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Abstract

The stochastic finite element method is a useful tool to calculate the response of systems subject to
uncertain parameters and has been applied extensively to analyse structures composed of randomly
heterogeneous materials. The methodology to estimate the parameters of the random field under-
lying a stochastic finite element model often utilises the midpoint approximation wherein material
properties that are measured over a sample volume are treated as point observations of the random
field at the centroid of the sample volume. This paper investigates the error induced by this ap-
proximation for the case of effective moduli of elasticity resulting from tensile loading as well as 3
and 4-point bending. A computer experiment has been performed consisting of the generation of
synthetic stiffness profiles from a lognormal stochastic process, the calculation of effective properties
as weighted harmonic averages and the estimation of random field parameters through the method of
moments. The uncertainty in the parameter estimates is quantified and a recommendation is made
as to which bending test is superior for obtaining random field parameter estimates with reference to
the statistics of the base process and the tensile loading condition.

Keywords: Uncertainty Quantification, Effective Elastic Modulus, Midpoint Approximation, Random
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1 Introduction
The stochastic finite element method is a useful tool to calculate the response of systems subject to
uncertain parameters [1] and has been applied extensively to analyse structures composed of randomly
heterogeneous materials such as timber [2], concrete [3] and soil [4]. The mathematical model for spatial
variation of material properties that underlies stochastic finite element modelling is random field theory
[5]. This paper considers the variation of modulus of elasticity E with spatial parameter v modelled
by a random field E(v) parametrised by a location parameter µ, scale parameter σ and a correlation
parameter θ known as the correlation length [6]. The accuracy of the response distribution obtained by
the stochastic finite element method depends on the uncertainty associated with the estimation of the
parameters of the base random field. Conventional statistical methodologies to estimate the parameters
of the random field model require point observations of the base random field E(v) however experimen-
tally determined material properties are in fact effective material properties E∗ constituting an average
over the sample volume. The effective property E∗ of a heterogeneous material is the property of the
homogeneous equivalent that produces identical behaviour with respect to some measurable quantity
such as displacement in the case effective modulus of elasticity, flow in the case of effective hydraulic
permeability and voltage in the case of effective conductivity [7].

The problem of the incompatibility between the inferential requirement for point observations of the
underlying random field E(v) and the reality that material properties can only be measured over a non-
zero volume is often resolved through the use of the midpoint approximation [8]. This approximation
treats the effective property E∗ that is obtained over the sample volume as a point observation of the
base process E(v) at the centroid vc of the sample volume. Figure 1 illustrates the error ε = E(vc)−E∗
that results from the midpoint approximation and it is argued that this approximation is responsible
for significant uncertainty in the estimated parameters of the random field E(v). This paper presents
the results of a computer experiment that has been conducted to quantify parameter uncertainty by
comparing the distribution of the parameter estimates obtained from the effective properties under the
midpoint approximation to the distribution of statistics of the random field. The total uncertainty is
composed of two sources [9] namely aleatoric uncertainty which is the statistical uncertainty due to
limited sample size and epistemic uncertainty which is the systematic uncertainty due to estimator bias
primarily resulting from the utilisation of the midpoint approximation.

8th International Workshop on Reliable Computing, “Computing with Confidence”
University of Liverpool, Liverpool, UK

16–18 July 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/159766865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ǫ

E(v)
E

∗

Figure 1: Midpoint approximation error ε between the base process E(v) and effective property E∗.

The motivation for selecting modulus of elasticity E as the material property considered in this
paper is due to the importance of this material property to the grading of timber which seeks to assign
timber elements into strength classes for structural use. However the methodology and results contained
within this paper are also applicable to other effective properties which are averages over the underlying
random field. In particular this paper considers the effective elastic modulus E∗ of a simply supported
beam obtained by three different tests namely 3-point P3 and 4-point P4 bending resulting in midspan
deflection UB as well as tension loading PT resulting in total displacement UT as shown in Figure 2.

P3P4/2 P4/2
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Figure 2: 1D model of a simply supported beam of length L under 3-point loading P3, 4-point loading P4 resulting
in midspan deflection UB as well as tensile loading PT resulting in total deflection UT .

This paper presents the formulation of the effective modulus of elasticity E∗ of a Euler-Bernoulli
beam as a weighted harmonic mean. This formulation offers a compelling alternative to the finite element
method for obtaining the displacement of a heterogeneous beam at a single spatial location. The derivation
for the case of the 4-point effective property E∗4 is shown in the Appendix otherwise for the case of the
3-point effective property E∗3 see Bechtel [10] or the case of tension E∗T see Fenton and Griffiths [11].
Under Euler-Bernoulli beam theory [12] the effective modulus of elasticity for all loading conditions can
be formulated as:

E∗ =

(∫ L

0

ω(v) · E(v)
−1

dv

)−1
(1)

where (.)−1 denotes the pointwise reciprocal such that E(v)−1 =
{
vi ∈ D| 1

E(vi)

}
where D = [0, L] is

the domain of the integral. The weighting function ω(v) satisfies the following property:∫ L

0

ω(v) dv = 1 (2)

where the units of the weighting function ω(v) are given by the reciprocal of the units of the domain
D so that Equation 2 is dimensionless. The weighting function is dependent on the loading and boundary
conditions of the beam and consequently a separate weighting functions for the case of tension ωT (v),
3-point ω3(v) and 4-point bending ω4(v) are presented. It should be noted that this paper does not
suggest an equivalence between the profiles of tensile and bending modulus of elasticity but rather the
intention of this work is to assess the influence of the midpoint approximation for different loading
scenarios. In the case of tension every point in the domain has a equal contribution to the tensile
effective modulus of elasticity E∗T since the stress distribution is spatially constant and consequently E∗T
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is given by an unweighted harmonic mean [11] and consequently every point in the domain D has an
equal weighting. The weighting function ωT (v) of the tensile effective elastic modulus E∗T determined
from total displacement UT is given by:

ωT (v) =
1

L
if 0 ≤ v ≤ L (3)

The weighting function ω3(v) for the 3-point effective elastic modulus E∗3 determined from midspan
deflection UB is given by [10]:

ω3(v) =


12v2

L3
if 0 ≤ v ≤ L

2
12(L− v)2

L3
if
L

2
≤ v ≤ L

(4)

The weighting function ω4(v) for the 4-point effective elastic modulus E∗4 determined from midspan
deflection UB is given by (derivation in Appendix):

ω4(v) =



324v2

23L3
if 0 ≤ v ≤ L

3
108v

23L2
if
L

3
≤ v ≤ L

2
108(L− v)

23L2
if
L

2
≤ v ≤ 2L

3
324(L− v)2

23L3
if

2L

3
≤ v ≤ L

(5)

A comparison of the three weighting functions is shown in Figure 3 for a beam of length L = 1 m.
It is observed that the 3-point weighting function ω3(v) assigns the highest weighting to the centroid
of the sample volume vc = 0.5 m followed by the four-point weighting function ω4(v) whilst the tensile
weighting function ωT (v) assigns the lowest centroidal weighting. The 4-point weighting function ω4(v)
is more uniform over the domain than the 3-point weighting function ω3(v) and this is attributed to the
constant central bending moment induced by four-point bending (see Equation 27). The derivative of
the tension weighting function ω′T (v) is continuous over the domain of integration whilst the derivatives
of the bending weighting functions, ω′3(v) and ω′4(v), are discontinuous at the points where deflection is
observed and load is applied. It is observed that as the weighting function ω(v) approaches the Dirac-
delta function δ(v − vc) [13] then the effective property E∗ becomes a point sample of the random field
at the centroid vc and consequently it is expected that the parameter estimates obtained from E∗3 will
be the most accurate whilst the parameter estimates obtained from E∗T will be the least accurate.
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Figure 3: Weighting functions for tensile ωT (v), 3-point ωT (v) and 4-point ω4(v) loading conditions (L = 1 m).
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2 Computer experiment
A number of researchers have conducted physical experiments into the variation of elastic modulus of
timber for the case of tensile loading [14] as well as 3-point [15] and 4-point [16] bending. A computer
experiment has been designed to replicate these experiments and quantify the uncertainty associated with
estimating the parameters of the random field model directly from the measured effective properties. The
experimental procedure involves making N = 7 observations of the effective elastic modulus E∗ over an
effective length of L ≈ 0.43 m on a beam of total length L0 = 3 m for a total of M = 20 beams as shown
in Figure 4. The effective elastic modulus E∗ is no longer a constant but rather a piecewise continuous
function notated by E∗(v). The Monte Carlo method is used to replicate the experimental procedure a
total of R = 1× 106 times in order to analyse the uncertainty associated with the parameter estimates.
In particular the aleatoric and epistemic uncertainty is quantified for the estimate µ̂ of the location
parameter µ, the estimate σ̂ of the scale parameter σ and the estimate θ̂ of the correlation parameter θ.

...

m = 1

m = 2

...

m = 20

n = 1, n = 2, n = 3, n = 4, n = 5, n = 6, n = 7

L
L0

Figure 4: Setup of the computer experiment where effective properties E∗
n,m are observed over N = 7 segments

of length L ≈ 0.43 m for a total of M = 20 beams of length L0 = 3 m.

The experimental procedure requires the generation of synthetic stiffness profiles designed which model
spatial variation in stiffness along the beam. Since negative values for elastic modulus are not physically
permissible the maginal distribution of E(v) was selected as lognormal since this distribution is strictly
non-negative. Thus the stiffness profile is a lognormal stochastic process E(v) with location parameter
µ = 10 GPa, scale parameter σ = 3 GPa and the exponential correlation function [17]:

ρ(τ) = exp

(
−2|τ |

θ

)
(6)

where τ = |v1 − v2| is the absolute separation between points in the domain D = [0, L0] and the
value of the correlation length θ is taken to be 0.6 m. The exponential correlation function is selected
since it produces realisations which are not smooth which is realistic of material properties [18]. A single
realisation of the base random field E(x) is shown in Figure 5 along the 3-point effective elastic moduli
E∗3 (v) determined according to the experimental procedure illustrated in Figure 4.
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Figure 5: One realisation of the base process E(v) and its piecewise constant profile of 3-point effective elastic
modulus E∗

3 .
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3 Simulation
The approach adopted to simulate the lognormal process E(v) is to first simulate the underlying Gaussian
process EG(v) and then obtain E(v) through:

E(v) = exp (EG(v)) (7)

Inconveniently the operation of exponentiation alters the statistical moments of EG(v) and conse-
quently in order to obtain a lognormal process E(v) with specified statistics µ, σ2, ρ(τ) the approach
is to backconfigure the properties µG, σ2

G, ρG(τ) of the Gaussian process EG(v) using the following
relationships [6]:

µG = ln

(
µ

(
1 +

σ2

µ2

)− 1
2

)
(8)

σ2
G = ln

(
1 +

σ2

µ2

)
(9)

ρG(τ) =
ln
(
ρ(τ)(exp(σ2)− 1) + 1

)
σ2

(10)

The numerical simulation of the Gaussian process EG(v) requires that it be discretised and a common
method to achieve this also happens be the midpoint approximation. It should be recognised that the
midpoint approximation is not only widely used for estimation but also for the simulation of random
fields and it is the ubiquitousness of this approximation that motivates this research into the uncertainty
associated with it. Under the midpoint approximation EG(v) is approximated in each element Ωe with a
piecewise constant function ĒG(v) given by the value of the field at the centroid vc of the element:

ĒG(v) = EG(vc), v ∈ Ωe (11)

The discretised field ĒG(v) is then given by a random vector EG = {EG(v1c ), . . . , EG(vKc )} where
K = 1050 is the number of elements. Since EG(v) is a Gaussian random field then EG is multivariate
normal random vector with mean µG, standard deviation σG and correlation matrix ΣG. The method
adopted to simulate the Gaussian random vector EG is covariance matrix decomposition [19] which is
based on the follow decomposition of EG:

EG = µG + σGψξ (12)

where µG and σG are the mean and standard deviation of the underlying normal random field EG(v),
ξ is a column vector of K uncorrelated mean-zero, unit variance normal random variables and ψ is a K
by K matrix that satisfies the following decomposition of the correlation matrix ΣG:

ψψT = ΣG (13)

where ψ is obtained as a lower-triangular matrix through Cholesky decomposition [20]. The discretised
approximation to E(v) is then obtained through E = exp(EG). Note that since EG(v) was discretised
according to the midpoint approximation method then E(v) is also similarly discretised. In each segment
the random field is discretised into K∗ = 150 elements and the effective property of the nth segment
of the mth beam E∗n,m is obtained by discretising the integral in Equation 1 for instance the effective

property of the first segment of the mth beam is given by:

E∗1,m =
K∗

L

K∗∑
k=1

ω(vk)

Em(vk)

(14)

4 Estimation
Estimates of the location µ and scale σ parameter of the random field model can be obtained from the
observed effective properties E∗n,m using the following method of moments estimators:

µ̂ =
1

NM

M∑
m=1

N∑
n=1

E∗n,m (15)
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σ̂2 =
1

NM − 1

M∑
m=1

N∑
n=1

(
E∗n,m − µ̂

)2
(16)

where N is the number of segments over which E∗ is observed and M is the number of beams. These
estimators are simply the sample mean and variance and are optimal for the case that the samples are
statistically independent however since the effective properties are correlated along the length of the beam
this is another source of epistemic bias that is quantified in the Section 5.

A common approach to estimate the correlation parameter θ is to compute the sample correlation
function also known as the correlogram [21] and then use regression to estimate the value of θ that min-
imises the misfit between the sample correlation function ρ̂(τ) and theoretical model ρ(τ) [22]. However
this procedure is computationally expensive for the number of simulations R = 1 × 106 required by the
computer experiment and consequently a computationally simpler approach is pursued here. Instead
of considering the full autocorrelation structure only the lag-1 correlation between adjacent effective
properties is considered. An estimator of the lag-1 correlation coefficient ρ1 is given by:

ρ̂1 =
1

M(N − 1) σ̂

M∑
m=1

N−1∑
n=1

(
E∗n,m − µ̂

) (
E∗n,m − µ̂

)
(17)

An estimate of the correlation length of the exponential correlation function is obtained from the lag-1
correlation coefficient ρ̂1 by changing the subject of Equation 6 to θ and substituting the length over
which the effective property was observed τ = L:

θ̂ = − 2L

ln (ρ̂1)
(18)

where L ≈ 0.43 m. In the case of high aleatoric uncertainty due to limited sample size a negative
value may be obtained for the lag-1 correlation coefficient ρ̂1 in which case the correlation length estimate
θ̂ would be complex which is not physically meaningful. The approach utilised to resolve this issue is to
set the θ̂ equal to zero in the case that ρ̂1 is estimated as having a negative value.

5 Results
This section presents the results of the computer experiment into the distribution of the parameter
estimates {µ̂, σ̂, θ̂} of the random field. The statistics of these estimated parameters are referred to as
meta-statistics in order to distinguish them from the statistics of the random field. Two non-normalised
meta-statistics are considered for each parameter estimate namely the sample mean Mean[.] and variance
Var[.]. The deviation of the Mean[.] of the parameter estimates from the true value of the parameters
(µ = 10 GPa, σ = 3 GPa, θ = 0.6 m) is a measure of the uncertainty due to epistemic error. A normalised
meta-statistic, percentage bias Bias[.], is introduced to facilitate comparison of the epistemic uncertainty
between different parameter estimates:

Bias [µ̂] =
100%

R

R∑
r=1

(
µ̂r − µ
µ

)
(19)

where R is the number of simulation, µ̂r is the parameter estimate associated with the rth simulation
and µ is the true value of the parameter. The total bias estimated by the meta-statistic Bias[.] consists
of bias due to both the midpoint approximation and the bias associated with the estimators presented in
Section 4. The meta-statistics of point estimates from the base process E(v) are also presented since the
bias in these estimates is only due to estimator bias and this enables inferences on what proportion of
the bias is due to estimator bias in comparison to the midpoint approximation for the estimates obtained
from effective properties. The meta-statistic Var[.] quantifies the aleatoric uncertainty in each of the
parameter estimates of the random field. This uncertainty is due to a number of factors including the
non-ergodicity of each realisation of E(v), the limited number of beams M and sections N over which
the effective properties E∗ are observed. The normalised meta-statistic maximum absolute percentage
error MAPE[.] [23] is utilised to evaluate total uncertainty resulting from both aleatoric and epistemic
uncertainty:

MAPE (µ̂) =
100%

R

R∑
r=1

∣∣∣∣ µ̂r − µ
µ

∣∣∣∣ (20)
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5.1 Distribution of sample mean

Figure 6 presents the distribution of the parameter estimate µ̂ for each of the tests whilst Table 1 de-
tails the four meta-statistics obtained for each parameter estimate. The bias in µ for the base process
E(v) was found to be negligible despite the sample mean not being an unbiased estimator for correlated
samples. All of the effective properties {E∗T , E∗3 , E∗4} have decreased expected value compared to the
base process E(v) with expected value µ = 10 GPa. This is due to the effective properties being given
by a harmonic mean which tends towards the least elements of the set and consequently the effective
properties are disproportionately affected by regions of low stiffness. This effect is weaker for bending
behaviour because weak-zones near the supports do not significantly affect expected value however in
the case of tensile loading the effect of weak-zones on the effective property E∗ is independent of spatial
position due to the uniform tensile weighting function ωT (v). The deviation in the expected value of the
location parameter µ̂ is slightly greater for the case of 4-point bending since the weighting function ω4(v)
is closer to uniform than the 3-point weighting function ω3(v).

A similar variance was observed for all the tests suggesting that the aleatoric uncertainty in the
location parameter estimate µ̂ is not significantly does not vary significantly between tests. In particular
the aleatoric uncertainty is similar for estimates of µ from the base process E(v) and estimates of µ
from its effective property E∗. This is due to the fact that the variance of the arithmetic mean of a set
of random variables does not deviate significantly from the variance of the harmonic mean of the same
set. The variance is slightly greater for 3-point bending and this is explained by considering that as the
weighting function ω(v) approaches the Dirac delta function δ(v − vc) the effective property E∗ is in
effect averaging over an increasingly small statistical region and consequently variance in the estimate
increases. MAPE[.] is similar for all tests suggesting that the epistemic uncertainty due to the midpoint
approximation is small compared to the aleatroic uncertainty associated with M = 20 realisations of the
beam stiffness profile E(v) for the experimental setup detailed in Figure 4.
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Figure 6: Distribution of location parameter estimate µ̂ for tension E∗
T (v), 3-point E∗

3 (v) and 4-point E∗
4 (v)

bending tests with base distribution E(v) shown for comparison.

Table 1: Meta-statistics of the location parameter estimate µ̂.

Observed process Mean[µ̂] Var[µ̂] Bias[µ̂] MAPE[µ̂]

name symbol (GPa) (MPa2) (%) (%)

Base E(v) 10.00 80.9 0.00 2.27
Tension E∗T (v) 9.71 76.1 −2.85 3.30
3-point E∗3 (v) 9.83 82.1 −1.75 2.72
4-point E∗4 (v) 9.81 81.3 −1.87 2.76
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5.2 Distribution of sample standard deviation

Figure 7 presents the distribution of the scale parameter estimate σ̂ for each of the tests whilst Table 2
details the four meta-statistics obtained for each parameter estimate. Figure 7 shows that the estimates
of the scale parameter σ̂ obtained from the effective properties {E∗T , E∗3 , E∗4} underestimate the true
variability of the base process E(v). This underestimation of the true variability of the base process E(v)
is unconservative since under random field theory the beam would be modelled as being inappropriately
homogeneous. The trends are similar to those observed for µ̂ and the reduction in the expected value
of σ̂ is once again greatest for tensile loading E∗T and at a minimum for 3-point bending E∗3 . Table
2 shows that the estimator of standard deviation σ̂ is negatively biased for the base process E(v) and
consequently it is concluded that the estimator of the scale parameter in Equation 16 has a negative
bias of approximately 0.66%. Thus approximately 0.66 percentage points of the Bias [.] reported for the
effective properties E∗ is attributable to estimator bias and not the epistemic bias due to the midpoint
approximation.

There is not a significant variation between the meta-statistic Var[σ̂] for each effective property and
consequently it is concluded that estimating the location and scale parameters of the base process from
its effective properties does not siginificantly increase the aleatoric uncertainty associated with estimates
of either the location µ or scale parameter σ. The MAPE[.] meta-statistic suggests that for σ̂ the
epistemic uncertainty is significantly greater than the aleatoric uncertainty whilst for µ̂ they are of
similar magnitude. Both of the parameter estimates µ̂ and σ̂ experience a reduction in expected value
when estimated from the effective properties however it should be noted that whilst underestimation of µ
is conservative the underestimation of σ is not and consequently there is a necessity to develop appropriate
methodologies to correct for the epistemic error in the scale parameter estimate σ̂ so that the stochastic
finite element model appropriately quantifies the risk associated with heterogeneous structures.
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Figure 7: Distribution of scale parameter estimate σ̂ for tension E∗
T (v), 3-point E∗

3 (v) and 4-point E∗
4 (v) bending

tests with base distribution E(v) shown for comparison.

Table 2: Meta-statistics of the scale parameter estimate σ̂.

Observed process Mean[µ̂] Var[µ̂] Bias[µ̂] MAPE[µ̂]

name symbol (GPa) (MPa2) (%) (%)

Base E(v) 2.98 38.8 −0.7 5.3
Tension E∗T (v) 2.34 39.1 −22.0 22.0
3-point E∗3 (v) 2.60 46.2 −13.4 13.7
4-point E∗4 (v) 2.57 45.3 −14.3 14.5

5.3 Distribution of correlation length

Figure 8 presents the distribution of the parameter estimate θ̂ for each of the tests whilst Table 3 details
the four meta-statistics of θ̂ for each test. Figure 8 shows that all of the parameter estimates θ̂ obtained
from the effective properties {E∗T , E∗3 , E∗4} exhibit large positive biases in comparison to the negative
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biases observed for both µ̂ and σ̂. This is due to the effective properties acting to average and therefore
smooth the base process E(v) thus greatly increasing measured correlation. The Bias[.] in θ̂ for the base
process E(v) in Table 3 indicates that the lag-1 correlation length estimator given by Equation 18 has
a negative bias of approximately 1%. The small magnitude of this underestimation indicates the lag-1
estimator is a good estimator of the correlation length θ provided the number of samples is sufficiently
large. However this negative bias implies that the true increase in correlation caused by estimating
from the effective properties is greater than that suggested by the Bias[.] meta-statistic in Table 3 by
approximately a single percentage point.

The uncertainty associated with estimating θ from effective properties is significantly higher than
estimating θ directly from the base process E(v). This is unsurprising since the estimator of lag-1
correlation given by Equation 18 depends on both µ̂ and σ̂ and consequently the uncertainty associated
with both of these parameter estimates is propagated into the estimate of the correlation length θ.
Estimating from the effective properties E∗ did not lead to a significant increase in aleatroic uncertainty
for µ̂ and σ̂ however the aleatroic uncertainty is significantly increased for θ̂ and this is due to the
significant distortion of the correlation information caused by the weighted harmonic mean in comparison
to the distortion observed for either location or scale information. The MAPE[.] meta-statistic shows that
both the aleatoric and epistemic uncertainties have a similar contribution to total uncertainty however it
is not possible to make a general conclusion as to whether the overestimation of the correlation length is
conservative or unconservative.
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Figure 8: Distribution of correlation parameter estimate θ̂ for tension E∗
T (v), 3-point E∗

3 (v) and 4-point E∗
4 (v)

bending tests with base distribution E(v) shown for comparison

Table 3: Meta-statistics of the correlation parameter estimate θ̂.

Observed process Mean[µ̂] Var[µ̂] Bias[µ̂] MAPE[µ̂]

name symbol (GPa) (MPa2) (%) (%)

Base E(v) 0.59 3.8 −1.1 8.2
Tension E∗T (v) 1.00 47.8 +67.5 67.7
3-point E∗3 (v) 0.74 32.7 +23.7 29.9
4-point E∗4 (v) 0.76 33.5 +26.5 31.7

6 Conclusion
The computer experiment has shown that estimating random field parameters from the effective properties
{E∗T , E∗3 , E∗4} using the midpoint approximation results in a minor negative epistemic bias in the location
parameter µ̂, a moderate negative epistemic bias in the scale parameter σ̂ and a large positive epistemic
bias in the correlation parameter θ̂. The aleatoric uncertainty associated with estimates of µ and σ
obtained from effective properties was similar to base aleatoric uncertainty whilst the aleatoric uncertainty
associated with the estimate of θ from the effective properties was significantly greater than base aleatoric
uncertainty. The computer experiment was only run for one set of random field parameters (µ = 12 GPa,
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σ = 3 GPa, θ = 0.6 m) however the trends are expected to hold for different parameter values with the
magnitude of the trend increasing as either the scale parameter σ increases of the correlation ratio θ/L
decreases since this increases the heterogeneity of the beam.

The trends in the meta-statistics of the parameter estimates were consistent for all three tests (tension
E∗T , 3-point E∗3 and 4-point E∗4 bending) however the magnitude of the trend was always greatest for the
tension test and smallest for three-point bending. It is concluded that the midpoint approximation is least
appropriate for tension due to the uniformity of its weighting function ωT (v) and most appropriate for
3-point bending due to the central concentration of its weighting function ω3(v). The error induced by the
midpoint approximation is lower for the 3-point bending test than the 4-point bending test however this
increased accuracy has been found to be insignificant compared to the magnitude of the epistemic error
induced by midpoint approximation. It is the recommendation of this paper that further research should
focus on the development of a methodology to correct the epistemic biases in the parameter estimates
obtained from effective properties. There has been some research conducted on this topic however it has
been under the assumption that the effective properties of a beam is an unweighted arithmetic mean [24]
which neither accounts for the disproportionate contribution of zones of low stiffness to effective modulus
of elasticity or the spatial weighting associated with bending tests.
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Appendix
This appendix contains the derivation of the weighting function ω4(v) for the effective property E∗4
associated with midspan deflection UB of a simply supported beam under 4-point loading P4 as shown
in Figure 2. The variables u and v describe spatial variation in the internal bending moment M , elastic
modulus E and spatial weighting ω whilst the variable x describes variation in displacement U . Under
Euler-Bernoulli beam theory the relationship between beam deflection U(x) and modulus of elasticity
E(v) is given by:

d2U(x)

dx2
= −M(v)

E(v)I
(21)

where I is the area moment of inertia which is assumed to be constant. Under the standard theory of
double integration beam deflection U(x) is given by:

U(x) =
1

I

∫ x

0

∫ u

0

M(v)

E(v)
dv du+ Cx+D (22)

where C and D are the first and second constants of integration respectively. Applying boundary
conditions for a simply supported beam, namely that U(x = 0) = 0 and U(x = L) = 0, gives:

U(x) =
1

I

∫ x

0

∫ u

0

M(v)

E(v)
dv du− x

LI

∫ L

0

∫ u

0

M(v)

E(v)
dv du (23)

Through an interchange in the order of integration the double integral can be reduced to a single
integral:

U(x) =
1

I

∫ x

0

M(v)

E(v)

∫ x

v

dudv − x

LI

∫ L

0

M(v)

E(v)

∫ L

v

dudv (24)

=
1

I

∫ x

0

M(v)(x− v)

E(v)
dv − x

LI

∫ L

0

M(v)(L− v)

E(v)
dv (25)

An expression for midspan deflection UB is obtained by substituting x = L/2 into Equation 24:

UB =
1

I

∫ L/2

0

M(v)(L/2− v)

E(v)
dv − 1

2I

∫ L

0

M(v)(L− v)

E(v)
dv (26)
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The internal bending moment M4(v) for four-point loading as shown in Figure 2 is given by:

M4(v) =


−Pv

2
if 0 ≤ v ≤ L

3

−PL
6

if
L

3
≤ v ≤ 2L

3

−P (L− v)

2
if

2L

3
≤ v ≤ L

(27)

Substituting the equation for expression for bending moment M4(v) into Equation 26 yields:

UB =
P

I

[
−
∫ L/3

0

2v(L/2− v)

4E(v)
dv −

∫ L/2

L/3

2L(L/2− v)

12E(v)
dv

+

∫ L/3

0

v(L− v)

4E(v)
dv +

∫ 2L/3

L/3

L(L− v)

12E(v)
dv +

∫ L

2L/3

(L− v)2

4E(v)
dv

] (28)

Combining terms over similar domains of integration and simplifying gives:

UB =
P

I

[ ∫ L/3

0

v2

4E(v)
dv +

∫ L/2

L/3

Lv

12E(v)
dv

+

∫ 2L/3

L/2

L(L− v)

12E(v)
dv +

∫ L

2L/3

(L− v)2

4E(v)
dv

] (29)

Under the assumption that the beam is homogeneous with constant modulus of elasticity E∗4 the
midspan displacement is given by:

UB =
23L3P

648IE∗4
(30)

An equation for the effective property E∗4 is obtained in terms of midspan displacement UB by changing
the subject of Equation 30:

E∗4 =
23L3P

648IUB
(31)

Substituting the heterogeneous result given by Equation 29 into the homogeneous result given by
Equation 31 yields:

E∗4 =
23L3

648

(∫ L/3

0

v2

4E(v)
dv +

∫ L/2

L/3

Lv

12E(v)
dv +

∫ 2L/3

L/2

L(L− v)

12E(v)
dv +

∫ L

2L/3

(L− v)2

4E(v)
dv

) (32)

The effective property E∗4 for four-point bending is then expressed as a weighted harmonic mean:

E∗4 =

(∫ L

0

ω4(v) · E(v)−1 dv

)−1
(33)

where the weighting function ω4(v) is given by:

ω4(v) =



324v2

23L3
if 0 ≤ v ≤ L

3
108v

23L2
if
L

3
≤ v ≤ L

2
108(L− v)

23L2
if
L

2
≤ v ≤ 2L

3
324(L− v)2

23L3
if

2L

3
≤ v ≤ L

(34)
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