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Abstract

Regression models for size-and-shape analysis are developed, where the model is specified in
the Euclidean space of the landmark coordinates. Statistical models in this space (which is known
as the top space or ambient space) are often easier for practitioners to understand than alternative
models in the quotient space of size-and-shapes. We consider a Bayesian linear size-and-shape
regression model in which the response variable is given by labelled configuration matrix, and the
covariates represent quantities such as gender and age. It is important to parameterize the model
so that it is identifiable, and we use the LQ decomposition in the intercept term in the model for
this purpose. Gamma priors for the inverse variance of the error term, matrix Fisher priors for
the random rotation matrix, and flat priors for the regression coefficients are used. Markov chain
Monte Carlo algorithms are used for sampling from the posterior distribution, in particular by
using combinations of Metropolis-Hastings updates and a Gibbs sampler. The proposed Bayesian
methodology is illustrated with an application to forensic facial data in three dimensions, where
we investigate the main changes in growth by describing relative movements of landmarks for
each gender over time.

1 Introduction
Bayesian linear regression analysis has been extensively studied for various types of response vari-
ables and covariates, where prior distributions are specified for the parameters in the classical re-
gression model and statistical inference is carried out using the joint posterior distribution of the
parameters (Gelman et al., 2013).

We wish to explore regression models for landmark data, where the location and orientation of the
objects can be ignored. Such objects can be represented as points in the size-and-shape space (Dryden
and Mardia, 2016, Chapter 5), which is defined as the space of landmark co-ordinates after rotation
and translation information has been removed (Kendall, 1989). The shape space on the other hand
(Dryden and Mardia, 2016, Chapter 4) is the space of landmark co-ordinates after rotation, translation
and scale information has been removed (Kendall, 1986). Throughout this paper we will concentrate
on size-and-shape rather than shape.

The size-and-shape space is a quotient space, where location and rotation are quotiented out by
using least squares optimization. However, the geometry of the size-and-shape quotient space is
complicated (Kendall et al., 1999), and it can be difficult for a practitioner to understand the meaning
of statistical models formulated in the quotient space.
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An alternative approach is to specify a statistical model in the Euclidean space of the landmark
co-ordinates and then integrate out the unwanted location and rotation information by considering
the marginal distribution of size-and-shape. In this case, the space in which the statistical model is
specified is called the top space in differential geometry, and also known as the ambient space by
some authors (Cheng et al., 2016). A top space modelling approach has the advantage that the model
is often easier to understand than a quotient space model, and relatively standard inference methods
can be used. We shall develop a Bayesian linear model in the space of the Euclidean landmark co-
ordinates, and carry out statistical inference using Markov chain Monte Carlo (MCMC) algorithms.
Care needs to be taken with identifiability of parameters in the model, and this issue often arises in
high-dimensional object data (Dryden, 2014).

We consider a Bayesian regression model with response given by the size-and-shape of landmarks
with real-valued covariates. A wide variety of regression problems on non-Euclidean spaces have
been considered in previous work, and a summary of some approaches is given by Dryden and Mardia
(2016, Section 13.4). Some approaches include directional data regression (Mardia, 1975; Mardia and
Jupp, 2000; Presnell et al., 1998), tangent space regression models (Kent et al., 2001; Bowman, 2008;
Faraway, 2004), growth curve models (Goodall and Lange, 1989), geodesic regression (Le and Kume,
2000; Hotz et al., 2010), principal geodesic analysis (Fletcher et al., 2004; Fletcher, 2013), geodesic
PCA (Huckemann et al., 2010; Kenobi et al., 2010), principal nested spheres (Jung et al., 2012),
intrinsic regression (Davis et al., 2007; Shi et al., 2009; Hinkle et al., 2014; Cornea et al., 2017),
sphere-on-sphere regression (Rosenthal et al., 2014; Rosenthal et al., 2017; Di Marzio et al., 2018),
unrolling and unwrapping (Jupp and Kent, 1987; Kume et al., 2007), manifold splines (Su et al., 2012)
and many applications (e.g. Machado and Leite, 2006; Zhu et al., 2009; Samir et al., 2012; Yuan et al.,
2012; Piras et al., 2014).

The remainder of this paper is organized as follows. In Section 2 we describe the Bayesian
linear size-and-shape regression model, including the prior and posterior distributions. In Section
3, methods for Bayesian inference for the coefficients and model selection are presented. Finally an
application to forensic facial data is given in Section 4.

2 Bayesian linear size-and-shape regression model

2.1 Linear model
Consider a random sample of n configurations of k labelled landmarks in m dimensions, where
each configuration is represented by a k × m matrix Yi ∈ Rk×m, k > m, i = 1, . . . , n. We are
interested only in the size-and-shapes of Yi after removing translation and rotation, but preserving
scale information (Dryden and Mardia, 2016, Chapter 5). In addition we have real valued covariates
xij, j = 1, . . . , p, corresponding to each configuration and without loss of generality we assume that
each covariate is centred, i.e.

∑
i xij = 0. Categorical variables with g levels can be represented by

g − 1 binary indicator variables in the standard way. We write xi = (1, x1j, . . . , xpj)
> as a (p + 1)-

dimensional column vector containing the p covariates and 1 for the intercept. We aim to predict the
size-and-shape of Yi using the covariates, and explore the relationship between Yi and xi, i = 1, . . . , n.

Suppose that Yi are modelled with a probability distribution with conditional mean function µ(xi)
given covariates xi and subject to an arbitrary unknown rotation Λi ∈ SO(m), where SO(m) is the
group of special orthogonal matrices that satisfy ΛiΛ

>
i = Λ>i Λi = Im and det(Λi) = 1, and where Im
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is the m×m identity matrix. So we have the conditional mean

E[Yi|xi] = µ(xi)Λi, i = 1, . . . , n.

Including a noise term we have the model

Yi = µ(xi)Λi + εi,

where εi are assumed to be i.i.d. random matrix normal variables of dimension k × m (Gupta and
Nagar, 1999, Chapter 2). In this paper we consider the conditional mean function µ(xi) to be linear
so that the following linear regression model is of interest,

Yi =

(
α0 +

p∑
j=1

αjxij

)
Λi + εi, (1)

where α0, αj ∈ Rk×m, j = 1, . . . , p, are k ×m regression parameter matrices, the errors are matrix
normal

εi
i.i.d.∼ MNk×m

(
0, σ2Im, Ik

)
,

and so
vec(εi)

i.i.d.∼ Nkm

(
vec(0), σ2Im ⊗ Ik

)
,

where vec(A) denotes the vectorization of the matrix A (i.e. stacking columns) and ⊗ denotes the
Kronecker product. The model (1) is not identifiable since the rotation effect from Λi dictates the
coefficients {α0, αj}. We can make the model identifiable using an LQ decomposition of α0. In
particular we write α0 = β0Q0, where Q0 ∈ SO(m) and β0 is lower triangular (i.e. has zero entries
above the leading diagonal). Therefore the model (1) can be rewritten as

Yi = µ(xi)Γi + εi,

=

(
β0 +

p∑
j=1

βjxij

)
Γi + εi

= XiβΓi + εi, (2)

where Xi = x>i ⊗ Ik ∈ Rk×k(p+1) is a k × k(p + 1) matrix, β =
[
β>0 β>1 · · · β>p

]> ∈ Rk(p+1)×m

is a k(p + 1) ×m matrix of regression parameters and Γi ∈ SO(m). In the following we describe a
Bayesian approach to estimate µ(xi) given deterministic covariates xi.

2.2 Likelihood
It follows from the matrix normality of εi that Yi ∼ MNk×m

(
XiβΓi, σ

2Im, Ik
)
, therefore the proba-

bility density function of Yi is given by

f(Yi | β,Γi, σ2) =
1

(2πσ2)km/2
exp

(
− 1

2σ2
tr
[
(Yi −XiβΓi)

>(Yi −XiβΓi)
])

and the likelihood is given by

f(Y1, . . . , Yn, | β,Γ1, . . . ,Γn, σ
2) =

1

(2πσ2)nkm/2
exp

(
− 1

2σ2

n∑
i=1

tr
[
(Yi −XiβΓi)

>(Yi −XiβΓi)
])

.
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2.3 Prior and posterior
We shall concentrate on the m = 3 dimensional case and it is then helpful to adopt a particular
parameterization of the rotation matrices. We can represent the three dimensional rotation matrix
using the ZXZ-convention where

Γ(θ1, θ2, θ3) =

 cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1

1 0 0
0 cos θ2 sin θ2
0 − sin θ2 cos θ2

 cos θ1 sin θ1 0
− sin θ1 cos θ1 0

0 0 1

 ,
0 ≤ θ1, θ3 < 2π and 0 ≤ θ2 < π (Landau and Lifschitz, 1976). If we assume that θ1, θ3 ∼ U [0, 2π)
and θ2 ∼ U [0, π), then using these co-ordinates the density of the uniform distribution on SO(m) is

g(θ1, θ2, θ3) =
1

2π

(1

2
sin θ2

) 1

2π
∝ sin θ2. (3)

We consider the following priors for parameters (κ,Γi, β). Let κ = 1/σ2. Assume that κ follows
a Gamma distribution with shape parameter a and scale parameter b. We consider the prior for the
rotation matrix to be the matrix Fisher distribution (Mardia and Jupp, 2000, p.89) and F0 is a 3 × 3
parameter matrix of that so that p(Γi;F0) ∝ exp{tr(F>0 Γi)} sin θi2 and sin θi2 is due to the uniform
measure. The regression parameters β are taken to be uniform and all the parameters are independent,
i.e.

κ ∼ Gamma(a, b) ;

Γi ∼ matrix Fisher(F0), i = 1, . . . , n ;

p(β | Γ1, . . . ,Γn, κ) ∝ 1,

independently. Then the joint posterior density for (β,Γ1, . . . ,Γn, κ) is given by

p(β,Γ1, . . . ,Γn, κ | Y1, . . . , Yn)

∝ exp

(
n∑

i=1

tr(F>0 Γi)

)[
n∏

i=1

sin θi2

]
κa+3nk/2−1 exp

(
−κ
b

)
exp

(
−1

2
κ

n∑
i=1

tr
[
(Yi −XiβΓi)

>(Yi −XiβΓi)
])

.

The conditional posterior for (κ | Γ1, . . . ,Γn, β, Y1, . . . , Yn) is

κ | Γ1, . . . ,Γn, β, Y1, . . . , Yn ∼ Gam

a+
3nk

2
,

1

1
b

+ 1
2

∑n
i=1 tr

[(
Yi −XiβΓi

)>(
Yi −XiβΓi

)]
 .

The conditional posterior for (β | Γ1, . . . ,Γn, κ, Y1, . . . , Yn) is

vec(β>)(−0) | Γ1, . . . ,Γn, κ, Y1, . . . , Yn ∼ N3k(p+1)−3
(
vec(ξ>)(−0), (Ω⊗ Σ)(−0)

)
,

where

Σ =
1

κ
I3,

Ω =

(
n∑
i=1

X>i Xi

)−1
,

ξ =

(
n∑
i=1

X>i Xi

)−1 n∑
i=1

X>i YiΓ
>
i ,
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and

vec(β>) =


vec(β>0 )
vec(β>1 )

...
vec(β>p )

 , vec(ξ>) =


vec(ξ>0 )
vec(ξ>1 )

...
vec(ξ>p )

 with size


3k × 1
3k × 1

...
3k × 1

 ,
Ω⊗Σ is a 3k(p+1)×3k(p+1) covariance matrix, and (−0) stands for removing 2th, 3th, 6th elements
of vec(β>) and vec(ξ>), and also removing those three rows and columns of Ω⊗ Σ. Hence for each
vec(β>0 )(−0), vec(β>1 ), . . . , vec(β>p ) of length 3k−3, 3k, . . . , 3k, we can use the following conditional
distribution of partitioned multivariate normal distribution

vec(β>0 )(−0) | Γ1, . . . ,Γn, κ, Y1, . . . , Yn, vec(β>1 ), . . . , vec(β>p ),

vec(β>j ) | Γ1, . . . ,Γn, κ, Y1, . . . , Yn, vec(β>0 )(−0), vec(β>−j), j = 1, . . . , p.

The conditional posterior for (Γ1, . . . ,Γn | κ, β, Y1, . . . , Yn) is proportional to

exp

(
n∑
i=1

tr
[
(F0 + κβ>X>i Yi)

>Γi
])[ n∏

i=1

sin θi2

]
.

Hence for a specific ith observation, using independence the conditional posterior for Γi is propor-
tional to

Γi | Γ−i, κ, β, Y1, . . . , Yn ∝ exp
(
tr
[
F>i Γi

])
sin θi2,

where
Fi = F0 + κβ>X>i Yi, i = 1, . . . , n.

Let us drop the observation index i for a moment then

tr(F>Γ) = C1 cos θ1 + S1 sin θ1 +R1

= C2 cos θ2 + S2 sin θ2 +R2

= C3 cos θ3 + S3 sin θ3 +R3,

where

C1 = F11 cos θ3 − F21 sin θ3 + F12 sin θ3 cos θ2 + F22 cos θ3 cos θ2 − F32 sin θ2,

S1 = −F11 sin θ3 cos θ2 − F21 cos θ3 cos θ2 + F31 sin θ2 + F12 cos θ3 − F22 sin θ3,

C2 = −F11 sin θ3 sin θ1 − F21 cos θ3 sin θ1 + F12 sin θ3 cos θ1 + F22 cos θ3 cos θ1 + F33,

S2 = F31 sin θ1 + F13 sin θ3 + F23 cos θ3 − F32 cos θ1,

C3 = F11 cos θ1 − F21 cos θ2 sin θ1 + F12 sin θ1 + F22 cos θ2 cos θ1 + F23 sin θ2,

S3 = −F11 cos θ2 sin θ1 − F21 cos θ1 + F12 cos θ2 cos θ1 − F22 sin θ1 + F13 sin θ2,

and R1, R2, R3 are remainder terms independent of each Euler angle. Hence for ith observation, the
conditional distributions for θi1 and θi3 are von Mises distributions (Green and Mardia, 2006). Since

θi2 | θi1, θi3,Γ−i, κ, β, Y1, . . . , Yn ∝ exp (Ci2 cos θi2 + Si2 sin θi2) sin θi2,

we use a Metropolis-Hastings update for θi2. Hence for posterior sampling by MCMC we use Gibbs
sampler for (κ, β, θi1, θi3), and Metropolis-Hastings algorithm for θi2.
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Remark (Helmertized size-and-shape. Let Y H
i = HYi be Helmertized size-and-shapes, where H

is the Helmert sub-matrix (Dryden and Mardia, 2016, p.49-50). It is often useful to work with Y H
i as

this takes care of the location invariance for size-and-shapes, and reduces the number of parameters
appropriately.

Condition (Identifiability). Consider the Helmertized model

Y H
i =

(
β0 +

p∑
j=1

βjxij

)
Γi + εi,

where βj, j = 0, 1, . . . , p, are (k − 1)× 3 matrices. Let G be the number of distinct sets of covariate
tuples in (x1, . . . ,xn), then for k ≥ 4

p1 = G{3(k − 1)− 3} = G(3k − 6)

is the number of regression parameters that can be identifiable. Let

p2 = {3(k − 1)− 3}+ p{3(k − 1)} = (3k − 6) + p(3k − 3) = 3k(p+ 1)− 6− 3p

be the number of parameters in regression model. Then all p2 parameters in regression model are
identifiable if p1 ≥ p2.

This identifiability condition indicates that the stability of estimation depends on how many dis-
tinct tuples of covariates are used. If p1 < p2 then MCMC draws of parameters can be away from the
true values due to non-identifiability, or we may need a long number iterations if p1 = p2.

3 Inference and model selection

3.1 Inference for the coefficients
After the posterior sample {β(t)

j , j = 0, . . . , p, t = 1, . . . , T} is obtained from T iterations of the
MCMC algorithm after burn-in, we can make an inference for β. Marginal 100(1 − α)% credible
intervals for βj, j = 0, . . . , p, are given by[

βj,α/2, βj,1−α/2
]
,

where βj,P denotes the quantile at probability P based on order statistics from the sample after burn-
in. Since β(t)

j is a matrix we define the matrix quantile as an element-wise quantile.
An alternative approach based on marginal Gaussian distributions for βj is[

β̂j − zα/2 · ŝd(βj), β̂j + zα/2 · ŝd(βj)
]
,

where

β̂j =
1

T

T∑
t=1

β
(t)
j ,

ŝd(βj) =

√√√√ 1

T − 1

T∑
t=1

(
β
(t)
j − β̂j

)
◦
(
β
(t)
j − β̂j

)
,

and ◦ is the Hadamard product defined by (X ◦ Y )i,j = (X)i,j · (Y )i,j for two matrices X and Y of
the same dimension.
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3.2 Model selection
We now present measures for model selection. For convenience write Θ = (β,Γ1, . . . ,Γn, σ

2) and
let L(Y | Θ) be the likelihood function. Define the deviance as D(Θ) = −2 log

(
L(Y | Θ)

)
, then the

deviance information criterion (DIC) is defined by penalizing the deviance by the effective number of
parameters, pD (Spiegelhalter et al., 2002)(Gelman et al., 2013, p.172), i.e.

DIC = D + pD

= D(Θ) + 2pD,

where D = E[D(Θ)] is the posterior expected deviance and Θ is the posterior mean of Θ. In practice
the posterior expectations are obtained from the arithmetic means of the relevant terms from a MCMC
algorithm after burn-in. The effective number of parameters can be estimated by either p(1)D = D −
D(Θ) (Spiegelhalter et al., 2002) or p(2)D = 1

2
var
(
D(Θ)

)
(Gelman et al., 2013, p.173).

The Watanabe-Akaike information criterion or widely available information criterion (WAIC)
(Watanabe, 2010) (Gelman et al., 2013, p.173) is a fully Bayesian criterion based on the log pointwise
posterior predictive density adjusted by the effective number of parameters, pWAIC, to avoid overfitting
and is defined by

WAIC = −2

{
n∑
i=1

log
(
E
[
f
(
Yi | β,Γi, σ2

)])
+ pWAIC

}
,

where again we have two possible estimates of the effective number of parameters:

pWAIC1 = 2
n∑
i=1

(
log
(
E
[
f
(
Yi | β,Γi, σ2

)])
− E

[
log f

(
Yi | β,Γi, σ2

)])
,

pWAIC2 =
n∑
i=1

var
(

log f
(
Yi | β,Γi, σ2

))
.

The Akaike information criterion (AIC) (Akaike, 1973) and the Bayesian information criterion (BIC)
(Schwarz, 1978) are defined by

AIC = −2 log
(
L(Y | Θmle)

)
+ 2K,

BIC = −2 log
(
L(Y | Θmle)

)
+K log n,

where Θmle is the sample point where the log-likelihood function is maximised after burn-in and K is
the number of parameters, so thatK = 3(k−1)p−3+n+1. It is well known that AIC is minimax-rate
optimal in estimating the regression function (Barron et al., 1999; Yang, 2005), and BIC is consistent
in model selection (Shao, 1997; Yang, 2005). Note that the model which has smaller DIC, WAIC,
AIC or BIC provides a better model.

4 Application to forensic facial data

4.1 Data description
Facial features play an important role in forensic science including in criminal investigations where
CCTV evidence is commonly used. A study was carried out into using face landmarks for iden-
tification, and was reported by Evison and Bruegge (2010). Clearly age and gender are expected
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to be important covariates when describing the size and shape of the face landmark configurations,
and so we develop some Bayesian regression models to explore the relationship. A set of 3D facial
images was captured by a Geometrix FaceVision FV802 Series Biometric camera and then 30 an-
thropometric landmarks in 3D were selected by trained observers. The volunteers in the study were
primarily scanned at the Magma Science Adventure Centre, Rotherham, UK. Evison and Bruegge
(2010, Chapter 3) give full details of the project and provide discussion about the selection of the
30 landmarks. Many of the face landmark sets were recorded twice, either with different observers
or the same observer. In total we have 3248 face landmark configurations from 1964 volunteers, in
particular 956 faces from 627 females and 2292 faces from 1337 males. The landmark positions and
descriptions are described in Table 1 following Evison and Bruegge (2010). Our main interest here
involves investigating the relation between age and the size and shape of the faces for each gender.

Table 1: Landmark information (Evison and Bruegge, 2010)

No. Landmark Label No. Landmark Label
1 Glabella g 16 Highest point of columella prime left c’ l
2 Sublabiale sl 17 Highest point of columella prime right c’ r
3 Pogonion pg 18 Labiale superius ls
4 Endocanthion left en l 19 Labiale inferius li
5 Endocanthion right en r 20 Stomion sto
6 Exocanthion left ex l 21 Cheilion left ch l
7 Exocanthion right ex r 22 Cheilion right ch r
8 Center point of pupil left p l 23 Superaurale left sa l
9 Center point of pupil right p r 24 Superaurale right sa r
10 Palpebrale inferius left pi l 25 Subaurale left sba l
11 Palpebrale inferius right pi r 26 Subaurale right sba r
12 Subnasion se 27 Postaurale left pa l
13 Alare left al l 28 Postaurale right pa r
14 Pronasale prn 29 Otobasion inferius left obi l
15 Alare right al r 30 Otobasion inferius right obi r

As would be expected on average male faces are larger and wider than female faces as shown in
Figure 1 (a), where the main growth direction corresponds to the first shape principal component’s
direction indicated by black lines in Figure 1(b),(c). See Dryden and Mardia (2016, Section 7.7-7.8)
for a summary of principal components analysis in shape and size-and-shape analysis, which has
been implemented in R functions procGPA() and shapepca() in the package shapes (Dryden,
2017). In order to measure the size of the face landmark configuration, we use the centroid size of a
configuration X given by

S(X) = ‖HX‖,

where H is the Helmert submatrix (Dryden and Mardia, 2016, p.49) and ‖X‖ =
√

trace(X>X).
We see that the centroid size is closely related to the first size-and-shape principal component (PC) as
seen in Figure 2 and the correlation coefficient between the centroid size and the first size-and-shape
principal component score is -0.959 and 0.954 for female and male, respectively. Note that the signs
of the PC loadings are arbitrary, and here PC1 and PC3 have different signs for females and males.
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(a) Front view of size-and-shape configu-
rations.

(b) Female (c) Male

Figure 1: (a) Front view of size-and-shape configurations. (b), (c) Mean (red) and 3 PCs direction in
+3 · sd (black: PC1, red: PC2, green: PC3).
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Figure 2: Centroid size and size-and-shape PC1.
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4.2 Models and implementation
Recall from Section 2.1 that the intercept matrix β0 is lower triangular using an LQ decomposition for
model identifiability, and the procedure is more stable if the landmarks in the first three positions are
well separated. Hence in this application we re-ordered the landmarks as (1, 3, 30, 2, 4, 5, ..., 28, 29).
Note that the inference is invariant to a re-ordering of the landmarks, and so in theory such a re-
ordering should make no difference in our modelling. However, in computational implementation it
is best to avoid having the the first three landmarks too close together as otherwise some numerical in-
stabilities can appear due to the standardisation via the LQ decomposition. The proposed re-ordering
leads to stable results, which would in practice be equivalent to any other reordering with well sepa-
rated landmarks in the first three positions.

For each gender we use the following three Helmertized models, where the Helmertizing takes
care of the location invariance:

M1 : Y H
i = {β0 + β1agei}Γi + εi,

M2 : Y H
i =

{
β0 + β1agei + β2age

2
i

}
Γi + εi

M3 : Y H
i =

{
β0 + β1agei + β2age

3
i

}
Γi + εi,

where Y H
i = HYi, i = 1, . . . , n. We consider a weakly informative conjugate prior κ so that a =

0.001 and b = 1000 (Spiegelhalter et al., 2003), and the hyperparameter F0 in the prior distribution for
the rotation parameters is taken as a 3×3 matrix of zeroes. For the MCMC algorithm we set the initial
value of β to 0, Γi, i = 1, . . . , n, to 3×3 identity matrices, and κ to a random draw from Gamma(a, b).
The Gibbs samplers of Section 2.3 are used for updating (κ, β, θ1, θ3) and in order to update θ2 via
the Metropolis-Hastings algorithm we use a normal distribution with standard deviation σθ2 = 0.3 as
the proposal distribution. To obtain a centred predicted face configuration we pre-multiply each fitted
value Ŷi by C, for example for M2:

CŶi =
{
H>β̂0 +H>β̂1agei +H>β̂2age

2
i

}
Γ̂i,

where C = Ik − 1
k
1k1
>
k , Ik is the k × k identity matrix, 1k is the column vector of k ones, β̂j =

1
T

∑T
t=1 β

(t)
j , Γ̂i = 1

T

∑T
t=1 Γ

(t)
i are the arithmetic means of the MCMC sample of T iterations for βj

and Γi after burn-in, and in our faces application we have k = 30 landmarks.

4.3 Results
We run the MCMC chain for 200,000 iterations with 100,000 iterations of burn-in. The Metropolis-
Hastings acceptance rate for θ2 is around 3.72% for female and 3.83% for male data. The posterior
variance for females is smaller than that for males as the posterior mean estimates for κ are larger
than those for males in Table 2.

For the three models considered, model M2 is generally the best model for both female and male
groups since M2 outperforms the others in terms of the model selection statistics DIC, WAIC and
AIC in Table 3 (except that M1 has the smallest BIC for females). We now investigate the structure
of the models of the fitted size-and-shapes of the face landmarks versus age and gender.

We display the results from the fitted regression models M1, M2, M3 for each gender in Figure 3,
which shows the individual face landmark data registered by generalized Procrustes size-and-shape
analysis (Dryden and Mardia, 2016, p.143) in light grey and viewed from the front projection of the
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Table 2: Estimates for κ and acceptance rate for θ2.

Model Posterior mean κ 95% cred.int. κ Acceptance rate θ2

Female
M1 0.1124 (0.1115, 0.1133) 3.73%
M2 0.1127 (0.1118, 0.1136) 3.72%
M3 0.1127 (0.1117, 0.1136) 3.72%

Male
M1 0.0911 (0.0906, 0.0916) 3.85%
M2 0.0925 (0.0920, 0.0930) 3.83%
M3 0.0924 (0.0919, 0.0929) 3.83%

Table 3: Model selection statistics. Note that the best model for each line is indicated in bold.

Statistics
Female Male

M1 M2 M3 M1 M2 M3
# of parameters 1128 1215 1215 2464 2551 2551

Maximum log-likelihood -208753 -208635 -208649 -521561 -520026 -520187
DIC 420986 420837 420881 1050933 1047960 1048246

WAIC1 415056 414899 414944 1036202 1033334 1033605
WAIC2 416164 416020 416067 1038860 1035994 1036264

AIC 419763 419699 419727 1048050 1045155 1045475
BIC 425248 425607 425636 1062187 1059790 1060111

face. The fitted configurations can be arbitrarily rotated, and in order to compare the fitted configura-
tions over age with the size-and-shapes of the Procrustes registered data, we apply ordinary Procrustes
analysis to translate and rotate the fitted faces from the model (in red) onto the Procrustes mean size-
and-shape of the data. The fitted faces are indicated by a red curved line from the fitted face at age 15
through to the fitted face at age 80 (which is identified with a black dot).

The fitted models for the females and males show important differences in Figure 3. In particular
it is noticeable that the amount and direction of facial growth as age increases differ between females
and males. For model M1, the males’ fitted face linearly grows as age increases but the change is
different for females as age increases. In some areas such as the eyes and ears, the face grows quicker
later for females. The growth direction of the ears of females is relatively wider than that for males.
The credible intervals for age for eight landmarks on the ears (landmarks 23 – 30), indicated by red
line thickness, are relatively longer than the others for both the females and males. On the other hand,
the credible intervals for the eight landmarks on the eyes (landmarks 4 – 11) are relatively shorter. For
models M2 and M3, it is notable that the growth direction of the four landmarks on the bottom of the
ears (landmarks 29, 30, 25 and 26) is different for females and males, where the females’ ears grow
wider than the males’. The results of models M2 and M3 are more similar to each other than M1 for
both females and males. This observation can be inferred from Table 3 showing smaller differences
in the model selection criteria for M2 versus M3 compared to M1 versus M2.

From now on we focus on the result of the model M2. Figure 4 shows magnified ears and lips.
The main features that are apparent from Figure 4 are that as the faces become older the ears become
larger and the lips become less full (i.e. thinner). Some of the curves have turning points where the
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(a) Female M1 (b) Male M1

(c) Female M2 (d) Male M2

(e) Female M3 (f) Male M3

Figure 3: Front view. Light grey: Procrustes registered face data. Fitted values versus age: red lines.
Credible interval for β̂1: red lines’ thickness. The thickness is proportional to the length of credible
interval. Black dots: the fitted landmarks at age 80.
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(a) Female: ear, top left. (b) Female: ear, top
right.

(c) Male: ear, top left. (d) Male: ear, top right.

(e) Female: ear, bottom
left.

(f) Female: ear, bottom
right.

(g) Male: ear, bottom left. (h) Male: ear, bottom
right.

(i) Female: lips. (j) Male: lips.

Figure 4: Ears and lip (M2).
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behaviour is different before and after the turning point. The age at the turning point of the predicted
curves can be different depending on the landmark position. We mark blue points to indicate age 37
for female and age 52 for male, and a black dot for age 80. Note that the predicted red points were
obtained at equal age intervals. The speed of facial growth varies over age, for example for the top
of the ears of females, (a) and (b), the upper parts of the top ears grow slowly for young women but
those parts grow rapidly for older women. For the lower parts of the top of the ears, the speed of
growth starts slowly and then becomes faster after age 37. For men in (c) and (d), a similar pattern to
the lower parts of the top of the ears appears with the turning age 52. For the bottom of the ears and
lips, (e) – (j) females and males show opposite results in growing speed, where females grow rapidly
as age increases, however males grow slowly as age increases.
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(a) Female: mean configuration.
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(b) Male: mean configuration.
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(c) Female: age.
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(d) Male: age.
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(e) Female: age2.

0.
00

3
0.

00
5

0.
00

7

Landmark No.

Le
ng

th
 o

f c
re

di
bl

e 
in

te
rv

al
 (

ag
e^

2)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

(f) Male: age2.

Figure 5: Length of credible interval (M2).

From Figure 5 (a) and (b) the outer parts of the face have more posterior variability which is shown
in the length of the credible intervals for both ears (landmarks 23 to 30). In contrast near the eyes
(landmarks 4 – 11), the lengths of credibility intervals are short. When faces grow as age increases
for both females and males, the variability near both ears is larger as shown in (c), (d), (e) and (f).

In Figure 6 we see that the predicted centroid size for females is monotonically increasing. On
the other hand male faces grow in size until age 40 then this stops, and so we can see important
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(b) Male.

Figure 6: A scatter plot of age versus centroid size of raw configurations as dots and the centroid size
of predicted configurations as red lines (M2).

differences here between the genders. Of course Figure 6 also illustrates the wide amount of individual
variability in face data, and our model is just a first step in modelling average face shape. There
is considerably more work required in modelling individual or sub-group face data, although our
methodology provides a useful framework in which to develop these ideas.
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