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Abstract 1 

Atmospheric air plasma has previously been shown to be a novel and effective method for 2 

biofilm eradication. Here we study the effects of plasma on both microbial inactivation and 3 

induced structural modification for forming biofilms. New structures are created from 4 

aggregates of extracellular polysaccharides and dead bacterial cells, forming a protective and 5 

resilient matrix in which the remaining living cells grow and reproduce under proper growth 6 

conditions. The new colonies are found to be more resilient in this state, reducing the efficacy 7 

of subsequent plasma treatment. We verify that the observed effect is not caused by chemicals 8 

produced by plasma reactive species, but instead by the physical processes of drying and 9 

convection caused by the plasma discharge. 10 

 11 

  12 
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1. Introduction  13 

 14 

Biofilms are colonies of microorganisms surrounded by a complex fluid matrix made 15 

predominantly of extracellular polysaccharide polymers (EPS). The EPS provides a protective 16 

barrier for bacterial colonies in a biofilm,
[1]

 increasing the resistance of bacteria to chemical 17 

and antibiotic treatments and also reducing the efficacy of physical treatment. Biofilms can 18 

thus survive most conventional methods of eradicating more freely dispersed, or planktonic, 19 

bacteria
[2]
. Biofilms can form on many surfaces, including the skin of fresh fruits and 20 

vegetables, industrial pipe surfaces, in between teeth, and on medical devices.
[3, 4]

 Due to their 21 

widespread existence and resilience, biofilms are known to be the main cause of persistent 22 

bacterial infections in hospitals,
[5]
 contamination of foods in process environments,

[6]
 and 23 

reduced process cleaning efficiency in manufacturing. Biofilm physical and flow properties 24 

have recently been studied as a means of understanding molecular transport through the 25 

matrix and to better enable destruction.
[7, 8]

 New approaches are being developed to more 26 

aggressively treat biofilms during formation, for example to interfere with the attachment of 27 

these bacteria to surfaces and disturb their structure.
[9]
  28 

One novel treatment currently being investigated for this purpose is atmospheric plasma, 29 

which is essentially an ionized gas that is generated at ambient temperatures and under 30 

atmospheric conditions that allows treatment of sensitive biological matter.
[10, 11]

 Numerous 31 

recent studies have demonstrated the anti-microbial efficacy of atmospheric plasma for 32 

planktonic bacteria or cells embedded in biofilms.
[12]

 Plasma species are reported to be 33 

capable of penetrating into the biofilm structure.
[13]

 Plasma can inactivate biofilms with 34 

treatment times of less than 60 seconds
[14] 

and cause a 5 log reduction in biofilm viability,
[15]

 35 

while longer treatments can decrease viable cells to undetected levels.
[15-17]

 This ability of 36 

plasma to inactivate bacteria is thought to be an effect of its production of short- and long-37 

lived reactive species
[18]

 such as ozone and other radicals.
[19]

 Long-lived species have been 38 
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shown to be effective to treat Escherichia coli suspensions even after a 7-day period, 39 

following plasma liquid generation.
[20]

 40 

Apart from its ability to inactivate bacteria in a biofilm, atmospheric air plasma has been 41 

shown to change the overall biofilm structure by disrupting and degrading the EPS biofilm 42 

components.
[21]

 For example, separation of initially aggregated bacteria has been observed 43 

during EPS degradation due to plasma treatment.
[22]

 Plasma-induced EPS degradation causes 44 

a decrease in biofilm thickness
[21, 23]

 and volume
[21]

 as well as an increase in its roughness and 45 

porosity.
[21]

 Plasma-treated biofilms are also known to have reduced adhesion to surfaces.
[23, 

46 

24]
 47 

In model systems, monolayers of surface-deposited Listeria innocua responded to plasma 48 

treatment by forming cell aggregates of damaged cells, into which viable cells were then 49 

moved, affecting plasma inactivation kinetics.
[28]

 Bayliss et al
[28]

 suggested such sheltering of 50 

cells extends the treatment time needed for bacterial inactivation and is driven by plasma gas 51 

flow-induced drying and the resultant fluid shear stresses. Although the work was carried out 52 

on a manually-deposited layer of cells, it likely has relevance for more developed biofilm 53 

community environments as well. This work examines the effects of short duration plasma 54 

treatments on young biofilm structures and how modification of those structures affects 55 

bacterial resilience to subsequent plasma treatments. 56 

 57 

2. Experimental Section 58 

2.1 Preparation of biofilm sample 59 

Single E. coli MG1655 (CSIRO Food Research Ryde Bacteriology Culture Collection) 60 

colonies were inoculated in nutrient broth (1 g L
1
 `Lab-Lemco’ powder, 2 g L

-1
 170 yeast 61 

extract, 5 g L
-1
 peptone, 5 g L

-1
 sodium chloride, pH 7.4; Oxoid, Adelaide, Australia) and 62 
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grown in a shaking incubator (Bioline Global, South Australia) at 37° C and 100 rpm for 12 to 63 

15 hours. The cultures contained approximately 10
9
 CFU/mL which was diluted to 10

7
 64 

CFU/mL. From this diluted culture, 2 mL samples were transferred to a FluoroDish™ cell 65 

culture dish (World Precision Instruments). These dishes were incubated at 37°C to allow 66 

biofilm formation. After 24 hours, the medium was exchanged for fresh medium. The 67 

biofilms were grown for a period of 48 hours total for time-dependent and liquid coverage 68 

experiments or 24, 48, and 72 h for cell regrowth and multiple-treatment studies, after which 69 

the medium was removed and the biofilm washed twice with phosphate buffered saline (PBS) 70 

prior to treatment and analysis. Details of the regrowth studies are provided in section 2.3. 71 

 72 

2.2 Plasma setup 73 

The power supply used to drive the plasma discharge was an HV half bridge resonant inverter 74 

circuit (PVM2000, Information Unlimited, New Hampshire, USA). The power source has a 75 

maximum output voltage of 50 kV with a variable frequency of 20 kHz to 100 kHz, 76 

depending on the plasma load capacitance. The plasma setup consists of a FluoroDish™ used 77 

to grow the biofilm (see section 2.1) that is placed in between the electrodes of the Dielectric 78 

Barrier Discharge, or DBD, consisting of a 2 mm thick poly(methyl methacrylate) dielectric 79 

and a top electrode that is partially recessed within the imaging dish to reduce the discharge 80 

gap to 6 mm (Figure 1a). The discharges were induced in open atmospheric air conditions. 81 

 82 

2.3 Plasma-biofilm treatment conditions 83 

2.3.1 Direct treatment 84 

The growing biofilms were exposed to direct plasma treatment, Figure 1a, after 24 h or 48 h 85 

of growth, while only biofilms aged 48 h were exposed to plasma-activated liquid (see section 86 

2.3.2 below, Figure 1b). Plasma treatment was performed at 6 kV and ~60 kHz. The optical 87 
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emission spectra, OES, for the discharge were mainly in the UV region, the OES are not 88 

included, the reader is referred to Lu et al
[25]

 for characterisation of discharges with this power 89 

source.  The DBD design incorporating the dish used to grow the biofilm allows for non-90 

invasive sample preparation, which is critical for later imaging of a biofilm’s structure. The 91 

design also offers the added benefit of a relatively controlled discharge in terms of spatial 92 

homogeneity and treatment time when compared to plasma jets. Precise control of treatment 93 

time (~1s) allows the effects of short plasma treatment times on biofilm behaviour to be 94 

investigated. 95 

For time-dependent studies, biofilms aged 48 h were exposed to direct plasma for times 96 

ranging from 0 to 60 s. The biofilm was kept wet by adding 200 µL of PBS into the dish. For 97 

liquid coverage studies, different amounts of PBS were added to the cell culture dish, from 98 

200 µL to 1000 µL, and biofilms aged 48 h were used. In the regrowth study, biofilms aged 99 

24 h and 48 h were used and exposed to plasma for 30 s. On each day, biofilms were 100 

compared to untreated controls (Table 1). After exposure to plasma, biofilms were incubated 101 

again with fresh nutrient broth at 37° C. All nutrients were changed every 24 h until the final 102 

day (72 h). 103 

 104 

2.3.2 Indirect (liquid) treatment 105 

Plasma-treated liquid was generated by treating 1 mL of PBS in the same setup as direct 106 

treatment, as indicated in Figure 1B. After treatment, 200 µL of the liquid was removed from 107 

the dish and transferred to another dish containing the biofilm, and subsequently incubated for 108 

1 hour prior to imaging. Commercial hydrogen peroxide (Chem-Supply Pty Ltd, South 109 

Australia, Australia) was employed for comparison to the plasma-treated liquid via addition to 110 

PBS. Similarly, 200 µL of these peroxide-PBS solutions were also incubated for 1 hour with 111 

the biofilm prior to imaging. 112 
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 113 

2.4 Confocal Laser Scanning Microscopy (CLSM) 114 

Before imaging, the biofilm was dyed with Live/Dead BacLight™ Bacterial Viability Kits 115 

(Thermo Fisher Scientific, Victoria, Australia), which contains SYTO9 and Propidium Iodide 116 

(PI), following supplier’s instructions. The dishes were then incubated in the dark for about 117 

15 mins before imaging. Biofilm imaging was performed on a Leica TCS SP5 STED inverted 118 

confocal microscope with oil objective 63×, NA 1.4.  The lasers used for imaging were at 488 119 

nm for SYTO9 and 498 nm for PI. 120 

 121 

2.5 Image analysis 122 

All images were analysed using Image-J.
[26]

 Green and red channels from CLSM data were 123 

separated and then analysed individually to calculate biofilm coverage area. From the 124 

literature it is known the approximate size of one E. coli cell is 1μm x 3μm.
[27]

 Assuming the 125 

cells are perfectly oval, the area of one E. coli cell is 2.35 μm
2
. Hence, any number that is less 126 

than this value is disregarded in the calculation. The percentage of red cells was calculated 127 

from total area covered by red cells divided by the total area covered by both green and red 128 

cells. Each data set contains at least six fields of view that are used for data quantification. 129 

 130 

2.6 Hydrogen peroxide (H2O2) measurement 131 

Quantification of H2O2 concentration in the plasma liquid was performed following the 132 

protocol of Pick and Keisari.
[28]

 Briefly, 5 g of horseradish peroxidase Type II (Sigma Aldrich, 133 

Sydney, Australia) powder was dissolved in 0.05 M phosphate buffer. Phenol red dye is used 134 

to detect colour change due to the presence of H2O2, using a concentration of 0.28 mM. 135 

Standard curves were then prepared by measuring spectra of milli-Q water containing various 136 

concentrations of H2O2 from 0-60 µM. The solution was taken out of the dish, transferred into 137 
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a small glass vial, and incubated for 1 hour before spectra measurement. Just before spectra 138 

measurement, 10 µL of the horseradish peroxidase solution and 10 µL of the phenol red 139 

solution were added into the standard samples and plasma-treated liquid. These vials were 140 

then incubated again at 25° C for 5 mins. After incubation, NaOH was added to the solution 141 

to change its color from orange to purple and keep the colour stable.
[28]

 Spectra of samples at 142 

610 nm were then recorded using a UV-VIS spectrophotometer (Shimadzu Corporation, 143 

Kyoto, Japan). 144 

 145 

 146 

3. Results & Discussion 147 

3.1 The effect of plasma treatment on biofilm structure 148 

Plasma treatment has been reported previously to destabilize biofilm structures.
[21]

 Here we 149 

use an Escherichia coli biofilm that is in a younger state than the previously studied biofilms 150 

of Pseudomonas aeruginosa or Staphylococcus aureus.
[21]

 During this early stage of biofilm 151 

development, no microcolonies have been formed. Figure 2a shows the microscopic initial 152 

state of these young biofilms, with green live cells visible throughout the field of view at t = 0 153 

s. Figure 2a also shows micrographs of the biofilm after different plasma exposure times, 154 

enabling tracking of the kinetic progression of cell death by following the increase in red, or 155 

dead, cells and the survival of the green, or living, cells and the formation of cell clumps. 156 

These effects are contrary to those reported by Ferrell et al, 
[21]

 with plasma treatment 157 

inducing aggregation and forming a new structure rather than structure breakdown. This 158 

plasma-induced structural re-arrangement has been observed previously in surface-deposited 159 

planktonic bacteria.
[29]

 160 

Figure 2a shows that cell aggregation occurred for all treatment times tested. However, 161 

quantitative analysis via cell imaging revealed that there was only a slight increase in the 162 
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percentage of larger aggregates (>10 μm
2
) as a function of treatment time (Figure 2b). An 163 

aggregate area cutoff value of 10 µm
2
 was chosen to differentiate aggregates from cells in 164 

sufficient proximity to be classified as an aggregate. An increase was only observed between 165 

the untreated and the shortest treatment time of 10 s (around 20% increase), indicating that 166 

cell aggregation occurs rapidly and is not significantly governed by treatment time.  167 

Figure 2b shows that although plasma treatment causes cell aggregation, it also inactivates 168 

bacterial cells in the biofilm. This behaviour has been observed in many studies that study the 169 

effect of treatment on bacterial viability.
[15-17]

 However, for the current system, it is found that 170 

after 40 s the number of dead cells reaches a plateau of 40%, Figure 2b. This indicates that 171 

there is a limit to the number of bacteria that can be killed with plasma treatment, perhaps 172 

because aggregation offers some form of protection.  173 

Of particular interest is that the aggregation of the cells and the mortality effects of the plasma 174 

appear to both plateau, although on different time scales, after 40 s for cell viability and after 175 

10 s for cell aggregation (Figure 2b).   176 

The biofilms used in this study are considered mature once they are 48 h old, but we also 177 

examined the effects of biofilm age on aggregation and mortality response to plasma 178 

treatment. This is because the amount of EPS increases with biofilm age, and it may play a 179 

role in protecting cells from plasma and aggregation induced by plasma. 180 

When subjected to the same plasma treatment for 30 s, both biofilms aged 24 h and 48 h form 181 

aggregates (Figure 3a). The percentage of big aggregates formed in these two samples is quite 182 

similar, although the actual percentage of bigger clumps is slightly higher for the treated 183 

younger biofilm. The older biofilm is expected to have more EPS, which might explain why 184 

there is a slight discrepancy between the two values. Aggregation requires both attractive 185 

interactions between cells and sufficient mobility to bring cells together for collision. The 186 
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cells in the older biofilm might move less than the cells in younger ones, resulting in the 187 

current observation.  188 

Figure 3 also shows that older biofilms have increased resistance to plasma treatment. In 189 

Figure 3c, the percentage of dead cells after treatment increased compared to the control. For 190 

biofilms aged 24 h, the percentage of dead cells increases from around 2% to 40% upon 191 

treatment. The efficacy of plasma decreases with increasing age of biofilm, as the percentage 192 

of dead cells only increases from 2% to 25% upon treatment, about half of the impact seen for 193 

biofilms aged 24 h.  194 

 195 

3.2 Regrowth of surviving bacteria  196 

 197 

When plasma treatment does not inactivate all bacterial cells in a biofilm, the surviving cells 198 

may be able to grow and reproduce when given sufficient nutrients. Under these 199 

circumstances, we are interested in how these bacterial cells regrow in their restructured 200 

environment. To answer this question, both younger and more mature biofilms were exposed 201 

to plasma treatment and then regrown, until the biofilm reached an age of 72 h, before being 202 

imaged. 203 

Biofilms that have been treated at least once after regrowth have distinct structures when 204 

compared to previously untreated biofilms with the same treatment. Figure 4a indicates that 205 

biofilms treated at least once during their growth have clearly aggregated structures compared 206 

to untreated biofilms that retain a fully dispersed structure. Indeed, after plasma treatment of 207 

biofilms either 24 h or 48 h old, bacteria keep growing in the aggregates instead of growing 208 

separately as in the untreated samples. This indicates that the surviving bacteria are able to 209 

reproduce and grow in this newly formed structure.  210 

Yet, these aggregated structures that occur after treatment at 24 h and 48 h, or treated twice at 211 

24 h 48 h old, are hardly distinguishable from each other. Quantitative analysis on the 212 
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aggregates (Figure 4b) reveals that biofilms treated at 24 h have a higher percentage of 213 

aggregates larger than 10μm
2
 than a biofilm treated at 48 h or treated at 24 h & 48 h. This 214 

may be due to fact that biofilms treated at 24 h have more time to expand the size of their 215 

colonies as longer growth time increases cell cluster size.
[30]

 216 

In addition, as seen from Figure 4a, a plasma-treated biofilm consists of only living cells. 217 

Analysis shows that despite 30 s of plasma treatment causing cell death of a significant 218 

proportion of cells (Figure 4c), only a very small number (< 10 %) of dead cells could be 219 

detected after biofilm re-growth. However, it is likely that some dead cells are hidden within 220 

the new structure. However, the percentage of these red cells is still quite low, less than 10%, 221 

which is not significant. 222 

 223 

3.3 The effect of plasma-induced biofilm structure on subsequent treatment 224 

  225 

 226 

In section 3.2, it was found that after plasma treatment, bacteria in a biofilm can utilize the 227 

new structure to reproduce and grow. In previous work by Ferrell et al,
[21]

 a mature biofilm 228 

with large aggregates was shown to change structure by increasing the porosity of the biofilm 229 

structure. In this kind of mature biofilm, the high amount of EPS should prevent the 230 

aggregation of bacteria as this EPS provides elastic resistance to deformation by flow. The 231 

plasma-treated biofilm has a structure more similar to the mature biofilm used by Ferrell et 232 

al.
[21]

 It is interesting to know if this plasma-mediated structure has a similar behaviour to a 233 

mature biofilm. 234 

To answer this, biofilms were exposed to plasma after 24 h of growth. This sample is 235 

incubated again for another 24 h before exposing this to the second plasma treatment. Figure 236 

5a shows that clumping is still apparent in this system. However, quantitative analysis shows 237 

Page 12 of 31

Wiley-VCH

Plasma Processes and Polymers



For Peer Review

    

 - 12 - 

that the relative amount of aggregates decreases after the second plasma treatment instead of 238 

increasing. This observation agrees with Ferrell et al.’s
[21] 

work. This also indicates that after 239 

a certain point, aggregation is not possible anymore as biofilms might produce enough EPS to 240 

resist deformation by plasma. Another explanation is that subsequent plasma treatments can 241 

destroy structures formed by previous treatments. 242 

Interestingly, Figure 5a also indicates that biofilms that have been previously treated mainly 243 

consist of live cells. This result is unexpected as when the sample is treated twice, it is likely 244 

that the percentage of red cells should be higher compared to 24 h or 48 h old biofilms. As 245 

can be seen from Figure 5c, the percentage of dead cells in the sample treated both at 24 h and 246 

48 h is about 5% which is much lower than the percentage of cells inactivated by single 247 

treatment when they were 24 h (by 6 times) or 48 h old (by 4 times). This suggests that the 248 

bacteria developed resistance after the first treatment that reduced efficacy of the second 249 

treatment, consistent with other reports of resistant colonies induced by plasma treatment.
[16, 

250 

31]
 251 

 252 

3.4 The effect of plasma chemicals on biofilm structure 253 

In the literature, the death of bacterial cells induced by plasma is usually associated with the 254 

presence of reactive species produced by plasma treatment. It is plausible that such chemicals 255 

could also cause clumping, as bacteria are known to respond to chemicals present via 256 

chemotaxis. Chemotaxis is the phenomenon by which motile cells move towards or away 257 

from a chemical by altering their swimming pattern. Bacteria such as E. coli have several 258 

flagella per cell which facilitate some directional control over their motion to either find 259 

favourable locations with high concentrations of attractants or to avoid repellents,
[32]

 such as 260 

chemicals produced by plasma. Although chemotaxis traditionally is known only for motile 261 

cells, recent finding shows that chemotaxis might also occur in surface-attached cells.
[33]

  262 

 263 
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One of the chemicals often found in atmospheric plasma-treated liquid is H2O2.
[19, 34]

 For this 264 

work only H2O2 is measured, for a more comprehensive species diagnostic of PAW using this 265 

power source, the reader is referred to our recent publications.
[25, 35]

  Figure 6b indicates that 266 

the concentration of H2O2 in the liquid increases with increasing treatment time. This 267 

behaviour has been seen in plasma-treated water previously, where initially the concentration 268 

of peroxide increases linearly before reaching a plateau.
[25]

 269 

If the aggregation observed previously is related to the presence of chemicals produced by 270 

plasma reactive species, we should be able to induce such aggregation by adding commercial 271 

H2O2, or plasma-treated water, to the biofilms and comparing the result to plasma-treated 272 

biofilms. The concentration of H2O2 added to the liquid is the same as the concentration of 273 

H2O2 in water treated in plasma for 60 s, which is 30 μM.  274 

 275 

Figure 7a shows that biofilms that were exposed to plasma-treated liquid or 30 μM peroxide 276 

solutions are similar to the control. Data analysis (Figure 7b) reveals that there are actually 277 

changes in clumping after addition of peroxide or incubation with plasma water compared to 278 

control. Figure 7b also shows that compared to peroxide only, plasma water increases the 279 

extent of clumping by 2 times (from 3% to 6%), which might suggest that presence of other 280 

chemicals that also give rise to cell clumping. However, the change in clumping caused by 281 

chemicals (~6%) is not as much as the clumping caused by direct treatment (~20%). This 282 

suggests that aggregate formation might be slightly affected by chemicals present in plasma-283 

treated water, but it is not the main mechanism. Movement of bacteria is also required for 284 

aggregation and is likely controlled by plasma discharge-induced flow.
[28]

 285 

Additionally, the use of hydrogen peroxide and plasma liquid here does not cause significant 286 

cell death. As shown in Figure 7b, the percentage of cells killed by treatment is very small, 287 

less than 2%. These values are similar to the levels in untreated biofilms. This means there is 288 
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very little effect of plasma-treated water, which is not in agreement with literature as plasma-289 

treated liquid has been shown to inactivate bacteria in biofilms.
[36, 37]

 But, literature
[38, 39] 

has 290 

indicated that in order for plasma-treated liquid to be effective in inactivating bacteria, 291 

acidified conditions are required. Naїtali et al
[38]

 showed that in plasma-treated water, a 292 

bacterial population was reduced from 8 log CFU to 2 log CFU. However, the effect was 293 

diminished for buffered plasma liquid where only a minimal reduction was observed. As all 294 

experiments here use a buffer solution, PBS, the pH of the solution is not expected to change 295 

and become acidified. 296 

 297 

3.5 Dilution effect on biofilm structure 298 

  299 

As mentioned before, the formation of ring structure has been observed in surface deposited 300 

bacteria, which is said due to drying by plasma jet.
 [29] 

This means that there is high possibility 301 

that the structure here is also caused by drying. To understand better the drying by our plasma 302 

system, we measured how much water removed when exposed to plasma.  303 

Table 2 shows that for 30s treatment time, plasma treatment removes between 0.04-0.06 g 304 

water from the system by evaporation regardless of the starting amount of water.  From this 305 

result, it appears that there is a maximum amount of water that can be removed by plasma for 306 

the same treatment time. On the other hand, Table 2 also indicates that the percentage of 307 

water removed changes depending on the amount of initial liquid covering biofilm. In this 308 

case, the maximum of water removed is 32.9% for a biofilm covered with 200 μL of water 309 

(Table 2). Additionally, this suggests that after plasma treatment for 30s, biofilms will not 310 

completely dry out. Thus, from this observation it is therefore likely that larger volumes of 311 

water could reduce the drying and convective effects of plasma treatment in a specified 312 
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treatment time. Interestingly, we have observed that biofilms that were completely dried in an 313 

oven overnight have a similar structure to these plasma-treated samples (data not shown).  314 

The above experiments were repeated with biofilms present in varying amounts of water and 315 

a constant plasma exposure time of 30s. Figure 8 summarizes the results obtained from this 316 

experiment. It is clear that biofilms can aggregate in liquid volumes up to 600 μl. However, 317 

when biofilms are in larger liquid volumes (>600 μl) no aggregation was observed, 318 

presumably due to a protective effect from the liquid against drying. 319 

Figure 8b also indicates that aggregation and cell death was steadily reduced with increasing 320 

amounts of liquid. Increasing the amount of water by 200 µL lowers the percentage of dead 321 

cells and also reduces the extent of clumping by around 10%. For biofilms that are covered by 322 

800 µL and 1000 µL, the clumping effect and amount of cell death is very small. This 323 

confirms the hypothesis that extra liquid protects biofilms during plasma treatment and 324 

reduces the drying effect imposed by plasma discharge. Although plasma drying is not 325 

mentioned much in the literature as a mechanism of plasma inactivation, it is an important 326 

factor governing cell death. Due to this, the effect of plasma drying during treatment has to be 327 

taken into account when treating bacteria or biofilms, as this effect is apparent even when 328 

biofilms are treated for very short times.  329 

 330 

 331 

3.6 Explanation of structure formation 332 

Our results from the previous section indicate that the structure generated by plasma treatment 333 

is mainly due to a drying effect. There is a difference in the convection produced by plasma 334 

and standard oven, as Figure 10a & b indicates treatment with a conventional oven at 50°C 335 

(average temperature of cold plasma) for the same time scale (30 s or 60 s) could not cause 336 

the same effect of aggregation. In addition, as can be seen from Figure 10c, even prolonged 337 
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dehydration for 90s using the oven could not cause the same clumping effect as plasma 338 

treatment, although there is idication of some cell death. 339 

The circular pattern observed in Figure 9a resembles Benard cells, hexagonally-ordered 340 

structures that spontaneously form in fluids with a convection flow during heating or 341 

evaporation.
[40]

 The length scale of this structure is on the order of µm and is similar to 342 

structures formed by surface-deposited bacteria,
[29]

 as depicted in Figure 9c. 343 

Deegan et al 
[41]

 showed that various patterns can be created by changing the conditions of 344 

evaporation. Apart from the formation of Benard cells where the deposit forms a ring, Deegan 345 

et al 
[41] 

also observed the formation of compact structures as we observed in our biofilm 346 

(Figure 9b). As biofilms are known to have a heterogeneous spatial structure, the plasma jets 347 

are also generally heterogeneous in their effects on targets, resulting in the two distinct 348 

structures observed. Fischer
[42]

 reported the formation of such ring structures only occurs 349 

when there is outward flow to replenish liquid evaporating from the edges.  350 

The fact that there is a limit of maximum liquid coverage of biofilms for significant 351 

convective effects may be related to the conditions required for Benard cell formation in thin 352 

films, namely that the thickness be less than 1 mm. 
[43]

 In our experiments, water mainly 353 

covered the inner area of the FluoroDish™, which has an overall diameter of 23.5mm. 354 

Assuming that liquid covers the inner area uniformly and the area is in cylindrical shape, the 355 

volume of liquid added to each system allows us to calculate the height of liquid covering the 356 

biofilm. It was found that only biofilm containing 200 μL and 400 μL liquid is covered by 357 

water layer which is less than 1 mm thick. This agrees with the finding that aggregation of 358 

cells is more apparent in those samples. 359 

Drying of 200 μL water for 30 s by oven only removed 1.6 ±0.25% water, which is around 20 360 

times lower than drying the same amount of water by plasma (Table 2). Probstein
[43]

 also 361 
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indicates that for thin films around 0.5-1 mm deep, the cell spacing should be around three 362 

times the liquid depth. The difference between the two might relate to the different rate of 363 

drying of plasma, oven or natural convection. In addition, the fact that biofilms have 364 

polymeric gels that encapsulate them, might reduce the rate of bacterial cell migration during 365 

drying, hence smaller size structures were observed.  366 

 367 

4. Conclusions 368 

Plasma can be an effective treatment for biofilm eradication. However, this study found that 369 

plasma can also induce new structures within the biofilm, which can persist after treatment 370 

during regrowth. This phenomenon was evident for both young and more mature biofilms. 371 

Once such structures form, subsequent treatments are less effective in terms of efficacy, likely 372 

due to the surviving bacteria becoming increasingly resistant to plasma. The structures 373 

induced for the biofilms tested are similar to those observed previously for plasma-treated 374 

surface-deposited bacteria.
[29]

 The observed structures are reminiscent of Benard cells, whose 375 

main mechanism of formation is convection.  Secondary plasma species formed in the liquid 376 

phase were not found to induce the formation of such structures.   377 
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Table 1. Design of regrowth experiment where U indicates untreated and T treated samples 

Biofilm age (h) Control Treatment 

24 U T24   

48 U T48 T24+48  

72 U T24+48 T 24 T48 

 

 

 

 

Table 2. The amount of water removed by plasma treatment 

Amount of water in dish (µL) Amount of water removed (g) Percentage of water removed 

(%) 

200 0.064 ± 0.024 32.9±2.7 

400 0.053 ± 0.007 13.3±1.7 

600 0.044 ± 0.011 7.4±1.9 

800 0.060 ± 0.019 7.5± 2.3 

1000 0.051 ± 0.013 5.1 ± 1.3 
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Figure 1. a) DBD design incorporating the glass bottom imaging dish containing the growing biofilm within 
the discharge gap, b) Schematic of air discharge in contact with liquid and addition of PAL to growing 

biofilm.    
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Figure 2. Effect of treatment time on biofilm structure a) Confocal images of biofilm structure before and 
after plasma treatment, b)  quantification of dead cells (symbol ●)  and cell clumps larger than 20µm2 

(symbol  )  
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Figure 3. Effect of biofilm maturity on plasma clumping a) confocal images of 24-h and 48-h of untreated 
and plasma treated biofilm, b) percentage of clumps bigger than 20µm2, c) quantification of red cells.    
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Figure 4. a) Confocal images of untreated 72-h biofilm and biofilm grown for 72-h but exposed to 30s 
plasma treatment at different biofilm ages, where it is shown that biofilms retain their aggregated structure 
after those plasma treatments, b) percentage of clumps bigger than 10µm2, c) quantification of red cells  
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Figure 5. a) Confocal imaging of plasma-treated samples that were imaged right after treatment where less 
cells are killed after treated twice, b) the percentage of aggregates bigger than 10 µm2, c) quantification of 

dead cells  
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Figure 6. a) Calibration curve for H2O2 by spectrometer at 610nm, b) The H2O2 concentration in plasma-
treated liquid.  
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Figure 7. a) Confocal images of untreated biofilm, incubated with 30µM H2O2 and incubated with plasma 
liquid treated for 60s, b) percentage of aggregates bigger than 10 µm2, c) red cells quantification of 

samples  
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Figure 8. The effect of liquid volume covering biofilm during plasma treatment on aggregation and cell death 
a) confocal images of different structures observed, b) quantification of dead cells (symbol ●)  and cell 

clumps larger than 10µm2 (symbol  )  
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Figure 9. a) Circular pattern ring structure formed by bacteria after plasma treatment, b) Compact structure 
formed by bacteria after plasma treatment, c) Redrawn pattern rings formed by surface-deposited bacteria 

after plasma treatment observed by Bayliss et al[29]  
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Figure 10. The drying effect on structure of biofilm by oven at 50°C for different treatment time. a) treated 
for 30 s, b) treated for 60 s, c) treated for 90 s  
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