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Abstract: This study evaluated Moringa oleifera extracts from two locations in Niger Delta for
in vitro anti-cholinesterase and antioxidant activities. Methanolic, aqueous and ethanolic extracts
of Moringa oleifera were evaluated for inhibition of acetylcholinesterase (AChE) activity, antioxidant
properties, and total phenolic and flavonoid contents using standard procedures. M. oleifera extracts
possessed significant and concentration dependent AChE inhibitory activity for methanolic, aqueous,
and ethanolic extracts. For the most potent extracts, the percentage AChE inhibition/IC50 (µg/mL)
values were Moringa oleifera root methanolic extracts (MORME): ~80%/0.00845; Moringa oleifera root
ethanolic extract 1 (MOREE1): ~90%/0.0563; Moringa oleifera root ethanolic extract 2 (MOREE2):
~70%/0.00175; and Moringa oleifera bark ethanolic extract (MOBEE): ~70%/0.0173. The descending
order of AChE inhibitory potency of plant parts were: root > bark > leaf > flowers > seed. All M. oleifera
methanolic extracts at a concentration of 1000 µg/mL displayed significant (p < 0.05–0.001) DPPH
radical scavenging activity, with values of ~20–50% of that of ascorbic acid. The total phenolic content
and total flavonoid content (TPC/TFC) of MORME, Moringa Oju bark methanolic extract (MOBME),
MOREE1, MOREE2 and Moringa leaf ethanolic leaf extract (MLEE) were (287/254), (212/113),
(223/185), (203/343) and (201/102) mg gallic acid equivalents/g and quercetin equivalents/g,
respectively. There was an inverse correlation between plant extract AChE inhibition and total
phenolic (p < 0.0001) and total flavonoid contents (p < 0.0012). In summary, this study revealed 5 of
19 extracts of M. oleifera that have potent in vitro anti-cholinesterase and antioxidant activities.

Keywords: Moringa oleifera; anti-cholinesterases; DPPH radical scavenging; antioxidant; oxidative
stress; Alzheimer’s disease

1. Introduction

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease and is associated with
progressive and irreversible loss of cognitive abilities, memory loss, cognitive impairment, emotional
dysfunction, and ultimately death [1]. AD accounts for 50–70% of all cases of dementias [2,3], and for
which dementia such as AD is a major cause of disability in the elderly. The epidemic scale of dementia
poses one of the major challenges on global public health systems and associated financial burden
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with the social care needed. In 2015, an estimate of the number of people living with dementia was
46.8 million, with an associated economic burden of 818 billion US dollars, with numbers expected to
grow year on year [3,4]. The financial burden, coupled to the social stigma associated with the loss of
cognitive abilities and dependency on others, imposes considerable psychological distress in patients
as well as their families [5].

AD is characterized by the formation of senile plaques, composed mainly of amyloid β (Aβ),
and neurofibrillary tangles (NFTs), composed of tau protein, in the hippocampus and cerebral cortex
of afflicted humans [6,7]. These protein aggregates (Aβ and tau proteins) provoke neuronal damage
and synaptic dysfunction [8,9], hence the inhibition of their formation remains a potential therapeutic
approach for the treatment of AD [10].

These abnormal protein accumulations also underpin neuro-inflammatory responses, neuronal
toxicity, cell death, and cerebral atrophy [11]. The pathogenesis of AD is complex and multi-faceted
and includes oxidative stress [12], inflammation [13], mitochondrial damage and/or dysfunction [14]
and a cholinergic signaling deficit [15]. Attempts to preclude the cholinergic deficit have triggered
the development of cholinomimetics and acetylcholinesterase inhibitors to maintain cholinergic
transmission in the AD brain. Drugs such as tacrine, rivastigmine, donepezil, huperizine A and
physostigmine (eserine) have been employed to treat patients with mild to moderate AD. However,
these drugs only alleviate cholinergic symptoms, and were not designed to address other mechanistic
pathways involved in AD disease progression. In fact, oxidative damage has been suggested to be
a primary event in AD [16]. Indeed, protein, lipid, and DNA oxidation have been observed in brain
tissues of AD Patients [17].

To preclude the risk associated with synthetic antioxidants, the utilization of natural antioxidants
has been advocated [18,19]. Since natural antioxidants are an essential component of health and might
prevent or delay cell damage [20], they have been exploited as potential leads for the development
of novel AD drugs [21,22]. Furthermore, the neuroprotective effects of natural antioxidants and
nootropics [23], such as Ginkgo biloba [24] and Bacopa monnieri [25] have attracted considerable attention
in the management of AD [26].

Moringa oleifera belongs to the family Moringaceae. It is commonly known as horse radish tree or
drumstick tree. It is a small-medium sized tree, 10–15 m high; widely cultivated in East and Southeast
Asia, Polynesia, and the West Indies. It is also indigenous to North West India and many countries
in Africa, South East Asia, Arabia, the Pacific, South America, and the Caribbean Islands. It is a
widely cultivated tree, and considered a multi-purpose plant [27]. Although 12 varieties of Moringa
species exist, it is likely that M. oleifera is the most widely known [27]. Almost all the plant parts: root,
bark, gum, leaf, fruit (pods), flowers, seed and seed oil have been marketed as herbal therapies for
various ailments in the Niger Delta of Nigeria. Diseases treated include inflammatory and infectious
diseases, as well as cardiovascular, gastrointestinal, and hematological and hepatorenal disorders [28].
In Thailand, the tender pods, fruits and leaves of M. oleifera have been consumed as vegetables for
over 100 years, while the hot water extract of the dried roots has been taken orally as a cardiotonic and
a stimulant against fainting [29]. The potential therapeutic values against cancer, diabetes, rheumatoid
arthritis, and other diseases have earned this plant the name of “wonder tree” in Thailand [30].

Extracts from M. oleifera display multiple pharmacological activities, including
anti-inflammatory [31–34], antibacterial [35], antioxidant [36], anti-cancer [37], hepatoprotective [38,39]
and neuroprotective [40–42] activities. The leaves and fruits also possess hypocholesterolaemic activity
in Wistar rats [43] and rabbits [44].

A number of phytochemicals are present within, and obtained from, the Moringa plant, and these
may contribute to its broad biological activity. For example, tannins, saponins, alkaloids, flavonoids,
phenols and glycosides are resident within the leaves [45]; tannins, steroids, flavonoids, alkaloids,
glycosides, quercetin and terpenoids within the flowers [46]; gallic acid, catechins, epicatechin, ferulic
acid, vanillin, caffeic acid, protocatecuic acid, cinnamic acid, phytosterol, quercetin, glycosides and
phenols within the seeds [47]; procyanidins, aurantiamide acetate, 3-dibenzylurea, quercetin glycoside,
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rhamnoglucoside quercetin and chlorogenic acid within the roots; and, procyanidin, sterols,
triterpenoids, glycosides, tannins, alkaloids, β-sitosterol and octacosanoic acid from the stem bark [48].
Hence M. oleiferia has been extensively studied because of its enormous potentials as a source of
nutraceuticals of medicinal value [49–51]. The plants from various regions of the world such as
India [28], Thailand [30], Jamaica [52] and Pakistan [53] have been pharmacologically characterized,
including the in vitro evaluation of antioxidant activity [54].

However, we have focused our attention to the M. oleiferia plant found in the Niger Delta of
Nigeria, a region impacted by enormous exploration and exploitation of petroleum. Our research goal
was to characterize the pharmacological activity of different parts of the M. oleifera plant, and from two
different localities, and to focus upon its potential in vitro anti-cholinesterase and antioxidant activities.

2. Materials and Method

2.1. Plant Materials Collection and Identification

Moringa oleifera parts (leaves, seeds, roots, flowers and bark) were collected in March 2015.
The plant was authenticated by Mr. Okeke Chimezie, a botanist of the Department of Plant Science
and Biotechnology, University of Port-Harcourt, Nigeria. Two garden specimens from two different
locations in Rivers state, Nigeria: a coastland (No. 5, Abuloma Road, in Port Harcourt), and Hinterland
(Okpaka’s Compound, Elele Alumini, Port-Harcourt), Nigeria were used for this study. A plant voucher
number (UPH/P/60) was deposited in the University’s herbarium. The samples were air-dried for
seven days and then powdered using an electrical blender and grinder, S-742 (Saisho, Nanjing, China).

2.2. Preparation of Methanolic, Ethanolic and Aqueous Extracts of Moringa oleifera

Moringa oleifera plants were collected and powdered, and samples weighed separately,
before maceration in methanol or ethanol for 72 hours, as follows: leaf (300 g in 1500 mL of solvent),
bark (250 g in 800 mL of solvent), root (250 g in 800 mL of solvent), seed (120 g in 300 mL of solvent),
flower (120 g in 400 mL of solvent), respectively. Macerated samples were shaken 3 times daily to
assist solvation. Solutions were then filtered using double-layered gauze. Filtrates were dried in vacuo
at 40–50 ◦C on a water bath to obtain the methanolic or ethanolic dry extracts. Single sample extracts
were weighed, and the percentage yield for each sample recorded.

For the aqueous extract, powdered samples of Moringa oleifera were weighed and extracted by a
soxlet extraction method using distilled water. At the end of extraction, aqueous extract solution was
dried in vacuo to obtain dry aqueous extracts. Single sample extracts were weighed, and the percentage
yield for each sample recorded.

Collectively, we have prepared 19 extracts (8 methanolic, 3 aqueous, and 8 ethanolic). The higher
number of methanolic and ethanolic extracts reflected the common usage of these solvents
in ethnomedicine.

2.3. Chemicals

Acetylthiocholine iodide (ATCI), ascorbic acid, bovine serum albumin (BSA), 2,2-Diphenyl-1-
picrylhydrazyl (DPPH), 5,5-dithiobis (2-nitrobenzoic acid) (DTNB), Folin-Ciocalteau Reagent (FCR),
gallic acid, physostigmine, and β-tocopherol were all purchased from Sigma Aldrich (Irvine, UK).

2.4. Animals

To provide a source of mammalian acetylcholinesterase (AChE) enzyme, rat brain homogenates
were used. Rats were male F344 strain, weight 200–230 g, as reported previously [55–57]. The use of
these animals received approval from the University of Nottingham Local Ethical Review Committee
(2008) (study reference CHE 10), with procedures performed in accordance with the Animals Scientific
Procedures Act (UK) 1986.
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2.5. Assay for Acetylcholinesterase Inhibitory Activity

AChE activity was measured within a 96-well microtitre plate based on the Ellman [58] method.
Forty µL of plant extracts at concentrations of 200, 20, 2, 0.2 and 0.02 µg/mL were mixed with 50 µL of
3 mM DTNB, 50 µL of AChE (1 mg/mL, Sigma, C3389, Irvine, UK) or rat brain homogenate (prepared at
10% (w/v) according to references [55,56], and 35 µL of 50 mM Tris-HCl (pH 8.0) containing 0.1% BSA,
and samples incubated for 5 min at 37 ◦C. The reaction was initiated by addition of 25 µL of 15 mM
ATCI resulting in the production of a 5-thio-2-nitrobenzoate anion read at 412 nm every 5 s for 10 min
using a Spectramax microplate reader (ThermoFisher, Stafford, UK).

To establish suitable optical density changes and linearity of signal, a 1:10 dilution of rat
brain homogenate (in 10 mM Tris-HCl pH 8.0) was used for AChE measurements. This rat brain
positive control for AChE activity was inhibited in a dose-dependent manner by either eserine or
organophosphorus pesticides [57].

2.6. Determination of 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Effects

A DPPH radical scavenging assay was employed to determine, by a spectroscopic method, relative
plant antioxidant ability. Anti-radical activities of plant extracts were estimated, according to the
method of Nwidu et al. [57]. Stock solutions of extracts (5 mg/mL) were prepared and diluted to
final concentrations of 200, 100, 50, 25, 12.5 and 6.25 µg/mL in ethanol. One hundred and 60 µL of
0.1 mM DPPH in ethanol solution was added to 20 µL of the extracts or standard, and then mixed with
20 µL of H2O. β-tocopherol (as a control solution) over the concentration range of 1.56, 0.78 0.39, 0.195,
and 0.0975 mg/mL was assayed under similar conditions. The mixtures were incubated at 37 ◦C for
40 min in the dark. Sample absorbance was read at 517 nm, as described in Nwidu et al. [57].

2.7. Reducing Power Capacity Assessment

The reducing capacity of plant extracts were estimated based upon their ability to reduce ferric
ions (Fe3+) to ferrous ions (Fe2+). The concentrations of the plant extracts ranged from 6.25 to 50 µg/mL.
Four µL of 5 mg/mL of each plant extract was mixed with 400 µL of phosphate buffer (0.2 M dibasic
sodium phosphate and 0.2 M monobasic sodium phosphate buffer, pH 7.4) and 250 µL of 1% potassium
ferricyanide added, and then the mixture was incubated at 50 ◦C for 20 min. Then, 250 µL of 10%
trichloroacetic acid was added, and the samples centrifuged at 3000 rpm for 10 min. One hundred µL
of the supernatant was mixed with 100 µL of water followed by the addition of 20 µL of freshly
prepared ferric chloride solution. Samples were then read at 700 nm, according to Nwidu et al. [57].
L-Ascorbic acid was employed as a positive control antioxidant.

2.8. Determination of Total Phenolic Content

Quantitation of total phenolics was determined spectrophotometrically at 760 nm, based on
a colorimetric measurement (Folin-Ciocalteu Reagent (FCR) method) as described in a previous
publication [57]. Plant extracts were assessed across the concentration range of 1–100 µg/mL.
Twenty µL of plant extract was added to 90 µL of water, followed by addition of 30 µL of FCR
and then the samples were shaken vigorously in a plate reader. Within eight minutes, 60 µL of 7.5%
Na2CO3 solution was added, and the samples incubated at 40 ◦C on a shaking incubator, before reading
at 760 nm in a spectrophotometer. Gallic acid over the concentration range of 0.1–0.5 mg/mL was
processed in a similar fashion to provide a standard curve.

2.9. Determination of Total Flavonoid Content

Total flavonoid contents of the plant extracts was also determined according to the previously
published method [57]. Quercetin was used as a reference compound. Twenty µL of plant extract
(5 mg/mL) in ethanol was mixed with 200 µL of 10% aluminum chloride solution and 1 M potassium
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acetate. The mixture was incubated for 30 min at room temperature, and then read at 415 nm,
according to Nwidu et al. [57].

2.10. Statistical Analysis

Results are expressed as means ± SD. The concentration of plant extract producing 50% inhibition
(IC50) was calculated using non-linear regression analysis. A one-way ANOVA with Dunn’s multiple
comparisons post-test was used to compare group data sets. A Spearman rank-order correlation
coefficient was used to assess the relationship between total phenolic content, total flavonoid content,
antioxidant content, and inhibition of AChE activity. Statistical analyses were performed using
GraphPad Prism (Version 5.3) for Windows (GraphPad Software, Inc., San Diego, CA, USA, www.
graphpad.com), with a p value of <0.05 considered significant.

3. Results

3.1. Moringa Oleifera Acetylcholinesterase Inhibitory Activity

M. oleifera extracts possessed significant and concentration dependent AChE inhibitory activity
for methanolic, aqueous, and ethanolic extracts (Figure 1 and Table 1). For the most potent extracts,
the percentage AChE inhibition/IC50 (µg/mL) values were Moringa oleifera root methanolic extracts
(MORME): ~80%/0.00845; Moringa oleifera root ethanolic extract 1 (MOREE1): ~90%/0.0563; Moringa
oleifera root ethanolic extract 2 (MOREE2): ~70%/0.00175; and, Moringa oleifera bark ethanolic extract
(MOBEE): ~70%/0.0173. The descending order of AChE inhibitory potency of plant parts were: root >
bark > leaf > flowers > seed.

The descending order of AChE inhibitory potency for the M. oleifera methanolic extracts was
MORME > MOSME (c) > MOBME > MOLME > MOFME > MOSME > MOSME (h) > MOFPME;
for M. oleifera aqueous extracts was: MOBAE > MORAE > MOFAE; and for M. oleifera ethanolic
extracts: MOREER2 > MOBEE > MOREE1 > MOLEE > MOSEE2 > MOFEE2 > MOFEE1 > MOSEE1
(refer to Table 1).

3.2. Moringa Oleifera DPPH Radical Scavenging Activity

Methanolic, aqueous and ethanolic extracts of M. oleifera displayed DPPH radical scavenging
activities in concentrations dependent manner, although for the aqueous fractions relatively low
levels of radical scavenging was apparent (Figure 2 and Table 1). At a concentration of 1000 µg/mL,
all M. oleifera methanolic extracts exhibited significant (p < 0.05–0.001) radical scavenging activity from
~20–50% of that of ascorbic acid (set at 100%) (Figure 2). The descending order of radical scavenging
for the methanolic extracts was: MOLME > MOFPME > MOSME (h) > MOFME > MOSME > MOSME
(c) > MOBME > MORME; for the aqueous extracts: MOBAE > MOFAE > MORAE; and ethanolic
extracts: MOREE1 > MOSEE2 > MOREE2 > MOLEE > MOBEE > MOFEE1 = MOFEE2 > MOSEE1
(Table 1).

When considering the location of the plants, the MOREE1 from the coastland had a DPPH radical
scavenging ability of ~70%/IC50 of 0.1176 × 10−3 mg/mL, whereas MOREE2 from the hinterland had
a similar scavenging activity of ~70%, but with a higher IC50 of 0.4097 × 10−3 mg/mL.

www.graphpad.com
www.graphpad.com
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Figure 1. Acetylcholinesterase (AChE) inhibitory activity of plant extracts from Moringa oleifera. Plant 
extract inhibition of AChE was measured using a modified Ellman assay, with percentage inhibition 
of AChE calculated relative to eserine. The histograms presented are means ± SEM for at least three 
replicate assays at each extract concentration. a; p < 0.05. b; p < 0.01. c; p < 0.001. 

Figure 1. Acetylcholinesterase (AChE) inhibitory activity of plant extracts from Moringa oleifera.
Plant extract inhibition of AChE was measured using a modified Ellman assay, with percentage
inhibition of AChE calculated relative to eserine. The histograms presented are means ± SEM for at
least three replicate assays at each extract concentration. a: p < 0.05. b: p < 0.01. c: p < 0.001.
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Table 1. Percentage yield, AChE inhibitory, and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical
scavenging potency of Moringa oleifera methanolic, aqueous and ethanolic extracts.

Moringa oleifera Extracts Yield (%)
IC50 Concentrations (mg/mL)

AChE DPPH Radical Scavenging (×10−3)

Methanolic
MOBME 2.67 0.1740 0.1419
MOFME 8.88 0.2750 0.04767
MOSME 3.44 0.3425 0.04902

MOFPME 14.71 0.4335 0.02579
MOSME (h) 6.83 0.3863 0.04561

MOLME 4.78 0.2615 0.02517
MOSME (c) 3.68 0.08723 0.08723

MORME 9.84 0.00845 0.3148

Aqueous
MOFAE 39.1 0.3784 0.1313
MOBAE 26.2 0.2185 0.08298
MORAE 14.3 0.2764 0.1574

Ethanolic
MOLEE 5.3 0.2105 0.4638

MOREE2 1.1 0.00175 0.4097
MOREE1 6.3 0.0563 0.1176
MOFEE1 14.4 0.2756 0.6819
MOFEE2 3.1 0.2654 0.6819
MOBEE 10.2 0.0173 0.6709
MOSEE1 7.1 0.2864 3.168
MOSEE2 10.3 0.2464 0.1653

Methanolic extracts: MOBME, Moringa oleifera bark methanolic extract; MOFME, Moringa oleifera flower methanolic
extract; MOSME, Moringa oleifera stembark methanolic extract; MOFPME, Moringa oleifera food powder methanolic
extract; MOSME (h), Moringa oleifera stalk methanolic extract (hot); MOLME, Moringa oleifera leaf methanolic
extract; MOSME (c), Moringa oleifera stalk methanolic extract (cold); MORME, Moringa oleifera root methanolic
extract. Aqueous extracts: MORAE, Moringa oleifera root aqueous extract; MOFAE, Moringa oleifera flower aqueous
extract; MOBAE, Moringa oleifera bark aqueous extract. Ethanolic extracts: MOLEE, Moringa oleifera leaf ethanolic
extract; MOREE1, Moringa oleifera root ethanolic extract 1; MOREE2, Moringa oleifera root ethanolic extract 2,
MOFEE1, Moringa oleifera flower ethanolic extract 1; MOFEE2, Moringa oleifera flower ethanolic extract 2; MOBEE,
Moringa oleifera bark ethanolic extract; MOSEE1, Moringa oleifera seed ethanolic extract 1; MOSEE2, Moringa oleifera
seed ethanolic extract 2. Extracts denoted 1 are Moringa oleifera plants from lowland, and extracts denoted 2 are
Moringa oleifera plants from hinterland.
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3.3. Moringa Oleifera Reducing (Antioxidant) Capacity 

Methanolic, aqueous and ethanolic extracts of M. oleifera displayed reducing (antioxidant) 
capacity in a concentrations dependent manner, although this was generally low relative to ascorbic 
acid (Figure 3). At an extract concentration of 50 µg/mL, of the methanolic extracts, only the MOBME 
and MORME displayed significant (p < 0.001) reducing capacity of ~50% compared to vitamin C set 

Figure 2. DPPH radical scavenging activity of plant extracts from Moringa oleifera. Plant radical
scavenging activity was assessed using a DPPH radical, with results expressed as percentage inhibition.
Vitamin E was used as a positive control. The histograms presented are means ± SEM for at least three
replicate assays at each extract concentration. a: p < 0.05. b: p < 0.01. c: p < 0.001.

3.3. Moringa Oleifera Reducing (Antioxidant) Capacity

Methanolic, aqueous and ethanolic extracts of M. oleifera displayed reducing (antioxidant) capacity
in a concentrations dependent manner, although this was generally low relative to ascorbic acid
(Figure 3). At an extract concentration of 50 µg/mL, of the methanolic extracts, only the MOBME and
MORME displayed significant (p < 0.001) reducing capacity of ~50% compared to vitamin C set at
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100%. Across the eight M. oleifera ethanolic extracts assayed, all except MOSEE2 exhibited significant
(p < 0.05–0.001) reducing capacity. The highest antioxidant capacity for the ethanolic extracts was ~48%
and ~45%, for MOREE1 and MOREE2, respectively. The order of descending reducing capacity for the
M. oleifera methanolic extracts was: MORME > MOBME > MOLSME > MOFME = MOSME = MOFME >
MOSME (h) > MOSME (c); and, for the aqueous extracts: MOBAE > MORAE > MOFAE; and ethanolic
extracts: MOREE1 > MOREE2 > MOLEE > MOBEE > MOSEE1 > MOFEE1 > MOFEE2 > MOSEE2.
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Figure 3. Reductive capacity of plant extracts from Moringa oleifera. Plant reducing power was
quantified via the ability (as a percentage) to reduce ferric (Fe3+) to ferrous (Fe2+) iron. Ascorbic acid
(vitamin C) was used as a positive control. The histograms presented are means ± SEM for at least
three replicate assays at each extract concentration. a: p < 0.05. b: p < 0.01. c: p < 0.001.
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3.4. Moringa Oleifera Total Phenolic and Total Flavonoid Content

Total phenolic content (TPC) and total flavonoid content (TFC) of the M. oleifera methanolic,
aqueous, and ethanolic extracts were determined (Table 2). All fractions retained phenolic and
flavonoid content, with the MORME extract displaying the highest levels of both compounds.
Interestingly, there was a significant inverse correlation between total phenolic (p < 0.0001) and
flavonoid content (p < 0.0012), and reduced potency of AChE inhibition (Figure 4). By comparison,
there was no correlation between antioxidant capability and inhibition of AChE (Figure 4), or between
antioxidant content and either TPC or TFC (results not included).
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Figure 4. Spearman correlation of AChE inhibitory potency vs total phenolic content, total flavonoid
content, and antioxidant potential for plant extracts from Moringa oleifera. Each dot represents one of
the methanolic, aqueous, or ethanolic extracts. For significance, ** p < 0.01, *** p < 0.001.
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Table 2. Total phenolic and flavonoid content of Moringer oleifera methanolic, aqueous, and
ethanolic extracts.

Moringa oleifera Extracts Total Phenolic Content
(mg GAE/g)

Total Flavonoid Content
(mg QUER E/g)

Methanolic
MOBME 212.3 ± 2.30 112.5 ± 2.40
MOFME 175.6 ± 0.09 84.3 ± 2.30
MOSME 187.4 ± 2.00 52.0 ± 0.60

MOFPME 100.4 ± 0.08 7.3 ± 1.90
MOSME (h) 123.2 ± 1.10 57.0 ± 3.30

MOLME 113.3 ± 1.90 91.2 ± 0.90
MOSME (c) 94.5 ± 0.90 18.0 ± 0.09

MORME 287.1 ± 0.00 254.3 ± 2.30

Aqueous
MOFAE 165.2 ± 0.80 27.0 ± 3.00
MOBAE 153.3 ± 0.08 87.2 ± 3.60
MORAE 187.0 ± 1.90 67.2 ± 2.00

Ethanolic
MOLEE 201.0 ± 2.30 102.2 ± 1.50

MOREE2 203.2 ± 0.02 342.5 ± 1.70
MOREE1 223.2 ± 1.01 185.4 ± 2.70
MOFEE1 186.3 ± 2.00 75.0 ± 0.30
MOFEE2 176.3 ± 0.30 69.7 ± 1.70
MOBEE 187.2 ± 2.00 202.3 ± 3.10
MOSEE1 146.3 ± 0.20 95.3 ± 2.5
MOSEE2 109.2 ± 0.80 87.2 ± 3.60

Extracts denoted 1 are Moringa oleifera plants from lowland, and extracts denoted 2 are Moringa oleifera plants
from hinterland.

4. Discussion

M. oleifera neuroprotective effects have been reviewed [59–62] and experimentally
demonstrated [40,41,63]. Various mechanisms, such as AChE inhibition, modification of monoamine
levels, anti-amyloid aggregation, and antioxidant activities are strategies that have been employed for
the amelioration of AD symptoms [60]. Of these, one of the major approaches has involved addressing
the levels of acetylcholine in the brain that are depressed in AD using AChE inhibitors [64,65].
The cholinesterase inhibitors, eserine, tacrine, donepezil, rivastigamine, and galantamine, are known
to have disparaging side effects that include disturbed sleep, diarrhea, nausea, headaches,
and seizures [66,67]. As a result, there is intense scientific investigation to screen a plethora of
plant extracts to discover more potent AChE inhibitors, hence this current evaluation of methanolic,
aqueous, and ethanolic extracts of various plant parts (leaf, root, bark, flowers, etc.) of M. oleifera for
anti-cholinesterase and antioxidant effects.

Many extracts and fractions of different plants, such as Achyrocine tomentosa, Eupatorium viscidum,
Ruprechtia apetala, Trichocline reptans, Zanthoxylum coco, Poncirus trifoliate, Treculia obovoidea,
Angelica archangelica, Cassia obtisufolia, Salvia officinalis, Desmodium gangeticum, and Carpolobia lutea have
been assayed and reported to possess cholinesterase inhibitory activity [57,60,68]. However, this is not
a universal property of plants per se, thus other plant extracts, for example, from Sideroxylon obtusifolium,
Erythrina velutina, Vitex agnus-castus L., Phoradendron piperoides, Chrysobalanus icaco, Bauhinia cheilantha,
and Orbignya phalerata do not exhibit any AChE inhibitory activity. Other plants, such as Hyptis fruticosa
and Maytenus rigida, possess only low AChE inhibitory effects, whereas the plant investigated herein,
M. oleifera, has ethanol leaf extracts with moderate AChE inhibitory activity; while, Vitex agnus-castus
L. aqueous extract was an effective inhibitor of AChE [68].

A methanolic extract of M. oleifera with anti-cholinesterase effects has also been reported in vitro
and in vivo in zebrafish (Danio rerio) [69], however, Moringa flower extract had no effect on gut AChE
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activity of insect larvae of Aedes aegypti [70]. Our explorative screening study revealed that M. oleifera
methanolic, aqueous, and ethanolic extracts demonstrated considerable AChE inhibitory activity,
that for some fractions was comparable to that induced with eserine. The MORME and MOBME
from the methanolic extracts were the most potent AChE inhibitors with IC50 values of 0.00845 and
1.740 µg/mL, respectively. The MOBAE and MORAE from the M. oleifera aqueous extracts were
the most potent, but had high IC50 values of 0.2764 and 0.215 µg/mL, respectively. Whereas the
MOREE2, MOBEE and MOREE1 of the M. oleifera ethanolic extracts with IC50 values of 0.0173, 0.0563
and 0.00175 µg/mL, respectively, were the most potent ethanolic extracts.

Eserine (physostigmine) at a concentration of 0.02 µg/mL (~72 nM) was used as a positive control
to completely inhibit electric eel or rat brain AChE, and for which relative inhibition of AChE by plant
extracts was gauged. At this eserine concentration human brain AChE would likewise be inhibited
~100% (IC50 of ~14 nM) [57,71,72]. Hence, across the 19 screened M. oleifera extracts MOREE1, MORME,
MOREE2 and MOBEE stand out as the majorly active AChE inhibitors with IC50 values of 0.00175,
0.00845, 0.0173 and 0.0563 µg/mL, respectively. These fractions show particular promise for further
development and purification since in their partially purified form, they were more potent AChE
inhibitors than eserine.

To combat the multifaceted nature of neurodegenerative diseases such as AD, additional off-target
actions such as radical scavenging and reducing (antioxidant) activities would be of benefit. Our results
show that M. oleifera extracts, MOBME, MOLSME, MORME, MOLEE, MOFEE2, MOREE2 and MOREE1
significantly reduced DPPH radicals to about 50% of those of pure antioxidant Vitamin E. Superoxide
anion radical (O2−) is a precursor to active free radicals that have the potential of reacting with
biological macromolecules, and thereby inducing tissue damage [14]. In the assay undertaken,
antioxidants react with DPPH, a purple colored stable free radical and convert it into a colorless
α-α-diphenyl-β-picryl hydrazine. Plants with antioxidant properties, on interaction with DPPH,
either transfer an electron or hydrogen atom to DPPH, thus neutralizing its free radical character,
and changing the solution colour from purple to yellow. Our results that M. oleifera extracts displayed
antioxidant properties was also validated by the ability to reduce ferric to ferrous iron. Mild, but useful
reducing (antioxidant) capacity was apparent, in keeping with other studies that have quantified
M. oleifera antioxidant capability [52–54].

In addition to establishing the potent AChE inhibitory activity and antioxidant properties of
M. oleifera we quantified the total phenolic and total flavonoid contents. For the MORME extracts,
a relatively high phenolic and flavonoid content was detected. M. oleifera extracts that demonstrated
potent AChE inhibitory activity, also displayed significant antioxidant activities and contained a
relatively high content of polyphenols and flavonoids. The natural antioxidants that are present in
plants, such as M. oleifera, may inhibit or prevent the deleterious consequences of oxidative stress,
and this could relate to certain phenolic and flavonoid contents [46]. For example, polyphenols
inhibit lipid peroxidation by acting as chain-breaking peroxyl-radical scavengers [73]. For M. oleifera,
certain terpenoids, steroids, and phenolic compounds such as tannins, coumarins and flavonoids could
provide the proficient antioxidant properties [74,75].

Interestingly, the AChE IC50 inhibitory concentrations for M. oleifera extracts were significantly
inversely correlated to total phenolic and total flavonoid contents (Figure 4). This suggests that the
agent(s) responsible for the AChE inhibitory activity contain phenolic and flavonoid compounds.
However, there was not a correlation between AChE inhibitory activity and antioxidant activity,
or between antioxidant activity and TPC or TFC. Polyphenols may certainly possess antioxidant
properties [76,77], but the antioxidant activities of flavonoids are variable, and may, for example,
reflect the presence or absence of a catechol B-ring [78]. Hence, the discordance between TPC/TFC
and antioxidant activity may simply reflect the specific phenolic or flavonoid compound components
of M. oleifera that were retained while using our solvent systems. We employed methanol, ethanol,
and water for extract dissolution based upon their extensive use as solvents in ethnomedicine [79,80],
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as they are relatively inexpensive, suitable for dissolution of both polar and non-polar compounds,
and can be evaporated with ease facilitating extract concentration.

Collectively, the extensive armamentarium of phytochemicals of M. oleifera [45–47] likely
contribute to the potent anti-cholinesterase and antioxidant effects we describe in this study. However,
a limitation of our results is that the data only reflects an in vitro study. To date, preliminary in vivo
findings have shown that a M. oleifera hydroalcohol leaf extract was capable of mitigating memory
impairment in rats [40]. Yet follow-up studies that assess the ability of other M. oleifera extracts or
purified compounds to ameliorate symptoms of cholinergic deficits in animal models of diseases such
as AD, Parkinson’s disease, or myasthenia gravis are still required. Nevertheless, the impetus for
in vivo studies should be based upon satisfactory in vitro data of potent anti-cholinesterase activity,
and our study certainly suggests that M. oleifera reaches this criterion.
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