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Abstract 

Context. When congruent taste and retronasal aroma are perceived simultaneously, aroma can 

be enhanced by taste. Different explanations have been proposed: (i) physico-chemical 

interactions between tastants and aroma compounds, inducing a change of the aroma stimulus 

before it reaches the receptors, (ii) a contextual bias during sensory tests (dumping), when at 

least one relevant attribute is not proposed to the panelists to assess a product, (iii) a 

misunderstanding of the conceptual difference between aroma and taste, or (iv) a perceptual 

incapability of panelists to distinguish between two congruent percepts. This study was 

undertaken to better understand aroma enhancement by taste in model wines containing 

different sugar and acid concentrations but the same volatile composition.  

Method. We used a twofold approach: 

(i) model wine retronasal aroma intensity was assessed twice by trained panelists. During the 

first session, panelists only assessed aroma intensity. During the second session, taste 

intensity was assessed before aroma intensity, to reduce dumping effects.  

(ii) in-mouth release of volatile compounds was measured by nosespace analysis with the 

same panelists. 

Results. Acid concentration influenced aroma compounds release, but it did not impact 

perceived aroma intensity. Increasing sugar concentration delayed ethyl octanoate (EO) 

release after swallowing. When taste was not assessed, perceived aroma intensity was not 

explained by aroma compounds release, but it increased with sugar concentration, probably 

because of a dumping effect. When taste was assessed, aroma intensity also depended on 

sugar concentration, but it was significantly correlated to the time of release of EO. Our 

hypothesis is that when taste declined, late aroma was more easily individualized, and thus 

assessed with a higher intensity. This entails that panelists focused on aroma to individualize 

it from taste. We concluded that trained panelists understand the conceptual difference 
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between taste and aroma, but are not completely able to distinguish congruent and 

simultaneous taste and aroma percepts.   

 

 

Keywords  

Flavor, cross-modal interactions, PTR-MS, sensory analysis, in vivo aroma release, aroma 

enhancement by taste  
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1. Introduction 

It is now accepted that the aroma perceived in food products is not only determined by the 

odorant volatile compounds contained in the product. It also depends on other product 

properties, like taste and texture (King et al., 2006; Visschers, Jacobs, Boelrijk, Frasnelli, & 

Hummel, 2006), and on consumer experience and previous exposure to products (Chrea, 

Valentin, Sulmont-Rosse, Nguyen, & Abdi, 2005; Petit, Hollowood, Wulfert, & Hort, 2007). 

The literature reports numerous cases of tastant-dependent changes in perceived retronasal 

aroma intensity. For instance, the intensity of fruity aroma was shown to increase with 

sweetener content in model solutions (Dalton, Doolittle, Nagata, & Breslin, 2000; Fujimaru & 

Lim, 2013; Green, Nachtigal, Hammond, & Lim, 2012; Hort & Hollowood, 2004; Pfeiffer, 

Hollowood, Hort, & Taylor, 2005), orange juice (Bonnans & Noble, 1993) model dairy 

desserts (Lethuaut et al., 2005; Tournier, Sulmont-Rosse, Semon, Issanchou, & Guichard, 

2009) and custard dessert (Green, et al., 2012).  

Aroma enhancement by taste can be provoked by an increased release of the volatile 

compounds, due to the presence of tastants modifying the odorant stimulus before it reaches 

the olfactory receptors. It can also be linked to an artifact of the sensory task (“dumping”) or 

to other effects generally referred to as “perceptual”. It is still unclear whether these 

perceptual effects are provoked by confusion between sensations perceived by the senses of 

taste and smell, or are the result of a cognitive association of congruent aroma and taste. The 

way these mechanisms impact aroma perception is described below.  

- Physico-chemical interactions between aroma compounds and tastants in food products can 

affect the quantity of aroma compounds available for perception, depending on the type of the 

tastant and its concentration (Rabe, Krings, & Berger, 2003). For instance, sugar 

concentration was shown to influence the release of aroma compounds and this change in 
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chemical input induced a change in sensory output (Piccone, Lonzarich, Navarini, Fusella, & 

Pittia, 2012).  

- Dumping effect was studied in several sensory studies, where taste-aroma interactions were 

shown to be instruction-dependent. The number of attributes panelists had to score influenced 

the intensity of the perception they reported. Indeed, when a salient property of the product is 

not proposed to panelists as an attribute to be evaluated, panelists may transfer their 

judgement about that property of the product into another attribute they are asked to score. 

For example, when a single intensity estimate was requested in a multidimensional product, 

independent but congruent sensory dimensions combined to influence the response (Clark & 

Lawless, 1994; Frank, van Der Klaauw, & Schifferstein, 1993; Frank, Wessel, & Shaffer, 

1990). This effect was sometimes interpreted as resulting from the impact of attributes on how 

attention is directed towards odor and taste (Prescott, 2012; van der Klaauw & Frank, 1996).  

- Another interpretation of aroma enhancement by taste involves people’s failure to 

understand what taste and orally perceived aroma are. This probably results from the fact that 

both stimuli occur when a food is placed in the mouth. Indeed, the more congruent a person 

perceives a couple of taste and retronasal odor, the more  this person tends to locate this odor 

in the oral cavity (Lim, Fujimaru, & Linscott, 2014). Most people ignore that taste and aroma 

are perceived by different receptors. As a consequence they do not make distinction between 

for example, sweet taste and fruity aroma, both referred to as “taste” in everyday language 

(Spence, Smith, & Auvray, 2015). It can reasonably be thought that this conceptual distinction 

can be made by trained panelists. 

- Having observed that even when their attention was directed to the salient attributes of a 

mixture, trained panelists experienced taste enhancement by a congruent odor, Stevenson 

(2001) interpreted this result as proof of the relative cognitive impenetrability of some 

associations of congruent retronasal aroma and taste. He considers this effect so strong that he 
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refers to the “binding” of different perceptual events in the brain, resulting in a unified flavor 

experience (Stevenson, 2016). This is consistent with studies showing that, after being 

conveyed by different sensory channels, taste, oral somatosensory and olfactory inputs 

combine in the central nervous system to form a unitary percept (Small, 2012; Small & 

Prescott, 2005). This phenomenon is thought to result from associative learning resulting from 

individuals’ previous experience of the association between the stimuli.  

It is possible that several of these effects could co-exist, making it difficult to understand the 

mechanisms involved in retronasal aroma enhancement by taste. It can be difficult to prove 

that aroma enhancement by taste result from perceptual effects. Temporal measurement or 

devices using individualized solutions of tastants and aroma compounds have mostly been 

used to study perceptual effects. As an example, in a study of a model solution of menthone 

and sucrose, panelists’ perception of mint flavor was shown to follow sucrose release in saliva 

rather than menthone release (Davidson, Linforth, Hollowood, & Taylor, 1999), proving the 

perceptual nature of interactions. Fujimaru & Lim (2013) also succeeded in demonstrating 

that odor enhancement by sucrose originated from perceptual phenomenon; in their study, 

panelists inhaled citral in vapor phase via the mouth while tasting sucrose.  

In complex products, physico-chemical interactions and perceptual effects often co-exist. In 

this case, physico-chemical interactions are easier to detect than perceptual effects, which can 

be particularly difficult to evidence. Comparing the scores of different panels, Arvisenet, 

Guichard & Ballester (2016) demonstrated the occurrence of perceptual effects in model 

wines, despite the presence of physico-chemical interactions. Retronasal aroma enhancement 

by sugar was assessed by three panels with different levels of training and product expertise. 

When panelists were provided with only one scale to score aroma and were not asked to score 

taste, all three panels experienced the same level of aroma enhancement by sweet taste. Yet, 

when they were asked to score both taste and aroma, trained panelists and wine experts were 
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able to reduce the intensity of aroma enhancement by taste, compared to untrained panelists. 

This result suggests that when conditions allow avoiding dumping effects, experts and trained 

panelists are more able than untrained panelists to make a distinction between taste and 

aroma. This proves that the aroma enhancement by taste was mostly due to a perceptual effect 

stronger in untrained panelists than in trained panelists and experts. The nature of this 

perceptual effect cannot easily be determined. Trained panelists and experts may know better 

than untrained panelists the difference between taste and aroma, and may be less likely to 

confuse taste and aroma. Thanks to their previous exposure to sweet wines and to descriptive 

tasks, trained panelists and experts might also have a higher capability than untrained 

panelists to disentangle the cognitive association between sweet taste and fruity aroma.  

In this previous study, aroma release was only investigated by static in vitro measurements, in 

order to be compared to orthonasal odor. But retronasal aroma enhancement by taste would 

most probably result from tastant-induced change of in-mouth aroma release. Thus, this in 

vivo dynamic process has to be taken into account to better understand how panelists assess 

aroma intensity when taste changes.   

The present study was carried out in order to gain further understanding about the 

mechanisms involved in aroma enhancement by taste by perceptual effects. To this end, we 

studied the correlations between the aroma scores assessed by trained panelists and the release 

of key aroma compounds over time. Two sensory tests conditions were tested, varying by the 

number of descriptors panelists were asked to assess: aromas only or tastes first and aromas 

afterwards. Our objective was to understand the factors involved in the assessment of aroma 

when taste varies.  
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2. Materials and methods 

2.1. Model wines 

Four model wines (8% v/v ethanol) were prepared, varying the tartaric acid content (2.5 or 

5 g.L
-1

) and the sugar (mixture of fructose and glucose, 2:1) content (5 or 80 g.L
-1

) (Table 1). 

The concentrations of tartaric acid and sugars were chosen to cover the range of those found 

in Gewurztraminer wines and to produce sweetness and acidity intensities distinctively 

different from one model wine to another. The four studied model wines contained the same 

amount of glycerol, acetic acid, citric acid and sulfur dioxide. All these compounds were food 

grade and were purchased from Sigma-Aldrich (St Quentin Fallavier, France). 

Model wines were flavored as described in Arvisenet et al. (2016) with exactly the same 

quantity of the same mixture of aroma compounds in each model wine (Table 2). These 

compounds and their concentrations were chosen based on previous research of the aroma of 

Gewurztraminer wines (Guth, 1997; Ong & Acree, 1999). Model wines containing this aroma 

composition could be taken for a real Gewurztraminer wine by untrained panelists (Arvisenet, 

et al., 2016). Those wines were freshly prepared on the day of testing for both sensory tests 

and nosespace analyses. 

 

2.2. Sensory analyses 

2.2.1. Sensory evaluation of the retronasal aroma of model wines varying in sugar and acid 

content 

This study was approved by a human ethics committee “(Comité de Protection des Personnes 

EST I”, Reference: 2014/14 – ID RCB: 2013-A01767-38). Informed written consent was 

obtained from the subjects prior to their participation. Panelists were told they would 

participate in a study about Gewurztraminer wine aroma. They were not informed about the 
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real objective of the study or that the wines they would evaluate were artificial. Pregnant 

women were excluded from the study. 

 

2.2.1.1 Panel 

The panel was composed of 19 intensively trained panelists and 14 wine experts who took 

part in our previous study (Arvisenet et al., 2016). Having observed in this previous study that 

trained panelists and experts had identical perception of taste-aroma interactions in model 

wines, we included them in the present study as a same group, referred to as “trained panelist” 

throughout this paper.  

Seven panelists were selected from the group of 33, on the basis of their sensory results, to 

represent all the levels of aroma enhancement by taste observed in the group of 33 panelists: 

the smallest observed enhancement, the highest observed enhancement, and medium level of 

enhancement. This smaller group was composed of five men and two women. Two of them 

were under the age of 26, two were between 26 and 40 and three were over 40 years of age. 

These seven panelists participated in both the sensory evaluation and measurements of in vivo 

aroma release.  

 

2.2.1.2. Model wine evaluation 

Tests took place in a sensory lab equipped with booths. Samples were served at ambient 

temperature (20°C). For each task, 20-mL samples were poured into standardized tasting 

glasses (ISO, 1977) that were opaque (black) to eliminate visual cues as sources of 

information. The glasses were coded with 3-digit numbers and covered with plastic Petri 

dishes. In order to limit carry-over effects and memory biases, all wine samples were 

presented in a different order specific to each participant for each task within each session, 

according to a Williams Latin square arrangement generated by FIZZ software (Biosystemes, 
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Courtenon, France). Panelists were asked to use water and unsalted crackers as palate 

cleansers between samples.  

Structured-numbered 8-point scales were used with values ranging from 0 to 7 and intensity 

terms associated with extreme values: “none” to “very intense”. 

Two sessions took place. During the first session, panelists were asked to score the intensity 

of two retronasal aroma descriptors (fruity and floral) and the global intensity of aroma for 

each sample of model wine, but were not asked to score the taste of the samples. In the second 

session, panelists were asked to score first sourness and sweetness and then, the intensity of 

fruity and floral aroma as well as the global intensity of aroma, in the same order as in the 

first session.  

In the second session, we expected to limit the dumping effect that can occur when panelists 

are asked to score a small number of descriptors, compared to the number of sensory 

characteristics that can be easily perceived in the products.  

In the two sessions, model wines were assessed according to a serial monadic protocol. 

Panelists were not allowed to re-taste previously assessed samples.  

 

2.3. Nosespace analyses 

The seven panelists performed a nosespace study conducted with a proton transfer reaction-

mass spectrometer (PTR-MS) instrument equipped with a Time-of-Flight (ToF) analyzer 

(PTR-ToF 8000, Ionicon Analytik, Innsbruck, Austria). Parameters of the PTR-MS 

instrument were adjusted according to a previous work conducted on model wines, which 

allowed ethanol chemical ionization conditions while minimizing the protonated molecular 

ion fragmentation of the volatiles used in this study with no compromise in sensitivity for in 

vivo applications (Sémon, Arvisenet, Guichard, & Le-Quéré, 2018). All the measurements 

were carried out under the following drift tube conditions: drift pressure of 2.31 mbar, drift 
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temperature of 80°C, and drift voltage of 340 V, resulting in an E/N ratio of 80 Td. Data 

acquisition was performed at 1 mass spectrum ranging from m/z 0 to 250 per 0.108 second. 

Mass axis calibration and calculation of peak areas were done with the software PTR-MS 

Viewer version 3.1.0.28. Breath volatile concentrations were expressed as normalized cps 

(ncps), taking into account corrected transmission and normalization to the protonated water 

and the protonated ethanol (C2H5OH)H
+
 monitored at their respective 

18
O isotopic 

contributions found at m/z 21.022 [H3
18

O
+
] and m/z 49.054 [C2H5

18
OH2

+
]. All the mass 

spectra were background-subtracted using the background signal measured before sample 

introduction into the mouth. A warm-up sample preceded the tested samples in order to 

introduce ethanol vapor in the inlet and the drift tube to pre-establish ethanol chemical 

ionization conditions and to familiarize subjects with the protocol and the nosepiece used for 

nosespace sampling. This ergonomic Teflon® nosepiece, delivering the sampled nosespace 

through both nostrils, was mounted on a light helmet that enabled the subject to move his/her 

head freely. It was connected to the transfer line of the PTR instrument by a flexible heated 

(75°C) PEEK tubing (85 cm long, 1mm internal diameter) (Schlich et al., 2015). Sampling 

was performed at a total flow rate of 60 mL/min with the transfer line maintained at 80°C. 

Among the 12 aroma compounds present in the model wine (Table 2), only 5 could be easily 

detected by PTR-MS (Table 3). However, only isoamyl acetate and ethyl octanoate could be 

unequivocally detected. Although minimized with the PTR-MS conditions used, 

fragmentations of protonated molecular ions were not completely absent (Sémon, et al., 

2018). 3-Methylbutan-1-ol (winey-brandy) was followed by its dehydrated protonated 

molecular ion [MH
+
-H2O] at m/z 71.086, which also bore a small contribution from the main 

fragment ion of isoamyl acetate; ethyl butanoate (fruity, buttery) was followed by its 

protonated molecular ion MH
+ 

at m/z 117.091, which bore a small contribution from the main 

fragment ion of ethyl hexanoate; isoamyl acetate (fruity, banana) was univocally 
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characterized by its protonated molecular ion MH
+
 at m/z 131.107; ethyl hexanoate (fruity, 

apple) protonated molecular ion MH
+
 at m/z 145.122 bore a small contribution from the main 

fragment ion of ethyl octanoate; and ethyl octanoate (fruity, apricot) itself was unequivocally 

followed by its protonated molecular ion MH
+ 

at m/z 173.154 (Table 3). These compounds all 

had a concentration higher than or equal to 0.42 mg.L
-1

.  

Nosespace measurements were carried out in triplicate.  

 

An example of a smoothed release curve in the nosespace of one individual is given in Figure 

1 for the ion m/z 71.086. All the release data were calculated from the breath concentration 

ncps data, using Microsoft Excel 2010. Ten parameters were extracted from the smoothed 

release curves (Boisard et al., 2014): maximal intensity before and after swallowing (IBS and 

IAS, respectively), time to reach maximal intensity before and after swallowing (TBS and TAS, 

respectively), area under the curve (ABS: area before swallowing; AAS: area after swallowing: 

AT: total cumulative area) and time to reach 10% (T10), 50% (T50) and 90% (T90) of AT 

(Figure 1).  

 

2.4. Statistical analysis 

All statistical analyses were carried out with XLSTAT (2014.1.10). 

 

2.4.1. Analysis of sensory scores 

The two sensory evaluation sessions cannot be considered as repetitions of the same 

experiment as they were not performed with the same protocol: the presence or absence of the 

taste rating was expected to impact the scores for retronasal aroma.  

To know if the results could be interpreted separately within condition, we first compared the 

results obtained in both conditions by a 4-way ANOVA on retronasal aroma scores, with 
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condition, panelists, sugar concentration and acid concentration as factors (=5%). All first-

order interactions were considered in this ANOVA model. 

 

For the interpretation of each scoring condition separately, a 3-way ANOVA with panelists, 

sugar concentration and acid concentration as factors was carried out on retronasal aroma 

scores (=5%). All first-order interactions were considered in this ANOVA model. 

 

2.4.2. Analysis of in-mouth release parameters and correlation with sensory scores 

Fifty parameters were extracted from the in vivo release curves (5 studied compounds  10 

parameters). Due to the high subject variability in these data, the data were standardized for 

each subject before being submitted to a 2-way ANOVA with acid concentration and sugar 

concentration as factors and including interactions. Given the exploratory nature of this 

experiment, the significance level was set at 10% in order not to rule out parameters that 

could potentially explain sensory scores from further analysis. Only the variables for which a 

significant effect of acid or sugar concentration was observed were kept for the next step and 

represented on a Pearson PCA, with nosespace parameters as variables and products as 

observations. 

 

Finally, Pearson’s correlation coefficients were calculated, using individual data, between the 

median of nosespace parameters (normalized data) and sensory descriptors (raw data). Only 

those parameters correlated to at least one sensory descriptor at =0.05 were studied.  

 

3. Results 

3.1. Sensory analyses 
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In both scoring conditions, floral aroma assessed by the 33 panelists did not significantly 

discriminate the four samples. Only the results related to global intensity of aroma and 

intensity of fruity aroma will be further studied.  

The comparison of global aroma and fruity aroma obtained in each scoring condition showed 

a significant effect of the condition on global intensity of aroma (Pval=0.041). More 

interestingly, the scoring condition tended to have different effects on fruity aroma scores 

depending on sugar and acid content (Pval (sugar  condition) = 0.070 and Pval (acid  

condition) = 0.054). Results were thus interpreted within each condition.  

Global intensity of aroma and intensity of fruity aroma, assessed by the 33 panelists were 

significantly enhanced when the concentration of sugar increased in the model wines, in both 

scoring conditions (Figure 2). These effects were also significant when considering only the 

subset of 7 panelists. When the 33 panelists assessed only aroma and not taste, there was a 

significant panelist  sugar interaction on fruity aroma intensity (Pval =0.026). This 

interaction was due to the scores of three panelists who did not experience fruity aroma 

enhancement by sweetness in this assessment condition, contrary to the other 30 panelists. 

When taste was scored before aroma, there was no panelist  sugar interaction effect on fruity 

aroma intensity, showing that in this assessment condition, the 33 panelists were in 

accordance with one another about the impact of sweetness on aroma. In the subset of 7 

panelists, all panelists were in accordance about the influence of sugar concentration on fruity 

and global aroma intensity, in both conditions of assessment.  

 

When panelists assessed only aroma and not taste, acid concentration had no effect on 

fruitiness intensity, nor on the global intensity of aroma, for both panels. With the 33 

panelists, there was a significant panelist  acid interaction for both aroma scores, (Pval = 

0.012 and 0.030 respectively, for fruity aroma and global intensity of aroma). It means that 
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panelists were not in accordance. Indeed, some of them perceived an aroma enhancement by 

sourness, others perceived an aroma decrease by sourness, but the majority of the panelists 

perceived the same aroma intensity with the two levels of sourness. When taste was scored 

before aroma, acid concentration had a significant effect on fruitiness intensity for the whole 

panel and a significant effect on the global intensity of aroma for the subset of 7 panelists. 

There was no panelist  acid interaction effect on these scores, showing that the level of acid 

affected all the panelists in the same way, in this condition.  

For the four retronasal aroma scores and for both panels, there was no sugar  acid 

interaction. 

 

3.2. Relationship between nosespace parameters and tastant composition of matrices 

Among the 50 parameters extracted from the nosespace curves, 16 varied significantly with 

the concentration of acid and/or sugar in the products. For the 5 studied compounds, AT was 

not affected by the concentration of tastants while IBS, ABS, TBS, IAS, AAS, TAS and T10 were. 

When a parameter increased significantly with tastants concentration before swallowing, it 

tended to decrease significantly with tastants concentration after swallowing (Table S1). This 

shows that, while globally equivalent, the release of the aroma compounds was time-shifted 

under the effect of tastant concentration.   

 

The 16 parameters varying with tastants concentration were represented in a normalized PCA 

(Figure 3). The first two principal components enable 95.6% of explained variance. The first 

axis (73.1% of the total variance) opposes nosespace parameters IBS and ABS on the one hand 

to IAS, AAS and T10 on the other hand. The two acid concentrations are opposed according to 

this dimension. The maximal intensity before swallowing (IBS) significantly increased with 

acid content for ions 71.086, 117.091, 131.107 and 145.122, characterizing respectively 
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3-methylbutan-1-ol, ethyl butanoate, isoamyl acetate and ethyl hexanoate, the four most 

volatile aroma compounds in the products. The area under the curves before swallowing (ABS) 

followed the same pattern for ions 71.086, 117.091 and 131.107. The parameters before 

swallowing should be considered with caution for ion 71.086 (3-Methyl-1-butanol) because 

for this ion, the area under the curve before swallowing was negligible (8%) compared to the 

global area (before and after swallowing). For ions 117.091, 131.107 and 145.122, ABS 

represented respectively 29%, 25% and 27% of the total area.  

On the contrary, IAS (for the ions 117.091, 131.107 and 145.122) and AAS (for the ions 

117.091 and 131.107), were significantly lower when acid concentration was high. This 

means that these volatiles were preferentially released during the in-mouth process than after 

swallowing, when acid concentration was high.  

T10 significantly decreased for ions 71.086, 117.091 and 131.107 when acid concentration 

increased, which means that an increase in acid concentration significantly shortened the time 

of release of 3-methylbutan-1-ol, ethyl butanoate and isoamyl acetate. T10 corresponds to the 

time at which 10% of the cumulated total area under the curve was reached. It occurred after 

swallowing for all the compounds. As no significant effect was observed for the total area 

under the release curve, an increase in acid concentration only modifies the dynamic of 

release of the volatile compounds. 

The second axis of the PCA (22.5% of the total variance) is characterized by 71-T10. This 

axis evidences an interaction between sugar and aroma for the time to reach 10% of the 

cumulative area of this ion. At first sight, this time seems longer for the product containing 

low acid and low sugar concentration and the product containing high sugar and high acid 

concentration. But this result has to be taken with caution because 71-T10 may not strongly 

contribute to perception. Indeed, for ion 71, T10 occurred just after swallowing and most of 

the release occurred after T10 (Figure 1). 
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173-TAS is opposed to the other parameters on axis 2. 173-TAS increased when sugar 

concentration increased. It evidences a delayed release or greater in-mouth duration of ethyl 

octanoate when sugar concentration increased. Ethyl octanoate was nearly exclusively 

released after swallowing (173-TAS  represented 97% of the total area for ion 173.154).  

 

3.3. Relationship between nosespace parameters and sensory results 

Among the 17 parameters varying significantly with tastant composition of the products, 7 

were significantly correlated to at least one sensory descriptor score (Table 4).  

The maximal intensity before swallowing (IBS) of four ions (71.086, 117.091, 131.107 and 

145.122) was negatively correlated to the retronasal aroma assessed when taste was not 

scored. As the total amount of aroma released did not vary with the model wine composition, 

these correlations mean that when these four volatile compounds were released earlier, the 

intensity of global and fruity aroma decreased. Thus, the perceived aroma seems to be 

explained more by the amount of aroma released after swallowing, which gives the last in-

mouth sensation.  

T10 was positively correlated to global retronasal aroma only when it was assessed after taste 

assessment. This correlation was positive for ions 131.107 and 145.122 (isoamyl acetate and 

ethyl hexanoate, respectively). This indicates that, when taste and aroma were both assessed, 

perceived global intensity of aroma was higher when T10 occurred later, that is when isoamyl 

acetate and ethyl hexanoate were released later.  

Finally, 173-TAS - the only parameter related to ethyl octanoate release influenced by tastant 

composition - was significantly correlated to global and fruity aromas scores obtained when 

taste and aroma were assessed. In this condition, when the release of ethyl octanoate 

compound was delayed, the fruity and global retronasal aroma perception increased.  
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4. Discussion 

In this study, we aimed to understand the impact of tastants concentration, in vivo aroma 

release and sensory assessment conditions on retronasal aroma enhancement by taste. We 

compared four wines with exactly the same volatile composition but different concentrations 

of tastants by nosespace and sensory analysis. Tartaric acid concentration seemed to have a 

low effect on retronasal aroma scores. When acid concentration increased, the subset of seven 

panelists perceived a higher global intensity of aroma, but this effect was not significant for 

the whole panel (n=33). Instead, the whole panel experienced a significant effect of acid 

concentration on fruitiness intensity. As a consequence, we can only consider that acid 

concentration tends to increase the perceived aroma, and that this tendency was only observed 

when taste was scored. It suggests that dumping effect was not involved in the observed 

enhancement, but we would need more information to confirm this.  

As in our former study (Arvisenet, et al., 2016), retronasal aroma intensity was significantly 

enhanced by sugar, and despite the use of taste and aroma attributes in the same sensory 

session, enhancement of aroma by sweet taste occured. This result is consistent with other 

studies (Bonnans & Noble, 1993). It suggests that, even if dumping effect occurred, it was 

probably not the only factor explaining the observed aroma enhancement by sweetness.  

In order to try to understand other reasons for this enhancement, in vivo release and sensory 

scores were compared. Correlations were found between perceived aroma and aroma release 

parameters. The sensory scores correlated to aroma release parameters before swallowing, 

were different from those correlated to aroma release parameters after swallowing. So, these 

two steps will be further discussed separately.  

 

4.1. Effect of tastants on perceived aroma before swallowing 
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The increase of acid concentration in the model wines induced an increased in-mouth release 

of several compounds (3-methylbutan-1-ol, ethyl butanoate, isoamyl acetate and ethyl 

hexanoate) before swallowing. Many studies have shown that volatile compounds release 

from a solution can be either increased, decreased, or unchanged by the presence of solutes, 

depending on the nature of volatile compounds and solutes (Buettner & Beauchamp, 2010; 

Hewson, Hollowood, Chandra, & Hort, 2008). Indeed, the presence and the concentration of 

tastants can affect the partition properties of volatile compounds, by changing volatility, water 

activity, etc. Little modification of the headspace concentration at equilibrium was observed 

for these volatile compounds as a function of model wine composition (Arvisenet et al., 

2016), suggesting negligible effect of the acid concentration on the partition coefficients. 

However this experiment was realized without addition of saliva. Neyraud et al. (2009) 

demonstrated that stimulations with increasing amounts of acid induced an increase in the 

salivary flow rate and in the total amount of proteins in saliva due to a parotid secretion. As 

the saliva composition differs between whole saliva and parotid saliva, the increase rate of 

release could thus be explained by a modification of the salivary protein composition, which 

could induce a different binding behavior between the volatile compounds and the proteins.   

In our study, this increased aroma input before swallowing seems not to have been perceived 

by panelists. Indeed, when both taste and aroma were assessed, none of the aroma intensity 

scores correlated with the parameters of release of the studied aroma compounds. When 

panelists were required to assess only aroma, global intensity of aroma was paradoxically 

negatively correlated to IBS, which demonstrates that panelists did not perceive the increase of 

the odorant stimulus in this test condition either. This negative correlation is difficult to 

explain. Our hypothesis is that a stronger concomitant phenomenon may have occurred, 

which provoked a decrease of perceived aroma simultaneously with the acid increase. It can 

reasonably be assumed that the increased perception of sourness due to increased acid 
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concentration provoked an impression of a drop in sweetness, because of the well-known 

sourness-sweetness perceptual interaction (Bonnans & Noble, 1993). Confusion between 

“more acid” and “less sweet” was all the more likely to occur when panelists did not have to 

score taste. In this sensory test condition, a decrease in perceived sweetness may have, in turn, 

provoked a decrease in retronasal aroma enhancement by sweetness. This is consistent with 

the high aroma enhancement by sweetness observed in the studied matrices, and with 

previous studies which showed that aroma enhancement by sweetness can be instruction 

dependent (Frank, 2002). This tentative explanation would need to be confirmed, and results 

should be considered with caution, as there is no evidence that the parameters measured 

before swallowing are relevant, especially with a liquid. 

 

 

4.2. Effect of tastants on perceived aroma after swallowing 

In vivo release parameters after swallowing were affected by acid or sugar concentrations.  

When acid concentration decreased, isoamyl acetate and ethyl hexanoate were released later, 

as suggested by the negative correlation between T10 of these compounds and acid 

concentration. But the influence of acid concentration and T10 on the global intensity of aroma 

was similar. This contradictory result could mean that there is little effect of acid 

concentration on aroma perception. This is in line with the results obtained with the group of 

33 panelists, whose global intensity scores of aroma did not depend on acid concentration.    

When sugar concentration increased, the after-swallowing intensity peak for ethyl octanoate 

occurred later, as shown by the positive correlation between sugar concentration and TAS of 

ethyl octanoate. This later release of ethyl octanoate seems to have been perceived by 

panelists only when they were asked to assess taste and aroma. One tentative explanation is 

that sweetness perception is known to gradually decrease after swallowing (Monaco, Miele, 
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Volpe, Picone, & Cavella, 2014; Reyes, Castura, & Hayes, 2017). As a consequence, the later 

the aroma compounds are released after swallowing, the less taste and aroma percepts may 

overlap. In our study, when panelists were asked to score taste and aroma, they are supposed 

to have paid more attention to the differences between these two percepts. Indeed, the 

conditions of the tests and the order of presentation of scales - corresponding to the 

temporality of perceptions of taste, first, and then aroma – were meant to help panelists to 

distinguish between taste and aroma. In these conditions, when the aroma intensity peak 

occurred later, panelists probably better noticed taste decline and it helped them to better 

distinguish aroma and taste. In this situation, panelists seem to have taken into account more 

the time of release than the intensity of release in their intensity score. This result was not 

observed when the sensory test instructions were to score only aroma. One tentative 

explanation is that, when panelists were only required to assess aroma (and not required to 

assess taste), they may have considered the flavor as a whole in their aroma score. As a result, 

not only did aroma intensity increase with sugar concentration, but it was also not correlated 

to aroma compounds release. These results show that trained panelists understand the 

conceptual difference between taste and aroma. Nevertheless, their aroma scores are highly 

correlated to sugar concentration. These scores depend on aroma release parameters only 

when aroma release and taste perception are likely to be less overlapped (i.e. after 

swallowing). It tends to prove that even when attempting to analyze the components of the 

flavor, panelists were not able to disentangle unitary percepts when those occurred 

simultaneously.   

 

4.3. Strengths and limitations 

To our knowledge, this study was the first attempt to understand thanks to the measurement of 

in vivo aroma release, what panelists score when they are asked or not to assess every salient 
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descriptor. It was also the first study to show the contribution of temporal sequence of aroma 

release to multimodal perception. Because the global release of aroma compounds was not 

changed by the concentration of tastants, the previous use of a static method, in Arvisenet et 

al. (2016) suggested negligible physicochemical interactions. The use of dynamic in vivo 

release measurement showed that, whereas tastants did not affect global aroma release in 

terms of intensity, they rather changed aroma release temporality. Swallowing was shown to 

play key role in this temporality. One strength of this study was thus to follow the dynamic in-

mouth release of aroma compounds from alcoholic beverages in real-time, via nosespace 

analysis. Thanks to this novel approach (Sémon, et al., 2018) it was possible to compare, in 

this category of products, the release of volatile compounds and the aroma perception.  

Some potential limitations related to our experimental setting should be mentioned. Despite 

the small number of samples of our study, a clear pattern emerged for the effect of sugar on 

aroma perception. But it would be interesting to confirm the effect of acid on aroma 

perception with a larger range of concentrations. For the purpose of our study, it was 

necessary that the same panelists performed both sensory analyses and dynamic 

measurements of in vivo release of aroma compounds. While the number of panelists was 

usual for nosespace experiments (Arancibia, Castro, Jublot, Costell, & Bayarri, 2015; Heenan 

et al., 2012; Tyapkova et al., 2014), it may be considered to be low for sensory analysis. But 

the seven panelists who performed both sensory and nosespace analyses were selected among 

a larger group, on the basis of their accordance with the results of this group.  

 

Dynamic sensory measurements are particularly interesting when it comes to the comparison 

with aroma release. Time-intensity (TI) was inapplicable in our study, because assessment of 

several attributes in the same session was required in the second session. Dynamic multi-

attribute sensory methods do exist but none of them was well adapted to the products and 
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purpose of the present study. Temporal Dominance of Sensations (TDS) focuses on the 

dominant attributes rather than on the intensity of each individual attribute over time, and it is 

difficult to relate TDS results and dynamic aroma release (Deleris et al., 2011). Temporal 

Check-all-that-apply (T-CATA), based on the frequency of detection of attributes over time, 

does not either provides a score for each attribute perceived on the products (Castura, 

Antunez, Gimenez, & Ares, 2016; Pineau et al., 2009). Multi-attributes time intensity and 

progressive profiling provide discontinuous data collection and are not well adapted to the 

scoring of products with short consumption time span.   

 

Of all the volatile compounds of the studied model wines, it seemed surprising that only ethyl 

octanoate release was correlated to the aroma perception. Many reasons can explain the high 

contribution of this compound to perceived aroma. First, ethyl octanoate was the least volatile 

compound among those that were followed by nosespace. The consequence of that was that 

its release was the most delayed, and thus, it was the least overlapped with taste percept. 

Secondly, ethyl octanoate had by far the highest OAV compared to the other compounds of 

the studied model wine (odor activity value, calculated with odor perception thresholds in 

water/ethanol, 90/10, w/w) (Arvisenet, et al., 2016; Guth, 1997). The other compounds in this 

study had very low OAVs compared to ethyl octanoate: between six and 160 times smaller 

(for isoamyl acetate and 3-methylbutan-1-ol, respectively). Nevertheless, this explanation 

should be considered with caution, since the perception of volatile compounds in a mixture 

does not depend only on their OAV, but also on Stevens’ law exponents of each compound 

and on the composition of the mixture, due to odor-odor sensory interactions. Psychophysical 

functions were shown to vary with intra-modal interactions (Grosch, 2001). In addition, odor 

perception in a mixture is not the addition of the contributions of the different odorants: as an 

example the fruity odor could result from synergic or antagonistic effects, making it difficult 
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to identify the contribution of each compound to the perceived odor (Thomas-Danguin et al., 

2014). Methodological development is still needed before being able to fully understand the 

contribution of each compound to perception.  

 

5. Conclusion 

We showed that despite their intensive training, panelists are still sensitive to dumping effect. 

Even when the test conditions allowed limiting the dumping effect, panelists were not able to 

completely dissociate aroma from the congruent taste perceived simultaneously. These results 

point out the limit of descriptive sensory tests: even for a well-trained panel, it seems difficult 

to evaluate independently every component of the flavor.  

Our results suggest that trained panelists are able to distinguish between the concepts of 

retronasal aroma and taste, and that the post-swallowing decrease of taste resulted in more 

accurate aroma assessment (i.e. more correlated to aroma release). The high contribution of 

swallowing in perception was showed, but more work is needed to better understand the role 

of tastants on the aroma release over time and how panelists integrate changes of temporal 

aroma release.  
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Figure 1. Extraction of parameters from nosespace curves. Example of a smoothed in 

vivo release curve for the ion m/z 71.086 

 

Maximal intensity before swallowing (IBS) and after swallowing (IAS), time to reach maximal 

intensity before swallowing (TBS) and after swallowing (TAS), area under the curve before 

swallowing (ABS) and after swallowing (AAS), and time to reach 10% (T10), 50% (T50) and 

90% (T90) of the cumulative total area (AT).  

 

 

  



  

29 

 

 

 

 

 

 

 

 

 

        Fruity aroma, Assessment of aroma only        Global 

intensity of aroma, Assessment of aroma only 

 

 

 

 

 
 

 

Fruity aroma, Assessment of taste and aroma    Global 

intensity of aroma, Assessment of taste and aroma 
  



  

30 

 

 
 

 

 

 

 

 

 

 

 

IBS: maximal intensity before swallowing; ABS: area under the curve before swallowing; 

TBS: time to reach maximal intensity before swallowing; T10: time to reach 10% of total 

cumulated area; IAS: maximal intensity after swallowing; AAS: area under the curve after 

swallowing; TAS: time to reach maximal intensity after swallowing 
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Figure captions 

 

Figure 1. Extraction of parameters from nosespace curves. Example of a smoothed in vivo 

release curve for the ion m/z 71.086 

 

Figure 2. Mean retronasal aroma scores (and standard errors) given to model wines with 

different sugar and acid concentrations by the two panels (for model wine codes, see Table 1) 

 

Figure 3. Factorial map (axes 1 and 2) of PCA for nosespace of model wines: (a) correlation 

plot showing the parameters of release curves correlated with tastants concentrations of model 

wines; (b) products plot.  

Parameters of nosepsace curves IBS: maximal intensity before swallowing; ABS: area under 

the curve before swallowing; TBS: time to reach maximal intensity before swallowing; T10: 

time to reach 10% of total cumulated area; IAS: maximal intensity after swallowing; AAS: 

area under the curve after swallowing; TAS: time to reach maximal intensity after swallowing 
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Table 1. Non-volatile compound composition (g.L
-1

) and pH in the model wine solutions  
 

Compound (purity) 

Model wine code 

S-A- S-A+ S+A- S+A+ 

Ethanol (96%) ------------------------------------ 80.0 ------------------------------------- 

Glycerol (87%) ------------------------------------ 8.5 --------------------------------------- 

Glucose (100%) 1.7 1.7 26.7 26.7 

Fructose (100%) 3.3 3.3 53.3 53.3 

Tartaric acid (100%) 2.5 5 2.5 5 

Acetic acid (99%) ------------------------------------- 0.3 ------------------------------------- 

Sulfur dioxide (5%) ------------------------------------- 0.6 ------------------------------------- 

pH 2.91 2.29 2.88 2.31 

 

------- x ------ means that the concentration of the corresponding compound was the same, x, 

in all the solutions  
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Table 2. Aroma compounds in the model wine solutions and their properties 

Compound Formula 
Molar 

mass 
logP

 a
 Odor description

b
 

Concentration 

in model wine  

(mg.L
-1

) 

Odor threshold (mg.L
-1

) 

in water/ethanol 

(90/10 w/w)
c
 

Acetaldehyde C2H4O 44.05 -0.17 Pungent, breathtaking 0.94 0.5 

2-Methylpropan-1-ol C4H10O 74.12 0.77 Sweet, sweaty-chemical, whiskey-

like 

16 40 

3-Methylbutan-1-ol C5H12O 88.15 1.26 Alcoholic, winey-brandy 95.2 30 

Ethyl butanoate C6H12O2 116.16 1.85 Ethereal, fruity odor, buttery, ripe 

fruit 

0.42 0.02 

2-Phenylethanol C8H10O 122.16 1.57 Floral, rose, floral 24.2 10 

Isoamyl acetate C7H14O2 130.18 2.26 Sweet, fruity, banana, pear 2.54 0.03 

Ethyl hexanoate C8H16O2 144.21 2.83 Fruity, winey odor; apple, banana, 

pineapple 

1.02 0.005 

Linalool C10H18O 154.25 3.38 Floral-woody odor with faint citrus 

note, sweet floral 

0.36 0.015 

cis-Rose oxide C10H18O 154.25 3.58 Metallic, grassy-green, geranium 0.042 0.0002 

Ethyl octanoate C10H20O2 172.27 3.81 Fruity, winey, sweet odor, cognac-

apricot 

1.02 0.002 

-Damascenone C13H18O 190.28 4.21 Fruity-floral with apple-plum-raisin, 

tea, rose, tobacco 

0.008 0.00005 

Ethyl decanoate
d
 C12H24O2 200.32 4.79 Sweet, fatty, nut-like, winey-cognac 

odor 

0.027 0.2 

a: EpiSuite 4.1 software 

b: Flavorbase (http://www.leffingwell.com/flavbase.htm) 

c: Guth et al. (1997), except for ethyl decanoate: Ferreira, Lopez & Cacho (2000) 

d: Compound present with -damascenone 
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Table 3. Volatile compounds detected by PTR-MS and m/z of their respective main 

protonated ion 

 

Compound m/z Fragment 

3-Methylbutan-1-ol 71.086 (MH-H2O)
+
 

Ethyl butanoate 117.091 MH
+
 

Isoamyl acetate 131.107 MH
+
 

Ethyl hexanoate 145.122 MH
+
 

Ethyl octanoate 173.154 MH
+
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Table 4. Pearson’s correlation coefficients between sensory scores and nosespace parameters  

 

Parameter 

occurrence 
Parameter 

Evolution of 

parameter with 

[tastant]  

Correlation between nosespace parameter and 

retronasal aroma descriptors* 

Global 

intensity  
aroma scoring 

only 

Fruitiness 

intensity  
aroma scoring 

only 

Global 

intensity 
taste + aroma 

scoring  

Fruitiness 

intensity 
taste + aroma 

scoring 

Before 

swallowing 

71-IBS  when [acid]  -0.389 -0.379 -0.015 -0.166 

117-IBS  when [acid]  -0.407 -0.320 -0.189 -0.209 
131-IBS  when [acid]  -0.392 -0.328 -0.132 -0.145 

145-IBS  when [acid]  -0.402 -0.341 -0.207 -0.253 

At T10 
131-T10  when [acid]  -0.103 -0.136 0.447 0.216 

145-T10  when [acid]  -0.031 -0.046 0.506 0.233 

After 1st swallow 173-TAS  when [sugar]  0.253 0.364 0.413 0.636 

 

* Correlation coefficients in bold are significant at  = 0.05 (degree of freedom = 27) 
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Highlights 

 

Aroma was enhanced by sweetness in model wines  

This enhancement differed whether panelists scored only aroma or taste and aroma   

When taste was not scored, perceived aroma did not depend directly on aroma release 

When taste was scored, aroma depended on ethyl octanoate release after swallowing 

 

 


