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Summary 51 

 52 

- The N-end rule pathway is a highly-conserved constituent of the ubiquitin 53 

proteasome system, yet little is known about its biological roles.  54 

 55 

- Here we explored the role of the N-end rule pathway in the plant immune 56 

response. We investigated the genetic influences of components of the 57 

pathway and known protein substrates on physiological, biochemical and 58 

metabolic responses to pathogen infection. 59 

 60 

- We show that the glutamine (Gln) deamidation and cysteine (Cys) oxidation 61 

branches are both components of the plant immune system, through the E3 62 

ligase PROTEOLYSIS (PRT)6. In Arabidopsis thaliana Gln-specific amino-63 

terminal (Nt)-amidase (NTAQ1) controls expression of specific defence-64 

response genes, activates the synthesis pathway for the phytoalexin 65 

camalexin and influences basal resistance to the hemibiotroph pathogen 66 

Pseudomonas syringae pv tomato (Pst). The Nt-Cys ETHYLENE 67 

RESPONSE FACTOR VII transcription factor substrates enhance pathogen-68 

induced stomatal closure. Transgenic barley with reduced HvPRT6 69 

expression showed enhanced resistance to Ps japonica and Blumeria 70 

graminis f. sp. hordei, indicating a conserved role of the pathway.  71 

 72 

- We propose that that separate branches of the N-end rule pathway act as 73 

distinct components of the plant immune response in flowering plants. 74 

 75 

 76 

 77 
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Introduction: 84 

 85 

The regulation of protein stability through the Ubiquitin Proteasome System (UPS) is 86 

a central component of cellular homeostasis, environment interactions and 87 

developmental programmes (Varshavsky, 2012), and an important component of the 88 

plant immune system (Zhou & Zeng, 2017). Plants have evolved to recognize the 89 

presence of a pathogen in two main ways. Basal (primary) defence is characterised 90 

by the recognition of pathogen elicitors called Pathogen Associated Molecular 91 

Patterns (PAMPs) by protein receptors known as Pattern Recognition Receptors 92 

(PRR), activating PAMP-Triggered Immunity (PTI) (Boller & Felix, 2009). When this 93 

response is effective, pathogens can deliver effector molecules into the host cells to 94 

weaken PTI and facilitate infection triggering a second layer of defence (Effector 95 

Triggered Immunity; ETI). ETI is typically a qualitative response based on 96 

interference with pathogen effector activity by plant resistance (R) gene products, 97 

localized inside the cell (Dangl & Jones, 2001).  Both PTI and ETI induce similar 98 

immune responses but of different amplitude, with ETI often resulting in a 99 

hypersensitive response (HR). The specific set of mechanisms activated also depend 100 

to a large extent on the life strategy of the pathogen and how adapted they are to the 101 

host. Typically, the plant hormones jasmonic acid (JA) and ethylene (ET) mediate 102 

responses to non-adapted necrotrophs that cause host cell death to acquire nutrients 103 

from dead or senescent tissues (Grant & Jones, 2009; Pieterse et al., 2009) whilst 104 

salicylic acid (SA) plays a crucial role in activating defence against adapted biotrophs 105 

and hemibiotrophs. Recently, regulation of protein stability by the Arg/N-end rule 106 

pathway of ubiquitin-mediated proteolysis has been demonstrated to play a role in 107 

plant responses to biotic stress. The pathway is associated with increased 108 

development of clubroot caused by the obligate biotroph Plasmodiophora brassicae 109 

(Gravot et al., 2016). Induction of components of the hypoxia response, controlled by 110 

Group VII ETHYLENE RESPONSE FACTOR (ERFVII) transcription factor substrates 111 

(ERFVIIs), enhanced clubroot development, indicating that the protist hijacks the N-112 

end rule ERFVII regulation system to enhance infection. In another study, inactivation 113 

of different components of the Arg/N-end rule pathway was shown to result in greater 114 

susceptibility of Arabidopsis to necrotrophic pathogens and altered timing and 115 

amplitude of response to the hemibiotroph Pseudomonas syringae pathovar tomato 116 

(Pst) AvrRpm1 (de Marchi et al., 2016). A correlation between Nt-Acetylation and the 117 

stability of a Nod-like receptor, Suppressor of NPR1, Constitutive 1 (SNC1) was also 118 

reported (Xu et al., 2015). Whilst these reports provide evidence that the N-end rule 119 

pathway is involved in the regulation of plant defence responses, the mechanisms, 120 
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substrates or their function in resistance have not been investigated previously 121 

(Gibbs et al., 2014a). The N-end rule pathway of ubiquitin-mediated proteolysis is an 122 

ancient and conserved branch of the UPS (Gibbs et al., 2014a). This pathway relates 123 

the half-life of substrates to the amino terminal (Nt-) residue, which forms part of an 124 

N-degron (Gibbs et al., 2014a). Destabilizing residues of the Arg/N-end rule are 125 

produced following endo-peptidase cleavage and may be primary, secondary or 126 

tertiary (Figure 1A). Basic and hydrophobic primary destabilizing residues are 127 

recognized directly by N-recognin E3 ligases, in plants represented by two proteins, 128 

PROTEOLYSIS(PRT)6 and PRT1 (Gibbs et al., 2014a). Secondary destabilizing 129 

residues (Glu, Asp and oxidized Cys) can be N-terminally arginylated by arginyl-130 

transferases (ATEs), and tertiary destabilizing residues (Gln, Asn and Cys) can 131 

undergo modifications to form secondary destabilizing residues (Gibbs et al., 2014a). 132 

Oxidation of Cys was shown in vitro to occur both non-enzymically (Hu et al., 2005) 133 

or enzymatically (Weits et al., 2014; White et al., 2017), whereas in higher 134 

eukaryotes deamidations of Gln and Asn are carried out by residue-specific N-135 

terminal amidases (NTAQ1 (Wang et al., 2009) and NTAN1 (Grigoryev et al., 1996) 136 

respectively). This hierarchical structure is conserved in eukaryotes, and 137 

physiological substrates with N-terminal residues representing these destabilizing 138 

classes have been identified (Piatkov et al., 2014). The Usp1 deubiquitylase is 139 

targeted for degradation through the de-amidation branch of the Arg/N-end rule via 140 

NTAQ1 as a consequence of auto-cleavage, that reveals N-terminal Gln (Piatkov et 141 

al., 2012). Proteins with similarities to mouse NTAN1 and NTAQ1 are encoded in 142 

higher plant genomes, in Arabidopsis by AT2G44420 (putative NTAN1) and 143 

AT2G41760 (putative NTAQ1). Expression of these in a de-amidation deficient nta1 144 

mutant of Saccharomyces cerevisiae could functionally restore degradation of the N-145 

end rule reporters Asn-β----galactosidase (β-Gal) and Gln-β-Gal, respectively. ATE 146 

activity was required for this destabilization in yeast (Graciet et al., 2010). Although 147 

the Arg/N-end rule pathway is evolutionarily highly conserved in eukaryotes, few 148 

substrates or functions for different branches have been shown. In plants the Cys 149 

branch of the Arg/N-end rule pathway controls homeostatic response to hypoxia (low 150 

oxygen) and NO sensing through the Met-Cys initiating ERFVII transcription factor 151 

substrates (Gibbs et al., 2011; Licausi et al., 2011; Gibbs et al., 2014b).  152 

In this paper, we investigated the role of distinct branches of the Arg/N-end 153 

rule pathway in the immune response in Arabidopsis and barley (Hordeum vulgare). 154 

We demonstrate that two branches of the pathway, Glu- deamidation and Cys- 155 

oxidation, regulate resistance to the hemibiotroph Pst and the biotroph Blumeria 156 
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graminis f. sp. hordei (Bgh).  We also show a significant role for Gln de-amidase 157 

NTAQ1 in the regulation of molecular components associated with basal responses 158 

to infection, and a role for both NTAQ1 and the known Nt-Cys ERFVII substrates in 159 

resistance related to stomatal function. 160 

  161 
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Materials and Methods: 162 

 163 

Plant material, growth conditions and experimental design 164 

Arabidopsis thaliana seeds were obtained from NASC, UK unless otherwise stated, 165 

including prt6-1 (SAIL 1278_H11), ntaq1-1 (SALK_075466). Mutant ntan1-1 (Q202* 166 

mutation [CAA to TAA]) was obtained from the Seattle TILLING project 167 

(http://tilling.fhcrc.org). Mutant ntaq1-3 was obtained from the GABI-Kat T-DNA 168 

insertion collection (GK_306F08). The pad3-1 null allele was described previously 169 

(Glazebrook & Ausubel, 1994). Mutants are in the Col-0 (Wild Type, WT) accession. 170 

Plants were grown and assays performed in controlled-environment rooms under the 171 

following conditions: 12 h of light (23°C) and 12 h of dark (18°C), 60-70% relative 172 

humidity. Plants were treated between 3 and 4 weeks after germination. Barley plant 173 

genotypes and growth conditions were as previously described (Mendiondo et al., 174 

2016).  175 

 176 

Construction of transgenic Arabidopsis lines ectopically-expressing NTAQ1  177 

To generate Arabidopsis NTAQ1 overexpressing lines, full-length cDNA sequence 178 

(with and without the STOP codon) was amplified from 7 day old seedling cDNA and 179 

recombined into pDONR221. The constructs were mobilized into pH7m34G and 180 

pH7m24GW2, with the GSrhino tag in C-terminal or N-terminal position of the 181 

NTAQ1, respectively (Karimi et al., 2007). Then the constructs were transformed into 182 

Agrobacterium tumefaciens (strain GV3101 pMP90) and Arabidopsis ntaq1-3 using 183 

standard protocols (Clough & Bent, 1998). 184 

 185 

In vitro assay for NTAQ1 activity.  186 

The Arabidopsis NTAQ1 coding sequence was cloned from cDNA and flanked by an 187 

N-terminal tobacco etch virus (TEV) protease recognition sequence (ENLYFQ-X) 188 

using primers ss_ntaq1_tev and as_ntaq1_gw, followed by a second PCR with 189 

as_ntaq1_gw and adapter tev attaching a Gateway attB1 site for sub-cloning into 190 

pDONR201 (Invitrogen). An LR reaction into pVP16 (Thao et al., 2005) leads to an 191 

N-terminal 8xHis:MBP double affinity tag. Assay for NTAQ activity was performed as 192 

described previously (Wang et al., 2009) with slight modifications. The assay was 193 

performed in three technical replicates from three independent NTAQ1 protein 194 

expressions. The activity of NTAQ1 towards QKGSGAW was used as 100% 195 

reference value. 196 

 197 

Analysis of pathogen growth in plant material 198 
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The bacterial suspension was or injected with a needleless syringe into the abaxial 199 

side of leaves or sprayed on the surface of the leaves of 3.5-week-old plants. Pst 200 

DC3000 avrRpm1 and Pst DC3000 were grown overnight at 28°C in Petri plates with 201 

King’s B medium. For analysis of bacterial growth, three leaves per plant of at least 7 202 

plants were injected with a bacterial suspension of 106 cfu/ml (O.D.600nm 0.1= 108 cfu 203 

ml−1) or sprayed with a suspension of 108 cfu/ml. A disc of 0.28 cm2 from each 204 

infected leaf was excised at 96 h, pooled in triplicate, homogenized, diluted and 205 

plated for counting. The inoculation of Botrytis cinerea was performed by pipetting a 206 

drop of 10 µl of a suspension of 5x105 spores/ml to the surface of the leaves. The 207 

response was analyzed by measuring the diameter of the symptoms produced in 208 

three leaves of at least 20 independent plants.  209 

Barley plants were infected with Fusarium and Blumeria as previously 210 

described (Ajigboye et al., 2016). Leaf material of twenty five day old Barley plants 211 

(grown under controlled conditions (20°C/15 °C; 16-h photoperiod; 80% RH, 212 

500 µmol/m2/s metal halide lamps (HQI) supplemented with tungsten bulbs)) were 213 

syringe infiltrated with 0.1 OD Ps pv japonica (obtained from the NCPPB (National 214 

Collection of Plant Pathogenic Bacteria), UK. Leaf material was collected before 215 

treatment and 4 days after inoculation for conductivity assays and RNA extraction. 216 

Production of H2O2 was visualized by staining with 3,3’-diaminobenzidine 217 

tetrachloride as described (Thordal-Christensen et al., 1997; Moreno et al., 2005). 218 

 219 

Stomatal aperture analyses 220 

For stomatal aperture in response to Pst assays leaves from 3.5 week-old plants 221 

were used. In the morning after two hours the lights switch on, peels from abaxial 222 

side of leaves were placed in Petri dishes containing 10 mM MES/KOH pH 6.1, 50 223 

mM KCl and 0.1 mM CaCl2 for 2h in continuous light. Then the buffer was replaced 224 

for a solution of Pst DC3000 (O.D. 0.2: 2x108 cfu/ml). Stomatal aperture was 225 

measured after 0, 1 and 3h of incubation with the bacteria. Stomatal aperture 226 

measurements for ABA sensitivity assays were carried out on detached leaf 227 

epidermis as described previously (McAinsh et al., 1991; Chater et al., 2011). 228 

 229 

Protein extraction and Immunoblotting  230 

Protein extractions and immunoblotting were carried out as described previously 231 

(Gibbs et al., 2011).  232 

 233 

Gene expression analysis 234 
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RNA extraction, cDNA synthesis, semi- and quantitative RT-PCR were performed as 235 

previously described for Arabidopsis (Gibbs et al., 2011; Gibbs et al., 2014b) and 236 

barley (Mendiondo et al., 2016). For primers used see Supplementary Table 4.  237 

 238 

Analysis of nitrate reductase activity  239 

Nitrate reductase was assayed as previously (Vicente et al., 2017) with modifications 240 

described elsewhere (Kaiser & Lewis, 1984). 241 

 242 

Analysis of protein, RNA and metabolites.  243 

Protein extraction, immunoblotting and histochemistry were carried out as described 244 

previously (Gibbs et al., 2011). Quantitative rt-PCR was performed as previously 245 

described for Arabidopsis (Gibbs et al., 2014b) and barley (Mendiondo et al., 2016). 246 

Proteomics (Vu et al., 2016) and metabolomics (Gamir et al., 2012; Sánchez-Bel et 247 

al., 2018) analyses were carried out as previously described.  248 

 249 

Experimental statistical analyses 250 

All experiments were performed at least in triplicate. Statistical comparisons were 251 

conducted with GraphPad Prism 7.0 software. Horizontal lines represent standard 252 

error of the mean values in all graphs. For statistical comparisons we used Student’s 253 

t-test, where statistically significant differences are reported as ∗∗∗ (p < 0.001), ∗∗ (p 254 

< 0.01), ∗ (p < 0.05), and one way Analysis of Variance (ANOVA) with Tukey’s 255 

multiple comparisons test, where significant differences (alpha< 0.05) are denoted 256 

with different letters. 257 

 258 

 259 

  260 
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Results: 261 

 262 

Gln de-amidase and Cys oxidation branches of the Arg/N-end rule pathway 263 

increase basal resistance against Pst DC3000 264 

The role for the Arg/N-end rule pathway in the plant immune response was assessed 265 

using the model bacterial pathogen Pseudomonas syringae pv tomato DC3000 and 266 

T-DNA insertion null mutants of the putative Gln-specific amino-terminal amidase 267 

NTAQ1 (AT2G41760) (Supporting Information Fig. S1a-d) and N-recognin E3 ligase 268 

PRT6 (AT5G02310) genes, and a premature termination allele of the putative Asn-269 

specific amino-terminal amidase NTAN1 (AT2G44420) (Q202*) (Figure 1a). The 270 

entire effect of NTAQ1, NTAN1 and Cys- branches of the Arg/N-end rule pathway on 271 

response to pathogen challenge can be assessed by analysis of the prt6 mutant, as 272 

this removes E3 ligase activity, thus stabilizing all substrates of NTAQ1, NTAN1 and 273 

substrates with Nt-Cys (Figure 1a). Bacterial growth in leaves of prt6 was significantly 274 

lower by 4 days post infiltration with virulent (Pst DC3000) or avirulent (Pst DC3000 275 

avrRmp1) strains, indicating that substrates destabilized by PRT6 action contribute to 276 

the immune response (Figure 1b, Supporting Information Fig. S2a). In comparison, 277 

ntaq1 alleles also showed significantly lower bacterial growth (comparable to that of 278 

prt6) compared to both the ntan1-1 mutant or the wild-type (WT) Col-0 for plants 279 

grown from seed in soil under neutral days (12h light, 12h dark). These results are 280 

opposite to those obtained by de Marchi et al. (de Marchi et al., 2016), who found 281 

enhanced sensitivity to Pst DC3000 of N-end rule mutants prt6 and ate1 ate2 (that 282 

removes ATE Nt-arginylation activity, Figure 1a). To investigate this difference, we 283 

assayed bacterial growth under conditions used by de Marchi et. al. for plant growth 284 

and infection. In their case germination and initial 7 days growth of seedlings was 285 

carried out on agar containing MS media and 0.5% sucrose before transfer to soil, 286 

and following transfer plants were grown under short day conditions (9h light, 15h 287 

dark). We grew Col-0, prt6-1 and ate1 ate2 under these conditions and assayed 288 

bacterial growth 2 and 4 days post infiltration. As for plants grown under neutral days, 289 

we found that by 4 days post-infection, bacterial growth was significantly lower in N-290 

end rule mutants than in WT (Supporting Information Fig. S2b). All subsequent 291 

reported experiments were carried out using plants grown from seed in neutral day 292 

conditions. 293 

Tissue cellular leakage measured 4 days following infection was significantly 294 

lower in prt6 and ntaq1 mutants (Figure 1c, Supporting Information Fig. S1d). 295 

Expression in WT of NTAQ1 and PRT6 was not strongly affected by infection with 296 

either bacterial strain (Supporting Information Fig. 2c). Inoculation with the PTI 297 

Page 10 of 32

Manuscript submitted to New Phytologist for review



For Peer Review

 11

inducer Pst DC3000 hrpA- (with a compromised type-three secretion system), 298 

resulted in reduced susceptibility of prt6 and ntaq1 mutants compared to WT or ntan1 299 

(Figure 1d). Ectopic expression of either Nt- or C-terminally tagged NTAQ1 removed 300 

enhanced resistance of ntaq1-3 (Figure 1e), and the double mutant prt6-1 ntaq1-3 301 

did not show significant difference compared with the single mutants prt6-1 or ntaq1-302 

3 (Figure 1f). It was previously suggested that formation of N-terminal pyroglutamate 303 

by glutaminyl cyclase (GC) might compete with NTAQ1 for Nt-Gln substrates (Wang 304 

et al., 2009), implying that a lack of GC activity could lead to enhanced susceptibility. 305 

We observed a similar response to Pst DC3000 of WT and a mutant of 306 

GLUTAMINYL CYCLASE1 (GC1) (Schilling et al., 2007) (Supporting Information Fig. 307 

S2d), indicating that competition for N-Gln substrates between NTAQ1 and GC1 is 308 

not relevant for the regulation of bacterial growth following infection. To define the 309 

biochemical action of NTAQ1, we analysed the Nt-deamidation capacity of 310 

recombinant Arabidopsis NTAQ1, that showed high specificity for Nt-Gln in 311 

comparison to Nt-Asn, -Gly and-Lys (Figure 1g).  312 

Using mutants in which ERFVII activity was removed (Abbas et al., 2015) 313 

(rap2.12 rap2.2 rap2.3 hre1 hre2 pentuple mutant, hereafter erfVII, and the prt6 erfVII 314 

sextuple mutant), analysis of infections of Pst DC3000 following infiltration showed 315 

no significant influence of ERFVIIs in affecting apoplastic growth of either virulent or 316 

avirulent Pst strains (Figure 2a, Supporting Information Fig. S3a). Bacterial growth 4 317 

days following foliar spray application of Pst DC3000 revealed greater resistance of 318 

both prt6-1 and ntaq1-3 mutants compared to WT or ntan1-1 (Figure 2b, Supporting 319 

Information Fig. S3b), that for both foliar spray and injection required SA (analysed in 320 

double mutant combinations of prt6-1 or ntaq1-3 with sid2-1, SID2 is an 321 

isochorismate synthase required for SA synthesis (Nawrath & Metraux, 1999)) 322 

(Supporting Information Fig. S3c). Stomatal closure is a key component of early 323 

defence response following pathogen attack (Arnaud & Hwang, 2015). We found that 324 

in response to Pst, WT initially closed and then, induced by the pathogen, reopened 325 

stomata, as did prt6-1 and ntaq1-3. The erfVII and prt6 erfVII mutants failed to close 326 

stomata at any point (Figure 2c). ERFVIIs have previously been shown to regulate 327 

stomatal ABA sensitivity via the N-end rule pathway (Vicente et al., 2017), and we 328 

also found ntaq1-3 stomata were hypersensitive to ABA (Supporting Information Fig. 329 

S3d). In response to Pst DC3000 infection following foliar spray application 330 

resistance was significantly lower in the absence of ERFVII transcription factors 331 

(either erfVII or prt6 erfVII) compared respectively to WT or prt6 (Figure 2d). 332 

Response to foliar spray application of Pst DC3000 was associated with a large 333 

decrease in activity and expression of NITRATE REDUCTASE (NR) (Figure 2e,f), a 334 
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reduction previously linked with increased basal resistance against Pst (Park et al., 335 

2011), whereas expression of ADH1, a marker for hypoxia, was only increased 336 

immediately following pathogen challenge (Supporting Information Fig. S3e). 337 

Infection with Pst DC3000 was associated by 24h with increased stabilization of an 338 

artificial Cys-Arg/N-end rule substrate derived from the construct 35S:MC-HAGUS, 339 

that following constitutive MetAP activity is expressed as C-HAGUS (Gibbs et al., 340 

2014b; Vicente et al., 2017) (Figure 2g). To clarify whether plant-derived factors were 341 

solely responsible for the control of the stability of C-HAGUS, we injected the PAMP 342 

peptide flg22, and showed that injection of flg22 was able to stabilize C-HAGUS 343 

(Figure 2h).  344 

 345 

The Arg/N-end end rule pathway has a conserved function in the immune 346 

response 347 

To determine the conservation of Arg/N-end rule pathway role in the immune 348 

response, we tested responses to pathogens in barley, a monocot species distantly 349 

related to Arabidopsis, in which the expression of the PRT6 orthologue gene 350 

HvPRT6 was reduced by RNAi (Mendiondo et al., 2016). Following inoculation with a 351 

strain of Pseudomonas syringae pv japonica with known pathogenicity to barley (Dey 352 

et al., 2014), significantly lower bacterial load was observed in HvPRT6 RNAi leaves 353 

compared to the WT (Figure 3a). Similarly, HvPRT6 RNAi plants exhibited reduced 354 

development and severity of mildew caused by Bgh (Figure 3b,c). In contrast, 355 

susceptibility of HvPRT6 RNAi to the necrotrophic fungi Fusarium graminearum or F. 356 

culmorum, tested on detached leaves was increased compared to the WT (Figure 357 

3d). To assess the response of prt6-1 in Arabidopsis to a necrotroph we inoculated 358 

the mutant and WT with the fungal pathogen Botrytis cinerea but we failed to observe 359 

any significant differences in disease severity, measured as diameter of necrotic 360 

lesions (Supporting Information Fig. S3f). Infection of barley with Ps pv japonica or 361 

Bgh also resulted in accumulation of the artificial Nt-Cys substrate CGGAIL-GUS 362 

(from pUBI:MCGGAIL-GUS, containing the first highly conserved seven residues of 363 

ERFVIIs (Gibbs et al., 2014b; Mendiondo et al., 2016; Vicente et al., 2017)), 364 

therefore Nt-Cys stabilization in response to infection is conserved in flowering plants 365 

(Figure 3e). 366 

 367 

NTAQ1 regulates expression of the camalexin biosynthesis pathway 368 

A shotgun proteomic analysis of total proteins from untreated ntaq1-3 and WT adult 369 

leaves revealed a total of 13 proteins which were significantly differentially regulated, 370 

12 exhibited increased and one decreased abundance in ntaq1-3 (Supplementary 371 

Page 12 of 32

Manuscript submitted to New Phytologist for review



For Peer Review

 13

Table1). The functions of most ntaq1 upregulated proteins are related to oxidative, 372 

biotic and abiotic stresses, including a 2-OXOGLUTARATE OXYGENASE 373 

(AT3G19010) potentially involved in quercetin biosynthesis and targeted by bacterial 374 

effectors (Truman et al., 2006) and DJ-1 protein homolog E (DJ1E) involved in 375 

response to PAMPs (Lehmeyer et al., 2016). Not all ntaq1 upregulated protein were 376 

also upregulated at the level of RNA (Supporting Information Fig. S4). Several ntaq1 377 

over-accumulated proteins are involved in the regulation of Reactive Oxygen Species 378 

(ROS). However, analysis of gene expression of a ROS accumulation marker, the 379 

antioxidant enzyme CATALASE1 (CAT1), and histochemical analysis of the 380 

accumulation of the ROS hydrogen peroxide (H2O2) during infections with Pst failed 381 

to reveal significant differences between the mutants ntaq1 and prt6 and WT 382 

(Supporting Information Fig. S5). Increased tolerance of the mutants which was 383 

associated with less cellular damage required SID2, an isochorismate synthase 384 

required for SA synthesis (Nawrath & Metraux, 1999)), as double mutant 385 

combinations of prt6-1 or ntaq1-3 with sid2-1 showed susceptibility similar to the sid2 386 

single mutant (Supporting Information Fig. S3c). Analysis of phytohormone levels 387 

indicated that there were no differences between ntaq1-3, prt6-1 or WT in untreated 388 

or infected leaves for SA, JA or IAA (Figure 4, Supporting Information Fig. S7). These 389 

results together suggest a functional redundancy of ntaq1 up-regulated proteins with 390 

other antioxidant mechanisms, already documented in the case of the 391 

GLUTATHIONE S-TRANSFERASEs (GSTs) (Sappl et al., 2009), or alternative roles 392 

for ntaq1 up-regulated proteins in plant defense. 393 

One of the identified proteins up-regulated in ntaq1, the phi class GSTF6, 394 

functions in secondary metabolism related to the synthesis of the major Arabidopsis 395 

phytoalexin, camalexin (Su et al., 2011), as do the up-regulated proteins PUTATIVE 396 

ANTHRANILATE PHOSPHORIBOSYLTRANSFERASE (involved in the synthesis of 397 

the camalexin precursor tryptophan (Zhao & Last, 1996)) and IAA-AMINO ACID 398 

HYDROLASE (ILL4), that generates indole-3-acetic acid (IAA) from its conjugated 399 

form (Davies et al., 1999). Another up-regulated protein, GSTF7 was hypothesized to 400 

play a role in camelaxin synthesis based on its induction in the constitutively active 401 

MKK9 mutant (Su et al., 2011). Our analysis of previously published transcriptome 402 

data (de Marchi et al., 2016) comparing gene expression in ate1 ate2 with WT, and 403 

comparing gene expression during Pst infection in Col-0 and ate1 ate2 also showed 404 

increased expression of RNAs encoding camalexin synthesis genes (Supplementary 405 

Tables 2,3). Analysis of transcript expression indicated greater accumulation for most 406 

genes of camalexin synthesis in mature uninfected leaves of ntaq1 and prt6 407 

compared to WT (Figure 4, Supporting Information Fig. S6), including PAD3 408 
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(CYP71B15), that catalyzes the final two steps of camalexin synthesis. Interestingly, 409 

during a time-course following infiltration with Pst DC3000, levels of camalexin-410 

associated transcripts, including GSTF6 and PAD3, as well as GSTF7 increased in 411 

WT but to a lesser extent in mutant leaves (Figure 4). Whilst basal levels of 412 

camalexin in uninfected leaves were similar in mutants and WT they increased to a 413 

greater degree in mutants than WT in response to infection (Figure 4). Mutant plants 414 

showed greater basal levels of indole-3-carboxylic acid (I3CA), a compound 415 

synthesized during the defence response and a potential precursor of camalexin 416 

through the action of GH3.5 (Forcat et al., 2010; Wang et al., 2012) that was also 417 

upregulated at the RNA level in untreated leaves of ntaq1-3 (Figure 4). Camalexin 418 

synthesis is highly interconnected with other pathways of secondary metabolism, for 419 

example it has been reported that vte2 and cyp83a1, mutants of key steps of 420 

tocopherol and aliphatic glucosinolate synthesis pathways respectively, show 421 

increased levels of camalexin (Sattler et al., 2006; Liu et al., 2016). VTE2 and 422 

CYP83A1 showed decreased expression in ntaq1-3 and prt6-1 in both basal and 423 

infected conditions (Figure 4, Supporting Information Fig. S8). Combination of a null 424 

pad3 allele with prt6-1 resulted in a loss of the prt6 enhanced resistance to injected 425 

Pst DC3000 (Figure 5). 426 

 427 

The Arg/N-end rule pathway regulates an age-dependent primed state in 428 

uninfected plants 429 

Previous work showed that hypoxia-associated genes are ectopically up-430 

regulated in prt6 and ate1 ate2 mutant seedlings (Gibbs et al., 2011; Licausi, 2013). 431 

However, it was recently shown that this is age-dependent, that in mature mutant 432 

plants these genes are not up-regulated (Giuntoli et al., 2017). We also observe a 433 

large reduction in expression of hypoxia genes in older prt6 plants and saw a similar 434 

trend in WT for some genes (Supporting Information Fig. S9a). No age-related 435 

differences were found in NTAQ1 expression in either WT or prt6 backgrounds 436 

(Supporting Information Fig. S9B), however GSTF6/7 and PAD3 showed increased 437 

expression with age in prt6-1 and ntaq1-3 plants compared to WT (Figure 6a). In N-438 

end rule mutants, compared to WT we found age-related increases for the SA 439 

responsive PATHOGENESIS RELATED (PR) protein genes PR1 and PR5, while JA 440 

and ET responsive PR3 and PR4 showed no differences (Figure 6b). In barley, 441 

constitutive increase in expression of the SA-responsive genes HvPR1 and Hvß1-3 442 

glucanase (Horvath et al., 2003; Rostoks et al., 2003) was found in leaves of 443 

HvPRT6 RNAi plants, and infection with Bgh did not result in an increase in 444 

expression in HvPRT6 RNAi plants, that was observed in WT plants (Figure 6b).  445 
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  446 

Discussion 447 

 448 

We show here that a role for Arg/N-end rule pathway-mediated immunity is 449 

conserved in flowering plants. In Arabidopsis we demonstrate physiological, 450 

biochemical and molecular roles for N-end rule component NTAQ1 in influencing 451 

basal defence by enhancing expression of defense proteins and synthesis of 452 

camelaxin, and a role for the ERFVII known substrates in influencing stomatal 453 

response, against the hemi-biotroph Pst. We show a role in barley of the Arg/N-end 454 

rule in response to the biotroph Bgh and hemi-biotroph Ps japonica. We suggest that 455 

benefits of increased immunity may not be realized against necrotrophic pathogens 456 

(as shown in the interaction between Fusarium spp. and barley). It has been 457 

documented that camalexin is part of the defence response against the necrotroph 458 

fungus Botrytis cinerea, inhibiting its growth in a dose-dependent manner (Ferrari et 459 

al., 2003). In our experiments, there were no differences in responses of WT and prt6 460 

to Botrytis cinerea suggesting that independently of other mechanisms activated, an 461 

increase in camalexin in prt6 may not reach a level necessary for reduction in fungal 462 

growth. A recent report showed N-end rule mutants, including alleles of prt6, ate1 463 

ate2 and ntaq1 to be in general equal or more sensitive than WT Arabidopsis to a 464 

wide range of bacterial and fungal pathogens with diverse infection strategies and 465 

lifestyles (de Marchi et al., 2016). Our results, in which plants were grown under 466 

either neutral days or under the short-day condition used by de Marchi et al., showed 467 

opposite results (of increased resistance). Our results provide a consistent pattern 468 

across different levels of expression (including enhanced defence gene transcripts 469 

and increased levels of camalexin synthesis proteins in untreated plants, and 470 

consistent phenotypes between Arabidopsis and barley) that indicate a role for 471 

NTAQ1 substrates and ERFVIIs as component of the immune response that 472 

enhance resistance. Therefore, differences in observed phenotypes of N-end rule 473 

mutants in response to infection between our studies remain to be resolved. 474 

 A specific effect for ERFVIIs was observed in the stomatal response to Pst. 475 

ABA is an important component of stomatal response to pathogens (McLachlan et 476 

al., 2014) and stabilized ERFVIIs enhance ABA sensitivity of stomata (Vicente et al., 477 

2017). We observed a large increase in stability of artificial Nt-Cys reporters in both 478 

Arabidopsis and barley. Stabilisation could be caused by shielding of the Nt, or a 479 

reduction of either NO or oxygen. We did not observe an increase in hypoxia-related 480 

gene expression (of ADH1) at the same time as GUS stabilization, however we did 481 

observe a decline in NR activity. Seemingly contradictory to this assertion is the well-482 
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known burst of NO in response to Pst infection (Delledonne et al., 1998). However, 483 

this burst occurs early following infection, well before the reduction in NR activity and 484 

stabilization of artificial Nt-Cys reporters in both Arabidopsis and barley. It has 485 

previously been shown that in the NR null mutant nia1 nia2, that produces very low 486 

NO levels, the NO burst in response to infection is highly reduced (Modolo et al., 487 

2006; Chen et al., 2014). Further experiments would be required to determine a 488 

causative role of reduced NR activity leading to enhanced stabilization. Regardless of 489 

the mechanism of stabilization, the observation of increased stability of Nt-Cys 490 

substrates following infection in both Arabidopsis and barley indicates a conserved 491 

role for modulation of the Cys-Arg/N-end rule pathway, and function for Nt-Cys 492 

substrates, in response to pathogen infection that deserves further investigation. 493 

Enhanced ABA sensitivity and stomatal response to Pst of the ntaq1 mutant also 494 

suggests that Nt-Gln substrate(s) contribute to the stomatal ABA response to 495 

pathogens, and explains why erfVII is more sensitive to Pst than prt6 erfVII (where 496 

NTAQ1 substrates are still stabilized). An opposite effect of ERFVIIs was shown for 497 

interactions of Arabidopsis with the biotroph P. brassicae, as ERFVIIs enhanced 498 

infection indirectly by influencing fermentation (Gravot et al., 2016). These 499 

observations and others (Gibbs et al., 2015), indicate an important role for ERFVIIs in 500 

the plant immune response. 501 

Analysis of the response to Pst DC3000 hrpA-, together with increased 502 

expression of SA-associated defence genes and increased camalexin synthesis, 503 

suggests a role for NTAQ1 in the onset of general and inducible PTI defence. An 504 

age-related increase in SA-related defence gene expression in N-end rule mutants 505 

was not matched by increased SA levels. This suggests a possible role for immune-506 

related MAPK cascade activating MPK3/6 that are sufficient for SA-independent 507 

induction of most SA-responsive genes, including PR1 (Asai et al., 2002); 508 

concomitantly, it has been demonstrated that MPK3 and MPK6 activation triggers 509 

GSTF6, 7 (and DJ1E) protein accumulation, that produces an increase in camalexin 510 

(Xu et al., 2008; Su et al., 2011). The observed increased accumulation of camalexin 511 

in ntaq1 and prt6 provides one explanation for increased resistance of these mutants. 512 

Although expression of camalexin synthesis genes was ectopically upregulated in 513 

uninfected mature leaves of mutants, enhanced camalexin accumulation was only 514 

observed in response to infection. This may be the result of shunting of 515 

intermediate(s) to other secondary metabolism pathways. In line with this, 516 

unchallenged ntaq1 and prt6 plants show greater levels of I3CA. The observation 517 

that mutation of pad3 reverts the enhanced resistance of prt6 highlights the role of N-518 

end rule regulated camalexin synthesis in enhancing the immune response. 519 
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How might NTAQ1 function during development and in response to pathogen 520 

attack? NTAQ1 and PRT6 expression do not change in response to pathogen attack. 521 

NTAQ1 function influences defence gene expression and synthesis of camalexin. We 522 

demonstrate that downstream responses to NTAQ1, measured as responsive gene 523 

expression, are modified during development (though the expression of NTAQ1 (and 524 

PRT6) transcripts were not affected by aging) suggesting that NTAQ1 substrate(s) 525 

may show an age-dependent increase in abundance. Following protease cleavage 526 

their activity would be revealed in the ntaq1 mutant, where they would remain 527 

ectopically stabilized. Following protease cleavage to reveal Nt-Gln NTAQ1 528 

substrates should be degraded in WT plants. In this case, in mature WT leaves 529 

down-regulation of NTAQ1-linked protease activity (or NTAQ1 activity) in response to 530 

pathogen attack could result in substrate stabilization. Stabilized NTAQ1 substrate(s) 531 

(or uncleaved protease targets that provide substrates) may then function to enhance 532 

gene expression associated with defence genes and camalexin synthesis, both 533 

resulting in an enhanced basal immune response.  534 

Our data support a conserved role of the Arg/N-end rule pathway in 535 

influencing plant immune responses. Barley contains one NTAQ1 gene 536 

(MLOC_70886) (Mayer et al., 2012). Manipulation of expression or activity of this 537 

gene will be required to understand whether an NTAQ1 activity is also required in 538 

defence in barley. An important goal of future work will be to identify Nt-Gln 539 

substrates that influence the immune response. Although NTAQ1-related genes are 540 

present in all major groups of eukaryotes, only a single example exists of a 541 

biochemical role for this enzyme and an associated substrate (Usp1) (Piatkov et al., 542 

2012). There is already evidence for Nt-Gln-bearing peptide fragments derived from 543 

proteins of diverse functions present in the plant METACASPASE-9 degradome 544 

(Tsiatsiani et al., 2013), suggesting that substrates for NTAQ1 exist. Our results 545 

establish new components of the plant immune response, and offer new targets to 546 

enhance resistance against plant pathogens.    547 

 548 
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Figure legends: 803 
 804 

Figure 1: Genetic characterization of the role of the N-end rule pathway in the 805 

apoplastic response to Pst DC3000 806 

a. Schematic of the Arg/N-end rule pathway. Single letter codes for residues are 807 

shown. PRT6; PROTEOLYSIS6, ATE; arginyl transferase, NTAN; Nt-Asn amidase, 808 

NTAQ; Nt-Gln amidase, PCO; PLANT CYSTEINE OXIDASE. Black ovals represent 809 

protein substrates. 810 

b. Quantification of Pst DC3000 growth in WT and mutant plants 2 and 4 days after 811 

bacterial infiltration (106 cfu ml−1). 812 

c. Ion leakage measurement in leaves 4 days after infiltration with Pst DC3000 (107 813 

cfu ml−1). 814 

d-f. Quantification of bacterial growth in WT and mutant plants 4 days after bacterial 815 

infiltration (106 cfu ml−1). 816 

g. Enzyme activity of bacterially produced NTAQ1 against peptides with different Nt-817 

residues (- = GAGSW). Data represent means ± SEM. Statistical differences were 818 

analyzed by ANOVA followed by Tukey test (P < 0.05) or Student’s t-test *p <0.05, 819 

**p < 0.01, ***p < 0.001. 820 

 821 

Figure 2: Genetic characterization of the role of the N-end rule pathway in the 822 

stomatal response to Pst DC3000 823 

a-d. Quantification of Pst DC3000 growth in WT and mutant plants 4 days after 824 

bacterial infiltration by injection (106 cfu ml−1) or bacterial foliar spray application (108 825 

cfu ml−1). 826 

c. Stomatal aperture response to applied Pst DC3000 in WT and mutants. 827 

e. Total NR enzyme activity following foliar application of Pst DC3000 (108 cfu ml−1). 828 

f. Expression of NIA1 and NIA2 RNA following leaf infiltration with Pst DC3000. 829 

g. Stabilisation of C-HAGUS protein and expression of MC-HAGUS and ACTIN RNA in 830 

WT Arabidopsis plants sprayed with Pst DC3000 (108 cfu ml−1). 831 

h. Stabilisation of C-HAGUS 24h after injection with flg22 (1µM) or H2O. CBB, 832 

Coomassie Brilliant Blue. Data represent means ± SEM. Statistical differences were 833 

analyzed by ANOVA followed by Tukey test (P < 0.05) or Student’s t-test *p <0.05, 834 

**p < 0.01, ***p < 0.001. 835 

 836 

Figure 3: Analysis of N-end rule function in barley 837 

Page 24 of 32

Manuscript submitted to New Phytologist for review



For Peer Review

 25

a. Quantification of Ps pv japonica growth in HvPRT6 RNAi and WT (cv. Golden 838 

Promise) (null segregant from the same transformation event) plants 4 days after 839 

bacterial infiltration (108 cfu ml−1). 840 

b,c. Measurement of total and leaf area infected in WT and HvPRT6 RNAi barley 841 

plants with Blumeria graminis f. sp. hordei (Bgh). 842 

d. Necrotic lesions on WT and HvPRT6 RNAi barley plants 5 days following 843 

inoculation with Fusarium  graminearum or F. culmorum. 844 

e. Stabilisation of CGGAIL-GUS and expression of MCGGAIL-GUS and TUBULIN 845 

RNA in barley following infection with Ps pv japonica (108 cfu ml−1) (4 days) or Bgh 846 

(14 days). CBB, Coomassie Brilliant Blue. Data represent means ± SEM. Statistical 847 

differences were analyzed Student’s t-test *p <0.05, **p < 0.01, ***p < 0.001. 848 

 849 

Figure 4: Influence of NTAQ1 and PRT6 on camalexin and associated 850 

secondary metabolism in response to infiltration with Pst DC3000 (106 cfu 851 

ml−1).  852 

Schematic representation of the camalexin synthesis pathway highlighting time 853 

courses of changes in RNA expression (QrtPCR) or metabolites in WT, ntaq1-3 or 854 

prt6-1 in response to bacterial infection. IAOx, indole-3-acetaldoxime; IAN, indole-3-855 

acetonitrile; GSH, glutathione; DHCA, dihydrocamalexin acid; IAA, indole-3-acetic 856 

acid; I3CA, indole-3-carboxilic acid; GH3.5, IAA-AMIDO SYNTHASE; PAD3, 857 

PHYTOALEXIN DEFICIENT 3. Data represent means ± SEM. Student’s t-test *p 858 

<0.05, **p < 0.01, ***p<0.001. 859 

 860 

Figure 5: Genetic interaction between pad3 and prt6 influences the apoplastic 861 

response to Pst DC3000. 862 

Quantification of bacterial growth in WT and mutant plants 4 days after bacterial 863 

infiltration (106 cfu ml−1). Data represent means ± SEM. Statistical differences were 864 

analyzed by ANOVA followed by Tukey test (P < 0.05). 865 

 866 

Figure 6: Age-dependent priming of transcriptomic changes during 867 

development and defence. 868 

a. Relative expression of genes of camalexin synthesis in WT and mutant plants.  869 

b. Relative expression of transcripts encoding defence-related genes in WT and 870 

mutant plants. 871 

c. Relative expression of HvPR1 and Hvβ1-3 glucanase in WT and HvPRT6 RNAi 872 

barley plants infected with Blumeria graminis f. sp. hordei.  873 
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Data represent means ± SEM. Statistical differences were analyzed by Student’s t-874 

test *p <0.05, **p < 0.01, ***p < 0.001. 875 

 876 

 877 
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