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Abstract

In this article, we highlight an issue that arises when using multiple b-values in a model-based
analysis of diffusion MR data for tractography. The hon-mono-exponential decay, commonly
observed in experimental data, is shown to induce over-fitting in the distribution of fibre
orientations when not considered in the model. Extra fibre orientations perpendicular to the main
orientation arise to compensate for the slower apparent signal decay at higher b-values. We
propose a simple extension to the ball and stick model based on a continuous Gamma distribution
of diffusivities, which significantly improves the fitting and reduces the over-fitting. Using in-vivo
experimental data, we show that this model outperforms a simpler, noise floor model, especially at
the interfaces between brain tissues, suggesting that partial volume effects are a major cause of the
observed non-mono-exponential decay. This model may be helpful for future data acquisition
strategies that may attempt to combine multiple shells to improve estimates of fibre orientations in
white matter and near the cortex.

Introduction

Acquiring diffusion MRI (dMRI) data with multiple b-values (multi-shell%) is a requirement
of g-space imaging experiments [1]. In tractography applications of dMRI, however, it is
common practice to use single shell data with a typical b-value of around 1,000s/mm2.
Increasing the b-value reduces signal to noise but enhances the angular contrast, which can
be beneficial for tractography. Better angular contrast, for a given noise level, can reduce the
uncertainty on the estimates of fibre orientations and increase our ability to distinguish fibres
that cross at acute angles [2].

Since high b-values give us good contrast and low b-values good signal, it seems natural that
we should be combining multiple shells in the same acquisition in order to obtain more
accurate local estimates of fibre orientations. An optimal acquisition scheme that finds a
good balance between signal and contrast will likely consist of multiple carefully positioned
shells. One problem with using multiple b-values is that the diffusion decay curve (signal
versus b-value) along any given gradient direction has been shown to follow a non-mono-
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1Throughout this article, we shall not distinguish between multiple b-values and multiple shells, although strictly speaking, multi-shell
implies that diffusion weighting is organised into concentric spheres, which is not a requirement of the modelling proposed in this
paper.
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exponential decay (e.g. [3] and many others). Departure from exponential decay has been
observed in both grey and white matter in vivo [4, 5] and ex vivo [6], and appears at around
b=1,500s/mm?2. Interestingly, non-mono-exponential decays have been observed both along
and across axonal fibres (e.g. [4]).

The biophysical sources of non-mono-exponential decay in diffusion data are still unclear
[7]. Models that account for it include bi-exponential fitting of slow and fast diffusion [8],
stretched exponential fitting [9], Kurtosis imaging [10] and statistical models (continuous
distributions of diffusion coefficients) [11]. These models are in general more motivated by
empirical fitting with parsimony than by biophysical interpretations. Another family of
approaches include explicit modelling of restriction effects based on analytic solutions to the
diffusion equation [12-18].

Modelling non-mono-exponential diffusion decay can be useful for a better characterisation
of diffusion in tissues. It may, for example, provide more specific and interpretable markers
of tissue integrity. In the context of tractography, where the focus is mainly on fibre
orfentation as the most relevant microstructural feature, accounting for non-mono-
exponential decay is important for a different reason: avoiding over fitting. Consider the 2D
simulation shown in figure 1. The red curves represent signal profiles for 3 different b-
values generated using a single-fibre model with multiple diffusion coefficients (the
Gamma-distribution model proposed in this article, see the Methods section). In this model,
each signal curve contains weighted contributions from infinitely many diffusion
coefficients, so when increasing the b-value the lower diffusion coefficients contribute more
to the signal, leading to an apparent s/ower decay. Fitting a single fibre model with a single
diffusion coefficient [19] to this data, the decay curves fail to capture the shape of the
simulated signal. In particular, the signal predictions a/ong the fibre (the direction of lowest
signal) show faster decays for the single diffusivity model. Adding extra fibres to this mono-
exponential model captures the slower decay at higher b-values. Intuitively, restricted
diffusion across the extra fibres compensates for the faster decay along the main fibre in the
mono-exponential model. This over-fitting can have catastrophic consequences in the
context of tractography. The extra orientation parameters, whilst important for fitting the
data (and hence may not be excluded by model selection), can lead to many false positive
connections from tractography.

In this article we propose a simple solution to this problem. We introduce a model that
allows for a continuous distribution of diffusion coefficients using a Gamma distribution.
The model only has one extra parameter compared to the mono-exponential model. This is
very useful in tractography applications that use high angular resolution diffusion imaging
(HARDI). Due to scanning time constraints, many gradient directions are acquired, but only
a few shells may be afforded. In contrast, experiments that use many b-values along two or
three gradient directions can afford to use more complex (and arguably more adequate)
decay models. The use of a Gamma distribution of diffusivities leads to a very simple signal
equation. Apart from parsimony and simplicity, another benefit of this model is that by re-
interpreting the parameters of the Gamma distribution in terms of mean and variance of
diffusivities, it is possible to use a shrinkage prior on the variance parameter [2], which is
equivalent to getting back to the simpler mono-exponential model in the case where the data
do not support the more complex model (e.g. single shell data or multi-shell but low b-value
data).

It is important to stress here that the over-fitting problem introduced above and in figure 1 is
an issue for model-based approaches to tractography. More specifically, models that
explicitly represent fibre orientations require an assumption as to the form of the signal
decay as a function of the fibre orientation. If this fibre response kernelis assumed to decay
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mono-exponentially, we get spurious orientations and over-fitting to multi-shell data. In
contrast, model-free approaches may have similar or different issues related to multi-shell
data, depending on the assumptions that they make and on the goals that they are trying to
achieve. In this paper, we will focus on a model-based approach (the ball and stick model
[19]), but we will come back to this important point in the discussion.

Using in-vivo experimental data, we show that the Gamma-distribution model dramatically
decreases over-fitting. In particular, voxels that are at interfaces between brain tissues show
the most improved fits. This suggests that the apparent departure from mono-exponential
decay, at least in our data, is mainly driven by partial volume effects. However, another
possible explanation for an apparent non-mono-exponential decay can be that the signal
reaches the noise floor [20]. Our attempt to account for this possibility is twofold. Firstly, a
Riciannoise model is used throughout all the experiments instead of the Gaussian model.
Secondly, we compare our Gamma distribution model to a simpler noise floor model that
has the same number of extra parameters. We show that the Gamma distribution model
mostly outperforms the noise floor model, particularly in voxels at interfaces between tissue
types, and even more so when we include a smaller shell (b=300 s/mm?, 20 directions). As
the smaller shell contains more cerebro-spinal fluid (CSF) contamination, our results suggest
that partial volume effects contribute significantly to the departure from mono-exponential
decay.

The model(s)

The following is an extension of the ball and stick model [19] to multiple diffusivities.

The ball and stick signal attenuation A; has the following generic form:

A=2=(1- 3 foexp(-bid)+ Y fiexp(-bid(g! w))

S0

In the above equation, Sy is the signal with no diffusion weighting, S;the signal with a
diffusion gradient applied along the unit vector g;with b-value b; The {f} are volume
fractions for the different fibre compartments. Each compartment is modelled using a
degenerate stick-like tensor (i.e. rank=I) oriented along {x,}. Isotropic diffusion is modelled
using the same diffusion coefficient as non-isotropic diffusion and is represented by a
separate compartment that attempts to explain any signal that is not captured by the sticks.
Notice that all the diffusion-related decays in this model have the general form exp(=badg)
where g is equal to 1 for the isotropic compartment and to cos(@)? for the anisotropic
compartment, where @is the angle between diffusion gradient and fibre orientation. We
refer to this model as mono-exponential because it has a single diffusion coefficient;
although strictly speaking it is a sum of exponentials along any given gradient orientation.
This model is only exactly mono-exponential along the major fibre orientation (assuming a
single anisotropic compartment). If we consider now a continuous Gamma distribution of
diffusivities, the above model can be re-written:

A=[JApd)ydd (2]

Where p(d)~I"(a,B) is a Gamma distribution with shape parameter a and scale 1/p. The
above integral can be evaluated analytically for the generic decay term of the form

{exp(=bag)}:
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[ exp(-bde)pd)da= [ exp(-bde) Lo exp(-d prad= (ﬂfbg) )

Plugging this final result into equation [1], and replacing {g} by the appropriate quantity in
each compartment, we get the following formula:

== ﬁ)(ﬁ+b) M f[

[4]
B+big! )’ J

Note that fitting a continuous distribution of diffusivities that is not bounded between 0 and
infinity may seem artificial. However, the effective contributions of higher diffusivities die
out exponentially due to the use of the Gamma function.

Now, in the results section we are going to compare this statistical model to a model that
includes a noise floor compartment. This is similar in spirit to the maximum-likelihood
approach introduced for the diffusion tensor model in [20]. We model the noise floor using a
scalar parameter that accounts for the fraction of the signal that does not decay with
diffusion weighting. This model has been suggested previously to account for physical
compartments where water is frapped so the diffusion coefficient is effectively zero [21].
Here we do not attempt to make the distinction between this possibility and an actual noise
floor, as both capture the same feature in the data. The model writes:

A=fo+(1 — fo)A [5]

Where A is the mono-exponential signal and 7 /s a scalar between 0 and 1. Notice here that
fpdoes not depend on the b-value or the gradient direction whereas A does.

Comments on the model and its inversion

The above model, which has already been suggested in the context of isotropic diffusion by
Yablonski et al [22], uses a continuous Gamma distribution. An alternative statistical model
has also been suggested by the same group [11], this time using a truncated Gaussian
distribution (as diffusivities cannot be negative). We have chosen the Gamma function
because of its simplicity; the integral is analytic and the final signal expression fast to
evaluate. The parameters a and p of the Gamma distribution are related to the mean and
variance of the distribution as follows:

Mean=ca/f3
Variance=q /3>

When the variance parameter is equal to zero, the model simplifies to the original ball and
stick with a single scalar diffusion coefficient. In our implementation, we use Bayesian
Monte Carlo sampling [19] to estimate posterior distributions on all model parameters. We
use a shrinkage prior (automated relevance determination — A.R.D.) on the standard
deviation of diffusivities (sqrt{a/B%}) [23], which is conceptually similar to the prior on
fibre compartments that we have used previously [2]. The latter allows us to select the
number of fibre compartments that is supported by the data; the former allows us to
determine whether a single diffusion coefficient is sufficient to fit the data, on a voxel by
voxel basis. In practice, during the sampling, we resort to the mono-exponential model
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whenever sqrt{a/p?} is smaller than 10> mm?/s. We found using simulations that below
this value, the two models give the same signal decay to within a relative error of 107 or
lower. For all other parameters in the model, we use the same priors as described in previous
publications [2, 19]. We also use the same ARD prior on the f,parameter in the noise floor
model. All model parameters are initialised with non-linear maximization of the Likelihood
function using Levenberg-Marquardt optimisation with Gauss-Newton Hessian
approximation [24]. A Rician noise distribution was assumed with an unknown variance
parameter that was also fitted to the data using the same sampling technique.

Data and pre-processing

Single-shot echo planar diffusion-weighted MRI data were acquired from a single healthy
volunteer on a Siemens 3T Verio using a 12-channel head-coil. Sequence parameters were
as follows: Twice re-focused Pulsed Gradient Spin-Echo sequence [25], 55 contiguous axial
slices, isotropic (2x2x2mm) resolution, TR/TE=9000/115ms. Three sets of 60 diffusion
weighted volumes were acquired with 3 different b-values (1/2/3)x103 s/mm? using the
same gradient orientation table (isotropically distributed on the sphere). Additionally, 14
non-diffusion weighted (b=0) volumes were acquired: 11 at the beginning of the experiment,
and one before each set of 60 diffusion weighted volumes. A Gradient-echo-based field map
was also acquired using the following parameters: (3x3x3mm) voxels, TR=548ms,
TE1=5.19ms, TE2=7.65ms, Flip Angle=60deg.

The diffusion data were pre-processed using tools from FSL 4.1 [26, 27]. No eddy-current
correction was applied. This is because we noticed that the high b-value images were better
aligned priorto the correction, given the high tissue contrast compared to the lower b-
values. Examining the data visually, it seemed that the eddy-currents were compensated for
by the twice-refocused strategy. Field map-based EPI distortion correction was applied
using FUGUE [28]. Head motion was estimated using a FLIRT affine transformation with 6
degrees of freedom (translations and rotations) [29]. Each diffusion-weighted volume was
first registered to the nearest b0, then to the very first b0. The full transformation (including
EPI distortion unwarping, and the two rigid-body transformations to the b0s) was then
applied to every volume independently. The quality of these registration steps was visually
assessed. The gradient orientations were rotated to account for the rigid component of these
transformations [30].

We used Bedpostx (part of the FDT tool in FSL) to fit the ball and stick model on a voxel by
voxel basis. Bedpostx generates samples from the posterior distribution on all model
parameters using the Metropolis Hastings sampling algorithm as described in [19]. We fitted
three fibre compartments per voxel. Additionally, we fitted the Gamma distribution model
with a shrinkage prior on the standard deviation of diffusivities (sqrt{a/g?}) using the same
number of fibre compartments, as well as the noise floor model with a shrinkage prior on 7.
compartment where the prior was uniform between 0 and 1. In all the results below, we
consider the mean posterior distribution for our parameter estimates.

Gamma model

A comparison between the standard ball and stick model and our extension using a Gamma
distribution of diffusivities shows a significant reduction in over-fitting. Figure 2 illustrates
this with maps of the mean posterior distribution on the volume fractions. Of particular
interest are the volume fractions for the second and third fibre within every voxel. We can
see that for the mono-exponential model, the shrinkage prior fails to supress the extra
compartments. This is especially true near the cortex, but happens even in regions where we
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expect a single fibre to be sufficient (e.g. in the medial sections of the corpus callosum). The
third fibre (in blue) is mainly present at the interface between grey and white matter (or grey
matter and CSF), and may reflect partial volume effects. By contrast, the Gamma
distribution model successfully selects the appropriate number of fibres per voxel.
Quantitatively, the proportion of brain voxels with a volume fraction above 0.05 was equal
to 50% (resp. 26%) for the second fibre, and to 21% (resp. 5%) for the third fibre when
using the mono-exponential (resp. Gamma) model. In other words, only half of the voxels
identified as containing (at least) two crossing fibres with the ball and stick model were
considered so in the Gamma model. This proportion dropped to a quarter for three-way
crossings.

Next we examined the spatial histograms of the parameters from the anisotropic
compartments (volume fractions and orientations). The first row in figure 3 shows
histograms of the volume fractions. From that figure, we can see that the Gamma and noise
floor models have similar distributions. We can also see that the second and third
compartments have higher volume fractions for the mono-exponential model, particularly in
the range around a fraction of ~0.1, indicating over-fitting. The second row in figure 3
represents histograms of the dispersion of the fibre orientation around its mean. The
dispersion is a scalar value that represents the uncertainty on the fibre orientation encoded in
the posterior distribution. It is defined as 1-A, where A is the highest eigenvalue of the
average dyadic tensor of all posterior sample orientations. This leads to a scalar between 0
(low dispersion/uncertainty) and 1 (high dispersion/uncertainty). The mono-exponential
model clearly shows much /fower dispersions on the second and third fibre compartments.
This is consistent with the over-fitting problem, and indicates that the shrinkage prior has
not been able to discard those extra-compartments, as they helped fit to the high-b-value
data. Note that the bump for these two fibre populations nearer higher dispersion levels
corresponds to voxels where these two compartments have been suppressed by the ARD
criterion.

Comparison to the noise floor model

In order to compare the Gamma model with the (conceptually) simpler noise floor model,
we calculated a map of relative sum of squared errors (SSE) in model fit. This map, shown
in figure 4, displays the following quantity: (SSE_f0 — SSE_gamma)/
(SSE_fO+SSE_gamma), i.e. the relative difference between the two model fits. In voxels
with a negative (resp. positive) value, the noise floor (resp. Gamma) model has fower
relative SSE between the data and the model prediction. Bearing in mind that both models
have the same number of parameters, this gives us a balanced estimate of relative goodness
of fit. We can see that the noise floor model performs better in voxels on the edges of the
brain, while the Gamma model has lower relative error in voxels at interfaces between tissue
types, possibly supporting partial volume effects (see also Figure 8 and related comments in
the discussion). Figure 5 shows spatial maps of the extra parameters from the Gamma model
(standard deviation of diffusivities) and the noise floor model (7). The maps show that these
parameters are “needed” in the same brain areas.

An informative, but not often used, way to look at the data is to plot the signal as a function
of the squared dot product between the gradient and fibre orientations. Figure 6 shows these
plots for an example voxel in the genu of the corpus callosum (medial section). The data are
plotted on a logarithmic scale, which means that a mono-exponential model with a single
fibre predicts a near-linear relationship2, which can be contrasted with the nonlinear

2Because of the isotropic pool, a plot of the log-data as a function of cos(e)2 is not linear. However, in highly anisotropic voxels (e.g.
where £>0.7), the relationship is almost perfectly linear as shown in figure 6.
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behaviour of the two other models. Adding two extra fibre compartments produces clear
over-fitting for the standard model, and a slight over-fitting for the noise floor model. This
effect relates to the intuitive explanation that we have given in figure 1. Two extra crossing-
fibres are utilised by the mono-exponential model to mould the signal by reducing the
attenuation along the main fibre. The continuous Gamma model is able to produce a better
fit without extra fibres by correctly accounting for the non-mono-exponential decay. Recall
that a shrinkage prior was used on the second and third fibre for all three models. Unlike the
mono-exponential model, the Gamma model produces a smooth curve, consistent with it
only fitting a single fibre due to the shrinkage prior.

Do we benefit from multi-shell data?

In the introduction, we suggested that combining multiple shells may allow us to benefit
from both the high contrast of high-b shells and high SNR or the low-b shells. While a full
study of optimal schemes for choosing the number and position of shells is out of the scope
of this paper, we present a simple proof-of-concept comparison to examine the benefit of
multiple shells in our experimental data. We compared 60 directions multi-shell data (i.e.
3x20 directions) to 60 directions single shell data using the following bootstrap procedure.
From our complete set of 3x60 directions multi-shell data set, we randomly selected 20 non-
parallel orientations from each shell, such that the total 60 orientations cover the same
gradient set as each single shell data. We repeated this bootstrap process 100 times to
produce histograms of volume fractions and orientation dispersions after fitting a 3-fibres
ball and stick model. We used the Gamma model for the 3x20 multi-shell data and the
mono-exponential model for the single shell data. Figure 7 shows the results for 2 voxels
where we expect a single fibre orientation (genu of the corpus callosum) and a 3-way fibre
crossing (centrum semiovale) respectively. The figure shows that in the corpus callosum
voxel, all data sets provide the same results, fitting the correct number of fibres and having a
similar uncertainty on the orientation. However, in the centrum semiovale, the single shell
data fail to recover crossing fibres, favouring a simpler model with a weak single fibre
combined with an isotropic diffusion profile. This is not surprising, as in 3-way crossing
voxels, the single-shell signal profile is quasi-spherical, favouring a large contribution from
the isotropic pool. The multi-shell data, on the other hand, was able to yield lower
uncertainty and up to 2 (resp. 3) fibre fits in 86% (resp. 42%) of the cases (threshold on
volume fraction=0.05). A whole brain analysis using one of the 20x3 multi-shell schemes
showed that a 3-way crossing was detected in 0.45% of the voxels for the multi-shell data,
compared to 0.04, 0.14 and 0.15% in the b1000, 2000 and 3000 single-shell data
respectively. Note that the full data set contained 5% of 3-way crossings. The voxels
detected from the reduced data sets were a subset of these 5%.

Discussion

In this paper we suggested a simple strategy for using multi-shell data in the context of
tractography. The benefits of multi-shell data for estimating fibre orientations are still
unclear; the balance between gain in contrast and loss in signal needs to be investigated in a
dedicated study. Here we argue that when multi-shell data are used for tractography, they
require extra care, as standard models of fibre orientation fail and tend to over-fit by creating
artificial fibre crossings. It should be noted, however, that all the discussion so far has been
centred on the ball and stick model. Many alternative strategies to map diffusion data onto
axonal orientation exist; it is therefore appropriate to discuss here multi-shell data in the
context of these other strategies.

Most methods for mapping fibre orientations from diffusion data attempt to reconstruct an
orientation distribution function (ODF), a function on the sphere whose peaks align with
axon orientation(s). Multiple peaks are generally thought to represent multiple potential
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axon orientations. The most common ODFs of interest are the diffusion ODF (dODF) and
the fibre ODF (fODF). The former represents the probability of diffusion along any given
direction, and the latter the probability that fibres are aligned along any given axis. In the
case of the ball and stick model, the fODF is explicitly modelled as a weighted sum of sticks
(rank-1 tensors). An alternative approach is to estimate the fODF directly from the data
using deconvolution [31-33]. However, most of the deconvolution approaches, whilst not
assuming a specific form for the fODF, need to incorporate a model for the single fibre
response function [31, 34-36] (i.e. a model for the signal profile when the fODF is a stick).
Therefore, the same argument on accounting for non-mono-exponential decay applies: in
order to cope with multi-shell data, the fibre response function needs to be able to model
non-mono-exponential decay. A slightly different approach is followed in Tournier et al.
[33], where the fibre response function is obtained from the most anisotropic voxels in the
data and described “non-parametrically”, using rotational/spherical harmonics. In this
approach, the harmonics are polynomial functions with no radial components; i.e. the
method assumes single-shell data.

Methods that reconstruct the diffusion rather than the fibre ODF also exist. The diffusion
spectrum imaging (DSI) technique attempts to recover the full diffusion propagator [37]
from g-space data and then obtain the dODF by radial integration of the propagator. Since
DSl is based on a Fourier inversion of g-space data, multiple b-values are a requirement of
the method (Cartesian sampling, as opposed to concentric shells, being more appropriate in
this case). While no explicit model for multi-exponential decay needs to be assumed in DSI,
it is still important to account for the noise floor issue. In fact it is an even bigger problem in
DSI because of the high b-values required, and the need for acceleration to reduce imaging
time (which also may affect the noise distribution). Different approaches have been
proposed to filter noisy signal intensities; for instance, a Hanning filter is employed in [37],
and statistical thresholding using a Gamma distribution of the intensities is proposed in [38].
All these approaches suppress signals that are close to the noise floor, effectively reducing
the angular resolution of the resolved propagator.

Another popular method for estimating the dODF is the Qball imaging approach [39], which
also attempts at reconstructing the dODF directly from the data with no assumption as to its
form (model-free). The original Qball formalism is based on a spherical integral of the
signal within a shell. Therefore, in principle, it is designed for single-shell data. An
extension of Qball has recently been proposed by Aganj et al. that integrates over multiple
shells [40]. This method makes a multi-exponential assumption on the signal decay with b-
value. Aganj et al. showed results for a bi-exponential fitting and found that when a mono-
exponential assumption is used instead for multi-shell acquisitions, the dODFs are less sharp
and, depending on the b-values used in the acquisition, their maxima may not necessarily
coincide with the true fibre orientations. Notice that this is not the same effect as in our
model-based approach, whereby non-mono-exponential decay produces spurious
orientations.

Apart from fODF and dODF-based techniques, other variants have been introduced to
estimate fibre orientations from dMRI data. A different deconvolution approach has been
introduced by Jansons and Alexander [41] that aims to estimate the angular structure of the
diffusion propagator that persists across radial contours (PAS-MRI). Although, to our
knowledge, it has not yet been shown in the literature, we anticipate that the deconvolution
kernel of PAS should be able to capture multi-exponential behaviour, given that the
appropriate filtering parameter is chosen. Similar to PAS, the diffusion orientation transform
(DOT) is an ODF variant [42] that transforms the signal to probability profiles of diffusion
displacements. Although DOT was initially designed under a mono-exponential model
assumption, it can be extended to a multi-exponential version. Using the mono-exponential
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assumption in multi-shell data, the profiles will appear broader [42], reducing the angular
resolution of the method. Furthermore, this assumption may lead to spurious peaks, if high
b-values are utilised [43].

Another point of discussion is our choice of the statistical model (Gamma distribution) that
captures the non-mono-exponential decay. This is somewhat independent of the choice of
the model for capturing orientation per-se. Alternatives to our approach include, as we have
mentioned in the introduction, the popular bi-exponential model, Kurtosis imaging (second
order Taylor expansion of the log-data as a function of b-values), the stretched exponential
model, and the more biophysical models (e.g. restricted diffusion in cylinders). We have
chosen the simplest possible extension to our previous model, i.e. by adding one single
scalar parameter. The bi-exponential model, in contrast, has two more parameters than the
mono-exponential. It is likely that this model may give better fits to data acquired using
multiple b-values (e.g. more than 10) along any given direction. In fact, it has been shown
that when several orders of magnitude in b-values are used, even the bi-exponential model
fails to fit the data accurately [16]. However, tractography applications typically require
dense coverage of the sphere with gradient orientations. The number of shells that can be
acquired is therefore limited by scan time. We think that in such situations, it is crucial to
have fewer parameters for capturing the feature that is implied by the few extra shells.

It is interesting to see that an even simpler model, that of a noise floor, was able to fit the
data (although see figure 4). This point is important and needs further investigation: are we
measuring truly non-exponential decay, or are we simply not modelling the effect of noise
correctly? Answering this question will require further improvements in the reconstruction
of multi-channel acquisitions, as well as a better noise model. In this paper, we have used
the adaptive-combined reconstruction method [44], as opposed to the more standard sum-of-
squares method, and we fitted the data using a Rician noise assumption. Yet, it was not
sufficient to overcome the over-fitting issue. We are currently investigating other
reconstruction strategies that may improve on this issue. We would also like to point out that
the noise-floor problem is not only an issue for multi-shell data; it can affect even single-
shell data, especially at high b-values. For example, Jones et al [20] has already shown that
noise floor can give biased estimates of the apparent diffusion coefficient and fractional
anisotropy in diffusion tensor imaging.

Comparing the fits from the noise floor and the statistical models, we have found that the
Gamma model has smaller errors mainly at interfaces between tissue types. This suggests
that the statistical model is better at modelling partial volume effects. To test this claim, we
acquired an extra (smaller) shell at b=300 s/mm? (25 evenly distributed directions). At such
diffusion weighting, the signal still contains a significant contribution from the cerebrospinal
fluid (CSF); thus, combining this data with the higher shells exacerbates any partial volume
effects with CSF. Figure 8 shows histograms of relative SSEs differences between the two
models. We can clearly see that when adding the extra shell, the statistical model performs
even better (compared to the noise floor model), suggesting that the voxels where the
statistical model is favoured do indeed contain partial volume effects.

This last observation may seem at odds with our Gamma model. CSF has an isotropic
contribution to the signal, yet we found that it may relate to the apparent non-mono-
exponential behaviour. Why then use a Gamma model for both iso- and anisotropic pools?
Perhaps the Gamma distribution model may be more appropriate for the isotropic
compartment than for the anisotropic (restricted) compartment. We tested this hypothesis by
comparing the Gamma model on both compartments to a Gamma model on the isotropic
compartment and mono-exponential model on the anisotropic compartments. We kept the
same number of parameters by constraining the mean diffusivity of the isotropic

Magn Reson Med. Author manuscript; available in PMC 2013 December 01.



1X31-)lew1a1ems 1X31-){Jewiaremsg

1Xa1-)lewarems

Jbahdi et al.

Page 10

compartment to equal the diffusion coefficient of the anisotropic pool. Interestingly, we
found no difference in the model fits between these two models. They performed equally
well, and outperformed the noise floor model in the same way, including with the b=300
shell. We do not intend to make biophysical claims on the basis of only 3 shell data, given
the long history of experimental results that exhaustively sample b-space. Our purpose in
this paper is to fit fibre orientations without over-fitting in orientation-space. As these two
models have the same performance in this respect, we do not favour either of them.

Finally, let us come back to the question of whether multi-shell data can be a better solution
for tractography. It will certainly be beneficial in the future to investigate the optimal
positioning of the different shells in multi-b-values acquisitions. This is not a trivial question
though. For example, it is likely that higher b-value shells may benefit from more angular
coverage than lower shells. Also, it may be more optimal to acquire different shells using
different (optimised) echo times, to maximise the SNR of each acquisition (T, decay could
be accounted for by acquiring separate b=0 images for each shell). In our data, we found that
multi-shell outperformed single-shell data when comparing 60 directions data sets.
However, this may not necessarily be the case had we compared data with a denser coverage
of the sphere, different sets of b-values or different SNRs. Ultimately, a simulation study is
needed to quantify the effects of these parameters and their interactions, and derive a
strategy for designing shell positioning.
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Figure 1.

Illustration of the over-fitting using two-dimensional simulations. Top left: signal profile for
a single fibre model using Gamma distributed diffusivities and 3 b-values = (1,2 and 3)x103
s/mm2. Right panel: black lines are maximum likelihood fits of the mono-exponential model
with increasing number of crossing fibres (1,2,3 and 4). Notice how increasing the number
of fibres artificially moulds the predictions to the simulated data, even though the data was
generated using a single fibre. Bottom left: distribution of diffusivities for the red (Gamma)
and black (dirac) signals.
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mono-exponential Gamma distribution

Figure 2.

Maps of the mean posterior volume fractions for the second (yellow-red) and third (blue)
fibre compartments. All maps are thresholded at 0.05. The mono-exponential model fits a
second fibre everywhere except in the ventricles and parts of the corpus callosum. A third
fibre is fitted at the interface between CSF and brain tissue. The aternative Gamma
distribution model only supports crossing fibres in white matter areas.
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Histograms (across voxels) of the volume fractions (top) and fibre orientation dispersion
(bottom) for the three fibre compartments. The dispersion is calculated from posterior
sample orientations. Higher values mean higher uncertainty (see main text). The three
models give similar histograms for the first fibre. For the second and third fibre, we can see
that: (1) the Gamma and noise floor models give similar histograms; and (2) the mono
model has lower uncertainty and a peak of volume fractions that corresponds to the voxels

with overfitting.
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-1%+1% +10%

Figure4.

Relative difference in sum-of-squared errors between data and predictions from Gamma and
noise floor models. Error is smaller for the Gamma models in the red voxels, and smaller for
the noise floor model in the blue voxels. This map is thresholded at 1%. We can see that the

Gamma model gives better fits on the interface voxels between grey and white matter. Note

that the two models have the same number of parameters.
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Figure5.
Maps of the extra parameters. Top: Standard deviation of the Gamma distribution in
diffusivities (sqrt(a)/ in mm?2/s); Bottom: noise floor parameter (fy).
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Figure®6.

Data and model fits from a voxel in the medial section of the genu of the corpus callosum.
Top: 1 fibre fit, bottom: 3 fibres fit. The noise level is defined as the average data from a
group of voxels outside the brain. Log-data is plotted as a function of the angle between the
main fibre orientation predicted by each model and the gradient orientations for the three
shells. We can see clear overfitting in the mono model, and a little overfitting in the noise
floor model.
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Figure7.

Performance of 60 directions single versus multi shell. The histograms show distributions
across 100 bootstrap multi-shell data sets with 3x20 directions (see main text). The colored
vertical bars are parameter estimates for the b1000 (blue), b2000 (black) and b3000 (red)
single shell data. The Gamma model was fitted to the multi-shell data, and the equivalent
results in the corpus callosum voxel. However only in the case of the multi-shell data were
we able to fit a 3-way crossing (indicated by lower uncertainty and higher volume fraction).
Uncertainty is shown in degrees.
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Figure8.
Histograms of relative difference in sum-of-squared error (SSE) between noise floor model
and Gamma distribution model. The figure shows the same histogram from fitting the
models to data with (red) and without (black) a smaller shell (b=300 s/mm?, 20 directions).
Negative (resp. positive) SSEs correspond to areas where the noise floor model performs
better (resp. worse) than the Gamma model. It is clear that adding a small shell improves the
fit where the Gamma model outperforms the noise floor model, suggesting a better
modelling of partial voluming with CSF. The left hand-side of the histogram remains

unchanged.
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