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SUMMARY

Cortical circuits are thought to multiplex firing rate
codes with temporal codes that rely on oscillatory
network activity, but the circuit mechanisms that
combine these coding schemes are unclear. We
establish with optogenetic activation of layer II of
the medial entorhinal cortex that theta frequency
drive to this circuit is sufficient to generate nested
gamma frequency oscillations in synaptic activity.
These nested gamma oscillations closely resemble
activity during spatial exploration, are generated by
local feedback inhibition without recurrent excita-
tion, and have clock-like features suitable as refer-
ence signals for multiplexing temporal codes within
rate-coded grid firing fields. In network models
deduced from our data, feedback inhibition supports
coexistence of theta-nested gamma oscillations with
attractor states that generate grid firing fields. These
results indicate that grid cells communicate primarily
via inhibitory interneurons. This circuit mechanism
enables multiplexing of oscillation-based temporal
codes with rate-coded attractor states.

INTRODUCTION

Cortical neurons encode information through the rate and timing

of their action potential output (Buzsáki and Draguhn, 2004;

Fries, 2009; Huxter et al., 2003; O’Keefe and Recce, 1993). At

the same time, activity in networks of cortical neurons oscillates

with frequency and amplitude that depend on behavioral state

(Buzsáki, 2002; Buzsáki and Draguhn, 2004; Buzsáki and

Wang, 2012; Canolty and Knight, 2010; Fries, 2009; Klausberger

and Somogyi, 2008). Cortical network oscillations are believed to

be critical for temporal codes (Buzsáki and Draguhn, 2004; Buz-

sáki and Wang, 2012; Colgin et al., 2009; Fries, 2009; Lisman,

2005) and coupling between oscillatory activity in different

frequency bands appears to be a general feature of cognitive

states (Buzsáki and Draguhn, 2004; Buzsáki and Wang, 2012;
Canolty and Knight, 2010). However, the cellular mechanisms

that coordinate interactions between oscillations in different

frequency bands are not known. The relationships between

mechanisms that generate oscillatory reference signals and

those that support representation of information through firing

rate codes are also not clear.

Grid cells in layer II of the medial entorhinal cortex (MEC)

represent location relative to the external environment using

rate-coded grid-like firing fields and by timing of their action

potentials relative to theta frequency (4–12 Hz) network rhythms

(Fyhn et al., 2004; Hafting et al., 2005, 2008). Nested within the

slower theta rhythm are network oscillations with frequency

in the high gamma range (60–120 Hz) (Chrobak and Buzsáki,

1998; Colgin et al., 2009). These gamma frequency oscillations

are believed to act as a reference signal to coordinate interac-

tions between MEC neurons and their synaptic partners in the

hippocampus (Buzsáki and Draguhn, 2004; Colgin et al., 2009),

so that ensembles of MEC neurons with firing that is phase

locked to nested gamma oscillations more effectively activate

downstream neurons on which their synaptic output converges

(Buzsáki and Wang, 2012; Fries, 2009). Nested gamma oscilla-

tions are also hypothesized to enable temporal codes in which

different items are encoded on each gamma cycle (Lisman,

2005). However, the cellular mechanisms that enable generation

of grid firing fields and theta-nested gamma oscillations are not

clear. The possibility that theta frequency drive is sufficient for

generation of nested gamma oscillations has not previously

been addressed. It is also not clear if the same circuit mecha-

nisms generate nested oscillatory activity and grid firing fields,

or if instead either form of activity requires additional circuit

elements.

Because encoding of location by grid cells in layer II of the

MEC requires inputs from the medial septum and as activity of

these inputs is modulated at theta frequency (Brandon et al.,

2011; Koenig et al., 2011; Mitchell et al., 1982), we set out to

investigate whether theta frequency activation of layer II net-

works is sufficient to generate nested gamma oscillations. Using

optogenetic stimulation, we demonstrate that theta frequency

optical activation elicits nested gamma frequency oscillations

that closely resemble activity observed during spatial behaviors.

In contrast to pharmacologically induced gamma activity, optical

nested oscillations have frequency in the high gamma band and
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Figure 1. Theta Frequency Stimulation Drives Nested Gamma Oscillations

(A) Example of extracellular field activity and membrane current recorded from an SC during theta-modulated (8 Hz) optical stimulation of layer II of the MEC,

illustrating gamma oscillations nested within each theta cycle. The field recording is also shown band-pass filtered to separate theta and gamma activity.

(B) Scalograms of field (top) and synaptic (bottom) activity corresponding to data in (A), plotting power for each frequency as a function of time. In all figures, the

power corresponding to the maximum of the color scale is indicated in the bottom right of each plot.

(C and D) Mean scalograms from all recordings of field (C) (n = 27) and SC synaptic activity (D) (n = 44) as a function of phase of theta stimulation.

(E) Cross-correlations between field potential and SC membrane currents (peak correlation = 0.81 ± 0.02, lag 0.12 ± 0.2 ms, n = 21). Example from (A and B) is

shown in black, all other experiments are shown in gray.

(F) Histogram of lag between field and SC synaptic activity calculated from (E).

(G) Examples of action potentials fired by an SC and an FS interneuron recorded simultaneously during 8 Hz light stimulation, illustrating that both neuron types

fire action potentials on the phase of the theta cycle at which nested gamma oscillations are observed.

(H) Rasters of spikes fired by neurons in (G) for 40 consecutive theta epochs.

(I) Probability of SC and FS interneuron action potentials with respect to the phase of theta stimulation. Solid lines represent the population means, dashed lines

represent the examples from (G). Shaded regions indicate SEM.
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have clock-like properties that make them suitable for multiplex-

ing temporal codes within rate-coded firing fields. Optical theta-

nested gamma and pharmacologically induced gamma activity

also differ in their underlying mechanism. Layer II of the MEC

contains inhibitory interneurons and excitatory stellate cells

(SCs) that are likely to correspond to grid cells (Burgalossi

et al., 2011; Canto et al., 2008; Pastoll et al., 2012a), but the

synaptic and functional interactions of SCs and interneurons

have not been determined. We establish that nested gamma

oscillations require synaptic interactions mediated by local feed-

back inhibition between SCs but do not involve recurrent excita-

tion. Finally, we demonstrate that networks of excitatory neurons

connected only by feedback inhibition are sufficient to generate
142 Neuron 77, 141–154, January 9, 2013 ª2013 Elsevier Inc.
grid firing fields through network attractor states and to simulta-

neously produce clock-like theta-nested gamma oscillations.

RESULTS

Local Theta Frequency Stimulation Is Sufficient to
Generate Nested Gamma Frequency Network
Oscillations
To test the sufficiency of local theta frequency activity in the

MEC for generation of nested gamma frequency oscillations,

we adopted an optogenetic approach (Figure 1 and see Fig-

ure S1 available online). We recorded activity from neurons in

layer II of the MEC in brain slices prepared from adult mice.



Figure 2. Clock-like Properties of Nested Gamma Activity

(A) Example of a membrane current recorded from an SC during a theta cycle (top) and corresponding filtered current (bottom, colored line). Also shown are

filtered traces from four adjacent theta epochs (gray traces), illustrating the consistency of the nested gamma response between theta cycles.

(B) Heat map of membrane currents during 40 consecutive cycles of theta stimulation from the cell in (A). Color scale corresponds to (A).

(CandD)Fractionofgammacyclesonwhich thepeakcurrentdiffersby less than±5ms (C), andaverageoffset of individual gammacyclescompared to themean (D)

are plotted as a function of the index of each nested gamma peak. Open circles correspond to individual neurons and filled bars indicate the mean ± SEM (n = 12).

(E) Examples of traces obtained by averaging responses triggered from the trough of each gamma cycle recorded simultaneously from an SC (top) and the nearby

field (bottom). The side peaks are consistent with periodic gamma activity.
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We used a mouse line in which expression of channelrhodopsin-

2 (ChR2) is under the control of the Thy1 promoter (Arenkiel et al.,

2007). In this mouse line, all tested SCs and fast-spiking (FS)

interneurons were depolarized by light, but pyramidal cells

were not (Figure S1).We found that theta frequency (8 Hz) optical

stimulation causes local field potential oscillations nested within

each theta cycle (Figures 1A–1C). This nested activity had fre-

quency 86.1 ± 2.4 Hz (range 62.4–100.8 Hz, n = 13), similar to

the frequency of nested gamma activity reported in the MEC of

behaving animals (Chrobak and Buzsáki, 1998; Colgin et al.,

2009) and much higher than the frequency of pharmacologically

induced gamma oscillations (Cunningham et al., 2003; Dickson

et al., 2000; Middleton et al., 2008; van Der Linden et al., 1999).

To begin to investigate the synaptic mechanisms mediating

nested gamma activity, we recorded membrane currents from

SCs. We observed nested synaptic currents with frequency

82.7 ± 2.05 Hz (range 64.2–100.8, n = 21) (Figures 1A, 1B, and

1D). Cross-correlation analysis indicated that the timing of the

nested synaptic currents was similar to simultaneously recorded

theta-nested epochs of field gamma activity (peak correlation =

0.81 ± 0.02, lag 0.12 ± 0.2 ms, n = 21) (Figures 1E and 1F), indi-

cating that they reflect the same process. Consistent with this

conclusion, the frequency with maximum power for synaptic

and simultaneously recorded field gamma activity was also

highly correlated (slope = 0.94, R2 = 0.9, p = 4.23 10�11, n = 21).

The nested synaptic currents recorded from SCs were out-

ward going, suggesting that nested gamma oscillations involve

inhibitory synaptic input to SCs (Figure 1A). We therefore re-

corded the membrane potential of SCs and nearby FS interneu-

rons during theta stimulation (Figure 1G). SCs fired on average

1.5 ± 0.2 action potentials per theta epoch (n = 55), whereas

interneurons fired 13.4 ± 3.1 spikes per epoch (n = 11) (Figure S1).

Theta stimulation modulated the timing of action potential firing

by both neuron types (44/48 SCs and 11/11 interneurons, p <

0.05 versus a uniform distribution, Kuiper test). Within each theta

cycle, action potential firing by SCs and interneurons coincided

with nested gamma oscillations (Figures 1G–1I) and the range
of theta phases during which interneurons and SCs fired

action potentials was similar (mean theta phase of first spike:

SC �1.24 rads [from peak], n = 48, FS interneuron �1.72 rads,

n = 11, p = 0.79, nonparametric second-order analysis of angles

[NSOA]; mean theta phase of last spike: SC 0.96 rads, n = 37, FS

interneuron 1.12 rads, n = 11, p = 0.37, NSOA). However, the

distribution of SC and FS interneuron action potential times

differed, with SC action potentials following a bimodal distribu-

tion with respect to the theta phase, whereas action potentials

fired by interneurons followed a broad unimodal distribution

(p = 6 3 10�4, NSOA) (Figures 1H and 1I). The frequency and

relative timing of action potentials fired by SCs and interneurons,

which we record here during optical theta stimulation, is similar

to that recorded from neurons in layer II of the MEC during theta

activity in behaving animals (Chrobak and Buzsáki, 1998; Hafting

et al., 2008; Mizuseki et al., 2009).

Nested gamma oscillations may enable temporal codes that

operate relative to the theta cycle to be superimposed upon firing

rate codes (Buzsáki and Wang, 2012; Lisman, 2005). For tem-

poral codes that require predictable reference signals (Fries,

2009; Lisman, 2005), multiplexing of rate and phase codes is

likely to be particularly effective if gamma oscillations have

clock-like consistency between consecutive theta epochs (Lis-

man, 2005), but it is not clear how this might be achieved.

Surprisingly, we find that while the timing and number of spikes

fired by stellate or inhibitory neurons differs between theta

cycles, the timing of the gamma oscillations relative to the theta

cycle is robust (cf. Figures 1G–1I, 2A, and 2B). To quantify the

reliability of gamma oscillations, we compared the time of each

gamma peak during a theta epoch with its average time across

all epochs. In many cells, each gamma peak fell within a 5 ms

window on the majority of theta cycles (Figure 2C). Similarly,

even on the fifth gamma peak of each theta cycle, the difference

between the time of each gamma peak and the time of the cor-

responding average peak could be <3 ms, compared with the

gamma period of >10 ms (Figure 2D). For both measures,

some, but not all, SCs demonstrate nested gamma activity
Neuron 77, 141–154, January 9, 2013 ª2013 Elsevier Inc. 143
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with timing that is consistent between theta cycles. While the

reason for this variability is unclear, these observations neverthe-

less establish that in principle local theta drive to circuits in the

MEC can generate gamma activity with clock-like properties in

a substantial fraction of SCs.

To further compare the timing of optically induced nested

gammawith activity in vivo, we averaged traces captured by trig-

gering from the negative peak of each gamma oscillation. When

nested gamma activity recorded from the MEC of behaving

animals is analyzed in this way, average traces contain side

peaks adjacent to the central peak, indicating periodicity of

the gamma activity (Chrobak and Buzsáki, 1998). Applying this

analysis to optically induced nested gamma also reveals side

peaks adjacent to the central peak (Figure 2E). This comparison

is consistent with the idea that theta-nested gamma oscillations

in the entorhinal circuit provide a reference signal for hypothe-

sized coding schemes that require precise temporal coordina-

tion of action potential firing (Buzsáki and Wang, 2012; Lisman,

2005).

To test whether the properties of nested gamma oscillations

are unique to theta frequency stimulation, we compared re-

sponses to optical stimulation at 2, 8, and 16 Hz (Figure S2).

With activation at 2, 8, and 16 Hz, we observed 23 ± 0.3, 6.6 ±

0.1, and 2.7 ± 0.2 oscillations per stimulus cycle (p < 10�9,

ANOVA). Although there is no difference in the frequency with

maximum power for 2 Hz compared to 8 Hz stimulation (p =

0.11, ANOVA), gamma activity was not as consistently main-

tained through each 2 Hz cycle, with the result that the total

number of gamma cycles available to contribute to information

processing is reduced (p = 0.0003, t test). Thus, the phase of

maximum gamma power occurred earlier in the stimulation cycle

(p = 0.0005), the gamma frequency at the trough of the stimula-

tion cycle was lower (p = 0.005, n = 6), and the gamma activity

persevered through a narrower range of the stimulation cycle

(p = 1.1 3 10�6). These properties did not differ between 8 Hz

and 16 Hz stimulation (p > 0.1 for all comparisons). These data

suggest that layer II of the MEC is optimized to generate gamma

oscillations for approximately half the duration of each theta

cycle but is less effective at sustaining gamma oscillations during

stimulation at lower frequencies, while stimulation at higher fre-

quencies generates fewer gamma oscillations per cycle.

Together, these data suggest that theta frequency activation

of MEC layer II is sufficient to generate theta-nested gamma

activity that resembles activity observed from the MEC of

behaving animals (Chrobak and Buzsáki, 1998; Colgin et al.,

2009; Lisman, 2005; Mizuseki et al., 2009). In both forms of

nested activity, the frequency of gamma oscillations is similar,

action potential firing by interneurons and excitatory neurons is

on the same phase of the theta cycle, and on each theta cycle

excitatory neurons fire relatively few spikes, whereas interneu-

rons fire multiple spikes. Nested gamma activity has clock-like

properties that may enable it to serve as a reference signal for

temporal codes.

Temporally Coordinated Feedback Inhibition Mediates
Nested Gamma Oscillations
What circuit mechanisms mediate nested gamma oscillations?

In principle, gamma frequency oscillatory activity can be gener-
144 Neuron 77, 141–154, January 9, 2013 ª2013 Elsevier Inc.
ated exclusively by interneuron networks or by networks that

involve coordination of action potential firing by interneurons

and excitatory neurons (Buzsáki and Wang, 2012; Fries, 2009;

Tiesinga and Sejnowski, 2009). The respective roles of these

mechanisms in generating theta-nested gamma oscillations

are not clear.

To establish whether synaptic input from excitatory or inhibi-

tory cells is required for nested gamma oscillations, we blocked

each component of synaptic transmission pharmacologically.

Antagonists of ionotropic glutamate receptors (iGluRs) reduced

total gamma power by a factor of 5.53 in SCs (n = 23, p =

1.1 3 10�8, paired t test) and a factor of 28.9 in FS interneurons

(n = 5, p = 4.43 10�4, paired t test). As a result, spectral peaks at

gamma frequencies were no longer observed (Figure 3). Antag-

onists of iGluRs had only very small effects on the mean firing

rate (SCs: p = 0.28, n = 24, FS ints: p = 0.04, n = 8, paired t tests)

and did not affect theta modulation of firing (Figure S3). The rela-

tively small change in firing rate after block of iGluRs is because

the majority of the current driving action potential firing is medi-

ated directly by activation of ChR2 (Figure S3). Therefore, the

absence of gamma frequency activity during block of iGluRs is

not explained by failure of interneurons to generate action poten-

tials during optical theta stimulation. Instead, these data indicate

that excitatory synaptic transmission mediated by iGluRs is

required to coordinate nested gamma frequency activity.

To determine whether theta-nested gamma is generated inde-

pendently of synaptic connections from neurons in deeper layers

of the MEC, and to further investigate differences between

optical and pharmacologically induced gamma activity, we re-

corded from layer II neurons in slices in which the adjacent

deeper layers of the MEC have been separated (Figures 3G

and 3H). Blocking NMDA receptors abolishes pharmacologically

induced gamma activity generated locally in layer II of the MEC

and reveals lower-frequency activity that originates from layer

III (Middleton et al., 2008). In contrast, we find that optical

theta-nested gamma activity is generated in slices in which

layers II and III are separated and is maintained after block of

NMDA receptors with D-APV (Figures 3G and 3H). Therefore,

optical theta-nested gamma is generated locally in layer II of

the MEC and, unlike gamma induced pharmacologically in layer

II, it does not require activation of NMDA receptors.

We next tested the role of fast inhibitory synaptic transmission.

Antagonists of GABA receptors substantially reduced theta-

nested gamma activity in SCs (by an average factor of 13.5,

p = 0.02, n = 8, paired t test) (Figures 4A–4C). Block of synaptic

inhibition had a small effect on the frequency (p = 0.046, n = 8,

paired t test) but did not affect theta modulation of action poten-

tials fired by SCs (Figure S4). Importantly, block of inhibitory

synaptic transmission did not reveal excitatory inward currents

in recordings from SCs during theta stimulation, even though

SCs fired at 13.4 ± 2.7 Hz, suggesting that SCs do not form

recurrent excitatory connections with one another. To further

test this possibility, we drove SCs to fire action potentials using

ramp stimuli (Figures 4D and 4E). Because the ramps switch

SCs from silent to active states, we expect them to reveal

synaptic responses that depress during prolonged stimulation

or that summate from distal locations. Ramp stimuli also did

not evoke detectable synaptic responses (Figures 4D and 4E



Figure 3. Nested Gamma Oscillations Require Feedback Inhibition

(A) Example of nested gamma frequency synaptic currents recorded from an SC before (control) and during block of iGluRs (NBQX + D-APV).

(B) Scalograms for all theta epochs from experiment in (A) in control (top) and after block of iGluRs with NBQX and D-APV (bottom), demonstrating that iGluRs are

required for nested gamma activity.

(C) Mean data from all experiments indicating total power in control conditions and during block of iGluRs (n = 23, p = 1.1 3 10�8, paired t test). Data are log

transformed to reduce the variance for statistical testing.

(D–F) Same as for (A–C) except that data are for FS interneurons. For (F), n = 5 and p = 4.4 3 10�4.

(G) Schematic indicates the slice cut to separate layers II and III (left). Examples of synaptic currents (row 2), corresponding scalograms (row 3), and the mean

scalograms for all experiments (row 4), each plotted as a function of the phase of theta stimulation, demonstrate that nested gamma is maintained when

connections between layers II and III are cut (control) and after subsequent block of NMDA receptors with 50 mM D-APV but is abolished by complete block

of iGluRs.

(H) Mean power is not significantly different after block of NMDA receptors (p = 0.53, n = 6, paired t test) but is then reduced by complete block of iGluRs

(p = 0.0015). Error bars in (C), (F), and (H) indicate SEM.
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and Figure S4). Consideration of the numbers of SCs activated in

these experiments indicates that the probability of connection

between any two stellate cells is therefore likely to be consider-

ably less than 1 in 500 (Figure S4 and Supplemental Experi-

mental Procedures). These data indicate that nested gamma

inputs to SCs originate from GABAergic interneurons and sug-

gest that SCs do not form recurrent excitatory connections

with one another.

To further understand the relationship between synaptic

responses of SCs and FS interneurons, we examined their

synaptic connections directly. Action potentials fired by SCs reli-

ably triggered large excitatory synaptic responses in FS inter-
neurons (Figures 4F, 4H, and 4I), while action potentials fired

by FS interneurons triggered inhibitory synaptic responses in

SCs (Figures 4G–4I). In contrast, action potentials in SCs did

not generate synaptic currents in other simultaneously recorded

SCs (Figures 4H and 4I), further supporting our conclusion that

direct synaptic connections between SCs are rare or absent.

The absence of excitatory synaptic connections between SCs

is unlikely to result from our recording conditions, because in

the slice preparation that we use axon collaterals from SCs are

maintained (Garden et al., 2008), while excitatory synaptic trans-

mission onto SCs and fromSCs to other cells is clearly intact (see

Figures 3 and 4 and Garden et al., 2008). Together with the
Neuron 77, 141–154, January 9, 2013 ª2013 Elsevier Inc. 145



Figure 4. Feedback Inhibition without Recurrent Excitation Mediates Interactions between Stellate Cells

(A) Examples of membrane currents recorded from an SC during theta frequency network stimulation (top) in control conditions (middle) and during block of

GABA receptors with picrotoxin (50 mM) andCGP55845 (1 mM) (bottom). Outward-going synaptic currents are abolished whenGABA receptors are blocked. Even

after block of inhibition, inward synaptic currents are not observed, indicating that SCs do not form excitatory connections to one another.

(B) Average scalogram of synaptic activity recorded from the SC in (A) before (top) and during (bottom) block of GABA receptors.

(C) Total power of the largest peak in the scalogram is reduced by block of GABA receptors (n = 8, p = 0.02). Error bars indicate SEM.

(D and E) Example of membrane potential (D) and current (E) of an SC during ramp-like optical activation of layer II in control conditions (top trace) and

subsequently during block of GABA receptors (bottom trace). Although the optical stimulus drives action potential firing at high frequencies (D), excitatory

synaptic currents are not observed (E), further indicating that SCs do not form direct synaptic connections with one another. Traces in the boxed regions in (E) are

shown below on an expanded timescale.

(F) Example of synaptic response of an FS interneuron to an action potential in a simultaneously recorded presynaptic SC.

(G) Example of synaptic response of an SC to an action potential in a simultaneously recorded presynaptic FS interneuron.

(H and I) Number of pairs (H) and probability of functional connections for the pairs tested (I) for pairs of SCs (S -> S), presynaptic SC to postsynaptic FS

interneuron (SC -> interneuron), and presynaptic FS interneuron to postsynaptic SCs (interneuron -> SC).
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results of our optogenetic experiments, these data indicate a

circuit architecture for nested gamma oscillations, and presum-

ably layer II function in general, whereby SCs interact with one

another indirectly via inhibitory interneurons and not through

recurrent excitatory connections.

How is the precise timing of the nested gamma oscillations

generated? The timing of gamma frequency synaptic currents

was strongly correlated between SCs and FS interneurons,

with excitatory input to interneurons preceding inhibitory input

to SCs by 2.81 ± 0.59 ms (n = 8) (Figures 5A–5C). Synaptic

currents were synchronized between pairs of nearby SCs with

lag <1 ms, indicating that SCs receive common synchronizing

drive from inhibitory neurons (n = 17) (Figure S5). Spikes fired
146 Neuron 77, 141–154, January 9, 2013 ª2013 Elsevier Inc.
by SCs and interneurons were more likely on the rising phase

shortly after the trough of the gamma cycle but were not

precisely locked to a particular gamma phase (Figures 5D–5F).

The preferred firing phase of SCs was at +0.32 ± 0.02 radians

relative to the trough of the synaptic gamma oscillation, whereas

firing of FS interneurons was later at +0.85 ± 0.02 radians (p =

0.002, n = 48 SCs, n = 11 interneurons, NSOA). Therefore, excit-

atory SCs fire near the trough of each gamma cycle just as during

exploratory behavior (Chrobak and Buzsáki, 1998). This rapidly

triggers spiking by FS interneurons, which then reduces the

probability of SC firing until the trough of the next gamma cycle.

Together, these data suggest that coordinated timing of

action potentials fired by SCs and FS interneurons mediates



Figure 5. Temporal Organization of Synaptic Events and Action Potential Activity during Nested Gamma Oscillations

(A) Example of synaptic currents recorded simultaneously from an FS interneuron and an SC during a single cycle of theta frequency stimulation.

(B) Detail of regions in (A), indicated by the box, demonstrates that excitatory input to interneurons arrives before inhibitory input to SCs.

(C) Cross-correlation between SC and FS interneuron membrane currents during theta stimulation for the example in (A and B) and for seven other experiments

indicates that excitation to interneurons consistently leads inhibition to SCs (maximum correlation = 0.56 ± 0.07, lag = 2.81 ± 0.59 ms, n = 8).

(D) Example of a simultaneously recorded FS interneuron, SC, and extracellular field potential during a single epoch of theta stimulation.

(E) Detail from (D) illustrating action potential initiation in the stellate cell earlier in the gamma cycle and preceding action potential initiation in the FS interneuron.

(F) The probability of action potential initiation as a function of phase of the local field potential gamma signal for interneurons (top) and SCs (bottom) for the

example recordings in (D and E) (left) and on average for all recordings (right).
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theta-nested gamma oscillations. This is distinct from pharma-

cological models of gamma activity in the MEC in which the

frequency of excitatory drive to interneurons is less than the

network gamma frequency (Cunningham et al., 2003) and in

which NMDA receptor activation is required for oscillations

generatedwithin layer II (Middleton et al., 2008). Instead, subsets

of SCs firing before the trough of each gamma cycle generate

excitatory postsynaptic currents in FS interneurons. Action

potential firing by FS interneurons then generates feedback inhi-

bition onto SCs. While previous in vivo recordings are consistent

with this mechanism (Buzsáki and Wang, 2012), because these

experiments were correlative they do not enable synaptic mech-

anisms to be tested directly. The strength of our approach

combining optogenetic and pharmacological manipulation is

highlighted by our evidence that, in contrast to previous sugges-

tions based on less direct methods (Beed et al., 2010; Kumar

et al., 2007; Quilichini et al., 2010), the primary mechanism for

communication between SCs is via inhibitory interneurons.

Feedback Inhibition Enables Generation of Grid Fields
and Nested Gamma Oscillations
To establish whether the synaptic connectivity deduced from our

experiments can account for nested gamma activity and for
generation of grid firing fields, we developed a network model

based on our data (Experimental Procedures and Figure S6).

Grid firing fields can be generated by networks that produce

attractor states (Burak and Fiete, 2009; Fuhs and Touretzky,

2006; Guanella et al., 2007; McNaughton et al., 2006) but, except

for a model containing exclusively inhibitory interneurons (Burak

and Fiete, 2009), previous models rely on direct connections

between excitatory cells. This is inconsistent with our finding

that SCs communicate primarily via inhibitory interneurons.

Previous models also do not generate nested gamma activity.

We therefore simulated networks in which excitatory SCs only

communicate with one another indirectly via inhibitory neurons,

while theta-modulated excitatory afferents target both neuron

types.

We initially considered a network configuration in which the

strongest synapses from inhibitory neurons are onto adjacent

excitatory cells, while the strongest connections from excitatory

cells are onto a surrounding ring of inhibitory neurons (E-

surround configuration) (see Experimental Procedures and Fig-

ure S6). This network, which has connectivity consistent with

our experimental data, generates persistent attractor states (Fig-

ure 6A). Attractor states in the network are stable during theta

stimulation (Figure 6B) and coexist with theta-nested gamma
Neuron 77, 141–154, January 9, 2013 ª2013 Elsevier Inc. 147



Figure 6. Clock-like Nested Gamma Oscil-

lations Are Generated by Attractor Net-

works of Neurons Connected Only through

Recurrent Inhibition

(A) A snapshot of neuronal activity as a function of

position in the 683 58 layer of excitatory neurons.

Data in this figure are from the network in the

E-surround configuration, but similar results are

obtained using the I-surround configuration.

(B) Spike rasters from 68 neurons corresponding

to row 29 in (A), indicating stability of the bump

during successive theta cycles.

(C) Examples of synaptic currents recorded from

inhibitory and excitatory neurons at the center of

the activity bump in (A).

(D and E) Synaptic currents during a single gamma

cycle (D), and the cross-correlation between

synaptic currents recorded from excitatory and

inhibitory neurons (E), illustrate how excitatory

input to interneurons precedes inhibitory input to

excitatory neurons. Both examples are from the

neuron pair in (C).

(F) Synaptic currents from 40 consecutive theta

cycles plotted on a color scale indicate the

consistent timing of nested gamma oscillations

across theta cycles. Data are from an excitatory

neuron at the center of the activity bump in the

model network described in (A–E). Similar clock-

like nested gamma responses are observed from

neurons at all locations.

(G) Action potential rasters for a cell at the center

of the bump as in (F) for 40 consecutive theta

epochs. The timing, but not the number of action

potentials, is similar on each theta cycle.

(H) Example scalogram of membrane current

power during 40 consecutive theta cycles for the

neuron in (F and G).
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frequency synaptic oscillations strikingly similar to our experi-

mental data (Figures 6C–6H). Comparing gamma activity in

consecutive theta epochs, we find that, as in the experimental

data, the gamma signal is clock-like (Figure 6F). The timing of

synaptic excitation and inhibition (Figures 6C–6E, 6G, and 6H)

is also similar to experimentally induced theta-nested gamma

oscillations (cf. Figures 2, 3, 4, and 5). These simulations demon-

strate that feedback inhibition is sufficient to generate network

attractor states while also accounting for theta-nested gamma

oscillations of activity in the MEC.

We next asked whether networks in which excitatory cells

communicate only via inhibitory interneurons generate grid firing

fields when movement is simulated. Because grid-like firing

fields are generated by integration of self-motion signals (Fuhs

and Touretzky, 2006; Guanella et al., 2007; McNaughton et al.,
148 Neuron 77, 141–154, January 9, 2013 ª2013 Elsevier Inc.
2006), we connected synaptic inputs en-

coding speed of movement in particular

directions to subsets of either excitatory

or inhibitory neurons (see Experimental

Procedures). These inputs move the

bump of active neurons according to

movement of the animal. Because input

from the hippocampus to the MEC is
necessary for generation of grid firing fields (Fyhn et al., 2004),

a place cell input was also connected to the excitatory cells in

the network (Guanella et al., 2007). This input was organized

so that place cells project to grid cells that are active at the

same location. In the simulations we describe here, this input

is active only for 100 ms every 10 s so that spatial firing is deter-

mined primarily by integration of the velocity inputs and the place

cell input functions to oppose drift in the attractor state.

When velocity inputs are targeted to excitatory neurons, the

network tracks a wide range of movement velocities and gener-

ates grid fields when provided with realistic movement trajecto-

ries (Figures 7A and 7B). When velocity inputs target interneu-

rons, the range of movement velocities that can be tracked is

more restricted (Figure 7A), but grid fields are nevertheless indis-

tinguishable from the control network (p = 0.25, t test comparing
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gridness scores) (Figure 7B). Consistent with experiments in

which the hippocampus is lesioned (Fyhn et al., 2004), after

removal of the place cell input to the model, grid fields are no

longer apparent because of drift in the attractor state (p =

2.0 3 10�9, t test) (Figures 7C and S7). This drift may result

from noise in the network or from the network architecture

(Welinder et al., 2008). When the place cell input is activated

more frequently, as is likely to be the case in vivo, the network

continues to generate grid fields (data not shown). Together,

these data establish that theta-modulated attractor networks

connected by feedback inhibition are sufficient to generate

grid fields. They predict that velocity inputs can effectively target

excitatory SCs or inhibitory interneurons and that hippocampal

input is required to prevent spontaneous drift in the attractor

state.

We next used the model to investigate the relationship

between theta activity and grid cell firing. When theta-modulated

input to themodel is replaced by a constant drive of similar mean

amplitude, grid fields are maintained (p = 0.43 versus control

gridness score) (Figures 7D and S7). Models containing exclu-

sively inhibitory interneurons also rely on a constant tonic excit-

atory drive to generate grid fields and therefore lead to a similar

prediction (Burak and Fiete, 2009). This is consistent with the

observations that grid fields are present in the absence of theta

activity (Yartsev et al., 2011) and that only a subset of grid cells

have firing that is modulated at theta frequency (Krupic et al.,

2012). It also suggests that abolition of grid fields after septal

lesions (Brandon et al., 2011; Koenig et al., 2011) may be due

to loss of both an external drive to the network and its theta

modulation, in which case the network model also fails to

generate grid fields (data not shown).

While inhibitory neurons alone are sufficient to represent

location (Burak and Fiete, 2009), our experimental data indicate

that inhibitory and excitatory neuronsmust integrate signals they

receive from one another. Models that incorporate only one

neuron type do not specify how this is done, whether firing

fields of interneurons and excitatory neurons differ or if varia-

tions in connectivity lead to different predictions for spatial

firing or nested gamma activity. We therefore investigated

the firing properties of inhibitory neurons and the consequences

of different organizations of connections between excitatory

and inhibitory neurons. We find that inhibitory neurons in the

E-surround network configuration encode location (Figure 7F).

However, unlike in models containing only inhibitory neurons

(Burak and Fiete, 2009), interneurons in the E-surround network

have inverted grid fields (Figure 7F). We next investigated

networks in which the strongest inhibition is onto a ring of ex-

citatory SCs, but the strongest excitation is local (I-surround

configuration) (Figure 7E). Excitatory neurons in this configura-

tion also have grid fields and theta-nested gamma oscillations

in their synaptic input (Figures 7G and S7). In this configuration,

interneurons have grid fields that are similar to those of excit-

atory cells (grid score 1.07 ± 0.01 and 1.08 ± 0.01 for excitatory

and inhibitory cells respectively, p = 0.78, t test). Multiple peaks

in the two-dimensional (2D) Fourier transform of grid fields re-

corded in behaving animals could indicate that spatial firing orig-

inates from upstream band cells rather than from an attractor

network of the kind we characterize here (Krupic et al., 2012).
However, in both model configurations, 2D Fourier spectro-

grams of the firing field have multiple peaks even though band

cells are not found in either configuration, indicating that these

peaks do not necessarily imply the existence of upstream

band cells (Figures 7B, 7D, 7F, and 7G). We nevertheless found

that leaving intact only one direction of velocity input to

either network leads to emergence of band cells (Figure S7).

In this case, both networks continue to generate theta-nested

gamma oscillations. Together, these data indicate that theta-

nested gamma oscillatory activity is a general feature of attrac-

tor networks that generate representations of space using

indirect inhibitory interactions between excitatory cells. They

also demonstrate that the nature of spatial representation by

interneurons depends on the organization of connections within

the network.

Our simulations lead to a number of predictions about the

membrane potential dynamics of SCs during behavior (Figure 8).

Theta-nested gamma frequency synaptic activity is found in both

neuron types in E- and I-surround configurations of the model

(Figures 8B, 8C, 8G, 8H, 8L, and 8M). In both model configura-

tions, excitatory neurons fire action potentials soon after the

trough of gamma (Figure 8D), while firing by interneurons is typi-

cally later in the gamma cycle (Figures 8I and 8N). Inhibition to

SCs and excitation to interneurons varies as a function of

distance from the center of the firing field (R2 = 0.61, p < 10�9

and R2 = 0.63, p < 10�9, respectively, for the E-surround model

and R2 = 0.66, p < 10�9 and R2 = 0.63, p < 10�9 for the I-surround

model) (Figures 8E, 8J, and 8O). In all configurations, the

synaptic drive to excitatory and inhibitory neurons coincides

with the depolarizing component of the theta input and the

amplitude of the gamma frequency inhibitory input to SCs is

greatest outside the firing field and weakest at the center of

the firing field. However, in the E-surround configuration, gamma

frequency excitation of interneurons is strongest on the edges of

the inverted firing field and weakest at the center (Figures 8G,

8H, and 8J). In contrast, in the I-surround configuration, this rela-

tionship is reversed (Figures 8L, 8M, and 8O). Together, these

data predict that in individual grid cells the amplitude of theta-

nested gamma depends on an animal’s location.

DISCUSSION

We demonstrate that theta frequency activation of layer II of

the MEC generates nested gamma frequency oscillations that

resemble activity observed during spatial behaviors. We find

that feedback inhibition is the primary mode of communication

between SCs and is sufficient to account for nested gamma

oscillations. While the activity of individual neurons varies

between gamma cycles, coordination of synaptic inhibition

and excitation nevertheless results in gamma oscillations with

clock-like timing suitable for use as a reference signal in temporal

codes. We show that feedback inhibition is also sufficient for

emergence of attractor states that coexist with nested gamma

oscillations and that generate rate-coded grid firing fields. There-

fore, grid firing fields and theta-nested gamma oscillations may

result from a common local circuit architecture, which is defined

by communication between SCs mediated primarily via inhibi-

tory interneurons.
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Figure 7. Theta-Nested Gamma Oscillations Coexist with, but Are Not Necessary for, Grid Firing Fields

(A) Speed of movement of the attractor bump is plotted as a function of the amplitude of the input encoding movement velocity for networks with differing offset in

the outgoing connection profile from excitatory to inhibitory cells. Networks inwhichmovement velocity drives excitatory neuron firing (top) maintain a wider linear

response range than networks in which movement inputs are targeted to interneurons.

(B) Example heat maps for firing (top), corresponding autocorrelation plots (middle), and 2D Fourier spectrograms (bottom) generated by simulated exploration of

the arena using attractor models with velocity input to excitatory cells (left) or inhibitory cells (right). Gridness scores do not differ between networks with velocity

input to excitatory neurons (E cells) (1.1 ± 0.01, n = 10) and inhibitory neurons (I cells) (1.12 ± 0.01, n = 10, p = 0.25).

(C) Simulation in the absence of place input. The firing fields have a gridness score of 0.22 ± 0.07, which is substantially less than that of control neurons

(p = 1.16 3 10�9, n = 15), indicating that grid firing is absent.

(legend continued on next page)
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The optically induced nested gamma activity that we describe

here has key features in common with theta-nested gamma

oscillations observed during spatial exploration. These include

a similar frequency (60–100 Hz) (Chrobak and Buzsáki, 1998;

Colgin et al., 2009), activation of FS interneurons and excitatory

cells at similar phases of the theta oscillation (Chrobak and Buz-

sáki, 1998; Mizuseki et al., 2009), and similar timing of action

potentials relative to the nested gamma oscillation (Chrobak

and Buzsáki, 1998). Both forms of theta-nested gamma activity

appear to be mechanistically distinct from pharmacologically

induced gamma oscillations, which have much lower frequency

(30–45 Hz), no clear relationship to theta activity, and different

involvement of NMDA receptors (Cunningham et al., 2003; Dick-

son et al., 2000; Middleton et al., 2008; van Der Linden et al.,

1999). Signatures of clock-like activity found during optical

theta-nested gamma (Figure 2) are also apparent during in vivo

theta-nested gamma activity (Chrobak and Buzsáki, 1998), indi-

cating that circuits in layer II of the MEC contain cellular

machinery to generate reference signals for temporal coding

(Buzsáki and Draguhn, 2004; Lisman, 2005).

Understanding brain computations requires knowledge of the

wiring of neuronal circuits. In many cortical areas, including

deeper layers of the MEC (Dhillon and Jones, 2000), information

is transmitted directly between nearby excitatory neurons (Deu-

chars et al., 1994; Mason et al., 1991; Song et al., 2005). Axons

of SCs have collaterals in layer II of the MEC (Burgalossi

et al., 2011; Garden et al., 2008; Quilichini et al., 2010), which

have been suggested to form recurrent excitatory connections

(Beed et al., 2010; Kumar et al., 2007). However, we did not

observe excitatory synaptic responses when large populations

of SCs fire action potentials (Figures 4A and S4), indicating

that SCs in layer II of the MEC do not communicate directly

with one another. This is consistent with recordings from pairs

of SCs (Figures 4F–4I and Dhillon and Jones, 2000). By demon-

strating connections in both directions between SCs and inter-

neurons, our data instead indicate that communication between

SCs in layer II of theMEC is primarily through feedback inhibition.

Because SCs in layer II of the MEC are likely to be grid cells

(Burgalossi et al., 2011; Canto et al., 2008; Pastoll et al.,

2012a), elucidation of their local connectivity and their role in

oscillatory network activity is critical to understanding grid firing

fields. Our finding that SCs communicate primarily by feedback

inhibition argues against models that rely on direct excitation

between grid cells (Fuhs and Touretzky, 2006; Guanella et al.,

2007; Navratilova et al., 2012). Instead, it supports the theoretical

prediction that inhibition can mediate grid firing fields (Burak and

Fiete, 2009) but suggests that this is implemented using inter-

actions between inhibitory interneurons and SCs rather than
(D) Simulations in which theta frequency modulation of network drive is removed

fields (n = 10, p = 0.43).

(E) Synaptic conductance is plotted as a function of distance between neurons no

(excitation) and from I cells to E cells (inhibition) for E-surround (top) and I-surrou

(F) Predicted interneuron firing fields for the E-surroundmodel configuration. The fi

and the region between the apices is coded by a high firing rate.

(G) Firing rate maps (top), spatial autocorrelations (middle), and 2D Fourier spectr

the I-surround configuration. This network configuration also generates theta-nes

and the scalogram of the inhibitory currents as a function of theta cycle phase (r

Scale bars represent 60 cm for the rate and autocorrelation plots and 4 m�1 for
through direct inhibitory connections between grid cells. Never-

theless, while our model establishes the sufficiency of inhibitory

feedback for generation of attractor states by SCs, the actual

network may depend on interactions between layers for its

functionality, while other details of the model that enable it to

generate spatial representations are not yet well constrained.

For example, in our model, velocity and theta inputs target grid

cells directly, but they could also arrive indirectly via neurons in

deeper layers of the MEC (Navratilova et al., 2012).

By exploring models in which SCs communicate solely by

feedback inhibition, we make several predictions. First, inter-

neurons may have spatial firing fields. An E-surround network

configuration causes interneurons to have inverted grid firing

fields, whereas an I-surround configuration causes interneurons

to have fields with grid scores similar to excitatory neurons (Fig-

ure 7). Consistent with these predictions, interneurons with

spatial firing fields defined by a decrease in firing frequency

have been identified in the hippocampus (McNaughton et al.,

1983; Wilent and Nitz, 2007), although to our knowledge spatial

firing has not been investigated for entorhinal interneurons.

Second, the role of theta frequency input can be dissociated

into a tonic drive, which is required for grid cell firing, and phasic

theta modulation of that drive, which is required for generation of

clock-like nested gamma oscillations (Figure 7E). This is consis-

tent with previous data (Brandon et al., 2011; Koenig et al., 2011;

Yartsev et al., 2011), but it remains to be tested directly. Third,

recording of the membrane potential of SCs in behaving animals

should reveal gamma frequency inhibitory postsynaptic poten-

tials on the depolarizing phase of theta with amplitude that

decreases with distance from the center of the firing field (Fig-

ure 8). In contrast, recording from FS interneurons should reveal

gamma frequency excitatory postsynaptic potentials on the de-

polarizing phase of theta with amplitude relative to the firing field

that depends on whether the network has an E-surround or an

I-surround configuration (Figure 8). While our model is no doubt

considerably simplified compared to the layer II network in

behaving animals, experimental corroboration of these predic-

tions would lend strong support to the architecture that we

outline here as a basis for generation of grid firing fields.

What is the function of theta-nested gamma oscillations? Our

results suggest a cellular substrate for several theories of

temporal coding. First, nested gamma oscillations may enable

coincident firing of ensembles of SCs within time windows

required for coincidence detection by downstream neurons in

the dentate gyrus (Buzsáki and Wang, 2012; Chrobak and Buz-

sáki, 1998). Second, phase locking of nested gamma oscillations

between different regions may control the efficacy of their inter-

actions with up- or downstream networks (Buzsáki and Wang,
. Grid fields have a gridness score of 1.11 ± 0.01 and are similar to control grid

rmalized to the size of the neurons’ sheet for connections from E cells to I cells

nd (bottom) versions of the model.

eld appears as an inverted grid field such that the grid apex has a low firing rate

ograms (bottom) for example excitatory (left) and inhibitory (middle) neurons in

ted gamma activity illustrated by synaptic currents during a single theta cycle

ight).

the Fourier spectrograms.
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Figure 8. Predicted Membrane Potential and Current Dynamics Associated with Grid Firing Fields

(A) Location of the exemplar neurons in the excitatory cell layer with respect to the activity bump. Each color-coded point represents the firing frequency of

a single neuron. Network is in the E-surround configuration, but results for excitatory cells are similar in the I-surround configuration.

(B and C) Membrane potential and current during two theta cycles for neurons at the locations indicated in (A). Both neurons received nested gamma frequency

inhibitory input, but this is lower at the center of the bump, enabling the external theta drive to trigger action potential firing.

(D) Spike probability as a function of gamma phase for the excitatory neurons.

(E) Total charge during each theta cycle of the inhibitory synaptic input to an excitatory cell plotted as a function of distance from the center of the excitatory cell’s

nearest grid firing field during that cycle.

(F) Location of the exemplar neurons in the inhibitory cell layer in the E-surround network configuration. The activity bump is inverted with respect to the excitatory

cell layer.

(G and H) Membrane potential and current during two theta cycles for neurons at the locations indicated in (F). Both neurons received nested gamma frequency

excitatory input, but this is lower for interneurons that project onto excitatory cells at the center of the bump.

(I) Spike probability as a function of gamma phase for the inhibitory neurons.

(J) Total charge during each theta cycle of the excitatory synaptic input to an inhibitory cell plotted as a function of distance during that cycle from the center of the

nearest grid firing field of the excitatory cell to which the inhibitory neuron makes strongest connections.

(K–O) Same as for (F–J) except for a network in the I-surround configuration. Bold points in (E), (J), and (O) indicate mean; SEM is smaller than the point size.
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2012; Fries, 2009). In this scenario, temporal codes require that

interacting brain areas generate theta-nested gamma activity of

a similar frequency, with the gain of the interaction depending on

the relative phases of the gamma activity. Third, nested gamma

oscillations may be used in more complex schemes for temporal

encoding of sequences in which distinct information is encoded

within each gamma cycle (Lisman, 2005). This may include theta

phase precession of action potentials for which the role of

gamma activity is not yet clear (Lisman, 2005). While generation

of gamma oscillations alone is sufficient for the first coding

scheme, the other schemes rely on precise temporal relation-

ships between theta and gamma (Buzsáki and Wang, 2012).
152 Neuron 77, 141–154, January 9, 2013 ª2013 Elsevier Inc.
Different properties of gamma activated by different frequencies

of optical stimulation may reflect optimization of the circuit for

these coding schemes (Figure S2).

In conclusion, our data provide evidence that feedback inhibi-

tion accounts for two well-established features of network

activity in behaving animals. Our experiments and model reca-

pitulate defining features of theta-nested gamma activity that is

observed from neurons in the MEC and other brain areas (Chro-

bak and Buzsáki, 1998; Colgin et al., 2009; Lisman, 2005; Mizu-

seki et al., 2009). We establish that the circuit elements that

produce gamma oscillations phase locked to theta can do so

with remarkable trial-to-trial consistency, suggesting that the
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local MEC circuit has clock-like properties required for reference

signals for neuronal computations that rely on the timing of

gamma oscillations (Buzsáki and Wang, 2012; Fries, 2009; Lis-

man, 2005). The simple principles for organization of the MEC

circuit derived from these experiments also account for genera-

tion of grid-like firing fields. These results suggest that common

circuit mechanisms evolved to support simultaneous rate and

temporal coding in the CNS.

EXPERIMENTAL PROCEDURES

Electrophysiological Recordings

All experiments used adult (7- to 9-week-old) mice from Thy1-ChR2-YFP line

18 (Arenkiel et al., 2007). Sagittal brain slices were prepared and whole-cell

patch-clamp recordings made as described previously (Garden et al., 2008;

Pastoll et al., 2012b). The slices include all layers and the full dorsal-ventral

extent of the MEC. Illumination for activation of ChR2 was from a 470 nM colli-

mated LED (Thorlabs) introduced through the epifluorescence port of the

microscope (Olympus BX-51) and focused onto the slice from above (Fig-

ure S1). The region of neurons activated by light had a radius of approximately

100 mm. Pharmacological agents were bath applied to the whole slice.

Attractor Network Model

A network of exponential integrate and fire neurons (Fourcaud-Trocmé et al.,

2003) was implemented using the Brian simulator (Goodman and Brette,

2008). Full details of parameter values and explanation of the model are in

the Supplemental Experimental Procedures.

In the model, each neuron received an external current source composed of

the sum of constant background activation, theta-modulated current simu-

lated as cosine function, velocity modulation current, and hippocampal place

field input. To simulate noise, we injected independent Gaussian-distributed

current to give a 2 mV SD in the resting membrane potential of each neuron.

Network Topology and Connectivity

The network consisted of 68 3 58 excitatory cells and 34 3 30 interneurons

uniformly distributed on a twisted torus (Guanella et al., 2007). In the

E-surround configuration, connections from excitatory to inhibitory cells

used AMPA- and NMDA-type conductances and their topography followed

a ring-like organization with an appropriate offset for implementation of

velocity modulation, while the topography of inhibitory to excitatory con-

nections had a Gaussian profile (Figures S6A and S6B, Figure 7E). In the

I-surround configuration, the topography of the excitatory to inhibitory con-

nections followed the Gaussian profile, while the connections from inhibitory

to excitatory neurons followed the ring-like organization.

Velocity Modulation

To perform path integration, the activity in the network must propagate along

the direction of the simulated movement of the animal (Fuhs and Touretzky,

2006; Guanella et al., 2007;McNaughton et al., 2006). This is achieved by shift-

ing the center of the synaptic profile of neurons in one of the populations (excit-

atory or inhibitory) in the direction of preferred movement. Each neuron was

assigned a directional vector from a group of four directions (up, down, left,

and right) and its outgoing synaptic weight profile was shifted by a predefined

constant. During simulated movement, a velocity-modulated current was then

injected into the neuron (Figure S6C). To evaluate spatial representation by the

network during exploration, we simulated 15–20 min of movement. At each

time point, the velocity vector was estimated as a forward difference of pub-

lished positional data (Hafting et al., 2005).

Place Cell Input

Because action potential firing and noise lead to slow drift in the state of

the network, unless otherwise stated, simulations contain an allothetic input

from place cells that is active for 100 ms every 10 s and opposes the drift.

Data Analysis and Statistics

Electrophysiology and simulation data were analyzed using built-in and

custom routines in IGORpro, MATLAB, or Python. Comparisons between

groups used ANOVA and Student’s t test as indicated. For simulations,
networks receiving a theta input and velocity modulation of the excitatory cells

are considered as the control group. Gridness scores are calculated following

previous studies (Sargolini et al., 2006). Full details for analysis of oscillatory

and grid activity are given in the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and Supplemental Experi-

mental Procedures and can be found with this article online at http://dx.doi.

org/10.1016/j.neuron.2012.11.032.
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Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron 33,

325–340.
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