The first position in the vector is

always at most −1.

• δ : S × Act |Aдt | → S is a partial function that maps every

s ∈ S and σ ∈ d (s,a1) × · · · × d (s,an ) to a state resulting

from executing σ in s .
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In what follows, we use the usual point-wise notation for vector

comparison and addition, and, given a function f returning a vector,

we denote by fi the function that returns the i-th component of

the vector returned by f . Given an RB-CGS
# M and a state s ∈ S , a

joint action by a coalition A ⊆ Aдt is a tuple σ = (σa )a∈A such that

σa ∈ d (s,a). The set of all joint actions for A at state s is denoted
by DA (s ). Given a joint action by Aдt , σ ∈ DAдt (s ), σA denotes

the joint action executed by A as part of σ : σA = (σa )a∈A. The set
of all possible outcomes of a joint action σ ∈ DA (s ) at state s is:
out (s,σ ) = {s ′ ∈ S | ∃σ ′ ∈ DAдt (s ) : σ = σ

′
A ∧ s

′ = δ (s,σ ′)}. A

strategy for a coalition A ⊆ Aдt in an RB-CGS
# M is a mapping

FA : S+ → Act |A | such that, for every λ ∈ S+, FA (λ) ∈ DA (λ[|λ |]).
A computation λ is consistent with a strategy FA iff, for all i , 1 ≤
i < |λ |, λ[i + 1] ∈ out (λ[i], FA (λ[1, i])). We denote by out (s, FA )
the set of all computations λ starting from s that are consistent

with FA. Given a bound b ∈ B, a computation λ ∈ out (s, FA ) is
b-consistent with FA iff, for every i ≥ 0, for every a ∈ A, ba −∑j=i−1

j=0 c (Fa (λ[0, j])) ≥ c (Fa (λ[0, i])).

A computation λ is b-maximal for a strategy FA if it cannot

be extended further while remaining b-consistent. The set of all
maximal computations starting from state s that are b-consistent
with FA is denoted by out (s, FA,b).

Given an RB-CGS
#M and a state s ofM , the truth of an RB±ATL#

formula ϕ with respect toM and s is defined as follows (omitting

the cases for propositions, ¬ and ∧):

• M, s |= ⟨⟨Ab ⟩⟩⃝ϕ iff ∃ strategy FA such that for all b-maximal

λ ∈ out (s, FA,b): |λ | ≥ 2 andM, λ[2] |= ϕ;

• M, s |= ⟨⟨Ab ⟩⟩ϕU ψ iff ∃ strategy FA such that for all b-
maximal λ ∈ out (s, FA,b), ∃i such that 1 ≤ i ≤ |λ |:M, λ[i] |=
ψ andM, λ[j] |= ϕ for all j ∈ {1, . . . , i − 1}.

• M, s |= ⟨⟨Ab ⟩⟩ϕ Rψ iff ∃ strategy FA such that for all b-
maximal λ ∈ out (s, FA,b), either ∃i such that 1 ≤ i ≤ |λ |:
M, λ[i] |= ϕ and M, λ[j] |= ψ for all j ∈ {1, . . . , i}; or,
M, λ[j] |= ψ for all j such that 1 ≤ j ≤ |λ |.

The following theorem is proved by demonstrating amodel-checking

algorithm for RB ± ATL#, see [4]:

Theorem 2.2. The model-checking problem for RB ± ATL# is de-
cidable in PSPACE (under unary encoding).

3 RB ± ATL#iR
In this section, we study RB ± ATL#iR , RB ± ATL

#
with imperfect

information and perfect recall. To model imperfect information,

RB-CGS
#
are extended with an indistinguishability relation ∼a

on states, for every agent a. This relation can be lifted to finite

sequences of states. Strategies under imperfect information should

be uniform: if agent a is uncertain whether the history so far is

λ or λ′ (λ ∼a λ′), then the strategy for a should return the same

action for both λ and λ′: Fa (λ) = Fa (λ
′). A strategy FA for a group

of agents A is uniform if it is uniform for every agent in A. In what

follows, we consider strongly uniform strategies [22], that require

the existence of a uniform strategy from all indistinguishable states:

• M, s |= ⟨⟨Ab ⟩⟩⃝ϕ under strong uniformity iff there exists a

uniform strategy, FA, such that, for all s ′ ∼a s where a ∈ A,
for all λ ∈ out (s ′, FA,b), |λ | > 1 andM, λ[2] |= ϕ.

The truth definitions for ⟨⟨Ab ⟩⟩ϕU ψ and ⟨⟨Ab ⟩⟩ϕ Rψ are also mod-

ified to require the existence of a uniform strategy from all states s ′

indistinguishable from s by any a ∈ A.

Theorem 3.1. The model-checking problem for RB ± ATL#iR is
decidable in EXPSPACE (under unary encoding).

4 RAL#

RAL
#
is obtained by modifying the definition of RAL [13] for the

diminishing resource setting. The setsAдt , Res , and Π are as before.

An endowment (function) η : Aдt × Res → N assigns resources

to agents: ηa (r ) = η(a, r ) is the amount of resource agent a has

of resource type r . En denotes the set of all possible endowments.

Formulas of RAL
#
are defined by:

ϕ,ψ ::= p | ¬ϕ | ϕ ∧ ϕ | ⟨⟨A⟩⟩↓B⃝ϕ | ⟨⟨A⟩⟩
η
B⃝ϕ | ⟨⟨A⟩⟩

↓

BϕUψ |

⟨⟨A⟩⟩
η
BϕUψ | ⟨⟨A⟩⟩

↓

BϕRψ | ⟨⟨A⟩⟩
η
BϕRψ

where p ∈ Π,A,B ⊆ Aдt , and η ∈ En. Unlike in RB±ATL#, in RAL#

there are two types of cooperation modalities, ⟨⟨A⟩⟩↓B and ⟨⟨A⟩⟩
η
B . In

both cases, the actions performed by agents in A ∪ B consume and

produce resources (actions by agents inAдt \ (A∪B) do not change
their resource endowment). The meaning of ⟨⟨A⟩⟩

η
Bφ is otherwise

the same as in RB ± ATL
#
. The formula ⟨⟨A⟩⟩↓Bφ requires that the

strategy uses the resources currently available to the agents.

The models of RAL
#
are RB-CGS

#
. Strategies are also defined

as for RB ± ATL
#
. However, to evaluate formulas with a down

arrow, such as ⟨⟨A⟩⟩↓B⃝φ, we need the notion of resource-extended
computations. A resource-extended computation λ ∈ (S × En)+ is a
sequence over S × En such that the restriction to states (the first

component), denoted by λ |S , is a path in the underlying model.

The projection of λ to the second component is denoted by λ |En.
A (η, sA,B)-computation, λ, is a resource-extended computation

iff for all i = 1, . . . with λ[i] := (si ,η
i ) there is an action profile

σ ∈ d (λ |S [i]) such that:

• η0 = η (η describes the initial resource distribution);

• FA (λ |S [1, i]) = σA (A follow their strategy);

• λ |S [i + 1] = δ (λ |S [i],σ ) (transition according to σ );
• for all a ∈ A ∪ B: ηia ≥ c (λ |S [i],σa ) (each agent has enough

resources to perform its action);

• for all a ∈ A ∪ B: ηi+1a = ηia − c (λ |S [i],σa ) (resources are
updated);

• for all a ∈ Aдt \ (A ∪ B) and r ∈ Res: ηi+1a (r ) = ηia (r ) (the
resources of agents not in A ∪ B do not change).

out (s,η, FA,B) is the set of all (η, FA,B)-computations starting in s .
The truth definition is given with respect to a model, a state, and

an endowment η:

• M, s,η |= ⟨⟨A⟩⟩↓B⃝φ iff there is a strategy FA for A such that

for all λ ∈ out (s,η, FA,B), |λ | > 1 andM, λ |S [2], λ |En[2] |= φ

and similarly for ⟨⟨A⟩⟩↓BφUψ and ⟨⟨A⟩⟩↓BφRψ . The cases for ⟨⟨A⟩⟩
ζ
B⃝

φ, ⟨⟨A⟩⟩
ζ
BφUψ , ⟨⟨A⟩⟩

ζ
BφRψ quantify over λ ∈ out (s, ζ , FA,B).

Theorem 4.1. The model-checking problem for RAL# is decidable
in PSPACE (under unary encoding).
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