

Plasma Processes and Polymers

Atmospheric air plasma induces increased cell aggregation during the formation of Escherichia coli biofilms

Journal:	Plasma Processes and Polymers
Manuscript ID	ppap.201700212
Wiley - Manuscript type:	Full Paper
Date Submitted by the Author:	07-Nov-2017
Complete List of Authors:	Cullen, Patrick; university of new south wales, chemical engineering Kwandou , Goldina; university of new south wales, Chemical engineering spicer, patrick Prescott, Stuart Mai-Prochnow, Anne; csiro
Keywords:	

Article type: Full Paper

Atmospheric air plasma induces increased cell aggregation during the formation of Escherichia coli biofilms

Goldina Kwandou¹, Anne Mai-Prochnow², Stuart W. Prescott¹, Patrick T. Spicer¹ & Patrick J. Cullen^{1,3}*

1 School of Chemical Engineering, UNSW, Sydney, 2052, Australia

Email: p.cullen@unsw.edu.au

2 CSIRO Manufacturing, P.O. Box 218, Lindfield, NSW 2070, Australia

3 Department of Chemical and Environmental Engineering, University of Nottingham, UK.

Keywords: atmospheric plasma; biofilms; cell agglomeration

1 Abstract

2 Atmospheric air plasma has previously been shown to be a novel and effective method for 3 biofilm eradication. Here we study the effects of plasma on both microbial inactivation and induced structural modification for forming biofilms. New structures are created from 4 5 aggregates of extracellular polysaccharides and dead bacterial cells, forming a protective and 6 resilient matrix in which the remaining living cells grow and reproduce under proper growth 7 conditions. The new colonies are found to be more resilient in this state, reducing the efficacy 8 of subsequent plasma treatment. We verify that the observed effect is not caused by chemicals 9 produced by plasma reactive species, but instead by the physical processes of drying and r. 10 convection caused by the plasma discharge.

11

12

13

14

1. Introduction

15 Biofilms are colonies of microorganisms surrounded by a complex fluid matrix made 16 predominantly of extracellular polysaccharide polymers (EPS). The EPS provides a protective barrier for bacterial colonies in a biofilm,^[1] increasing the resistance of bacteria to chemical 17 18 and antibiotic treatments and also reducing the efficacy of physical treatment. Biofilms can 19 thus survive most conventional methods of eradicating more freely dispersed, or planktonic, bacteria^[2]. Biofilms can form on many surfaces, including the skin of fresh fruits and 20 vegetables, industrial pipe surfaces, in between teeth, and on medical devices.^[3, 4] Due to their 21 22 widespread existence and resilience, biofilms are known to be the main cause of persistent bacterial infections in hospitals,^[5] contamination of foods in process environments,^[6] and 23 24 reduced process cleaning efficiency in manufacturing. Biofilm physical and flow properties 25 have recently been studied as a means of understanding molecular transport through the matrix and to better enable destruction.^[7, 8] New approaches are being developed to more 26 27 aggressively treat biofilms during formation, for example to interfere with the attachment of these bacteria to surfaces and disturb their structure.^[9] 28

29 One novel treatment currently being investigated for this purpose is atmospheric plasma, 30 which is essentially an ionized gas that is generated at ambient temperatures and under atmospheric conditions that allows treatment of sensitive biological matter.^[10, 11] Numerous 31 32 recent studies have demonstrated the anti-microbial efficacy of atmospheric plasma for planktonic bacteria or cells embedded in biofilms.^[12] Plasma species are reported to be 33 capable of penetrating into the biofilm structure.^[13] Plasma can inactivate biofilms with 34 treatment times of less than 60 seconds^[14] and cause a 5 log reduction in biofilm viability.^[15] 35 while longer treatments can decrease viable cells to undetected levels.^[15-17] This ability of 36 37 plasma to inactivate bacteria is thought to be an effect of its production of short- and longlived reactive species^[18] such as ozone and other radicals.^[19] Long-lived species have been 38

Plasma Processes and Polymers

39 shown to be effective to treat *Escherichia coli* suspensions even after a 7-day period,
40 following plasma liquid generation.^[20]

Apart from its ability to inactivate bacteria in a biofilm, atmospheric air plasma has been shown to change the overall biofilm structure by disrupting and degrading the EPS biofilm components.^[21] For example, separation of initially aggregated bacteria has been observed during EPS degradation due to plasma treatment.^[22] Plasma-induced EPS degradation causes a decrease in biofilm thickness^[21, 23] and volume^[21] as well as an increase in its roughness and porosity.^[21] Plasma-treated biofilms are also known to have reduced adhesion to surfaces.^[23, 24]

In model systems, monolayers of surface-deposited Listeria innocua responded to plasma 48 49 treatment by forming cell aggregates of damaged cells, into which viable cells were then moved, affecting plasma inactivation kinetics.^[28] Bayliss *et al*^[28] suggested such sheltering of 50 51 cells extends the treatment time needed for bacterial inactivation and is driven by plasma gas 52 flow-induced drying and the resultant fluid shear stresses. Although the work was carried out 53 on a manually-deposited layer of cells, it likely has relevance for more developed biofilm 54 community environments as well. This work examines the effects of short duration plasma 55 treatments on young biofilm structures and how modification of those structures affects 56 bacterial resilience to subsequent plasma treatments.

57

58 **2. Experimental Section**

59 **2.1 Preparation of biofilm sample**

60 Single *E. coli* MG1655 (CSIRO Food Research Ryde Bacteriology Culture Collection) 61 colonies were inoculated in nutrient broth (1 g L^1 `Lab-Lemco' powder, 2 g L^{-1} 170 yeast 62 extract, 5 g L^{-1} peptone, 5 g L^{-1} sodium chloride, pH 7.4; Oxoid, Adelaide, Australia) and 63 grown in a shaking incubator (Bioline Global, South Australia) at 37° C and 100 rpm for 12 to 15 hours. The cultures contained approximately 10^9 CFU/mL which was diluted to 10^7 64 65 CFU/mL. From this diluted culture, 2 mL samples were transferred to a FluoroDish[™] cell 66 culture dish (World Precision Instruments). These dishes were incubated at 37°C to allow 67 biofilm formation. After 24 hours, the medium was exchanged for fresh medium. The 68 biofilms were grown for a period of 48 hours total for time-dependent and liquid coverage 69 experiments or 24, 48, and 72 h for cell regrowth and multiple-treatment studies, after which 70 the medium was removed and the biofilm washed twice with phosphate buffered saline (PBS) 71 prior to treatment and analysis. Details of the regrowth studies are provided in section 2.3.

72

73 2.2 Plasma setup

74 The power supply used to drive the plasma discharge was an HV half bridge resonant inverter 75 circuit (PVM2000, Information Unlimited, New Hampshire, USA). The power source has a 76 maximum output voltage of 50 kV with a variable frequency of 20 kHz to 100 kHz, 77 depending on the plasma load capacitance. The plasma setup consists of a FluoroDish[™] used 78 to grow the biofilm (see section 2.1) that is placed in between the electrodes of the Dielectric 79 Barrier Discharge, or DBD, consisting of a 2 mm thick poly(methyl methacrylate) dielectric 80 and a top electrode that is partially recessed within the imaging dish to reduce the discharge 81 gap to 6 mm (Figure 1a). The discharges were induced in open atmospheric air conditions. 82

83 **2.3 Plasma-biofilm treatment conditions**

84 2.3.1 Direct treatment

The growing biofilms were exposed to direct plasma treatment, Figure 1a, after 24 h or 48 h of growth, while only biofilms aged 48 h were exposed to plasma-activated liquid (see section 2.3.2 below, Figure 1b). Plasma treatment was performed at 6 kV and ~60 kHz. The optical 88 emission spectra, OES, for the discharge were mainly in the UV region, the OES are not included, the reader is referred to Lu *et al*^[25] for characterisation of discharges with this power</sup>89 90 source. The DBD design incorporating the dish used to grow the biofilm allows for non-91 invasive sample preparation, which is critical for later imaging of a biofilm's structure. The 92 design also offers the added benefit of a relatively controlled discharge in terms of spatial 93 homogeneity and treatment time when compared to plasma jets. Precise control of treatment 94 time $(\sim 1s)$ allows the effects of short plasma treatment times on biofilm behaviour to be 95 investigated.

96 For time-dependent studies, biofilms aged 48 h were exposed to direct plasma for times 97 ranging from 0 to 60 s. The biofilm was kept wet by adding 200 µL of PBS into the dish. For 98 liquid coverage studies, different amounts of PBS were added to the cell culture dish, from 99 $200 \ \mu\text{L}$ to $1000 \ \mu\text{L}$, and biofilms aged 48 h were used. In the regrowth study, biofilms aged 100 24 h and 48 h were used and exposed to plasma for 30 s. On each day, biofilms were 101 compared to untreated controls (Table 1). After exposure to plasma, biofilms were incubated 102 again with fresh nutrient broth at 37° C. All nutrients were changed every 24 h until the final 103 day (72 h).

104

105 **2.3.2 Indirect (liquid) treatment**

Plasma-treated liquid was generated by treating 1 mL of PBS in the same setup as direct treatment, as indicated in Figure 1B. After treatment, 200 μ L of the liquid was removed from the dish and transferred to another dish containing the biofilm, and subsequently incubated for 1 hour prior to imaging. Commercial hydrogen peroxide (Chem-Supply Pty Ltd, South Australia, Australia) was employed for comparison to the plasma-treated liquid via addition to PBS. Similarly, 200 μ L of these peroxide-PBS solutions were also incubated for 1 hour with the biofilm prior to imaging. 113

114 2.4 Confocal Laser Scanning Microscopy (CLSM)

Before imaging, the biofilm was dyed with Live/Dead BacLight[™] Bacterial Viability Kits (Thermo Fisher Scientific, Victoria, Australia), which contains SYTO9 and Propidium Iodide (PI), following supplier's instructions. The dishes were then incubated in the dark for about 15 mins before imaging. Biofilm imaging was performed on a Leica TCS SP5 STED inverted confocal microscope with oil objective 63×, NA 1.4. The lasers used for imaging were at 488 nm for SYTO9 and 498 nm for PI.

121

122 **2.5 Image analysis**

All images were analysed using Image-J.^[26] Green and red channels from CLSM data were separated and then analysed individually to calculate biofilm coverage area. From the literature it is known the approximate size of one *E. coli* cell is $1\mu m \times 3\mu m$.^[27] Assuming the cells are perfectly oval, the area of one *E. coli* cell is 2.35 μm^2 . Hence, any number that is less than this value is disregarded in the calculation. The percentage of red cells was calculated from total area covered by red cells divided by the total area covered by both green and red cells. Each data set contains at least six fields of view that are used for data quantification.

130

131 **2.6 Hydrogen peroxide (H₂O₂) measurement**

132 Quantification of H_2O_2 concentration in the plasma liquid was performed following the 133 protocol of Pick and Keisari.^[28] Briefly, 5 g of horseradish peroxidase Type II (Sigma Aldrich, 134 Sydney, Australia) powder was dissolved in 0.05 M phosphate buffer. Phenol red dye is used 135 to detect colour change due to the presence of H_2O_2 , using a concentration of 0.28 mM. 136 Standard curves were then prepared by measuring spectra of milli-Q water containing various 137 concentrations of H_2O_2 from 0-60 μ M. The solution was taken out of the dish, transferred into a small glass vial, and incubated for 1 hour before spectra measurement. Just before spectra measurement, 10 μ L of the horseradish peroxidase solution and 10 μ L of the phenol red solution were added into the standard samples and plasma-treated liquid. These vials were then incubated again at 25° C for 5 mins. After incubation, NaOH was added to the solution to change its color from orange to purple and keep the colour stable.^[28] Spectra of samples at 610 nm were then recorded using a UV-VIS spectrophotometer (Shimadzu Corporation, Kyoto, Japan).

145

146

147 **3. Results & Discussion**

148 **3.1** The effect of plasma treatment on biofilm structure

Plasma treatment has been reported previously to destabilize biofilm structures.^[21] Here we 149 150 use an *Escherichia coli* biofilm that is in a younger state than the previously studied biofilms of Pseudomonas aeruginosa or Staphylococcus aureus.^[21] During this early stage of biofilm 151 152 development, no microcolonies have been formed. Figure 2a shows the microscopic initial 153 state of these young biofilms, with green live cells visible throughout the field of view at t = 0154 s. Figure 2a also shows micrographs of the biofilm after different plasma exposure times, 155 enabling tracking of the kinetic progression of cell death by following the increase in red, or 156 dead, cells and the survival of the green, or living, cells and the formation of cell clumps. These effects are contrary to those reported by Ferrell et al, ^[21] with plasma treatment 157 158 inducing aggregation and forming a new structure rather than structure breakdown. This 159 plasma-induced structural re-arrangement has been observed previously in surface-deposited planktonic bacteria.^[29] 160

Figure 2a shows that cell aggregation occurred for all treatment times tested. However, quantitative analysis via cell imaging revealed that there was only a slight increase in the 163 percentage of larger aggregates (>10 μ m²) as a function of treatment time (Figure 2b). An 164 aggregate area cutoff value of 10 μ m² was chosen to differentiate aggregates from cells in 165 sufficient proximity to be classified as an aggregate. An increase was only observed between 166 the untreated and the shortest treatment time of 10 s (around 20% increase), indicating that 167 cell aggregation occurs rapidly and is not significantly governed by treatment time.

Figure 2b shows that although plasma treatment causes cell aggregation, it also inactivates bacterial cells in the biofilm. This behaviour has been observed in many studies that study the effect of treatment on bacterial viability.^[15-17] However, for the current system, it is found that after 40 s the number of dead cells reaches a plateau of 40%, Figure 2b. This indicates that there is a limit to the number of bacteria that can be killed with plasma treatment, perhaps because aggregation offers some form of protection.

Of particular interest is that the aggregation of the cells and the mortality effects of the plasma
appear to both plateau, although on different time scales, after 40 s for cell viability and after
10 s for cell aggregation (Figure 2b).

The biofilms used in this study are considered mature once they are 48 h old, but we also examined the effects of biofilm age on aggregation and mortality response to plasma treatment. This is because the amount of EPS increases with biofilm age, and it may play a role in protecting cells from plasma and aggregation induced by plasma.

When subjected to the same plasma treatment for 30 s, both biofilms aged 24 h and 48 h form aggregates (Figure 3a). The percentage of big aggregates formed in these two samples is quite similar, although the actual percentage of bigger clumps is slightly higher for the treated younger biofilm. The older biofilm is expected to have more EPS, which might explain why there is a slight discrepancy between the two values. Aggregation requires both attractive interactions between cells and sufficient mobility to bring cells together for collision. The

187 cells in the older biofilm might move less than the cells in younger ones, resulting in the 188 current observation.

Figure 3 also shows that older biofilms have increased resistance to plasma treatment. In Figure 3c, the percentage of dead cells after treatment increased compared to the control. For biofilms aged 24 h, the percentage of dead cells increases from around 2% to 40% upon treatment. The efficacy of plasma decreases with increasing age of biofilm, as the percentage of dead cells only increases from 2% to 25% upon treatment, about half of the impact seen for biofilms aged 24 h.

195

196 **3.2 Regrowth of surviving bacteria**

197

When plasma treatment does not inactivate all bacterial cells in a biofilm, the surviving cells may be able to grow and reproduce when given sufficient nutrients. Under these circumstances, we are interested in how these bacterial cells regrow in their restructured environment. To answer this question, both younger and more mature biofilms were exposed to plasma treatment and then regrown, until the biofilm reached an age of 72 h, before being imaged.

Biofilms that have been treated at least once after regrowth have distinct structures when compared to previously untreated biofilms with the same treatment. Figure 4a indicates that biofilms treated at least once during their growth have clearly aggregated structures compared to untreated biofilms that retain a fully dispersed structure. Indeed, after plasma treatment of biofilms either 24 h or 48 h old, bacteria keep growing in the aggregates instead of growing separately as in the untreated samples. This indicates that the surviving bacteria are able to reproduce and grow in this newly formed structure.

211 Yet, these aggregated structures that occur after treatment at 24 h and 48 h, or treated twice at

212 24 h 48 h old, are hardly distinguishable from each other. Quantitative analysis on the

Plasma Processes and Polymers

213 aggregates (Figure 4b) reveals that biofilms treated at 24 h have a higher percentage of aggregates larger than 10µm² than a biofilm treated at 48 h or treated at 24 h & 48 h. This 214 215 may be due to fact that biofilms treated at 24 h have more time to expand the size of their colonies as longer growth time increases cell cluster size.^[30] 216 217 In addition, as seen from Figure 4a, a plasma-treated biofilm consists of only living cells. 218 Analysis shows that despite 30 s of plasma treatment causing cell death of a significant 219 proportion of cells (Figure 4c), only a very small number (< 10 %) of dead cells could be 220 detected after biofilm re-growth. However, it is likely that some dead cells are hidden within 221 the new structure. However, the percentage of these red cells is still quite low, less than 10%, 222 which is not significant. 223 224 3.3 The effect of plasma-induced biofilm structure on subsequent treatment 225 226 227 In section 3.2, it was found that after plasma treatment, bacteria in a biofilm can utilize the new structure to reproduce and grow. In previous work by Ferrell *et al*,^[21] a mature biofilm 228 229 with large aggregates was shown to change structure by increasing the porosity of the biofilm 230 structure. In this kind of mature biofilm, the high amount of EPS should prevent the 231 aggregation of bacteria as this EPS provides elastic resistance to deformation by flow. The 232 plasma-treated biofilm has a structure more similar to the mature biofilm used by Ferrell et al.^[21] It is interesting to know if this plasma-mediated structure has a similar behaviour to a 233 234 mature biofilm. 235 To answer this, biofilms were exposed to plasma after 24 h of growth. This sample is 236 incubated again for another 24 h before exposing this to the second plasma treatment. Figure

237 5a shows that clumping is still apparent in this system. However, quantitative analysis shows

Plasma Processes and Polymers

that the relative amount of aggregates decreases after the second plasma treatment instead of increasing. This observation agrees with Ferrell *et al.* $s^{[21]}$ work. This also indicates that after a certain point, aggregation is not possible anymore as biofilms might produce enough EPS to resist deformation by plasma. Another explanation is that subsequent plasma treatments can destroy structures formed by previous treatments.

243 Interestingly, Figure 5a also indicates that biofilms that have been previously treated mainly 244 consist of live cells. This result is unexpected as when the sample is treated twice, it is likely 245 that the percentage of red cells should be higher compared to 24 h or 48 h old biofilms. As 246 can be seen from Figure 5c, the percentage of dead cells in the sample treated both at 24 h and 247 48 h is about 5% which is much lower than the percentage of cells inactivated by single 248 treatment when they were 24 h (by 6 times) or 48 h old (by 4 times). This suggests that the 249 bacteria developed resistance after the first treatment that reduced efficacy of the second treatment, consistent with other reports of resistant colonies induced by plasma treatment.^{[16,} 250

251

31]

252

253 **3.4** The effect of plasma chemicals on biofilm structure

254 In the literature, the death of bacterial cells induced by plasma is usually associated with the 255 presence of reactive species produced by plasma treatment. It is plausible that such chemicals 256 could also cause clumping, as bacteria are known to respond to chemicals present via 257 chemotaxis. Chemotaxis is the phenomenon by which motile cells move towards or away 258 from a chemical by altering their swimming pattern. Bacteria such as E. coli have several 259 flagella per cell which facilitate some directional control over their motion to either find favourable locations with high concentrations of attractants or to avoid repellents.^[32] such as 260 261 chemicals produced by plasma. Although chemotaxis traditionally is known only for motile cells, recent finding shows that chemotaxis might also occur in surface-attached cells.^[33] 262

One of the chemicals often found in atmospheric plasma-treated liquid is H_2O_2 .^[19, 34] For this work only H_2O_2 is measured, for a more comprehensive species diagnostic of PAW using this power source, the reader is referred to our recent publications.^[25, 35] Figure 6b indicates that the concentration of H_2O_2 in the liquid increases with increasing treatment time. This behaviour has been seen in plasma-treated water previously, where initially the concentration of peroxide increases linearly before reaching a plateau.^[25]

If the aggregation observed previously is related to the presence of chemicals produced by plasma reactive species, we should be able to induce such aggregation by adding commercial H_2O_2 , or plasma-treated water, to the biofilms and comparing the result to plasma-treated biofilms. The concentration of H_2O_2 added to the liquid is the same as the concentration of H_2O_2 in water treated in plasma for 60 s, which is 30 μ M.

275

276 Figure 7a shows that biofilms that were exposed to plasma-treated liquid or 30 µM peroxide 277 solutions are similar to the control. Data analysis (Figure 7b) reveals that there are actually 278 changes in clumping after addition of peroxide or incubation with plasma water compared to 279 control. Figure 7b also shows that compared to peroxide only, plasma water increases the 280 extent of clumping by 2 times (from 3% to 6%), which might suggest that presence of other 281 chemicals that also give rise to cell clumping. However, the change in clumping caused by 282 chemicals ($\sim 6\%$) is not as much as the clumping caused by direct treatment ($\sim 20\%$). This 283 suggests that aggregate formation might be slightly affected by chemicals present in plasma-284 treated water, but it is not the main mechanism. Movement of bacteria is also required for aggregation and is likely controlled by plasma discharge-induced flow.^[28] 285

Additionally, the use of hydrogen peroxide and plasma liquid here does not cause significant cell death. As shown in Figure 7b, the percentage of cells killed by treatment is very small, less than 2%. These values are similar to the levels in untreated biofilms. This means there is

Plasma Processes and Polymers

289 very little effect of plasma-treated water, which is not in agreement with literature as plasmatreated liquid has been shown to inactivate bacteria in biofilms.^[36, 37] But, literature^[38, 39] has 290 291 indicated that in order for plasma-treated liquid to be effective in inactivating bacteria, acidified conditions are required. Naïtali et $al^{[38]}$ showed that in plasma-treated water, a 292 293 bacterial population was reduced from 8 log CFU to 2 log CFU. However, the effect was 294 diminished for buffered plasma liquid where only a minimal reduction was observed. As all 295 experiments here use a buffer solution, PBS, the pH of the solution is not expected to change and become acidified. 296

297

3.5 Dilution effect on biofilm structure

299

As mentioned before, the formation of ring structure has been observed in surface deposited bacteria, which is said due to drying by plasma jet.^[29] This means that there is high possibility that the structure here is also caused by drying. To understand better the drying by our plasma system, we measured how much water removed when exposed to plasma.

304 Table 2 shows that for 30s treatment time, plasma treatment removes between 0.04-0.06 g 305 water from the system by evaporation regardless of the starting amount of water. From this 306 result, it appears that there is a maximum amount of water that can be removed by plasma for 307 the same treatment time. On the other hand, Table 2 also indicates that the percentage of 308 water removed changes depending on the amount of initial liquid covering biofilm. In this 309 case, the maximum of water removed is 32.9% for a biofilm covered with 200 μ L of water 310 (Table 2). Additionally, this suggests that after plasma treatment for 30s, biofilms will not 311 completely dry out. Thus, from this observation it is therefore likely that larger volumes of 312 water could reduce the drying and convective effects of plasma treatment in a specified

treatment time. Interestingly, we have observed that biofilms that were completely dried in an

314 oven overnight have a similar structure to these plasma-treated samples (data not shown).

The above experiments were repeated with biofilms present in varying amounts of water and a constant plasma exposure time of 30s. Figure 8 summarizes the results obtained from this experiment. It is clear that biofilms can aggregate in liquid volumes up to 600 μ l. However, when biofilms are in larger liquid volumes (>600 μ l) no aggregation was observed, presumably due to a protective effect from the liquid against drying.

320 Figure 8b also indicates that aggregation and cell death was steadily reduced with increasing 321 amounts of liquid. Increasing the amount of water by 200 µL lowers the percentage of dead 322 cells and also reduces the extent of clumping by around 10%. For biofilms that are covered by 323 800 μ L and 1000 μ L, the clumping effect and amount of cell death is very small. This 324 confirms the hypothesis that extra liquid protects biofilms during plasma treatment and 325 reduces the drying effect imposed by plasma discharge. Although plasma drying is not 326 mentioned much in the literature as a mechanism of plasma inactivation, it is an important 327 factor governing cell death. Due to this, the effect of plasma drying during treatment has to be 328 taken into account when treating bacteria or biofilms, as this effect is apparent even when 329 biofilms are treated for very short times.

330

331

332 3.6 Explanation of structure formation

Our results from the previous section indicate that the structure generated by plasma treatment is mainly due to a drying effect. There is a difference in the convection produced by plasma and standard oven, as Figure 10a & b indicates treatment with a conventional oven at 50°C (average temperature of cold plasma) for the same time scale (30 s or 60 s) could not cause the same effect of aggregation. In addition, as can be seen from Figure 10c, even prolonged

Plasma Processes and Polymers

dehydration for 90s using the oven could not cause the same clumping effect as plasmatreatment, although there is idication of some cell death.

340 The circular pattern observed in Figure 9a resembles Benard cells, hexagonally-ordered 341 structures that spontaneously form in fluids with a convection flow during heating or 342 evaporation.^[40] The length scale of this structure is on the order of μ m and is similar to 343 structures formed by surface-deposited bacteria,^[29] as depicted in Figure 9c.

Deegan *et al* ^[41] showed that various patterns can be created by changing the conditions of evaporation. Apart from the formation of Benard cells where the deposit forms a ring, Deegan *et al* ^[41] also observed the formation of compact structures as we observed in our biofilm (Figure 9b). As biofilms are known to have a heterogeneous spatial structure, the plasma jets are also generally heterogeneous in their effects on targets, resulting in the two distinct structures observed. Fischer^[42] reported the formation of such ring structures only occurs when there is outward flow to replenish liquid evaporating from the edges.

351 The fact that there is a limit of maximum liquid coverage of biofilms for significant 352 convective effects may be related to the conditions required for Benard cell formation in thin films, namely that the thickness be less than 1 mm.^[43] In our experiments, water mainly 353 354 covered the inner area of the FluoroDishTM, which has an overall diameter of 23.5mm. 355 Assuming that liquid covers the inner area uniformly and the area is in cylindrical shape, the 356 volume of liquid added to each system allows us to calculate the height of liquid covering the 357 biofilm. It was found that only biofilm containing 200 μ L and 400 μ L liquid is covered by 358 water layer which is less than 1 mm thick. This agrees with the finding that aggregation of 359 cells is more apparent in those samples.

360 Drying of 200 μ L water for 30 s by oven only removed 1.6 ±0.25% water, which is around 20 361 times lower than drying the same amount of water by plasma (Table 2). Probstein^[43] also

indicates that for thin films around 0.5-1 mm deep, the cell spacing should be around three times the liquid depth. The difference between the two might relate to the different rate of drying of plasma, oven or natural convection. In addition, the fact that biofilms have polymeric gels that encapsulate them, might reduce the rate of bacterial cell migration during drying, hence smaller size structures were observed.

367

368 **4.** Conclusions

369 Plasma can be an effective treatment for biofilm eradication. However, this study found that 370 plasma can also induce new structures within the biofilm, which can persist after treatment 371 during regrowth. This phenomenon was evident for both young and more mature biofilms. 372 Once such structures form, subsequent treatments are less effective in terms of efficacy, likely 373 due to the surviving bacteria becoming increasingly resistant to plasma. The structures 374 induced for the biofilms tested are similar to those observed previously for plasma-treated surface-deposited bacteria.^[29] The observed structures are reminiscent of Benard cells, whose 375 376 main mechanism of formation is convection. Secondary plasma species formed in the liquid phase were not found to induce the formation of such structures. 377

Biofilm age (h)	Control	Treatment			
24	U	T24			
48	U	T48	T24+48		
72	U	T24+48	T 24	T48	

Table 1. Design of regrowth experiment where U indicates untreated and T treated samples

Table 2. The amount of water removed by plasma treatment

Amount of water in dish (µL)	Amount of water removed (g)	Percentage of water removed
		(%)
200	0.064 ± 0.024	32.9±2.7
400	0.053 ± 0.007	13.3±1.7
600	0.044 ± 0.011	7.4±1.9
800	0.060 ± 0.019	7.5± 2.3
1000	0.051 ± 0.013	5.1 ± 1.3
		4

References

- 1. H.-C. Flemming and J. Wingender, *Nat Rev Micro*, **2010**. *8*(9): p. 623-633.
- 2. T.-F.C. Mah and G.A. O'Toole, *Curr Trends Microbiol.*, **2001**. *9*(1): p. 34-39.
- 3. R.M. Donlan, *Emerg. Infect. Dis.*, **2001**. 7(2): p. 277.
- 4. R.M. Donlan, *Emerg. Infect. Dis.*, **2002**. *8*(9): p. 881-890.
- 5. L. Hall-Stoodley, J.W. Costerton, and P. Stoodley, *Nat Rev Micro*, **2004**. *2*(2): p. 95-108.
- 6. S. Srey, I.K. Jahid, and S.-D. Ha, *Food Control*, **2013**. *31*(2): p. 572-585.
- 7. A. Birjiniuk, N. Billings, E. Nance, J. Hanes, K. Ribbeck, and P.S. Doyle, *New J. Phys.*, **2014**. *16*(8): p. 085014.
- 8. E.J. Stewart, M. Ganesan, J.G. Younger, and M.J. Solomon, *Sci. Rep.*, **2015**. 5: p. 13081.
- 9. M. Chen, Q. Yu, and H. Sun, *Int. J. Mol. Sci.*, **2013**. *14*(9).
- 10. N.N. Misra, B.K. Tiwari, K.S.M.S. Raghavarao, and P.J. Cullen, *Food Eng Rev*, **2011**. *3*(3): p. 159-170.
- 11. C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, *Spectrochim. Acta B*, **2006**. *61*(1): p. 2-30.
- 12. S.G. Joshi, M. Paff, G. Friedman, G. Fridman, A. Fridman, and A.D. Brooks, *Am J Infect Control*, **2010**. *38*(4): p. 293-301.
- 13. Z. Xiong, T. Du, X. Lu, Y. Cao, and Y. Pan, *Appl. Phys. Lett.*, **2011**. *98*(22): p. 221503.
- 14. M.Y. Alkawareek, Q.T. Algwari, G. Laverty, S.P. Gorman, W.G. Graham, D. O'Connell, and B.F. Gilmore, *PLoS ONE*, **2012**. 7(8): p. e44289.
- 15. D. Ziuzina, S. Patil, P.J. Cullen, D. Boehm, and P. Bourke, *Plasma Medicine*, **2014**. 4(1-4): p. 137-152.
- 16. A. Mai-Prochnow, M. Bradbury, K. Ostrikov, and A.B. Murphy, *PLoS ONE*, **2015**. *10*(6): p. e0130373.
- 17. D. Ziuzina, D. Boehm, S. Patil, P.J. Cullen, and P. Bourke, *PLoS ONE*, **2015**. *10*(9): p. e0138209.
- D.X. Liu, Z.C. Liu, C. Chen, A.J. Yang, D. Li, M.Z. Rong, H.L. Chen, and M.G. Kong, *Sci. Rep.*, 2016. 6: p. 23737.
- 19. L.F. Gaunt, C.B. Beggs, and G.E. Georghiou, *IEEE Trans. Plasma Sci.*, **2006**. *34*(4): p. 1257-1269.
- 20. J.T. Matthew, J.P. Matthew, K. Sharmin, H. Pritha, S. Yukinori, S.C. Douglas, and B.G. David, J. *Phys. D*, **2011**. 44(47): p. 472001.
- 21. J.R. Ferrell, F. Shen, S.F. Grey, and C.J. Woolverton, *Biofouling*, **2013**. *29*(5): p. 585-599.
- 22. M.S.I. Khan, E.-J. Lee, and Y.-J. Kim, Sci. Rep., 2016. 6: p. 37072.
- 23. A.J. Zelaya, G. Stough, N. Rad, K. Vandervoort, and G. Brelles-Mariño, *IEEE Trans. Plasma Sci.*, **2010**. *38*(12): p. 3398-3403.
- 24. K.G. Vandervoort and G. Brelles-Mariño, *PLoS ONE*, **2014**. *9*(10): p. e108512.
- 25. P. Lu, D. Boehm, P. Bourke, and P.J. Cullen, *Plasma Process Polym.*, **2017**: p. e1600207-n/a.
- 26. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, *Nat Meth*, **2012**. *9*(7): p. 671-675.
- 27. G. Reshes, S. Vanounou, I. Fishov, and M. Feingold, *Biophys. J.*, **2008**. *94*(1): p. 251-264.
- 28. E. Pick and Y. Keisari, *J Immunol Methods*, **1980**. *38*(1): p. 161-170.
- 29. D.L. Bayliss, J.L. Walsh, F. Iza, G. Shama, J. Holah, and M.G. Kong, *Plasma Process Polym.*, **2012**. *9*(6): p. 597-611.
- 30. H. Beyenal, Z. Lewandowski, and G. Harkin, *Biofouling*, **2004**. *20*(1): p. 1-23.
- 31. R.E.J. Sladek, S.K. Filoche, C.H. Sissons, and E. Stoffels, *Lett Appl Microbiol*, **2007**. *45*(3): p. 318-323.
- 32. J. Adler, Science, **1966**. 153(3737): p. 708-716.
- 33. N.M. Oliveira, K.R. Foster, and W.M. Durham, *Proc. Natl. Acad. Sci. U.S.A.*, **2016**. *113*(23): p. 6532-6537.
- 34. K. Oehmigen, J. Winter, M. Hähnel, C. Wilke, R. Brandenburg, K.-D. Weltmann, and T. von Woedtke, *Plasma Process Polym.*, **2011**. *8*(10): p. 904-913.
- 35. P. Lu, D. Boehm, P. Cullen, and P. Bourke, *Appl. Phys. Lett.*, **2017**. *110*(26): p. 264102.

- 36. U. Ercan, Joshi, S., Yost, A., Gogotsi, N., O'Toole, S., Paff, M., Melchior, E. and Joshi, S., Adv Microbiol., 2014. 4: p. 1188-1196.
- 37. G. Kamgang-Youbi, J.M. Herry, T. Meylheuc, J.L. Brisset, M.N. Bellon-Fontaine, A. Doubla, and M. Naïtali, Lett Appl Microbiol, 2009. 48(1): p. 13-18.
- 38. M. Naïtali, G. Kamgang-Youbi, J.-M. Herry, M.-N. Bellon-Fontaine, and J.-L. Brisset, Appl. Environ. Microbiol., 2010. 76(22): p. 7662-7664.
- 39. K. Oehmigen, M. Hähnel, R. Brandenburg, C. Wilke, K.D. Weltmann, and T. von Woedtke, Plasma Process Polym., 2010. 7(3-4): p. 250-257.
- L. Rayleigh, Philos. Mag., 1916. 32(192): p. 529-546. 40.
- 41. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, and T.A. Witten, Phys Rev E, 2000. 62(1): p. 756-765.
- 42. B.J. Fischer, Langmuir, 2002. 18(1): p. 60-67.
- 43. R.F. Probstein, Surface Tension, in Physicochemical Hydrodynamics. 1993, Wiley. p. 267-318.

 June

 Image: Provide the second seco

Figure 1. a) DBD design incorporating the glass bottom imaging dish containing the growing biofilm within the discharge gap, b) Schematic of air discharge in contact with liquid and addition of PAL to growing biofilm.

206x134mm (150 x 150 DPI)

Figure 2. Effect of treatment time on biofilm structure a) Confocal images of biofilm structure before and after plasma treatment, b) quantification of dead cells (symbol \bullet) and cell clumps larger than 20µm2 (symbol)

293x467mm (300 x 300 DPI)

172x281mm (300 x 300 DPI)

Figure 4. a) Confocal images of untreated 72-h biofilm and biofilm grown for 72-h but exposed to 30s plasma treatment at different biofilm ages, where it is shown that biofilms retain their aggregated structure after those plasma treatments, b) percentage of clumps bigger than 10µm2, c) quantification of red cells

330x505mm (300 x 300 DPI)

314x358mm (300 x 300 DPI)

Figure 6. a) Calibration curve for H2O2 by spectrometer at 610nm, b) The H2O2 concentration in plasmatreated liquid.

469x182mm (300 x 300 DPI)

Figure 7. a) Confocal images of untreated biofilm, incubated with 30μ M H2O2 and incubated with plasma liquid treated for 60s, b) percentage of aggregates bigger than 10 μ m2, c) red cells quantification of samples

144x199mm (300 x 300 DPI)

Figure 8. The effect of liquid volume covering biofilm during plasma treatment on aggregation and cell death a) confocal images of different structures observed, b) quantification of dead cells (symbol \bullet) and cell clumps larger than 10µm2 (symbol)

263x326mm (300 x 300 DPI)

Figure 9. a) Circular pattern ring structure formed by bacteria after plasma treatment, b) Compact structure formed by bacteria after plasma treatment, c) Redrawn pattern rings formed by surface-deposited bacteria after plasma treatment observed by Bayliss et al[29]

309x99mm (110 x 110 DPI)

Figure 10. The drying effect on structure of biofilm by oven at 50°C for different treatment time. a) treated for 30 s, b) treated for 60 s, c) treated for 90 s