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Abstract

Throughout the nervous system information is commonly coded in activity distributed

over populations of neurons. In idealized situations where a single, continuous stimulus

is encoded in a homogeneous population code, the value of the encoded stimulus can be

read out without bias. However in many situations multiple stimuli are simultaneously

present, for example, multiple motion patterns might overlap. Here we find that when
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multiple stimuli that overlap in their neural representation are simultaneously encoded

in the population, biases in the read-out emerge. Although the bias disappears in the

absence of noise, the bias is remarkably persistent at low noise levels. The bias can

be reduced by competitive encoding schemes or by employing complex decoders. To

study the origin of the bias, we develop a novel general framework based on Gaussian

Processes, that allows for an accurate calculation of the estimate distributions of

maximum likelihood decoders, and reveals that the distribution of estimates is bimodal

for overlapping stimuli. The results have implications for neural coding and behavioral

experiments on, for instance, overlapping motion patterns.

Introduction

In many brain areas information is distributed across neurons using population codes

in which many neurons respond collectively to a single stimulus. By pooling across

neurons, population codes allow for accurate estimation of a stimulus from the popu-

lation response even when neural noise is present. Given its ubiquity, understanding

population coding is believed to be crucial to understand coding of information in

the brain. Numerous studies have quantified, among other issues, the role of the tun-

ing curves (Zhang and Sejnowski, 1999), noise-correlations (Sompolinsky et al., 2002;

Moreno-Bote et al., 2014), heterogeneity (Shamir and Sompolinsky, 2006; Ecker et al.,

2011; Shamir, 2014), and stimulus multiplicity (Orhan and Ma, 2015) on the coding

accuracy.

However, coding accuracy as measured by the variance in the estimates is not the

only performance metric. When the same stimulus is repeatedly estimated from a

population response and these estimates are averaged over many trials, a systematic

difference between the mean estimated value and its true value might remain; this is

called bias.
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In many idealized cases biases are absent from population coding estimation schemes.

First, in the limit of low noise, estimators such as the maximum likelihood decoder

can be shown to be unbiased under quite general conditions (Kay, 1993). Secondly,

the coding problem might have an intrinsic symmetry that abolishes bias, that is,

over- and underestimation of the stimulus are equally likely, e.g. the estimation of

the orientation of a visual grating from a homogeneous population using a homoge-

neous decoder. Either condition by itself is sufficient to warrant unbiased estimation.

For instance, while for one dimensional direction estimates the maximum likelihood

decoder is sub-optimal at high noise, it remains unbiased (Xie, 2002).

Yet, in perception biases are common. To explain these, theoretical studies typi-

cally rely on mechanisms that modulate the neural response to break the homogeneity

of the population without adjusting the decoder, such as occurs with adaptation (e.g.

Stocker and Simoncelli, 2006; Seriès, Stocker, and Simoncelli, 2009; Cortes et al., 2012;

Wei and Stocker, 2015) or with contextual changes in the neural tuning (e.g. Schwartz,

Hsu, and Dayan, 2007; Keemink and van Rossum, 2016).

In contrast to those studies we show that biases can occur even in homogeneous

population codes. We consider the case where multiple variables are simultaneously

coded in a population, such as occurs in visual cortical area MT when two overlap-

ping transparent random dot motion patterns are presented. We find that in these

situations biases in estimation emerge, even though the decoder has full knowledge of

the encoding process. Furthermore, when multiple overlapping stimuli are presented,

the number of perceived stimuli can be fewer than the number presented, resembling

psycho-physical findings (Treue, Hol, and Rauber, 2000; Edwards and Greenwood,

2005).

To explain these findings we develop a mathematical framework based on Gaussian

Processes - an extension of multivariate Gaussian distributions - which is generally
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applicable to maximum likelihood decoders for systems with Gaussian noise. We use

this framework to calculate and understand the implications of the bias for neural

computation and perceptual biases.

Results

To examine the emergence of biases we consider a population of neurons described by

their firing rates. The average response of each neuron is given by its tuning curve

f(s), where s is a vector of stimulus parameters encoded by the neuron. Gaussian

white noise νi with mean zero and variance σ2 is added to the response, so that on a

given trial the firing rate ri of neuron i is

ri = fi(s) + νi. (1)

Commonly one studies the case where s is one-dimensional. Here we consider the

coding of two stimuli s = (s1,s2) simultaneously. For concreteness we consider the

coding of two overlapping random dot motion patterns in area MT; in this case s1

and s2 represent the two motion directions, Fig. 1A. The response of MT neurons

to such a stimulus has been modeled by the linear average or the sum of the tuning

curves to the individual stimuli (van Wezel et al., 1996; Treue, Hol, and Rauber, 2000).

Under this assumption, the mean firing rate of neuron i is

fi(s) = gi(s1) + gi(s2) (2)

where gi(s) is the bell-shaped tuning of neuron i to a single stimulus (Methods).

Competitive interactions between the responses are considered below.

Decoding of the neural response

We draw stochastic responses from the above model (see Methods for details) and

then decode the stimulus parameters from the noisy population response using the
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Figure 1: A) Basic encoding-decoding setup. The stimulus consists of two overlapping

moving random dot patterns. A population of neurons codes for the two simultaneous

stimuli. The task is to estimate the stimulus parameters, here the motion directions

ŝ1 and ŝ2, from the noisy population response. B) Maximum likelihood estimates

across a number of trials. For a wide opening angle s = (−0.2, 0.2), the distribu-

tion of estimates follows approximately a 2D Gaussian distribution. True stimulus

(red plus) and average estimate (green X) overlap. C) For narrow opening angles,

s = (−0.02, 0.02), the distribution of estimates falls into two roughly equal parts, a

Gaussian-shaped distribution and a distribution along the line ŝ1 = ŝ2. True stimulus

and average estimate now diverge, i.e. the estimate is biased. The sum and difference

angles are indicated by η and θ, respectively. (all angles in radians).
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maximum likelihood (ML) decoder. That is, estimates of the stimulus ŝ are obtained

by finding the stimulus vector that was most likely given the noisy neural response

vector r,

ŝ = argmaxs logP (r|s).

The hat indicates estimates throughout. Because the encoder loses the identity of the

two stimuli, we additionally impose that s2 ≥ s1.

We first consider the case when the opening angle is large, so that the two peaks

in the tuning curve are far apart (|s1− s2| � w, where w is the tuning width). In this

case the stimulus estimates are centered around the true stimulus value, approximately

according to a two-dimensional Gaussian distribution, Fig. 1B. The true stimulus value

(cross) and the mean estimate (marked by the X) coincide.

However, when the motion directions are instead almost the same so that the peaks

in the population response partly overlap, the distribution radically changes shape,

Fig. 1C. Now the estimates fall essentially in two categories: Either the estimates are

strongly positively correlated, and cluster on the diagonal where ŝ1 = ŝ2; in this case

the most likely explanation for the neural response is that the two motion directions

were the same. Alternatively, on other trials the estimates are negatively correlated,

and the angular difference in the motion direction is over-estimated. The mean of

neither component of the distribution coincides individually with the true stimulus

vector, nor does the mean of the full distribution; the estimate is biased.

To more easily understand these results we transform the coordinates and describe

the system in the sum and difference of the angles. The sum of the angles, η = s1 +s2

follows a Gaussian distribution and is unbiased as dictated by the rotational invariance

of the setup. More interesting, however, is the opening angle Θ = s2 − s1. Estimator

bias b is defined as the difference between mean estimate and true stimulus value,

b(Θ) = 〈θ̂〉 − Θ, where the angular brackets denote the average over trials of the
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estimates θ̂. The estimator bias is shown as a function of true stimulus value Θ in

Fig. 2A. When the opening angle Θ is small, the bias is repulsive (the apparent angle

is larger than the true value). As the opening angle increases, the bias changes sign

and becomes attractive, before reducing to zero for even larger angles, Fig. 2A.

One can wonder whether the repulsive bias is simply caused by imposing s2 ≥ s1.

But this would not explain the biphasic nature of the bias nor the bimodal decoding

distribution. Furthermore, if the ordering of s1 and s2 were randomly assigned, the

estimate distribution would become tri-modal with some estimates lying on the diag-

onal, and others clustering in clouds on the anti-diagonal on either side of the origin.

On average one would find 〈s1〉 = 〈s2〉, i.e.
〈
θ̂
〉

= 0, irrespective of the true angle, so

it would be a strongly biased estimator.

In summary, in this relatively simple coding problem biphasic biases emerge. Next,

we attempt to understand why this occurs.

Emergence of bias

To understand the emergence of the bias we analyze the Maximum Likelihood esti-

mator in detail. For independent Gaussian noise the maximum likelihood estimate

is equivalent to minimizing the Mean Squared Error (MSE) E between observed and

expected response

ŝ = argminsE(s)

where E(s) =
∑N

i=1[ri − fi(s)]2. The emergence of the bias and the underlying

distribution of estimates can be understood from the mean square error that the

estimator seeks to minimize. The MSE is a smooth curve that varies from trial to

trial, Fig. 2B. This collection of curves constitutes a Gaussian Process (a generalization

from a Gaussian distribution to a distribution of functions).
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Figure 2: Decoding biases of the opening angle and the underlying decoding distribu-

tion.

A) Bias in estimation of the opening angle as a function of its true value, showing both

a repulsive bias at small angles and a attractive one at larger angles. The curve was

calculated using the Gaussian Process approach given in the Methods. Also shown

for comparison are simulations (dots) averaged over 1000 trials per point.

B) Samples of the Mean Square Error in case the true opening angle is zero. The min-

ima of the MSE correspond to the estimates of the maximum likelihood estimator.

While the average MSE has a minimum at the true value (black curve), on a given

noisy trial the estimate can either be exactly θ = 0 (shown in purple), or repulsed

away from it (shown in green). The black crosses indicate the estimates, i.e. the angle

that minimizes the error, on the individual trials.

C) Distributions of estimates that underly the bias. The true stimulus value is indi-

cated with the red plus on the x-axis, the mean estimate is denoted with the green

cross. When the true stimulus value is Θ = 0 the bias is repulsive (left), when the

true stimulus value is Θ = 0.25 the bias is attractive (middle), and when Θ = 0.5 the

bias is virtually absent (right). (all angles in radians; see Methods for parameters).
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To write the MSE as a Gaussian Process (Williams and Rasmussen, 2006) we first

split the MSE up as

E(θ) = Emean(θ) + Enoise(θ) + C, (3)

where C is a stimulus independent term, and θ denotes the candidate stimulus1.

The stimulus dependent part consists of two terms: the first term is the mean error

Emean(θ) =
∑N

i=1[fi(θ)− fi(Θ)]2 that is identical across trials and attains its minimal

value of zero at the true stimulus value, Θ. The second term is the noise term

that varies from trial to trial Enoise(θ) = −2
∑N

i=1 νifi(θ), with covariance Σθ,θ′ =

4σ2
∑N

i=1 fi(θ)fi(θ
′).

Of particular interest is the limiting case of Θ = 0. While somewhat contrived

as the presented motion directions are identical in that case, exact results can be

obtained in this limit that approximately hold for any small Θ. In this limit Emean(θ)

is lowest at θ = 0, as expected, Fig. 2B, thick black curve. Because of symmetry in

the combined tuning curves, Eq. 7, not only all odd derivatives, but also the second

derivative of Emean is zero. Thus the dependence is quartic, Emean(θ) ∼ θ4, i.e. very

flat, and for small opening angles, this error term hardly changes as the estimate is

altered.

As the noise term Enoise combines the signals from overlapping tuning curves it is

smooth. It is also symmetric in θ, however its second derivative is non-zero. Depending

on the noise it is in leading order either an upward or downward curved parabola

centered around the origin. For small θ this parabola will dominate over Emean.

Therefore, if the Enoise parabola is U-shaped and thus with a minimum at θ = 0, the

total MSE also has a global minimum there, Fig. 2B, purple curves. If, on the other

hand, the noise term has a maximum at θ = 0, the global minimum will be repulsed
1As a reminder to the reader: Θ denotes the true stimulus value, θ the possible

candidate estimates, and θ̂ the estimate (the θ which is most likely).
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away from the true solution, Fig. 2B, green curves. As a result the distribution shows

a sharp peak at 0, and a smeared peak further away, Fig. 2C (left). Furthermore,

when the encoded angle Θ = 0, exactly half of the estimates will be at θ = 0 (i.e. fall

on the diagonal in Fig. 1C) and the other half will not. As Θ increases, the probability

to find estimates θ̂ = 0 will decrease and the second peak will gain more mass, Fig. 2C

(middle and right). The net effect is that this will first decrease the repulsive bias,

then turn into an attractive bias, and finally the bias disappears.

The Gaussian Process approach can be used to calculate the probability of esti-

mates P (θ̂|Θ) in a numerically exact way without relying on simulations. Briefly, for

a given true stimulus Θ, we run over all candidate stimulus estimates θ and find the

probability that it minimizes E (see Methods). This gives an accurate and noise-free

estimation of the decoding distribution, and thus of the decoding bias. This method

was used to create Fig. 2A+C, and compares well to explicit stochastic simulations

over many trials (dots in Fig. 2A).

In an elegant, but little known, paper Amari and Burnashev (2003) calculated

the bias analytically in the case of Gaussian white noise (see Methods). While our

approach does not yield the analytical form of the distribution, it has as advantage

that it allows for more general encoding and noise models as we examine below.

The bias depends on the neural noise level and other system parameters. In the

limit of small angles the bias can be found by estimating the expected location of the

minima of the Mean Square Error (crosses in Fig. 2B). As shown in the Methods this

gives for the tuning curves used,

b(0) = c

√
σ

A
.

4

√
w3

N
. (4)

where σ is the std.dev. of the neural noise, w is the tuning width, A is the maximum

neural response amplitude, N is the number of neurons and c ≈ 1.2 is a numerical

constant. Therefore to, say, half the bias, one needs 4 times smaller noise, or 16
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times as many neurons. The second effect of the noise level is a shift in the angle

at which repulsion becomes attraction, i.e. where the curve in Fig. 2A crosses the

x-axis. The location of this transition point is approximated by the bias at zero, as

the derivative of the bias at the origin equals b′(0) = −1, Fig. 2A. The reason for

this is that the estimator 〈θ̂〉 is a smooth, symmetric function in Θ, so for small Θ,

〈θ̂〉 ≈ const+O(Θ2), and so b′(0) = −1.

Interestingly, as the noise is reduced, the distribution of estimates remains bimodal.

While in the limit of zero noise the bias disappears (as the theory of maximum like-

lihood estimation states), the transition in the limit of small angles is not due to a

collapse of P (θ̂) into a single Gaussian distribution, rather it is due to the two peaks

in the distribution of estimates moving closer and closer together.

Intuitively, the bias emerges due to the interaction two effects: 1) for small opening

angles the two stimuli are interpreted as being just a single stimulus leading to at-

tractive bias, and 2) when the stimulus is correctly perceived as being two directions,

the angle estimate is broad and tends to overestimate, leading to a repulsive bias.

Effect of noise correlation and heterogeneity

Next we examine how the bias depends on the neural noise, tuning curve heterogeneity,

and encoding model; all these effects can be included in the Gaussian Process approach

without additional computational cost or complexity. First, we consider the effect of

correlations in the neural noise. In studying the coding of single stimuli it was found

that correlations in the neurons’ noise, so called noise correlations, limit the ability to

average across neurons. This effect was particularly important when the spatial scale

of the correlations, ω, matched the tuning curve width (Sompolinsky et al., 2002; Wu,

Amari, and Nakahara, 2002). A similar effect is found here, Fig. 3A: for uncorrelated

noise (small ω) the bias can be reduced by using larger neural populations as in Eq. 4,
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Figure 3: The dependence of bias on the encoding model: noise, heterogeneity, and

competitive coding.

A) The bias at zero angle as a function of the noise correlation length across different

neural population sizes. Increasing the number of neurons reduces the bias only for

small correlation lengths (independent noise).

B) The bias at zero angle as a function of tuning curve heterogeneity when tuning

curves widths were drawn from a log-normal distribution so that the distribution of

widths has a standard deviation σw, and a mean of 1/2. Heterogeneity decreases the

bias (solid curve). Dashed curve: control case when the bias is averaged across a set

of homogeneous populations (see text).

C) Bias in the estimates in a competitive coding model where the response of any

neuron to two stimuli equals the maximum response to the individual stimuli for the

same noise level as used in Fig. 2A (note the difference in scales). Only at high noise

levels (σ = 1), an attractive bias manifests itself (inset).
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but for correlated noise it can not. The bias is maximal for intermediate correlation

length. The bias diminishes (but remains finite) for large correlation lengths in which

case all neurons co-vary across trials.

Next, we consider heterogeneity among the tuning curves, which again from uni-

variate coding studies is known to improve population coding accuracy (Shamir and

Sompolinsky, 2006; Ecker et al., 2011). Similarly, heterogeneity resolves some of the

degeneracy at Θ = 0 that underlie the bias. To examine this, we drew the widths of

the individual tuning curves from a log-normal distribution. Indeed, increasing the

heterogeneity among the tuning curves decreased the bias, Fig. 3B. The bias reduc-

tion could be simply the result of the inclusion of a few neurons with very narrow

tuning curves in the population that allow a precise estimate. To check against this

explanation we calculated the average bias from a set of homogeneous populations as∫
b(θ)P (w)dw, with P (w) the distribution of widths and b(θ) from Eq. 4. This has

only a weak effect on the bias, Fig. 3B (dashed line), instead it is the heterogeneity

that underlies the bias reduction.

Bias reduction strategies

Bias reduction by the encoder

The estimation bias depends on how the stimuli are encoded in the neural response.

Above it was assumed that the neural response to two simultaneous stimuli was the

linear sum of the responses to the individual stimuli. While there is some experimental

evidence for such a linear interaction, it is known that this type of interaction limits

coding accuracy (Orhan and Ma, 2015). Furthermore, in other studies evidence for

more competitive interaction has been found in area MT (Britten and Heuer, 1999),

as well as other visual cortices (Gawne and Martin, 2002; Lampl et al., 2004; Oleksiak

et al., 2011). Such interactions have been modeled using a maximum-like interaction,
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so that instead of Eq. 2, the response of a single neuron to two simultaneous stimuli

is

fi(s1, s2) = max[gi(s1), gi(s2)]. (5)

Since under this encoding model the mean term in the MSE is not quartic but

quadratic in θ, one would expect a lower bias. Indeed, when the simulations are

repeated for this encoding model, the bias is still present, but it is substantially

smaller, Fig. 3C. The repulsive bias is now approximately linear in the noise and the

attractive component of the bias is smaller and becomes only apparent at high noise

levels (inset). Thus we find that the encoding model is an important determinant of

the size of the bias, and these findings suggest a functional role for the competitive

interaction observed experimentally.

Bias reduction by the decoder

We wondered whether the bias is unavoidable or is perhaps particular to the ML

decoder. First, we use a Bayesian decoder, which calculates the full distribution of

possible stimulus estimates given the response and the noise model, PB(θ|r). For a flat

prior for Θ, this distribution is proportional to P (r|θ). Whereas the maximum likeli-

hood decoder takes the maximum of this distribution, using a square loss function the

Bayesian estimate equals the expected value of this distribution, θ̂B =
∫
θPB(θ|r) dθ

(Kay, 1993; Salinas and Abbott, 1994). This estimator minimizes the mean square

error in the estimate. We find that with a Bayesian decoder the bias is slightly more

pronounced, Fig.4A.

Can one design a bias-free decoder? If there is a smooth, monotonic, potentially

noisy, relation between an estimate and the true stimulus, one can hope to compensate

the bias. While here the bimodal distribution of estimates makes this more challeng-
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Figure 4: Effect of decoder on bias. A) Bias of a Bayesian decoder (orange). Shown for

comparison, the ML decoder used throughout (black). The biases are of comparable

magnitude and share the biphasic character. B) The bias after applying an optimized

non-linearity on the individual estimates (green); the bias of the ML-decoder is shown

for comparison (black). Inset: the non-linearity found. Dashed line shows the identity

function. (Both Θ and θ̂ were discretized into 100 bins, regularization parameter

λ = 10−6).
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ing, we wondered if nevertheless one can compensate for the ML-decoder bias. Is there

a non-linear mapping replacing each estimate of the ML-decoder θ̂ with a transformed

estimate t(θ̂), that reduces the bias across the range of possible encoded angles?

After discretizing both Θ and θ̂, the bias after correction (b = 〈t(θ̂)〉−Θ) becomes

b(Θj) =
∑

i P (θ̂i|Θj)ti − Θj, where ti = t(θ̂i). The goal now is to find the vector

t = (t1, t2, . . .) so that b(Θj) = 0 for all j. This is a linear algebra problem of the

classic form Ax = y, where x (here t) has to be found for known A (here P ) and y

(here Θ). Because the problem is ill-conditioned, we use singular value decomposition

to find t. Furthermore, as the entries of t diverge, we apply Tikhonov regularization.

As a result of the regularization the bias won’t be exactly zero, but the norm of t is

limited (Methods).

With this procedure the bias is substantially reduced compared to the uncorrected

estimator, Fig.4B (green vs black curve). The non-linearity found to achieve this

fluctuates smoothly around zero (inset). The intuition is that the oscillations make

the non-linearity highly sensitive to small changes in P (θ̂|Θ), while maintaining the

correct mean. Reassuringly, for larger estimates, where bias was small anyway, no

non-linearity is needed and t(θ̂) = θ̂ (inset, dashed line). However, the bias reduction

comes at a cost: because of the oscillations in t, the estimates vary wildly from trial

to trial. For the case illustrated the variance in the estimate is some 300 times larger

than for the ML-decoder for a fourfold bias reduction. As the regularization is relaxed,

the bias can be made smaller, but the amplitude (and frequency) of t increase, and

hence the variance grows.

Bias and estimator efficiency

The quality of population code readout is not quantified by the bias alone, but also

by the amount of trial-to-trial variations in the estimates, i.e. the variance in the
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Figure 5: Variance and efficiency of the maximum likelihood decoder and its depen-

dence on encoded angle and neural noise.

A. Variance in the estimates of the ML decoder (solid curve) depends non-

monotonically on the encoded angle. Dashed curve:the Cramèr-Rao bound with the

bias taken into account - no estimator can achieve a lower variance.

B. Variance in the estimates of the ML decoder (solid curve) as a function of the neu-

ral noise comparing large and small encoded angles. At small angles the strong bias

alters the expected square dependence on noise into linear behavior. Dashed curves

correspond to the Cramèr-Rao bound with the bias taken into account.
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distributions in Fig. 1B+C. The variance of the estimates from the ML decoder follows

directly from the distribution of estimates P (θ̂|Θ) that our approach yields. The

variance in the estimator is plotted in Fig. 5A.

For large opening angles Θ, the estimate distributions are Gaussian with a width

proportional to the neural noise, Fig. 2C, right; and the bias plays a minor role. As

expected from the Fisher Information, the variance of the estimator is proportional

to the square of the neural noise, Fig. 5B, red curve. However, for small opening

angles the bias has a profound effect on the estimator, causing a linear dependence

on the noise, Fig. 5B, black curve. This can be understood as follows: The estimator

variance at Θ = 0 can be approximately found by describing the estimate distribution

P (θ̂|Θ) as a peak at zero and a Gaussian, Fig. 2C. The variance is similar to the bias

squared, and thus its parameter dependence follows from squaring Eq. 4. Therefore

in contrast to the behavior at large angles, the variance in the estimates is only linear

in the neural noise.

The minimal variance any estimator can achieve is limited by the Fisher Informa-

tion through the Cramèr-Rao bound which states that the variance of any estimator

obeys (Methods)

var(θ̂) ≥ [1 + b′(Θ)]2

I(Θ)
, (6)

where b′ is the derivative of the bias, and the Fisher Information I(Θ) is given by

Eq. 9, Methods. The efficiency of an estimator expresses how close it comes to this

bound. The resulting Cramèr-Rao bound is indicated by the dashed curve in Fig. 5A.

While the Fisher Information is proportional to the neural noise squared σ2, see

Eq. 9, the Cramèr-Rao bound at small opening angles is only linear in the neural noise,

Fig. 5B, dashed curves. The reason is that for small angles the Fisher Information

goes to zero (Eq.9), but the bias’ derivative at the origin equals b′(0) = −1. Hence at
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small angles, both numerator and denominator in the Cramèr-Rao bound (Eq. 6) go

to zero. The bound does therefore not diverge and a linear dependence on the neural

noise remains. For the parameters used, the ML always achieves an efficiency ≥ 80%.

As an aside, here another advantage of the Gaussian Process approach shows. With

simulations the bias and in particular its derivative are hard to calculate accurately,

even using a large number of realizations, Fig. 2A dots. However, the numerically

exact method to calculate the bias allows for a precise calculation of the bias and its

derivative.

Discussion

Traditionally, theoretical studies of the accuracy limits of population codes have fo-

cused on estimator variance. Whenever biases have been studied theoretically, they

have typically been explained from inhomogeneities in the neural encoding. Here we

find that when multiple stimuli are encoded simultaneously in a relatively simple cod-

ing problem, substantial biases arise with standard decoders. That biases occur is in

itself should not be surprising. Apart from cases where symmetry rules out biases,

the absence of biases can be proven in the limit of low noise, but in general an ML

decoder will not be unbiased, nor efficient (Kay, 1993; Seriès, Stocker, and Simoncelli,

2009; Pilarski and Pokora, 2015). Yet, the rich structure of the bias in these simple

models, including its biphasic character and its relative persistence at low noise, is

surprising. The reason for the bias is the bimodal distribution of decoding estimates.

The bias will disappear in the limit of zero noise, but it diminishes only slowly as

noise is reduced (proportional to the square root of the std. dev. of the neural noise,

Eq. 4). The persistence of the bias at low noise stands in contrast to other studies

of bias and efficiency where below a critical noise level the decoders abruptly become

optimal (Kay, 1993; Xie, 2002). Simulations show that the shape of the bias curve and
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the distribution of estimates is very similar when instead of Gaussian noise, Poisson

or multiplicative Gaussian noise is considered (not shown), but the Gaussian process

approach can not be used in the Poisson case.

This particular coding problem has been studied twice before. Orhan and Ma

(2015) calculated the Fisher information but did not consider decoder biases. Amari

and Burnashev (2003) showed that for uncorrelated noise a singularity in the Fisher

Information leads to a bound on 〈(θ̂ − Θ)2〉 = var(θ̂) + b2(Θ) for any decoder. The

Gaussian Process approach numerically matches their analytical results, but also al-

lowed us to study correlated noise, non-linear encoding and heterogeneity.

While the ML decoder and the Bayesian decoder have a strong bias, it can be ar-

bitrarily reduced by a non-linear mapping. However, this comes at the cost of a much

increased variance (inline with Amari and Burnashev, 2003) and the compensating

decoder is probably too complicated and fragile for biological implementation and ad-

dition it would need to be made dependent on noise level. The neural implementation

of decoding mechanisms is currently not clear, although it has been argued that it is

straightforward to implement ML decoders neurally (Deneve, Latham, and Pouget,

1999; Jazayeri and Movshon, 2006). One could wonder for which coding problems ML

decoders are biased. While we don’t currently have a general answer to this, one can

employ the Gaussian Process approach to explore potential cases (under a Gaussian

noise assumption).

The question which decoder the brain implements and whether bias is present is

ultimately an empirical one and can be tested in psycho-physical experiments. For

instance, two overlapping random dot motion patterns with different directions can

be presented and subjects are asked to guess the angle between the two directions.

In such experiments repulsive biases have commonly been observed (Marshak and

Sekuler, 1979), but attractive effects have also been observed (Braddick, Wishart,
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and Curran, 2002). Several effects have been hypothesized to underlie these biases,

including adaptation (Rauber and Treue, 1999), cortical interactions (Carandini and

Ringach, 1997) and repulsion from the cardinal directions (Rauber and Treue, 1998).

The bias described here, is not at odds with those explanations, but presents a novel

contribution to the total bias. It should be most prominent at small angles and when

presentation times are short so that the signal-to-noise ratio is small.

The estimated decoding distribution reflects an ambiguity between the presence of

one or two stimuli. Apart from predicting a bias, the theory predicts a bimodal dis-

tribution of direction difference estimates and for small angles about half the time the

two motions should be perceived as one. In experiments the number of stimuli that

can simultaneously be perceived using overlapping motions is limited (e.g. Edwards

and Greenwood, 2005) and when three or five overlapping motions are presented,

they can sometimes be perceived as two (so called metamers, Treue, Hol, and Rauber,

2000); an effect which previously has been explained using the probabilistic popu-

lation code framework (Zemel, Dayan, and Pouget, 1998; Zemel and Dayan, 1999).

The results here suggest that differences in the numerosity between presented and

perceived stimuli already emerge with maximum likelihood decoders. Quantitative

verification of the predictions of our study regarding bias and numerosity should be

possible but attention, participants’ expectations, and natural priors for perceiving a

single motion direction instead of two directions should be taken into account.

More generally, these result might also be relevant for other brain areas such as

higher visual areas. Here our findings pose limits on the number of objects that can

be represented simultaneously in a neural population. The competitive coding stud-

ied here, or alternatively, complex temporal dynamics during simultaneous stimulus

presentation (Gawne, 2008; Li et al., 2016), might help to alleviate such limitations

(Amari and Nakahara, 2005).
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Methods

Neural population response

We use a population of N = 100 neurons. The tuning of neuron i to a single stimulus

is given by gi(s) = A exp
[
− (s−φi)2

2w2

]
. Here A is the response amplitude (arbitrarily set

to 1), w is the width of the tuning curve (set to 1/2). The preferred directions φi of

the neurons are equally spaced between 0 and 2π. As is common, we assume that the

angles involved are relatively small, so that we don’t have to worry their circularity,

which would add complication through the need for circular statistics but does not

change the results qualitatively.

When multiple stimuli are present, the neural response is modeled as the sum of

the responses to the individual stimuli. After transforming the variables to the sum

angle η and the difference angle Θ (see Main text) we can set η to zero, so that the

22



tuning of neuron i becomes

fi(Θ) = gi(Θ/2) + gi(−Θ/2). (7)

By replacing A by half its value, the joint tuning curve equals the average (instead of

the sum) of the tuning curves. The default value of the std. dev. of the noise in Eq. 1

was σ = 0.2. Correlated noise (Fig. 3A) was parameterized as Qij = σ2[δij + c(1 −

δij) exp(−|φi−φj|/ω)], where ω is the range of the correlation and the strength of the

correlation c was set to 1. To include response heterogeneity (Fig. 3B), the widths of

the tuning curves were drawn from a log-normal distribution.

Algorithm to calculate of maximum likelihood estimate

Here we demonstrate how to calculate the distribution of estimates P (θ̂|Θ) of the

ML estimator in a numerically exact manner. In case of correlated noise the negative

log-likelihood becomes

E(θ) =
1

2

∑
i,j

[ri − fi(θ)]Q−1
ij [rj − fj(θ)]

where Qij = 〈νiνj〉, noting that in case of uncorrelated noise Qij = σ2δij, we retrieve

the MSE up to a factor.

Given a noisy response r, we run over all candidate stimulus estimates θ and find

the probability that it minimizes E. Because E is a smooth Gaussian process, and

nearby E’s are correlated, we finely discretize the possible estimates θ and define a

set of M candidate estimates (θ1, ..., θM).

To calculate the probability that a certain estimate θm yields the lowest MSE, it

is compared to the MSE that all other M − 1 estimates yield. We define the M − 1

dimensional set of MSE differences

(E(θm)− E(θ1), . . . , E(θm)− E(θm−1), E(θm)− E(θm+1), . . . , E(θm)− E(θM)). We

write this in short-hand as the vector Dm = E(θm)−E(Φm), where Φm = {θ1, ..., θM}\θm.
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The distribution of differences Dm is a (M − 1)-dimensional multivariate normal

distribution

p(Dm|Θ) = N (µm,Σm),

where µm = Emean(θm) − Emean(Φm) and the (M − 1) × (M − 1) covariance matrix

has entries Σm
ab =

∑N
i=1[fi(θm)− fi(θa)]Q−1[fi(θm)− fi(θb)]. The probability that θm

has a lower MSE than all other candidate estimates is

p(Dm < 0|Θ) =

∫ 0

−∞
...

∫ 0

−∞
p(Dm|Θ)dDm, (8)

which is a multi-variate cumulative normal distribution. We evaluated the integral

for all values of m, to yield P (θ̂|Θ).

While the orthant integral, Eq. 8 is not analytically tractable, efficient algorithms

exist that calculate it to a high precision for values of M up to in the hundreds. We

used the quasi-Monte Carlo integration function mvnun from Scipy (Genz, 1992, 1998)

with M = 100 and θ = 0 . . . π (using a larger M had negligible effects). The code is

available at https://github.com/swkeemink/DeDist.

We note that the algorithm also extends to higher dimensional stimuli, but is in

practice limited by the dimensionality of the integral (which is equal to the number of

bins used for the stimulus space discretization). However, algorithms for even higher

dimensions exist (e.g. Azzimonti and Ginsbourger, 2016).

Scaling of the bias

Here we calculate the bias for small angles analytically and estimate how the bias

scales with the model parameters under the assumption of uncorrelated noise. We

use that in case of small Θ and the limit of small candidate angles θ, the mean square
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error, Eq. 3, can be Taylor expanded as (ignoring the scaling with 1/2σ2)

Emean(θ) =
∑
i

[fi(θ)− fi(Θ)]2

≈ ρ

∫ ∞
−∞

[ga(−θ/2) + ga(θ/2)− 2ga(0)]2da

= 2
√
πρwA2

[
3 + exp(−θ2/4w2)− 4 exp(−θ2/16w2)

]
≈ 3
√
π

64

ρA2

w3
θ4 ≡ αθ4

where we replaced the sum by an integral and where ρ is the coding density (the

number of neurons per angle, ρ = N/2π) and a indexes the neurons. Similarly, the

noise term on a given trial can expanded as

Enoise(θ) = −2
N∑
i=1

νifi(θ) ≈ −θ2[
∑
i

νif
′′
i (0)]

The coefficient in the square brackets is a sum of Gaussian variables and so is it-

self a Gaussian random variable with zero mean and a variance 4σ2
∑

i[f
′′
i (0)]2 ≈

3
√
π

4
σ2ρA2/w3. We are interested in the cases where the coefficient will be negative as

these are the repulsive trials, which happens in half of the trials. The mean value of

a Gaussian truncated below zero is −
√

2/π times the standard deviation, so that for

these cases 〈Enoise(θ)〉 ≈ −βθ2, with β2 = 3
4
√
π
σ2ρA2/w3.

The approximate location of the repulsed minimum is given by dE(θ)
dθ
|θ=θ̂ = 0, or

d
dθ

(αθ4 − βθ2)|θ=θ̂ = 0, and thus θ̂2 = β
2α
. The bias in the other half of the trials is

zero (purple traces in Fig. 2B), hence the average bias is b(0) = 1
2

√
β
2α
. This yields

the relation in the main text, Eq.4. The dependency of Eq.4 on its parameters was

confirmed numerically.

Calculation of the Cramèr-Rao bound

Here we show how the Fisher Information is calculated which we use to compare to the

variance in the estimator. The Fisher Information matrix for additive, uncorrelated
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Gaussian noise is given by Ikl = 1
σ2

∑N
i=1 ∂skfi(s)∂slfi(s). While in the original s-

coordinates the Information matrix has off-diagonal elements (Orhan and Ma, 2015),

in the coordinates (Θ, η) it becomes diagonal. To calculate the Fisher Information

we use that in the limit of dense tuning curves, the sum becomes an integral. For

example,

I11(Θ) = ρ

∫ ∞
−∞

[g′a(Θ/2) + g′a(−Θ/2)]2da

where as above a replaces φi. We find that

I(Θ) =
A2ρ
√
π

8w3σ2

 2w2 + (Θ2 − 2w2)e−Θ2/4w2
0

0 2w2 + (2w2 −Θ2)e−Θ2/4w2

 , (9)

The diagonal nature confirms the intuition that the opening and the sum angles can

be estimated independently. Further note that both information components depend

on the opening angle Θ, but neither depends on the sum angle η. This is due to the

rotation invariance of the problem w.r.t. η. Finally, the Fisher Information for Θ,

that is I11, goes to zero for small Θ (Amari and Nakahara, 2005).

An estimator is called efficient if its decoding covariance satisfies the Cramèr-Rao

bound (CRB) (Rao, 1945, 2008; Cramér, 1946). In the often studied case of un-biased,

one-dimensional estimators, the CRB is var(θ̂) ≥ 1/I(Θ). In the case of biased vector

parameters the CRB states that the matrix

C −BI−1BT ,

should be a positive definite matrix (Cover and Thomas, 1991; Kay, 1993). Here C

is the covariance matrix of the stimuli that the estimator yields, B is the sum of the

Jacobian matrix of b and the identity matrix Bij = δij +∂jbi. In our case this reduces

to the bound in the main text.
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Fisher Information in competitive coding model

For the competitive coding the Fisher Information is identical for both sum and dif-

ference angles, and again only depends on Θ, I(Θ) = A2ρ
8w2{
√
πw[1 + erf(Θ/2w)] −

Θe−Θ2/4w2}I, where I is the 2 × 2 identity matrix. This is a monotonically increas-

ing function in Θ. When there are two separate peaks in the population response

(Θ � w), the information is twice that when Θ = 0, where there is a single peak in

the tuning.

De-biasing non-linearity

To calculate transformations that reduce the bias, we solve

∑
j

P (θ̂i|Θj)tj = Θi (10)

for tj, where Θi is the discretized encoded angle written as a vector Θ = (0, ∆Θ, 2∆Θ, 3∆Θ, . . .),

and similar for θ̂.

We use the analytical expression for the conditional probability distribution P (θ̂|Θ)

derived in Amari and Burnashev (2003) for not too large Θ. After transformation of

variables of Eqs. 34 and 47 there and ignoring the scaling with noise, one has

P (θ̂|Θ) =

√
2

π
θ exp[−1

2
(θ2 −Θ2)2] + p0δ(θ)

with p0 = 1
2
− 1

2
erf
(

Θ2
√

2

)
. As an aside, with some effort this expression can be

integrated to give the following curious, analytical expression for the bias in terms of

Bessel functions

B(Θ) =

√
π

2

e−z

Θ

[
z
(
I− 1

4
(z) + I 1

4
(z) + I 3

4
(z) + I 5

4
(z)
)

+
1

2
I 1

4
(z)

]
−Θ

where z = Θ4/4.

To solve Eq.10 for t, we use the standard SVD decomposition P = U.S.V T , where

U and V are orthogonal matrices, and S is a diagonal matrix. Now t = V.S−1.UT .Θ.
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To regularize this solution we replace the elements of the diagonal matrix S−1, s−1
i ,

with si/(s2
i + λ).
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