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Highlights 

• High-throughput phenotyping of reproductive development has received little attention 

• Phenology, pollen development, yield and components should be main targets 

• Computer vision, machine learning and integration of sensing technologies have a positive 

impact 

• Efforts in the analysis pipeline will facilitate adoption in crop breeding and production  

 

Abstract  

Reproductive organs are the main reason we grow and harvest most plant species as crops, yet they 

receive less attention from phenotyping due to their complexity and inaccessibility for analysis. This 

review highlights recent progress towards the quantitative high-throughput phenotyping of 

reproductive development, focusing on three impactful areas that are pivotal for plant breeding and 

crop production. First, we look at phenotyping phenology, summarizing the indirect and direct 

approaches that are available. This is essential for analysis of genotype by environment, and to 

enable effective management interpretation and agronomy and physiological interventions. Second, 

we look at pollen development and production, in addition to anther characteristics, these are critical 

points of vulnerability for yield loss when stress occurs before and during flowering, and are of 

particular interest for hybrid technology development. Third, we elaborate on phenotyping yield 

components, indirectly or directly during the season, with a numerical or growth related approach and 

post-harvest processing. Finally, we summarise the opportunities and challenges ahead for 

phenotyping reproductive growth and their feasibility and impact, with emphasis on plant breeding 

applications and targeted yield increases. 
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1. Introduction  

Reproductive organs are the main reason we grow and harvest most plant species as crops. Grains 

of rice, wheat and maize provide ca. 50% of food calories and account for ca. 60% of the annual 

harvested crop area; together with soybean, they further support calorie intake indirectly as feedstock 

for animal production [1 and references therein]. The steady decline in world relative grain yield 

improvement in wheat, rice and maize [1], compounded by climate change, calls for all disciplines 

supporting plant growth to make a contribution towards lessening the impact on future food security. 

Proximal and remote sensing have been contributing to different aspects of crop status diagnostics 

and production since the ‘70s (e.g. [2]). Phenotyping canopy features in the visible and near infrared 

(NIR) regions of the light spectrum has helped derive vegetation indices based on chlorophyll or 

nitrogen content which together with canopy temperature as indicator of transpiration are helping 

plant breeding programs improve the odds of selecting the right genotypes [3-5] and facilitate 

agronomy interventions [6] such as tactical irrigation [7] or fertiliser applications [8, 9]. In comparison, 

we lag behind in our efforts to remotely or proximally sense differences in the phenotypes of 

reproductive structures, their metabolic status, activity and even morphology. Many of these areas 

currently rely heavily on manual phenotyping, mainly by visual assessment. This is not only time and 

labour consuming, but also susceptible to error, variability and generally not high throughput. 

Advancements in phenotyping reproductive features would benefit those looking for underlying 



4 
 

genotypic differences for research purposes, mining genetic resources or in breeding programs 

satisfying a technological need such as hybrid production, but also when the response to the 

environment needs to be characterised for agronomy applications.  

In this paper, we will use the physiological framework in which reproductive organs develop, grow and 

yield to summarise existing and upcoming methods to phenotype reproductive growth, preferably from 

medium to high throughput. In this framework, the yield of annual crops is mainly determined by grain 

number [10, 11], which is specifically vulnerable to environmental constraints in particular 

developmental windows. A summary of existing knowledge on this topic [12], confirmed by field data 

[13], showed that while in the cereals (e.g. wheat and barley) the period of greater vulnerability 

coincides with that of rapid spike growth, from early stem elongation to ca. 1 week after flowering; in 

pulses and legumes this period is displaced to later development stages, related to indeterminate 

habit and the ability to compensate pod number with seeds per pod during grain filling. Similar studies 

have been conducted in summer crops, confirming the dependence of grain number on plant growth 

rate during the critical period around flowering [14]. Based on this, we have divided the paper in four 

areas that cover most of the current critical subjects around crop reproduction. First, we review 

phenotyping phenology and associated processes, as pivotal for genotype by environment (GxE) and 

genotype by environment by management (GxExM) interpretation, and agronomy and physiological 

interventions. Second, we look at pollen development and production as a known critical point when 

stress occurs before and during flowering [15], which is of particular interest for hybrid technology 

development. Third, we elaborate on phenotyping yield components, their dynamics and post-harvest 

processing. Fourth, we summarise opportunities and challenges ahead for phenotyping reproductive 

growth and their feasibility. Where possible, methods are put together by scale, e.g. microscopic, 

plant or canopy level and both direct phenotyping and indirect diagnostics by association with other 

traits are mentioned.  

2. Phenology  

Crop developmental stages frame resource capture and the development of reproductive structures, 

therefore each stage constitutes a milestone in the formation of yield components. All crops have a 

vegetative, reproductive and grain filling phase; while in determinate cereals there is a clear 

distinction between these phases, overlap occurs in indeterminate pulses and oilseeds. Phenotyping 
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phenological stages is faced with many challenges e.g. the location of reproductive organs and 

variation of timing and duration of reproductive stages. In monocots with a terminal inflorescence 

there is a neat transition from vegetative to reproductive in the main axis (wheat, maize, etc.), 

whereas in many dicots, such as soybean and other oilseeds and legumes, the reproductive stage 

can occur throughout axillary nodes while the main axis is still producing leaves. Further to that, 

important dichotomies are visible vs. internal developmental stages, individual culm/plant vs. canopy, 

presence or absence of colour, visual contrast between the reproductive structure and the canopy, 

etc. Examples of the current status and areas of opportunity in remote sensing  are highlighted in this 

section, especially those where major advances are critically needed. 

2.1 Internal stages 

In most crops, the transition from vegetative to reproductive and other steps in reproductive 

development are not exposed events, occurring while the apex is within the whorl or enclosed by 

leaves. Examples are early flower bud development in canola and double ridge or terminal spikelet in 

the inflorescence of determinate monocots such as wheat. Implementing non-destructive high 

throughput phenotyping methods targeting covered organs is not a trivial task. Results from X-ray 

micro-computed tomography in cut samples of barley spikes covered by sheaths are promising in 

terms of separating organs [16] but have not yet been targeted at younger stages and adverse effects 

on plants have been reported [17]. It would be desirable for this method to be applied to enable the 

non-destructive estimate of spike growth rates and derivation of partitioning coefficients, even if only 

under controlled environment conditions, but although low-resolution scans can be conducted rapidly, 

the ability to apply this for high throughput screening is at present questionable. At the apex level, 

traditional apex microscopy is currently benefitting from directed image analysis and modelling to 

explore specific morphometric features in a large number of genotypes [18].  

2.2 External stages: Inflorescence emergence and flowering 

Recording flowering is a task regularly undertaken in breeding programs, for agricultural management 

decisions and research trials. Flowering is primarily scored by eye following a crop specific scale, e.g. 

Zadoks in wheat and barley [19], and can be a highly labour consuming activity. The diurnal course of 

flowering has also become important in certain crops, in relation to seeking genotypic variation for 

stress avoidance mechanisms [20] and could be used to further understand seasonal performance 
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and interpretation of GxExM. Current available methods are summarised below ranging from 

utilisation of satellite images to more detailed information from analysis of close-up digital images. 

Links between multi-spectral satellite-based imagery and crop phenology at paddock or regional scale 

have been made following time series of different vegetation indices, similarly to monitoring natural 

vegetation seasonality [see examples in Table 1 in 21]. A two-step filtering method to predict maize 

and soybean phenology modelling the calendar time progression of the Wide Dynamic Range 

Vegetation Index (WDRI) derived from 250-m Moderate-resolution Imaging Spectroradiometer 

(MODIS) images, resulted in a root mean square error from 3 to 7 days in maize silking and dent 

stage respectively [22]. Replacing the calendar time after sowing for a calculated thermal (maize) or 

photothermal (soybean) time for shape fitting WDRVI and testing it over a longer time series and 

more sites, increased the accuracy of phenology estimation to 2-4 days in maize depending on stage 

and location [23]. A similar approach based on Spectral Shape Indices, also based on MODIS bands, 

succeeded at detecting first square and first bloom stages in cotton [24]. Attempts have also been 

made to determine phenology by proximal sensing using hyperspectral point sensors or imagery. 

Visible atmospherically resistant indices (VARI), e.g. only relying on visible wavelengths, were more 

sensitive than the Normalised Difference Vegetation Index (NDVI) to detect tasselling in maize; 

tassels had higher reflectance at all wavelengths, significantly reducing the absorption of radiation in 

the red region [25]. VARI was sensitive to the fraction of flowers of oilseed rape in a given image 

based on images from a camera with green, red, red edge and NIR bands mounted in an unmanned 

aerial vehicle (UAV) [26]. Reflectance at 550nm was significantly better at predicting the flower 

fraction at both high leaf area cover and when there was exposed soil background. In wheat, the 

normalized heading index (NHI) based on the 1.2μm water absorption feature, had variable success 

(53-83%) at discriminating spike emergence (heading) in a semi-arid region, similarly when using 

ground based equipment or satellite imagery. While analysis of the evolution of indices to determine 

phenological stages can get quite detailed, e.g. that of red-edge Chlorophyll Index to determine active 

tillering, jointing and maturity in rice [21], it is probably more suited for ex-post interpretation of crop 

performance than real time decisions of crop management. However, attempts to implement short 

term [27] or closer to real time predictions [28] combining remote sensing data and innovative 

predictive techniques have been proposed. 
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Visually determined phenological stages are susceptible to human error but amenable to imaging 

technologies in various settings, from glasshouse to field. Images have been used to recognise and 

count green peppers embedded in a dense glasshouse canopy [29] and for estimation of oat panicle 

development in a plant phenotyping facility, using local texture patterns, with prospects for further 

development [30]. Amongst the challenges for image analysis are changing illumination throughout 

the day, canopy structure, level of exertion of the inflorescence and contrast of colour and texture 

between the inflorescence and the rest of plant or canopy, etc. Computer vision is a field emerging as 

an important contributor to this area, particularly using the train-then-classify method. Using maize as 

an example, three identified challenges for computer vision are (i) disambiguation, i.e. individuating 

plants from a mass, (ii) assignment, i.e. assigning an organ to a particular plant and (iii) identification, 

i.e. detecting and classifying different phenotypes [31]. In crops that grow in narrow rows at high 

density (e.g. wheat), detection of individual plants is neither practical nor possible. Moreover 

separating reproductive organs from the background of other organs (stems, leaves) and detecting 

superposition has clearly been a challenge that is only recently starting to be successfully addressed, 

as explained below.  

In the field, it has been possible to automatically detect rice flowering panicles in a time-series of RGB 

(Red-Green-Blue) images captured every five minutes by a camera set effectively at 1m or less above 

the inflorescences [32], quantifying for the first time the number of panicles flowering each day and 

the diurnal trends on flowering with reasonable confidence. The method is based on training and 

testing populations of images and involves image acquisition, feature extraction and classification 

underpinned by machine learning. In wheat, heading stage from RGB images was captured with fixed 

cameras at 5m height, using a coarse to fine approach to detect ears, and equated the likelihood of 

50% of the population of plants reaching the stage to that of detecting heading in 50% of the images 

[33]. Fixed camera systems have the advantage of capturing the dynamics of the same area and, 

depending on the height, increased resolution. Adapted to larger field experiments using a movable 

camera system, the method was expanded to include not only spike emergence (heading) but also 

spikes with extruded anthers [34]. Interestingly, the method can be applied to cultivars of contrasting 

spike and canopy characteristics. All of these methods have the potential to give a decimal code 

score at the plot level, i.e. not based on a single spike basis but as a proportion (generally 50%) of the 

spikes reaching a particular stage, i.e. to discriminate between different percentages of anther 
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extrusion [34]. Similar computer vision principles could be applied to detect early inflorescence stages 

in other crops, such as green bud in canola once the inflorescence is no longer covered by leaves. 

Currently, none of the proponents of phenology detection by computer vision have validated their 

methods using an unmanned aerial vehicle (UAV) setting, which would be most useful to cover a 

large number (100s-1000s) of small plots (1-12m2) in different locations, such as those in plant 

breeding operations or agronomy trials. Finally, depending on the crop, other properties of the 

inflorescence could be used to increase the precision of detection of the inflorescence in early stages 

of emergence. For instance, in wheat and barley, spikes have different temperature than leaves 

based on stomatal density and other features [35], coupling thermal together with regular cameras 

could help to more precisely detect early stages of spike emergence or facilitate picking up spikes in 

lower layers of the canopy. 

2.3 Physiological maturity 

Seed physiological maturity is another developmental stage relevant for research and agronomic 

decisions around harvesting and sales, where the visual phenotypes is effective in some crops and 

not others. Indirect characterisation of duration of grain filling has been attempted under heat and 

drought by capturing not the status of the inflorescence but canopy senescence. A model based on 

spectral bands ranging from 550 to 1140nm at seed filling stage (R5-R6) predicted 50% of the 

variability in the days to maturity among soybean cultivars [36]. NDVI decay after heading has been 

used to predict days to maturity with varying success in three populations [37]. Methods to 

characterise the completion of grain filling based on the status of the grains still depend on destructive 

sampling to characterise the moisture percentage of the sample by weight. The methods commonly 

used for detection of harvest moisture content, electric capacitance or resistance and NIR, are valid 

once the inflorescence can be threshed, ca. 13-15% depending on the crop, i.e. at a later stage than 

the thresholds of moisture for physiological maturity, i.e. ca.40% in wheat [38]. 

3. Pollen and floret fertility  

3.1 Pollen production and viability 

With the renewed interest in hybrid cereal breeding, industry and academia are making efforts to 

better understand floral biology, in particular pollen production and viability. The ability for effective 

pollination is key for crop productivity and in the case of breeding and seed production this will in 
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many cases involve outcrossing. Ensuring good seed set requires maximising reproduction potential. 

This relies upon the number of pollen grains produced per anther and their viability, as well as their 

capacity to reach the appropriate stigmatic surface and pollinate. These traits are also of direct 

relevance to abiotic stress tolerance, as greater pollen production can mitigate pollen loss due to 

cold/heat induced sterility [39]. However, assessing traits such as anther size, amounts and viability of 

pollen are extremely challenging, particularly in a high-throughput field screen. 

A number of approaches have recently been used to assess pollen number. Subsequent to extraction 

of pollen grains into an aqueous media such as potassium iodide, researchers have employed one of 

three methods i) manually counting extracted pollen, ii) automated counting using image analysis 

software and iii) automated counting using impedance flow cytometry. Manual counts using aliquots 

of pollen suspensions, have been demonstrated as sufficiently accurate to detect genotypic 

differences for wheat-rye addition lines [40] and wild grass species [41]. Nevertheless, the 

simultaneous screening of a large number of genotypes within a short time frame, as would be 

required within a breeding programme, may necessitate the application of automated counting. For 

thistles, Costa and Yang [42] were successful in developing an analysis pipeline to discriminate and 

subsequently quantify the number of grains within aliquots of pollen suspension imaged under a 

microscope, using the freely available ImageJ software (https://imagej.net). Image analysis was 

capable of quantifying the number of pollen grains within 60 sec or less per image at a reasonable 

level of accuracy and consistency, as compared to 5-68 min for unaided counting.  

In addition to the number of pollen grains, the proportion of viable grains produced is of direct 

relevance to stress tolerance and outcrossing potential. Researchers typically employ chemical 

assays towards assessing this trait. While hand pollinations can provide a direct estimate of 

fertilization capacity, they require a much greater investment in both time and labour making the 

simultaneous screening of multiple genotypes impractical. Further to this, factors apart from pollen 

quality such as emasculation and fertilization technique, temperature and relative humidity can 

dramatically affect results. 

The fluorescein diacetate test (FDA), or FDA combined with propidium iodide have been described as 

providing a reliable estimate of fertilization capacity [43] as it simultaneously tests for an intact pollen 

cell membrane and esterase activity, only fertile grains fluorescing during microscope inspection. 

https://imagej.net/
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Conversely, assays such as Alexander’s stain [44] or potassium iodide, staining for starch 

accumulation, are more suitable for assessments of sterility as opposed to viability, as they are only 

capable of distinguishing mature from immature pollen grains. Whilst the FDA test has been 

demonstrated to be correlated with fertilization capacity, as assessed by hand pollinations [45]; it is 

more suitable for hypothesis testing than breeding objectives or field trials as it requires a significant 

investment in time and access to fluorescence microscopy. 

The impedance flow cytometry (IFC) technology provided by Amphasys (www.amphasys.com) may 

provide a more practical approach towards screening a large number of lines for pollen viability. 

Subsequent to extraction of pollen into a proprietary buffer, which preserves their integrity and 

filtration to remove cellular debris; single grains are passed through a chip to which radio frequencies 

are applied. Pollen viability is inferred from the behaviour of pollen grains while passing through this 

chip; for cucumber, tomato and sweet peppers strong correlation has been found between the results 

of IFC and that from FDA staining [46]. IFC also offers an alternative for the automated counting of 

pollen grains, promising a higher level of accuracy as each pollen grain within a sample is counted 

[46]. Presently, IFC may not be widely adopted, as it requires a substantial investment in the relevant 

technologies. While the development/optimization of image analysis pipelines can provide a more 

cost-effective and user-friendly approach towards assessing the number of pollen grains per anther, 

IFC still has the greatest potential for high throughput assessment of pollen viability, which can be 

conducted in a field environment.  

The ultimate test of whether pollen is viable is pollen germination and fertilisation. Manual 

assessments of these are feasible by in vitro pollen germination tests, or manual cross-pollinations of 

sterile lines, nevertheless they are highly time consuming. There is also the issue of the duration of 

pollen viability and how rapidly this declines on and off the plant, which is currently difficult to assess 

using the available techniques. These are areas that would benefit from research to establish high-

throughput phenotyping methods.  

3.2 Anther extrusion, dehiscence and colour  

A number of recent studies in wheat have assessed anther extrusion capacity within large genotype 

panels using a relatively simple approach [47-49]. Wheat ears are harvested subsequent to the 

completion of anthesis and the number of anthers retained within a pre-determined number of central 

http://www.amphasys.com/
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florets is counted; from this, the number of extruded anthers is determined. This approach has been 

demonstrated to be sufficiently accurate to detect significant genotypic differences and high trait 

heritability is typically observed with its application, higher than that observed with visual anther 

extrusion scoring [47-49]. Further, the approach is not exhaustively time consuming; requiring only 20 

min to carry out counts on five ears, also assessments do not need to be carried out within a fixed 

period of time as ears could either be frozen or dried at room temperature [48].  

Visually scoring the colour of wheat anthers has also been proposed [48]; hypothesizing that extruded 

anthers, having a dark yellow colour, may not have shed a large proportion of their pollen grains 

within the floret. Low trait heritability, the narrow time window in which scoring must be carried out and 

the large influence of environmental conditions suggest that alternative phenotyping approaches 

would be required. An alternative to scoring anther colour, would be to score anther dehiscence from 

which inferences on outcrossing potential can be made together with anther extrusion capacity. In 

rice, genotypic variation has previously been reported for the length of dehiscence in the basal and 

apical parts of the anther thecae [39] with high trait heritability being observed in each instance. 

Further to this, significant genotypic variation and GxE has been observed for the proportion of 

dehisced anthers [50]. The assessment of dehiscence length and the proportion of dehisced anthers 

appears feasible for a large number of genotypes within field trials; the only required piece of 

technology was a stereomicroscope in both instances and while sampling must to be conducted 

within a narrow time window, anthers can be stored until such time that they can be assessed. The 

improvements to phenotyping capacity that can be achieved by the development of image analysis 

pipelines targeting these traits, such as those successfully applied towards quantifying pollen grains, 

would be beneficial towards furthering our understanding of the extent of genotypic variation and the 

feasibility of selecting for these traits.  

3.3 Pollen shedding external to the inflorescence/flower  

In the early stages of the breeding cycles of predominantly self-pollinating crops, it is more practical to 

simultaneously select for traits known to determine pollen shedding capacity; in effect aiming to 

develop a male ideotype. Ultimately, in the later stages of breeding programmes, assessment of 

whether traits have been successfully integrated must be carried out. Within the literature two 

rudimentary but accurate approaches have been described; i) the use of adhesive surface based 

pollen traps [51, 52] and ii) measuring pollen mass at the end of anthesis [48]. 
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Adhesive surfaces suspended within the canopy during anthesis provide not only an estimate of the 

number of pollen grains shed external to the flower structure but also insight into the temporal 

variation in pollen shedding. Prevailing environmental conditions inevitably influence the effectiveness 

of this approach, specifically wind speed and wind direction [52] as well as rainfall. Provided that 

conducive weather conditions occur during the study, or in instances where genotypic variation in 

flowering time is minimal, a high degree of resolution can still be achieved [51]. 

In an attempt to circumvent this inherent limitation of using adhesive surfaces, the pollen shedding 

capacity of wheat varieties was assessed through measurements of pollen mass [48]. This was 

achieved by placing wheat ears into paper bags prior to anthesis and subsequently measuring the 

mass of pollen collected at the bottom of the bags after the completion of anthesis. While the method 

does not provide information on the temporal variation in pollen shedding, it was able to detect 

significant genotypic differences and gave a modest trait heritability (0.76) supporting its accuracy. 

With the advent of a large number of crop imaging platforms designed for field trials, avenues for 

developing higher throughput and more accurate approaches towards assessing temporal and 

genotypic variation in pollen shedding should be explored. This would be of immediate benefit to the 

plant breeding community, in that it would be anticipated to considerably improve the capacity of 

breeders to phenotype for the trait that ultimately determines the efficiency of hybrid breeding 

schemes.  

4. Yield and components 

Genetic gains in yields from staple crops have been successfully achieved in past decades based on 

one empirical selection criteria: yield per se. Even though large-scale field evaluation of thousands of 

breeding lines are expensive in terms of time and financial resources, the use of combine harvesters 

is to date the most efficient way to evaluate yield from any seed crop at the end of the cycle. 

However, since yield is characterized by high GxE interaction and low heritability, empirical selection 

for yield per se will be insufficient to achieve much needed genetic gain, therefore traits linked to yield 

possessing higher heritability have an important role to play [53, 54]. Phenotyping more heritable 

traits can increase prediction accuracy in genomic selection strategies [55, 56] and has been 

successful in the detection of donors for strategic crosses schemes [57]. In addition, yield cannot be 

reliably assessed in single or paired rows in early generations, in contrast with some of the underlying 
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traits. To help reduce time and resources, high-throughput and inexpensive selection tools are 

needed to allow breeders to reliably screen large numbers of genotypes in a relatively short time in 

small plots. In this section we discuss progress in phenotyping (i) yield per se, (ii) yield components 

and traits underlying yield. 

4.1 Prediction of yield via phenotyping canopy characteristics 

Canopy properties, e.g. size and potential for photosynthesis and transpiration determine much of the 

processes culminating in yield. As such, diverse forms of characterising the canopy have resulted in 

correlations with yield. For instance, visible images have been widely used in plant science for its low 

cost and its ease of operation and maintenance, providing rapid measurements for plant phenotyping 

applications. RGB digital images at the canopy level and derived ground cover or vegetation indices 

were significantly correlated with yield in wheat [58] and maize under different N regimes [59].  

Spectral reflectance profiles or derived indices associated with specific crop traits have been 

proposed as a fast and non-destructive technique that can be efficiently used in breeding programs 

where thousands of individuals must be screened every year [60]. Spectral vegetation indices, where 

different bands are combined in the red and NIR region of the spectrum, related to pigment absorption 

and scattering, are very popular. The Normalized Difference Vegetation Index (NDVI) is amongst the 

most used. The potential for using NDVI or related indices to predict biomass and grain yield has 

been reported in wheat under water and heat stressed conditions [61-64], maize [65-68], sugarcane 

[69] and sorghum [70]. In most of the papers cited, different nitrogen regimes were imposed to amplify 

the response range and avoid saturation of the index, facilitating the correlations with yield. In cases 

evaluating genotypic variation, the correlations between NDVI and grain yield have been established 

both during grain filling period, associated with canopy or flag leaf senescence onset or rate [64, 71] 

or early canopy development [72], depending on the prevalent limitation, e.g. water supply, etc. Other, 

useful indices, are based on regions in the NIR that specifically relate to tissue water content, such as 

the Water Index (WI) and/or normalized water index (NWI) that assesses the water content of the 

canopy [73]. Yield predictions using water indices have been observed not only under water-stressed 

but under well-irrigated conditions and high-temperature environments in wheat [58, 60, 74-76], 

drought and irrigated conditions in barley [77]; different drought regimes in maize [78, 79] and 

moderate to severe water deficits in vineyards [80, 81]. It has been stated that water indices often 

have a higher ability than NDVI to predict yield across water stress scenarios [60, 82]. More recently, 
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models including all available hyperspectral reflectance bands derived with point or imaging sensors 

have been validated as predictors of yield in wheat [83], rice [84] and maize [78, 85], demonstrating 

that higher prediction accuracy can be achieved compared to using individual vegetation indices. For 

this type of information to become useful in a breeding context, the data processing pipeline and 

analysis platform need to be streamlined, currently a bottleneck for spectral information more complex 

than simple spectral indices. 

Canopy temperature, measured with infrared thermometers or thermal imaging, is correlated to 

stomatal conductance, as a major determinant of the leaf temperature is the rate of transpiration, and 

on occasion evaporation, from leaves and other organs. Abiotic or biotic stresses often result in 

decreased rates of photosynthesis and transpiration and, the remote or proximal sensing of the leaf 

temperature by thermal imaging can be a reliable way to detect changes in the physiological status of 

plants regarding water use. Canopy temperature, which can be sensed remotely using IR 

thermometry, was shown to be highly associated with the yield of wheat cultivars, mainly under abiotic 

stress but also under potential conditions when evaporative demand is high [86, 87]. Canopy 

temperature mapped to a similar genomic region than yield in a study with a wheat population grown 

in contrasting stress environments [72]. A recent analysis of suitability of different platforms for 

application of thermal sensing in breeding trials showed that a sensor mounted on an unmanned 

aerial vehicle resulted in higher correlations with yield and biomass than proximal sensing [62].  

4.2 Phenotyping yield components and underlying traits 

Yield is generally described as the product of the grain number per unit area (e.g. grains m-2) and 

individual grain weight or via biomass production and harvest index. Here we focus on two different 

approaches to directly or indirectly phenotype grain number and weight. The direct approach is based 

on phenotyping the numerical components per se (Figure 1a). The second one is based on an 

established physiological framework where growth and partitioning to reproductive structures are 

underlying traits that can be targeted for phenotyping the potential for diversity in grain number and 

grain weight formation [88, 89] (Figure 1b). In the numerical approach, grains m-2 can be considered a 

product of other numerical subcomponents formed from planting onwards (Figure 1a). The growth 

approach is based on evidence that in cereals such as wheat, carbon partitioning during stem 

elongation, a few weeks before flowering, has a strong influence on the final number of fertile florets, 

as the reproductive sink competes with the growing stem for carbon supply and is associated with the 
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number of grains m-2 [90]. On the other hand, carbohydrate production and partitioning after flowering 

influences the rate of grain growth and its final size [91, 92]. Therefore, the partitioning of carbon to 

reproductive structures is directly influencing the success of the numerical components of yield [93] 

(Figure 1b). The same framework can be applied to legumes such as chickpea, except that the critical 

period for biomass and grain number formation is after flowering [94]. This section describes potential 

pathways for phenotyping each of them, with emphasis on the determination of grains m-2 and grain 

weight, using mainly wheat but also rice as examples.  

 

Figure 1. Diagram of yield formation in wheat (a) numerical component approach, (b) crop growth 
approach.  
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From sowing, the first numerical component in the chain is the number of plants m-2 (Figure 1a), which 

can be currently assessed with RGB images taken from ground or aerial platforms and amenable to 

automation in terms of data extraction [95, 96]. In pot grown plants, the number of rice panicles has 

been counted by analysing colour images taken from multiple angles [97]. In the field, the number of 

inflorescences (spikes, panicles) could be estimated from RGB images at flowering [32, 34], as 

mentioned in section 2.2. The use of Light Detection and Ranging (LiDAR) is currently under 

development for the detection of wheat ears in the field, and recent studies report an average detection 

rate of 85%, aggregated over different flowering stages [98]. In most crops, the rest of the numerical 

components are best estimated or derived from measurements after harvest, some of them object of 

trivial image analysis, such as grain counting or grain dimensions, which can be carried out with flatbed 

scanners and free firmware. What is interesting about this area is the possibility of fast-tracking sample 

processing with integrated approaches. A prototype with threshers and line scan cameras built for rice 

allows to evaluate panicle yield, number of total spikelets, number of filled spikelets, grain length, grain 

width, and 1000-grain weight in a single operation [99]. Other compound yield traits, such as the seed 

set rate and the length:width ratio can also be derived from the extracted traits. This prototype 

comprises three major units: the threshing unit, the inspection unit, and the packing and weighing unit 

(Figure 2a). The mean absolute percentage error was less than 5% for all of the evaluated yield traits, 

and the efficiency was approximately 1440 plants per 24-hours continuous workday. Simultaneous 

grain dimension, visual characteristics and composition analysis have also benefitted from advances in 

imaging, robotics and classification techniques. There are numerous lab based scanner platforms with 

integrated software capable of counting, analysing and sorting single grains based on colour, 

vitreousness or other properties with high efficiency, e.g. 1000 kernels per minute with Satake 

‘RSQI10A Grain Scanner’ (http://satake.com.au/lab/Grain_Scanner.htm). Instruments exploiting NIR 

features, e.g. transmission, such as Next Instruments ‘CropScan Automated Grain Analysis System’ 

(http://nextinstruments.net/index.php/products/cropscan) can provide additional information on protein, 

fats and oils, water and carbohydrates from specific calibration models. With increased automation and 

speed, platforms such as QSorter Explorer, which can process 50 grains per second, develop a NIR 

spectrum and 3D image and sort or classify grains based on shape, composition (protein, oil, amylose 

content and other properties) and other properties (Figure 2b). 

http://satake.com.au/lab/Grain_Scanner.htm
http://nextinstruments.net/index.php/products/cropscan


17 
 

 

 

Figure 2. Examples of integrated instrumentation to evaluate multiple traits: (a) prototype built for rice 

yield component analysis [99] (b) QSorter Explorer platform for grain analysis. 

There are increasing prospects of phenotyping some of the components of the resource-oriented 

model (Figure 1b). The possibility of estimating the evolution of crop biomass with a LiDAR based 

system before or after flowering [100] means that estimates of crop growth rate and fraction 

intercepted are closer to being high throughput in the field, facilitating the derivation of radiation use 

efficiency. In crops where the inflorescence is exerted, it may be possible to distinguish spike or 

panicle growth and potentially grain filling rate, as opposed to measuring crop growth rate, which may 

include biomass deposition in non-grain organs under certain circumstances. An additional source of 

carbon for grain growth during grain filling in wheat and barley is the mobilisation of water soluble 

carbohydrates (WSC) from stems and sheaths to grains [101]. The accumulation of WSC (mainly 

fructans) in stems starts up to 20 days before anthesis and continues during most of grain filling with 

the potential of attaining more than 40% of the stem dry weight in wheat [102, 103]. The concentration 

of WSC in stems and/or sheaths is comonly measured using spectra-photometrical methods, such as 

anthrone [104] or NIR reflectance spectroscopy [105]. Another non-high throughput method to 

estimate WSC content is monitoring post-flowering changes in stem dry weight due to the strong 

correlations between these two traits under field conditions [106]. These methods always involve time 

consuming samplings and sample preparations (e.g. drying, milling, weighing). Using a different high 

throughput approach, the dynamics of stem WSC was robustly predicted (concentration and amount 

per unit area) in wheat with hyperspectral reflectance, although further investigation was suggested to 

(a) (b)
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limit the model to bands below 1000 nm to be able to rely on cheap detectors [107]. An added benefit 

of estimating WSC concentration with reflectance is the possibility to extract other data such as leaf 

area index and canopy water content from the same measurements [107]. In practice, the 

development of high throughput methods for WSC estimation represents one of the biggest 

challenges in plant phenotyping, as the small effects of many WSC QTLs may limit the use of markers 

in breeding programs for stem WSC [108]. Another source of carbon for the fertile florets initially and 

the growing growing grains after fertilisation is spike photosynthesis [109], the complexity of 

measuring spike volume to help in the quantification of photosynthesis was discussed in Box 1 

(Molero, unpublished).
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-------------------------------------------------------------------------------------------------------------------------------------- 

Box 1. Inflorescence morphology and area  

Inflorescences dominate crop canopies from flowering onwards. They intercept radiation, 

photosynthesise and can mobilise reserves [110, 111] in addition to their primary function of bearing 

grains (wheat and barley spikes, rice panicles, maize ears, canola racemes, etc) or act as pollen 

reservoirs (maize). In recent years, there has been a resurgence in the interest in morphology and 

function of inflorescences, their genetic regulation and how they influence yield and its components. 

In rice, changes in several candidate genes have been shown to regulate panicle architecture and 

grain number [112, 113]. Most of these studies were based on pot plants measured manually, only 

recently a phenotyping imaging pipeline that allows the characterisation of many panicle traits 

simultaneously (panicle and branch length, internode and rachis length, branch number and order, 

etc) has made possible the characterisation of a large germplasm collection for genome wide 

association studies [114, 115]. In comparison to rice, characterisation of the wheat spike in a high 

throughput system lags behind, despite the interest in the regulation of its morphology [116-118]. High 

throughput estimates of spike area or volume, weight and spikelet number would unlock access to 

other important traits, such as spike photosynthesis [119], fruiting efficiency [120], infertile or low grain 

size spikelets and following the progress of spike volume or biomass after flowering to infer grain 

filling rate.  

When fully developed, the wheat spike consists of the main rachis with each internode ovoid in 

section and curving around the spikelet, presenting a vertical gradient of width [121]. Due to the spike 

complex three-dimensional structure and the presence of awns, the determination of its area 

represents a challenge, especially non-destructively in the field and aiming for high throughput. 

Successful approximations of spike area and volume have been reported only under controlled 

environment conditions with no high-throughput results that can be applied in the field [122, 123]. 

More recently, we used an electromagnetic 3-D digitiser (3Space Fastrak, Polhemus, Colchester, VT, 

USA) to estimate the area of 35 wheat spikes harvested from the field. Unfortunately, in order to 

calculate the spike area, the smoothing surface was increased to 1.5 mm losing the detection of the 

awns (Figure 3a). From the same spikes, the projected area was measured with an area meter 

(LI3050A/4, Li-COR, Lincoln, Nebraska, USA). In addition, the total spike area was calculated as the 

volume of a cylinder (Figure 3b), which showed to be representative of the spike area measured with 
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the area meter (Figure 3c). On the other hand, spike dry weight appeared to be a valid method to 

represent spike area (Figure 3d). The spike area calculated as the volume of a cylinder and that 

obtained with an area meter were highly correlated with the area given by a 3-D laser scanner (r = 

0.89 and r = 0.90, respectively). However, only the values for spike area obtained with the area meter 

were similar in range to the 3-D scanner due to the overestimation using the cylinder approximation. 

Unfortunately, these approaches are destructive as it is necessary to harvest the spike and conduct 

the measurements in the laboratory implying a large investment of time and resources. As mentioned 

above, the development of LiDAR technologies (currently in development for counting spike number) 

could be applied to estimate spike volume or area as well as the use of multiple RGB pictures that 

would allow the 3D reconstruction in the field and, therefore, better estimations of spike 

photosynthesis per unit of area. 

 

Figure 3. (a) three-dimensional spike images obtained with the FastScan scanner, using two different 

configurations, (b) calculation of spike area as a cylinder, relationship between spike area calculated 

with an area meter and (c) the cylinder approximation or (d) spike dry weight. 

--------------------------------------------------------------------------------------------------------------------------------------- 
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5. Feasibility, impact and conclusions  

The agricultural and food industries are faced with many challenges in terms of producing more food 

with lower environmental footprint. The decreasing cost of cameras and sensors and the parallel 

increase in computing power and accessibility to it, means that previously prohibiting technologies are 

now viable options that can add value to the plant breeding and agronomy sectors. 

At this point, due to the complexity and the large number of associated traits with reproductive 

development, it is important to gauge the technical feasibility and the expected impact of the traits 

considered in this review. Both criteria, impact and feasibility, were judged based on knowledge of plant 

breeding phenotyping bottlenecks (impact) and the technical possibilities summarised in this study 

(feasibility). Highly feasible, technically easier solutions will generally be resolved with image analysis, 

and can potentially characterise traits with intermediate to high impact in a breeding contex, such as 

spikelet number, anther extrusion and colour or grain dimensions. Phenotyping solutions of 

intermediate feasibility will likely rely on a combination of available techniques such as RGB and 

hyperspectral images and/or LiDAR and target traits such inflorescence growth rate during grain filling, 

phenology, spike number and spike architecture. Lastly, there is a range of solutions that will rely on 

greater complexity but have a high impact potential such as high throuput phenotyping of internal stages 

or pollen viability. For the plant breeding industry, there are at least four main areas of impact for high 

throughput phenotyping of reproductive structures, in activities at different ends of the breeding 

spectrum: mining genetic resources, early generation selection, hybrid breeding and large scale field 

evaluation, in particular to pair with genomic information. Germplasm collections and early generations 

from breeding programs have in common the small amount of available seed and the large variation 

amongst entries. In the case of early generation selection, reducing the number of lines for further 

evaluation at the plot level and in multiple environments would certainly be a cost saver for breeding 

programs. The usefulness of this approach has already been successfully demonstrated developing 

germplasm for dry environments based on selection for canopy temperature [4] but would benefit from 

enrichment for beneficial reproductive traits. In this case, well defined, specific reproductive traits of 

interest should be preferably independent from growth, not likely to be obliterated when evaluated at 

the canopy level after crossing or further multiplication. Examples in this category from the traits 

reviewed in this study are phenology and generation of specific yield components, such as spikelets 

per spike in wheat, inflorescence morphology and branching, pollen and anther related traits and dry 
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matter partitioning to the inflorescence. The positive association between spike to biomass ratio at 

anthesis measured destructively in single plants and crop yield was promising in durum wheat [124] 

and it would be worth exploring the suitability of LiDAR based phenotyping for this trait as well as spike 

growth rate during grain filling at the canopy level, in relation to increase in volume. Both targets would 

be of medium to high impact in breeding and intermediate feasibility, based on what we know about 

other LiDAR applications [100]. With regards to hybrid breeding, in field assessment of pollen shedding 

and mass and anther extrusion, key traits for the male ideotype [48], could clearly benefit from image 

analysis technologies or even spectral applications, with potentially high impact and easy to 

intermediate feasibility. Lastly, amongst the field based breeding efforts, genomic selection is one of 

the most likely areas to benefit from large scale phenotyping of reproductive traits to capture 

environment dependent allelic variation. Genomic selection uses all the available molecular markers 

across the entire genome to estimate genetic or breeding values, based on a training and validation 

data sets. A training data set that has been phenotyped and genotyped is used to calibrate a prediction 

model, which is then used to predict the breeding values of the test set of genotyped selection 

candidates [125]. Traits measured using high-throughput phenotyping based on proximal or remote 

sensing, such as canopy temperature and vegetation indices, improved pedigree and genomic 

prediction model accuracies for grain yield in wheat [3]. The consideration of novel traits related with 

reproductive growth will not only increase the accuracy of the models and assist towards faster and 

greater genetic progress, but also enrich the model in an area directly relevant to yield.  
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