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Abstract

Sclerochronological data from whole bivalve shells have been used extensively to derive

palaeoenvironmental information. However, little is known about the relevance of shell

fragments more commonly preserved in the sediment record. Here, we investigate the oxygen

and carbon isotope composition of Dreissena carinata fragments from a core recovered from

Lake Dojran (FYRO Macedonia/Greece) to identify their relevance and efficacy as a proxy in

palaeoenvironmental studies. We use a modern Dreissena shell to calibrate the relationship

between the bivalve and its contemporary environment, which suggests their isotope

composition is primarily a function of temperature and water balance. The range of fragment

isotope data from the core overlaps with that of unbroken fossil shells, suggesting the

fragments broadly record lakewater conditions across the time of deposition. A comparison

of the isotope composition of shell fragments and endogenic carbonate shows an offset

between the two sets of data, which is likely due to temperature differences between surface

and bottom waters, the timing of carbonate precipitation, and productivity-controlled

stratification of the dissolved inorganic carbon pool. Shell fragment isotope data seem to

reflect the signal of environmental change recorded in other proxy data from the same core

and may potentially be used (like endogenic carbonate) to provide information on past

changes in lake level.

1 Introduction

The isotope composition of carbonate from the sequential analysis of intact fossil bivalves is

being increasingly utilised in palaeoenvironmental reconstructions (Schöll-Barna et al., 2012;

Lewis et al., 2017). However, little is known about the relevance of the isotope composition

of shell fragments, which are commonly preserved in the sedimentary record (Wagner et al.,

2014; Marcano et al., 2015). To better understand the efficacy of shell fragments as proxy in
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palaeoenvironmental studies, we utilise sediment cores recovered from Lake Dojran (Balkan

Peninsula) that have been previously investigated using multi-proxy techniques and contain

both whole shells and fragments of the bivalve Dreissena carinata.

The bivalve genus Dreissena is renowned for including two of the most invasive of all

freshwater organisms, Dreissena polymorpha and Dreissena rostriformis, but also comprises

species restricted to their native distribution (Albrecht et al., 2007). Lake Dojran is thought to

exclusively contain D. carinata (Wilke et al., 2010). Although information on the ecological

tolerances of D. carinata is limited, they will be similar to D. polymorpha as the two species

have a close phylogenetic relationship. Dreissena spp. typically live for 2-19 years and their

shells are characterised by external rings that form when growth slows or stops due to

changes in environmental conditions (e.g. temperature, water depth, trophic conditions,

current strength, turbidity; Karatayev et al., 2006). Shell growth typically starts at ~10 °C and

if temperatures exceed ~32 °C most mussels die (Karatayev et al., 2006). Within Lake

Dojran, young D. carinata are mainly found on the littoral lakebed and adults typically occur

attached to sublittoral hard substrates, such as empty shells and pebbles, and often form small

clusters (Šapkarev, 1980; Griffiths et al., 2002; our observations).

The oxygen isotope composition (δ18O) of bivalve carbonate (typically aragonite) is a

function of the temperature and δ18O of lakewater (δ18Olake; Leng and Marshall, 2004;

Goewert et al., 2007), assuming isotopic equilibrium and no diagenetic alteration, as there are

limited vital effects on δ18O in freshwater bivalves (Dettman et al., 1999; Geist et al., 2005).

Equilibrium precipitation of biogenic aragonite is subject to a temperature-dependent

fractionation between the carbonate and water, where δ18O decreases by 0.23 ‰ for every

+1°C (Grossman and Ku, 1986; Dettman et al., 1999). The carbon isotope composition (δ13C)

of bivalves typically reflects the δ13C of the dissolved inorganic carbon pool (DIC), where

any disequilibrium between the shell and DIC is relatively constant (Apolinarska, 2013).
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Consequently, changes in δ18Olake, δ13CDIC, and temperature will be recorded in subsequent

layers of the shell during growth.

Here we test the potential of using the isotope composition of bivalve shell fragments in

palaeoenvironmental studies by investigating: 1) how δ18O and δ13C of modern whole D.

carinata shells relates to present day lakewater, 2) if shell fragments from sediment cores

reflect the isotope range of fossil whole shells, and 3) the relationship between shell δ18O and

δ13C and other proxy data. We provide a modern calibration using stable isotope data from a

recent shell and monitoring data from Lake Dojran, and present sequential isotope data from

whole shells from the early Holocene. The fossil whole shell data are combined with isotope

data from shell fragments, which occur in variable quantities through the Holocene, and are

compared with previous palaeoenvironmental investigations on the same core sequence.

2 Study site

Lake Dojran (41°12’N, 22°44’E; 144 m asl) is located on the border between the Former

Yugoslav Republic of Macedonia and Greece (Figure 1) in an elliptical karst basin of

Neogene age. The lake is 8.9 km long and 7.1 km wide. The lake has a volume of 0.3 km3

with gently inclined slopes, a surface area of 42 km2, and an average water depth of 6.5 m

(Francke et al., 2013). Water inflow is primarily derived from small rivers, creeks, and

groundwater sourced from precipitation over the catchment. Outflow is dominated by

summer evaporation, and also via groundwater, irrigation, and water supply to local

populations (Gesovska, 2016). The lake has no natural outflow, however, during times of

higher lake level, the River Doiranitis connects Dojran to the Vardar River and the Aegean

Sea (Sotiria and Petkovski, 2004). The lake is monomictic, experiencing thermal stratification

in summer months, with overturn likely occurring during winter (Temponeras et al., 2000;

Zacharias et al., 2002; Lokoska et al., 2006). The lakewater is eutrophic with a pH of 7.6-9.5,
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an electrical conductivity of 0.8-1.5 mS/cm (Sotiria and Petkovski, 2004) and total

phosphorous of 50-520 µ/L (measured during 2004-2006; Tasevska et al., 2012).

The climate of the local area is characterised by hot and dry summers and mild, humid

winters (Popovska et al., 2005). Temperature and precipitation are influenced by Aegean Sea

through the Thessaloniki Plain and continental influences from the north. The average air

temperature is 14.3 °C, ranging between 26.1 °C and 3.7 °C, and annual precipitation is 630

mm (Sotiria and Petkovski, 2004; Popovska et al., 2005). The mean weighted annual isotope

composition of precipitation has δ18O = −7.4 ‰ and δD = −48 ‰, ranging between −10.6 ‰ 

in winter and −3.2 ‰ in summer for δ18O (calculated on-line at waterisotopes.org; Bowen et

al., 2005). Inflow δ18O plots close to the Global Meteoric Water Line (GMWL; Craig, 1961),

whereas δ18Olake defines a local evaporation line (LEL; Figure 2). Therefore, δ18Olake is

controlled primarily by the water balance of the lake (Leng and Marshall, 2004), for example

a decrease in δ18Olake of −2.9 ‰ between 1997 and 2011 coincided with a lake level increase 

of ~4 m (Griffiths et al., 2002; Francke et al., 2013). Spring inflows have δ13CDIC between

−13.0 ‰ and −7.9 ‰, which is lower than lakewater values of between −5.9 ‰ and −0.6 ‰ 

(Figure 2; Griffiths et al., 2002; Francke et al., 2013). There is negligible impact from

geological carbonate within the basin and δ13CDIC is mainly influenced by in-lake processes,

such as exchange with atmospheric CO2 and/or the preferential uptake of 12C by algae during

photosynthesis (Leng and Marshall, 2004).

3 Material and methods

A ~7 m sediment core (Co1260; Figure 1) was recovered in June 2011 using gravity and

percussion piston corers from a site of undisturbed, horizontally-bedded sediments (water

depth = 6.6 m). Cores were recovered in 3 m-long sections, cut to 1 m, and then split
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lengthways and subsampled continuously at 2 cm intervals (a full overview of coring,

sampling, sedimentology, and chronology is described in Francke et al. (2013)).

Subsamples were sieved (63 µm) to separate larger shelly material from fine-grained clays

and endogenic carbonate. Intact shells were rare in the subsamples. Alongside a modern shell

collected from the littoral zone in June 2011 (Figure 3), two fossil shells from 447.9 cm and

470.9 cm core depth were recovered and appeared well preserved. The whole shells were

sampled sequentially along the ridge of the shell from the umbo to ventral margin using a

Dremel rotary hand drill with a 1 mm bit, which produced a fine powder. Fragmented shells

occurred in varying proportions throughout the core (Figure 3). Only those subsamples which

contained at least five individual fragments between 0.5-1 mm (sizeable enough to provide

>50 µg of carbonate) were selected for isotope analysis. Individual fragments were crushed to

a fine powder prior to analysis. Scanning electron microscopy (SEM) with energy dispersive

X-ray spectroscopy (EDX), X-ray Diffraction (XRD), and X-ray fluorescence (XRF) were

used to confirm that the dominant carbonate species forming the shell material is aragonite,

with no evidence of calcite.

Stable isotope analysis was conducted at the British Geological Survey. Approximately 50-

200 µg of powder was analysed using an Isoprime dual inlet mass spectrometer coupled to a

Multiprep device, by reaction with concentrated phosphoric acid for 15 minutes at 90°C.

Carbon and oxygen isotope values for the whole shells (δ13Cshell and δ18Oshell) and shell

fragments (δ13Cfrag and δ18Ofrag) are reported as parts per mil (‰) calculated to the Vienna

Pee Dee Belemnite (VPDB) scale using a within-run laboratory standard (KCM) calibrated to

international NBS standards. Analytical reproducibility for KCM was <0.1 ‰ for both δ13C

and δ18O. The mineral-gas fractionation factor used for aragonite was 1.00854 (derived from

Kim et al., 2007a).
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4 Results

The modern shell (24.9 mm long) has average δ18Oshell = −0.3 ± 1.0 ‰ (1σ), ranging between 

+2.3 ‰ and −1.3 ‰, and average δ13Cshell = −1.7 ± 1.0 ‰ (1σ), ranging between +0.3 ‰ and 

−3.4 ‰ (Figure 4). There is a strong correlation between δ18Oshell and δ13Cshell (r = +0.8, p <

0.005, n = 24). The fossil shell from 447.9 cm (9.5 cal kyr BP; 14.7 mm long) has average

δ18Oshell = −0.7 ± 0.9 ‰ (1σ), ranging between +1.2 ‰ and −2.5 ‰, and average δ13Cshell =

−1.5 ± 0.8 ‰ (1σ), ranging between −0.2 ‰ and −2.8 ‰ (Figure 4). A strong covariation is 

present between δ18Oshell and δ13Cshell (r = +0.9, p < 0.005, n = 15). The fossil shell from

470.9 cm (10.0 cal kyr BP; 22.4 mm long) has average δ18Oshell = −2.1 ± 0.8 ‰ (1σ), ranging 

between −0.7 ‰ and −3.3 ‰, and average δ13Cshell = −1.7 ± 0.6 ‰ (1σ), ranging between 

−0.8 ‰ and −2.7 ‰ (Figure 4). There is a strong covariation between δ18Oshell and δ13Cshell (r

= +0.8, p < 0.005, n = 21).

Overall, the fragments have average δ18Ofrag = −0.2 ± 1.2 ‰ (1σ) and δ13Cfrag = −2.2 ± 1.1 ‰ 

(1σ), ranging between +3.1 and −3.9 ‰ and +0.5 and −4.9 ‰, respectively (Figure 5). 

Individual horizons have ranges of 1.1 to 5.4 ‰ for δ18Ofrag and 0.7 to 4.2 ‰ for δ13Cfrag.

There is a moderate covariation between δ18Ofrag and δ13Cfrag for the whole sequence (r =

+0.6, p < 0.005, n = 119), however late Holocene fragments show a stronger covariation (r =

+0.8, p < 0.005, n = 80) whereas early Holocene-Younger Dryas fragments do not have a

significant correlation (r = +0.3, p = 0.06, n = 39).

5 Discussion

5.1 δ18O and δ13C of whole shells

The modern whole shell contained soft body remains, which suggests the animal died directly

(a few days) before collection in June 2011. The geochemistry of the shell’s ventral margin

should therefore represent lakewater conditions at this time, assuming growth until death. The
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ventral margin has δ18Oshell = +1.07 ‰ and, using δ18Olake = −0.91 ‰ (Francke et al., 2013) 

with the equation of Grossman and Ku (1986), the calculated lakewater temperature was

~11°C. The only thermal gradient data for the lake are from 1996 when water depth was ~5

m, which give 1°C/m during summer and 2-3°C/m in spring and autumn (Temponeras et al.,

2000). As the gradient would have been greater in 2011 when water depth was ~7 m, the

calculated ~11°C for bottom waters is consistent with surface temperatures of ~24°C in May-

June (Temponeras et al., 2000). This infers that precipitation was most likely in equilibrium

with lakewater, as for other bivalves (Goewert et al., 2007). Further, shell growth was

probably not continuous throughout the year as temperatures would be too low between early

autumn and late spring (Karatayev et al., 2006).

The modern shell shows decreasing δ18O and δ13C from the umbo, followed by an increase

toward the ventral margin (Figure 4). The shell presumably represents ~8 years of growth

given its length (Karatayev et al., 2006), which covers a period of major lake level change.

Between 1988 and 2002, lake level decreased by ~5 m following water extraction for

irrigation (Griffiths et al., 2002), before levels increased after a remediation project diverted

water into the lake (Gesovska, 2016). Inflow to the lake has low δ18O (−8 ‰; Francke et al., 

2013), and therefore greater input would decrease δ18Olake. In addition, air temperature was

~1 °C lower than present during the main phase of lake level rise (Gesovska, 2016), and

evaporation would have been marginally reduced also lowering δ18Olake. However, these

effects will have been counteracted by a higher lake level resulting in a larger surface area

and increased evaporation (Francke et al., 2013). A higher thermal gradient would also

reduce bottom water temperature driving higher δ18Oshell. Any direct influence of temperature

change on the fractionation between aragonite and lakewater would have been countered by

an inversely proportional change in regional rainfall δ18O (Bard et al., 2002). Therefore,

greater inflow with low δ18O must have outweighed the net effects of evaporation,
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temperature, and thermal gradient changes to result in the transition to low δ18Oshell. Lake

level was then stable between 2006 and 2009 whilst average air temperature increased by ~2

°C (Gesovska, 2016). This probably led to stronger evaporation and higher δ18Olake,

supported by a larger surface area and greater evaporation potential, and a higher thermal

gradient and lower bottom water temperatures. Rising lake level and lower temperatures

toward the end of the bivalve’s life would account for lower δ18Oshell at the ventral margin.

A strong covariation between δ18Oshell and δ13Cshell (r = 0.8, p = <0.001, n = 24) suggests that

periods of low δ18Olake are associated with low δ13CDIC. Inflow δ13C is lower than lakewater

δ13CDIC (Francke et al., 2013), therefore greater inflow will lead to lower δ18Olake and δ13CDIC.

In addition, higher inflow could dilute nutrient levels, reducing aquatic productivity and

limiting the export of 12C from lakewaters, also leading to lower δ13CDIC. Periods of higher

temperature and evaporation would increase atmospheric exchange, driving higher δ13CDIC

and covariation between δ18O and δ13C (Talbot, 1990; Leng and Marshall, 2004). As with the

modern shell, there is a strong covariance between δ18O and δ13C in the whole shells from

447.9 and 470.9 cm core depth (r = ≥0.8, p = <0.001). The fossil shells show larger variations

in δ18O and δ13C than the modern shell (i.e. saw-tooth profile), which may be due to changes

in growth rate, length of growing season, or greater seasonality. The pattern of variability is

most likely consistent with the interpretation of the modern shell, where lower δ18Olake and

δ13CDIC are driven by increased inflow and higher values by evaporative processes. On a

seasonal basis, the delivery of water with low δ18O and δ13CDIC occurs during colder winter

months, whereas less inflow and higher evaporation is characteristic of warmer summer

months.
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5.2 δ18O and δ13C of shell fragments

Bivalves produce superior reinforcement in the direction of shell growth, which means shells

preferentially fracture along concentric growth surfaces that represent planes of structural

weakness (Böhm et al., 2016). Each fragment consists of multiple growth bands (Figure 3),

and therefore may represent up to several years of growth. As the fragments could not be sub-

sampled, any environmental signal will be averaged. While each individual fragment may

span a few years, collectively they are presumably the remains of littoral shell beds and

therefore provide a relatively low-resolution indicator of environmental change. Larger

fragments were more abundant in sections of the core that broadly coincide with a higher

sedimentation rate, which are associated with periods of lower lake level (Francke et al.,

2013; Zhang et al., 2014; Masi et al., 2017). These periods may have been characterised by a

higher energy environment capable of moving the fragments from the littoral zone to the

coring location, which would also promote faster burial rates and reduce the potential for

reworking. The overriding presence of small shell fragments within fine-grained sediments

suggests the fragments have been transported and are not in situ as part of a palaeoshoreline.

This is corroborated by seismic data showing only flat-lying sediments at the coring location

(Francke et al., 2013) and by the fragments being sub-angular with rounded edges (Figure 3).

This morphology suggests the original fracturing could have been due to biogenic breakage,

which typically produces straight-edged fragments, and indicates abrasion during breakage

and/or transport.

The fragments will be subject to a residence time before final deposition, and each sampling

horizon will contain fragments originating from different individuals. As core sampling was

carried out at every 2 cm, the majority of sampling horizons represent ~14-46 years,

depending on sedimentation rate. This technique is consequently appropriate for establishing
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interdecadal changes in environmental conditions, although information from individual

growing seasons could potentially be derived from sub-sampling individual fragments.

To establish the effectiveness of utilising shell fragments in palaeoenvironmental

reconstructions, the fragment isotope data were compared to fossil whole shell data from

nearby core horizons. The range in δ18Oshell and δ13Cshell partially overlaps the range in

δ18Ofrag and δ13Cfrag at core intervals around 10 cal kyr BP and 9.5 cal kyr BP (Figure 5). Any

offset is most likely due to a variable δ18Ofrag and δ13Cfrag range between sampling horizons,

where the range in δ18Ofrag is 1.1 to 5.4 ‰ (average = 2.6 ‰) and 0.7 to 4.2 ‰ for δ13Cfrag

(average = 2.2 ‰). Although range differences between levels could be due to changes in

seasonality, the variability is more likely a function of sampling limitations. This may include

only capturing a limited range of climate variability from the available fragments, differential

reworking after deposition (e.g. bioturbation), or using shells from different

microenvironments within the lake. However, the average δ18Ofrag and δ13Cfrag range is

similar to that observed for δ18Oshell and δ13Cshell (2.6 to 3.7 ‰ and 1.9 to 3.7 ‰, respectively)

suggesting that the fragment range approximates average lakewater conditions for the time of

deposition. As with the modern shell, the fossil whole shells and fragments will have formed

predominantly through warmer months of the year when higher temperatures promoted

growth. Therefore, these data should be comparable to variations in the isotope composition

of endogenic carbonate (δ18Ocarb and δ13Ccarb) from the lake that precipitates in surface waters

as calcite (Francke et al., 2013).

5.3 Comparison with multi-proxy data from Co1260

Comparing the fragment and calcite data, average δ18Ofrag is higher than δ18Ocarb (+1.7 ‰)

and δ13Cfrag is lower than δ13Ccarb (‒3.0 ‰; Figure 5). Although part of the δ18O offset is due

to the positive fractionation between aragonite and calcite (~ +0.8 ‰; Kim et al., 2007b), a
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difference is still present after taking this into account (average δ18Ofrag = ‒0.2 ‰ and δ18Ocarb

= ‒1.9 ‰). An offset to lower δ18Ocarb may indicate calcite formed early in the year when

δ18Olake is lower after winter recharge or during warmer months where high temperatures

would give lower δ18Ocarb (Leng and Marshall, 2004). As calcite precipitation is driven by

productivity and higher surface temperatures (Francke et al., 2013), temperature control on

δ18Ocarb will likely produce the offset from δ18Ofrag. In addition, due to the temperature

gradient, calcite will form in the epilimnion at higher temperatures than the bivalve aragonite

on the lakebed, which forces higher δ18Oshell. Bivalve growth also most likely starts at ~10 °C

in spring, continues through summer when calcite is precipitated, and slows/stops in autumn

where δ18Olake will be higher due to summer evaporation.

The offset between average δ13Cfrag and δ13Ccarb (‒3.0 ‰) may be related to productivity 

differences between surface and bottom waters, with strong productivity driving calcite

precipitation and removing 12C resulting in higher δ13CDIC in the epilimnion. Any recycling of

the sinking organic matter may result in lower δ13CDIC in bottom waters. A difference in

δ13CDIC between surface and bottom waters would also be enhanced by thermal stratification

during summer (Zacharias et al., 2002).

As for δ18Ofrag, an extended growth period will expose shells to a range of δ13CDIC,

particularly in the early and later parts of the year when recharge delivers water with low

δ13CDIC (Francke et al., 2013).  δ13Cfrag and δ13Ccarb broadly trace similar trends through the

Holocene, taking into account the low resolution of shell data. These correspond to variations

in δ13C of organic matter (δ13Corg; Figure 5), for example a shift to lower δ13C between ~10

and 7 cal kyr BP and a change to higher δ13C in the late Holocene (although calcite is absent).

As average δ13Corg is −25.5 ‰ and δ13CDIC = −5.9 ‰ (in 2011; Francke et al., 2013), organic 

matter is likely autochthonous as phytoplankton typically have δ13C that is 20 ‰ lower than
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δ13CDIC (Meyers, 2003). Further, this indicates that variations in δ13Cfrag, δ13Ccarb, and δ13Corg

are a function of changes in δ13CDIC.

The trend to lower δ13C starting around 10 cal kyr BP traces increasing arboreal pollen (AP),

particularly mesophilous plants, and higher reconstructed temperatures (Masi et al., 2017;

Thienemann et al., 2017). Increasing water depth and higher trophic levels are also indicated

by a shift to a plankton-dominated diatom assemblage (Figure 5; Zhang et al., 2014). A

change to lower δ13C under higher trophic levels suggests δ13CDIC is likely a function of

increasing catchment soil development (higher AP; Masi et al., 2017; Rothacker et al., 2018),

and the delivery of respired soil CO2 with low δ13C (as suggested for nearby Lake Ohrid;

Lacey et al., 2015). A gap in shell fragment data (7.7-2.7 cal kyr BP) is probably due to a

high lake level increasing the distance from coring location to the shore, thereby reducing the

focussing of shell material and widening the non-habitable zone in the central basin due to a

finer substrate. In the late Holocene, a lower lake level is suggested by fewer planktonic

diatoms (Zhang et al., 2014), and is consistent with lower temperatures and a regional shift to

drier conditions (Roberts et al., 2008; Thienemann et al., 2017). A change to higher δ13C is

likely due to reduced water input (less soil CO2 inflow) and a lower precipitation to

evaporation ratio, both driving higher δ13CDIC. This is also evident in the modern lake. Under

lower lake level in 1997 δ13CDIC = +0.2 ‰ compared to −5.9 ‰ in 2011 under a higher lake 

level (Figure 2; Griffiths et al., 2002; Francke et al., 2013), although the time of sampling

(June vs. September) may account for part of the difference.

The degree of offset between δ18Ofrag and δ18Ocarb may provide additional information on lake

level changes. Around 9.6 cal kyr BP, there is little difference between average δ18Ofrag and

δ18Ocarb (+0.3 ‰) and average δ18Oshell overlaps with δ18Ocarb (Figure 5). The early Holocene

is characterised by a rise in benthic diatom taxa suggesting a low lake level under higher

temperatures (Figure 5; Zhang et al., 2014; Thienemann et al., 2017), which would reduce the
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lakewater temperature gradient and result in a smaller offset between δ18Ofrag and δ18Ocarb. At

~8 cal kyr BP there is a larger offset of ~ +2 ‰. This is associated with a diatom-inferred

lake level rise (Zhang et al., 2014), which would increase the temperature gradient and drive

higher δ18Ofrag thereby forcing a decoupling with δ18Ocarb.

6 Conclusions

Shell carbonate most likely precipitates in isotopic equilibrium with lakewater through part of

the year as low temperatures limit growth over winter into spring. δ18O and δ13C are

suggested to be primarily influenced by shifts in lake level and water balance, which in turn

effect the lakewater temperature gradient and DIC pool. Breakage patterns indicate that shells

preferentially fragment along growth surfaces. As fragments originate from multiple

individuals over an extended period, δ18Ofrag and δ13Cfrag most likely represent average

interannual-decadal environmental conditions. As δ18Ofrag and δ13Cfrag broadly correspond to

the ranges obtained in continuous profiles from fossil whole shells, this suggests that the

fragments represent average lakewater conditions during sedimentation. An offset between

the isotope composition of shells and calcite is most likely controlled by temperature

variations during precipitation associated with lake level changes (δ18O) and soil

development in the catchment (δ13C). Downcore variations in the offset between the δ18O of

shell fragments and calcite may indicate changes in lake level. Our data suggest that shell

fragment δ18O and δ13C can provide useful palaeoenvironmental information, in particular as

part of a multiproxy study and where endogenic carbonate is absent.
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Figure 1 Map of the Balkan Peninsula showing the location of Lake Dojran on the border between the

Former Yugoslav Republic of Macedonia and Greece, and the location of Co1260.
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Figure 2 Stable isotope composition of (A) lake water and spring inflows (δ18O and δD; Griffiths et al., 

2002; Francke et al., 2013) showing the calculated local evaporation line (LEL) and global meteoric water

line (GMWL), and (B) showing δ18O and δ13CDIC of lake water and spring inflows (Griffiths et al., 2002;

Francke et al., 2013).
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Figure 3 A) Modern whole shell collected from the littoral zone of Lake Dojran in June 2011 (scale bar =

5 mm), and B) shell fragments from 129 cm (i, ii) and 141 cm (iii) core depth (scale bar = 0.5 mm).
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Figure 4 δ18O (blue dots/lines) and δ13C (green triangles/lines) from modern and fossil whole shells. Fossil

shells were recovered from core depths of 447.9 cm (9.5 cal kyr BP) and 470.9 cm (10.0 cal kyr BP).
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×

Figure 5 δ18O and δ13C from shell fragments (black square = average, black line = range), whole shells (red dot

= average, red line = range), and endogenic inorganic carbonate (green and blue lines; Francke et al., 2013). A

correction factor of +0.8 ‰ and +0.9 ‰ was applied to δ18Ocarb and δ13Ccarb (Rubinson & Clayton, 1969; Kim et

al., 2007b), respectively, to report the endogenic carbonate (calcite) data as aragonite. Also shown are the

relative abundance of planktonic and benthic diatoms (Zhang et al., 2014), relative annual mean air temperature

change (Thienemann et al., 2017), percentage of arboreal pollen (AP) and mesophilous taxa (for taxa list see

Masi et al., 2017), and the δ13C of organic matter (Francke et al., 2013).
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