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Abstract

The largest order n(d, k) of a graph of maximum degree d and diameter
k cannot exceed the Moore bound, of the form M(d, k) = dk − O(dk−1) for
d → ∞ and any fixed k. Known results in finite geometries on generalised
(k+1)-gons imply, for k = 2, 3, 5, existence of an infinite sequence of values of
d such that n(d, k) = dk−o(dk). Thus, for k = 2, 3, 5 the Moore bound can be
asymptotically approached in the sense that lim supd→∞ n(d, k)/M(d, k)=1;
moreover, no such result is known for any other value of k ≥ 2. The corre-
sponding graphs are, however, far from vertex-transitive, and there appears
to be no obvious way to extend them to vertex-transitive graphs giving the
same type of asymptotic result.

The second and the third author (2012) proved by a direct construc-
tion that the Moore bound for diameter k = 2 can, in a similar sense, be
asymptotically approached by Cayley graphs. Subsequently, the first and the
third author (2015) showed that the same construction can be derived from
generalised triangles with polarity.

By a detailed analysis of regular orbits of suitable groups of automor-
phisms of graphs arising from polarity quotients of incidence graphs of gen-
eralised quadrangles with polarity, we prove that for an infinite set of values
of d there exist Cayley graphs of degree d, diameter 3, and order d3−O(d2.5).
The Moore bound for diameter 3 can thus as well be asymptotically ap-
proached by Cayley graphs. We also show that this method does not extend
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to constructing Cayley graphs of diameter 5 from generalised hexagons with
polarity.

Keywords: Degree, Diameter, Cayley graph, Generalized quadrangle,
Suzuki-Tits oval.
2000 MSC: 05C12 (primary), 05B25, 05C25 (secondary).

1. Introduction

For positive integers d and k let n(d, k) be the largest order of a graph of
maximum degree d and diameter k. It is well known that the value of n(d, k)
cannot exceed the Moore bound M(d, k) = 1+d+d(d−1)+ . . .+d(d−1)k−1.
Setting trivial cases aside, for d ≥ 3 and k ≥ 2 we have n(d, k) = M(d, k)
only for k = 2 and d = 3, 7, and possibly 57, the unique graphs for the first
two degrees being the Petersen and the Hoffman-Singleton graph [11, 2, 5].
For a survey of results about (im)possibility of getting ‘close’ to the Moore
bound for the remaining values of d and k we refer to [18]. The main driving
forces in this field appear to be the question of Bermond and Bollobás [3] if
for arbitrarily large c there exist d, k such that n(d, k) < M(d, k)−c, and the
problem of Delorme [6] of determining the value of lim supd→∞ n(d, k)/dk =
lim supd→∞ n(d, k)/M(d, k) for every fixed k ≥ 2.

Regarding the question of Bermond and Bollobás, a substantial progress
has recently been made in [9] by proving that for any fixed d and any c > 0 the
order of the largest vertex-transitive d-regular graph of diameter k is smaller
than M(d, k) − c for almost all k. The best available result on Delorme’s
problem is his own observation [6] that lim supd→∞ n(d, k)/M(d, k) = 1 for
k ∈ {2, 3, 5}. This follows by taking polarity quotients of the incidence
graphs of generalised n-gons admitting a polarity (cf. [17]) for n ∈ {3, 4, 6},
respectively. Despite having a fairly large automorphism group compared to
their order, these graphs are not even regular and by [1] there appears to be
no obvious way to extend them to vertex-transitive graphs by just adding
edges in the case of diameter k = 2.

For the remaining diameters the best currently known results on De-
lorme’s problem are much weaker but still far from easy to prove. We
know that lim supd→∞ n(d, 4)/M(d, 4) ≥ 1/4 by [7], and from [4] we have
lim supd→∞ n(d, k)/M(d, k) ≥ (1.6)−k for k ≥ 6, where 1.6 can be replaced
by 1.57 for k ≡ −1, 0, 1 mod 6.
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In the light of the above-mentioned result of [9] addressing the question of
Bermond and Bollobás for vertex-transitive graphs, it is natural to ask if the
Moore bound can be asymptotically approached, in the sense of Delorme’s
limit superior being equal to 1, by vertex-transitive, or even Cayley graphs.
The importance of this direction of research is underscored by the fact that,
from the practical point of view, computer generation of record large graphs
of given degree and diameter is almost exclusively limited to searching over
Cayley graphs in cases when the degree or diameter exceed values manageable
by other methods; cf. [14] and the online tables [25].

To this end, for d ≥ 3 and k ≥ 2 we let vt(d, k) and Cay(d, k) denote the
largest order of a vertex-transitive and a Cayley graph, respectively, of degree
d and diameter k; clearly, vt(d, k) ≥ Cay(d, k). The task now is to estimate
the values of lim supd→∞ vt(d, k)/M(d, k) and lim supd→∞ Cay(d, k)/M(d, k)
for k ≥ 2 and, specifically, to determine if the Moore bound can be asymp-
totically approached by vertex-transitive or Cayley graphs for diameters 2, 3
and 5. Here, however, the available results are scarcer and, expectedly, not
as good as those for n(d, k). Let us begin with k ≥ 3. In the vertex-
transitive case, the digraphs of [10] yield, after ignoring edge directions,
limd→∞ vt(d, k)/M(d, k) ≥ 2−k for every k ≥ 3. For Cayley graphs, con-
structions of [15, 16] give limd→∞ Cay(d, k)/M(d, k) ≥ k · 3−k for every
k ≥ 3, with improvements of the lower bounds by [24] to 3 · 2−4, 32 · 5−4 and
25 · 4−5 for k = 3, 4 and 5, respectively.

For k = 2 the strongest finding so far in this category is the fact that
lim supd→∞ Cay(d, 2)/M(d, 2) = 1, showing that the Moore bound for di-
ameter 2 can be asymptotically approached by Cayley graphs. This result
was obtained in [22] by a direct construction of certain Cayley graphs of one-
dimensional affine groups over finite fields of characteristic 2. Later in [1] it
was shown that the construction of [22] is equivalent to extending a regular
orbit of a polarity quotient of the incidence graph of a generalised triangle
under the action of a suitable group.

Our aim is to show that the Moore bound for diameter 3 can also be
asymptotically approached by Cayley graphs, that is, to prove the equality
lim supd→∞ Cay(d, 3)/M(d, 3) = 1. In fact, we prove that for an infinite set
of values of d there exist Cayley graphs of degree d, diameter 3, and order
d3−O(d2.5). The method is a variant of the one used in [1], namely, extension
of a regular orbit of a suitable subgroup of the automorphism group of a
polarity quotient of the incidence graph of a generalised quadrangle. Details,
however, are much more subtle and complex in comparison with those of [1].
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We also show that an extension of this method is not feasible for proving an
analogous result for diameter 5.

The paper is organised as follows. In Section 2 we review basic con-
cepts on the finite generalised quadrangles with polarity and their automor-
phisms. These are used in Section 3 to study incidence in auxiliary graphs
obtained from the incidence graphs of finite generalised quadrangles by po-
larity. In Section 4 we investigate induced subgraphs of the auxiliary graphs
obtained as orbits of suitable groups of automorphisms. The induced sub-
graphs are finally extended in Section 5 to give Cayley graphs which give
lim supd→∞ Cay(d, 3)/M(d, 3) = 1. We conclude by showing that applying
this scenario to generalised hexagons with polarity does not produce Cayley
graphs asymptotically approaching the Moore bound for diameter 5.

2. Generalised quadrangles, polarity and symmetries

Let q be a prime power and let F = GF (q) be the Galois field of order
q. As usual, let F+ and F ∗ be the additive and the multiplicative group
of F . We begin by recalling the projective geometry PG(3, q) whose points
are the 1-dimensional subspaces of F 4 minus the origin (sometimes called
projective vectors), that is, equivalence classes [x] of non-zero quadruples
x = (x0, x1, x3, x3) ∈ F 4, with two quadruples x and y equivalent if yi = txi
for some t ∈ F ∗ and every i ∈ {0, 1, 2, 3}.

For further considerations we also need to involve a skew-symmetric bilin-
ear form Q : F 4×F 4 → F ; in classical texts such as [19] this form is usually
taken to be (x,y) 7→ x0y1−x1y0+x2y3−x3y2 but here we prefer to work with
an equivalent form given by Q(x,y) = x0y3 − x3y0 + x1y2 − x2y1. Note that
this choice of Q is obtained from the ‘classical’ one application of the permu-
tation (0)(132), that is, by cyclically permuting the last three coordinates of
the input vectors as shown. A subset S of PG(3, q) is totally isotropic (with
respect to Q) if for any two points [x], [y] ∈ S we have Q(x,y) = 0. Note
that all the q3 + q2 + q + 1 points are totally isotropic themselves, and an
easy counting argument shows that there are exactly q3 + q2 + q + 1 totally
isotropic lines (that is, totally isotropic 2-dimensional subspaces of F 4 with
the origin removed) of PG(3, q).

Total isotropy helps us introduce an important incidence geometry within
PG(3, q), standardly denoted W (q); see e.g. [17, 20]. Points of W (q) are the
points of PG(3, q), lines of W (q) are the totally isotropic lines of PG(3, q),
and incidence is defined by containment as in PG(3, q). Every line of W (q)
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contains q+ 1 points (as in PG(3, q)) and, by counting, every point of W (q)
lies on q + 1 lines of W (q). The incidence structures W (q) are prominent
examples of generalised quadrangles [17, 20].

A polarity π of W (q) is an involutory mapping that sends the point set
of W (q) onto its line set and vice versa, with the property that for any two
points u, v lying on a line ` of W (q), the lines π(u) and π(v) intersect at the
point π(`). By a classical result of Tits [23], the incidence structure W (q)
admits a polarity if and only if q is an odd power of 2. We describe such a
polarity next, following [19] but using the skew-symmetric bilinear form Q
introduced earlier.

From now on and throughout the paper, let q = 22n+1 for some positive
integer n. Let ω = 2n+1 and let σ be the automorphism of F = GF (q)
given by σ(x) = xω, so that σ2(x) = x2. For every point u = [x] ∈ W (q)
let c = x0x3 + x1x2 and for every pair of points [x], [y] ∈ W (q) we let
δij = xiyj +xjyi for any distinct i, j ∈ {0, 1, 2, 3}; dependence of c on [x] and
of δij on [x], [y] will always be assumed but not shown in the notation. With
this in mind, a polarity on W (q) can be introduced as follows.

Proposition 2.1. For a point u = [x] ∈ W (q) let π(u) be the set of all
non-zero vectors of F 4 spanned by the totally isotropic set of four vectors

(0, xω0 , x
ω
1 , c

ω/2), (xω0 , 0, c
ω/2, xω2 ), (xω1 , c

ω/2, 0, xω3 ) and (cω/2, xω2 , x
ω
3 , 0) . (1)

In the reverse direction, for a line ` of W (q) through a pair of distinct points
[x] and [y] let π(`) be the point [z] ∈ W (q) with coordinates given by

z0 = δ
ω/2
01 , z1 = δ

ω/2
02 , z2 = δ

ω/2
13 and z3 = δ

ω/2
23 . (2)

Then π(u) is a line of W (q), and the mapping π is a polarity on W (q).

Proof. The reasoning is the same as in the proof of Theorem 12.7.1 of
[19, p. 566], up to subscripts. Namely, the choice of the bilinear form Q
introduced in the first paragraph (made upon a suggestion of an anonymous
referee) the formulae (1) and (2) presented here differ from the ones in [19, p.
565-566] as a result of a systematic application of the permutation (0)(132)
to the subscripts of coordinates of points while keeping the definition of δij
the same in [19] and here. We give here an independent sketch of the crucial
part of the argument in our coordinate setting.
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Let u = [x] and v = [y] be a pair of distinct points on a line ` in W (q).
To prove the result it is sufficient to show that π2 = id (which we leave out
as it is routine) and that the lines π(u) and π(v) intersect at the point π(`).

By (2), π(`) is the point [z] with homogeneous coordinates z0 = δ
ω/2
01 ,

z1 = δ
ω/2
02 , z2 = δ

ω/2
13 and z3 = δ

ω/2
23 , where δij = xiyj + xjyi. The lines π(u)

and π(v) are determined by a pair of linearly independent vectors from a set
of four vectors given by (1) and we will illustrate the process just on π(u).
If, say, x0 6= 0, then the line π(u) is determined by the first two vectors in
(1), which form the two rows of the matrix(

0 xω0 xω1 cω/2

xω0 0 cω/2 xω2

)
(3)

The homogeneous Plücker coordinates Pl(π(u)) = [p01, p23, p02, p13, p03, p12]
of the line π(u) are then determined by evaluating, for 0 ≤ i < j ≤ 3, the
two-by-two sub-determinant pij of the matrix in (3) corresponding to the
column indices i, j (and then, if convenient, homogenizing by any non-zero
multiple in F ). It may be checked that in our case we obtain

Pl(π(u)) = [xω0 , x
ω
3 , x

ω
1 , x

ω
2 , c

ω/2, cω/2] (4)

and since by the theory explained in Chapter 12 of [19] the Plücker coordi-
nates do not depend on a particular choice of two vectors representing a line,
the formula (4) is valid also if x0 = 0.

Recall that we need to check that the point [z] = π(`) with zi as above
lies on both the lines π(u) and π(v). We will indicate the procedure only
for π(u) with Pl(π(u)) = [p01, p23, p02, p13, p03, p12] given by (4), as the case
of π(v) is completely analogous. By [19, p. 538, (12.4)], the point [z] lies on
the line with Plücker coordinates Pl(π(u)) if and only if

zipjk + zjpik + zkpij = 0 for every i, j, k, 0 ≤ i < j < k ≤ 3 . (5)

It may be checked that the four equalities in (5) are indeed satisfied and the
only extra tool one needs for this is total isotropy determined by the skew-
symmetric form Q, that is, the identity x0y3 + x3y0 + x1y2 + x2y1 = 0. As
already mentioned, checking that the point π(`) lies also on the line π(v) is
analogous; one just needs to swap the roles of xi and yi (0 ≤ i ≤ 3). 2

For every x, y ∈ F we let f(x, y) = xω+2 + xy + yω. The set of matrices
M(r; a, b) given, for all r ∈ F ∗ and a, b ∈ F , by
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M(r; a, b) =


1 a b f(a, b)
0 r aωr (aω+1+b)r
0 0 rω+1 arω+1

0 0 0 rω+2

 (6)

is closed under multiplication and forms a group G of order q2(q − 1). We
note that the upper triangular form of M(r; a, b) in (6), suggested by our
anonymous referee as a consequence of the choice of the skew-symmetric form
Q, is handy to work with and differs from the one given in [19, p. 572] by
applying conjugation by a permutation matrix representing the permutation
(0)(132) used before. One may verify that

M(r; a, b)M(s; c, d) = M(rs; as+ c, acωs+ bsω+1 + d) ; (7)

and that M(r; a, b) also admits a factorization of the form
1 0 0 0
0 r 0 0
0 0 rω+1 0
0 0 0 rω+2




1 a 0 aω+2

0 1 aω aω+1

0 0 1 a
0 0 0 1




1 0 b bω

0 1 0 b
0 0 1 0
0 0 0 1

 (8)

so that, in our notation, the product (8) may be written in the form

M(r; a, b) = M(r; 0, 0)M(1; a, 0)M(1; 0, b) . (9)

Observe that the subgroup generated by M(1; 0, b) for b ∈ F is isomorphic
to F+ and every such matrix commutes with M(1; a, 0). The set of the latter
matrices is not closed under multiplication but M(1; a, 0)2 = M(1, 0, aω+1)
and so for a 6= 0 the elements M(1; a, 0) have order four. The subgroup
H formed by the matrices M(1; a, b) for a, b ∈ F , with |H| = q2 and with
multiplication M(1; a, b)M(1; c, d) = M(1; a+ c, b+ d+ acω), cf. (7), is also
known as the Suzuki 2-group. Moreover, H is normal in G and G ∼= HoF ∗,
the semidirect product being induced by the homomorphism F ∗ → Aut(H)
in which r ∈ F ∗ induces the automorphism (a, b) 7→ (ar, brω+1) of H.

The group G acts on W (q) as a group of collineation by right multipli-
cation. In [23] J. Tits proved that the group of all collineations of PG(3, q)
leaving the set Ω = {[0, 0, 0, 1]} ∪ {[1, x, y, f(x, y)]; x, y ∈ F} invariant is
(isomorphic to) the Suzuki group Sz(q) = 2B2(q), a simple group of order
q2(q2 + 1)(q − 1). Moreover, in the above representation, G is the subgroup
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of Sz(q) stabilizing the point [0, 0, 0, 1]. We note that Ω is the set of absolute
points with respect to π, that is, the set of points u for which u ∈ π(u); it is
also known as the Suzuki-Tits ovoid. We reiterate that to compare these facts
with those in [19, p. 573-574] one needs to apply the permutation (0)(132)
to all coordinates.

The action of G on the points (and hence also on the lines) of W (q) is
intransitive and a straightforward calculation shows that G has the following
five orbits O1 - O5 on points of W (q):

• O1 = {[1, x, y, f(x, y)]; x, y ∈ F} = Ω\{[0, 0, 0, 1]}, of size q2;

• O2 = {[0, 1, x, y]; x, y ∈ F}, of size q2;

• O3 = {[0, 0, 1, x]; x ∈ F}, of size q;

• O4 = {[0, 0, 0, 1]}, which is the unique fixed point of G; and

• O5 = V \ (∪4i=1Oi), of size q2(q − 1).

We point out the (for us) important fact that G acts regularly on the orbit
O5. To see this, note that |G| = |O5|, so that it is sufficient to show that,
say, the G-orbit of the point [1, 0, 0, 1] ∈ O5 is the whole of O5. Indeed, by
(7) we obtain [1, 0, 0, 1]·M(r; a, b) = [1, a, b, f(a, b)+rω+2] ∈ O5 and it is easy
to see that for distinct triples (r; a, b), (r′; a′, b′) ∈ F ∗ × F × F the points
[1, 0, 0, 1]·M(r; a, b) and [1, 0, 0, 1]·M(r′; a′, b′) are distinct.

3. The graph arising from factorisation by polarity

Let A(q) be the graph whose vertex set V is the set of all points u of
W (q), with two distinct vertices u, v adjacent in A(q) if u ∈ π(v), which,
by properties of π is equivalent to v ∈ π(u). Observe that every vertex of
A(q) is adjacent to q + 1 or q vertices, and the degree of a vertex u in A(q)
is q if and only if u ∈ π(u), that is, if and only if u is an element of the
Suzuki-Tits ovoid, of cardinality q2 + 1. Note that we could have defined
A(q) as the quotient graph of the bipartite point-line incidence graph of
W (q) obtained by factorisation by the polarity π, that is, by identifying u
with π(u) throughout and suppressing eventual edges between u and π(u).

A basic property of the generalised quadrangle W (q) (cf. [20]) is that for
any line ` and any point u not on ` there is a unique point u′ ∈ ` such that u
and u′ are collinear in W (q). This immediately translates to the observation
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that the diameter of the graph A(q) is equal to 3. Indeed, suppose that
u, v ∈ V are vertices that are not adjacent in the graph A(q). Then, since
the line ` = π(v) does not contain u, by the above property there is a (unique,
which is not important for this argument) point u′ ∈ ` such that u, u′ ∈ `′ for
some line `′ ∈ W (q). But letting π(`′) = v′ we have a path uv′u′v of length
3 in A(q). (Note that, in the above argument, the vertices u and v might
correspond to collinear points of W (q), in which case we would have u and
v joined by a path of length 2 and also by a path of length 3, giving rise to
a cycle of length 5 in A(q).)

For further analysis we will need a description of the neighbourhood N(u)
of a few vertices u of A(q), that is, the set of all v ∈ V adjacent to u in A(q).
By the adjacency rule in A(q), a vertex u = [x] is adjacent to precisely
the vertices v = [y] 6= [x] that are points on the line π[x] spanned by the
vectors in (1). Informally, a projective vector [x] is adjacent in A(q) precisely
to the projective vectors in π[x] distinct from x. A concrete identification
of π[x] can be cumbersome in general but is not for the few vertices we
need. We illustrate the process on the vertex [x] = [1, 1, 1, 1]. Taking the
second and the fourth vector in (1) one sees that π[x] is generated by the
two (totally isotropic) projective vectors [1, 0, 0, 1] and [0, 1, 1, 0]. Excluding
the self-adjacency it follows that the vertex [1, 1, 1, 1] is adjacent in A(q)
to the q vertices [0, 1, 1, 0] and [1, z, z, 1] for z ∈ F\{1}, or, equivalently,
N [1, 1, 1, 1] = {[0, 1, 1, 0]} ∪ {[1, z+1, z+1, 1]; z ∈ F ∗}. In a completely
analogous way we obtain the following table.

u ∈ V N(u)
[0, 1, 0, 0] {[0, 0, 1, 0]} ∪ {[1, 0, z, 0]; z ∈ F}
[0, 0, 1, 0] {[0, 0, 0, 1]} ∪ {[0, 1, 0, z]; z ∈ F}
[0, 0, 0, 1] {[0, 0, 1, z]; z ∈ F}
[0, 1, 1, 0] {[0, 0, 1, 1]} ∪ {[1, 1, z, z]; z ∈ F}
[0, 1, 0, 1] {[0, 0, 1, 0]} ∪ {[1, 0, z, 1]; z ∈ F}
[1, 0, 0, 0] {[0, 1, 0, 0]} ∪ {[1, z, 0, 0]; z ∈ F ∗}
[1, 0, 0, 1] {[0, 1, 0, 1]} ∪ {[1, z, 1, z]; z ∈ F}
[1, 0, 1, 1] {[0, 1, 0, 1]} ∪ {[1, z, 1, z+1]; z ∈ F ∗}
[1, 1, 1, 1] {[0, 1, 1, 0]} ∪ {[1, z+1, z+1, 1]; z ∈ F ∗}

Table 1: Neighbourhood of selected vertices of A(q).

As the next step we show that the group G generated by the matrices
M = M(r; a, b) introduced in (6) acts on the vertices of A(q) by right mul-
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tiplication. This is clearly equivalent to the statement that π[xM ] = π[x]M
for every [x] ∈ V . To verify this it is sufficient to restrict ourselves to a
particular [z] from each orbit O ∈ {O1, . . . , O5} listed in section 2. Indeed,
if we choose a [z] ∈ O, then, for every [x] ∈ O we have [x] = [zMz] for some
Mz ∈ G. Provided we show that π[zM ′] = π[z]M ′ for every M ′ ∈ G, we
then have π[xM ] = π[zMzM ] = π[z]MzM = π[zMz]M = π[x]M for every
M ∈ G. The verification can now be done by letting [z] be the representa-
tives [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] and [1, 0, 0, 1] of the orbits O1

to O5, respectively.
We illustrate the procedure on the computationally most demanding case

when [z] = [1, 0, 0, 1]. Instead of proving π[zM ] = π[z]M we prove the
equivalent equality [z]M = π[π[z]M ]. Looking at Table 1 we see that both
vertices [0, 1, 0, 1] and [1, 0, 1, 0] are neighbours of [z] = [1, 0, 0, 1] in A(q).
This is equivalent to stating that π[z] is the line of W (q) through the points
[x] = [0, 1, 0, 1] and [y] = [1, 0, 1, 0]. Since G is a collineation group of
W (q), it follows that for every M = M(r; a, b) from (6) the point [z]M =
[1, a, b, f(a, b) + rω+2] lies on the line ` = π[z]M through the points [x]M =
[0, r, aωr, rω+2 + r(aω+1+b)] and [y]M = [1, a, b + rω+1, f(a, b) + arω+1]. We
now calculate the point π(`) by the procedure described in (2). A somewhat

lengthy but straightforward verification shows that δ
ω/2
01 = rω/2, δ

ω/2
02 = rω/2a,

δ
ω/2
13 = rω/2b and δ

ω/2
23 = rω/2(f(a, b) + rω+2), so that [δ

ω/2
02 , δ

ω/2
31 , δ

ω/2
03 , δ

ω/2
21 ] =

[1, a, b, f(a, b)+rω+2]. Thus, π(`) = [z]M and hence π[π[z]M ] = [z]M , which
is what we wanted to establish. We leave out the details for the remaining
choices of orbit representatives as they are similar (and easier).

4. Strategy: Focusing on the subgraph induced by the regular orbit

From this point on we will focus on the subgraph B(q) of A(q) induced
by the subset O5 of V . Since the group G acts regularly on the vertex set of
B(q), it follows [21] that B(q) is a Cayley graph for the group G and some
generating set S for G. The procedure of turning a graph with a regular
subgroup of its automorphism group into a Cayley graph is well known; the
set S is uniquely determined and can be recovered by looking at the ‘local’
action of G on an arbitrarily chosen vertex. We will give details below but
precede everything by outlining the general strategy of our proof.

Strategy. For an infinite set of degrees d we will construct a Cayley
graph of degree d, order d3 −O(d2.5) as follows:
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(a) We will explicitly determine an isomorphism of B(q) onto a Cayley graph
C(G,S) for our groupG acting regularly on the vertex set O5 of B(q) (Lemma
4.1); this graph will have degree |S| = q−1 and order q2(q−1) for q = 22n+1

but its diameter will still be larger than 3.

(b) We show that the generating set S can be extended to a set S∗ by adding
no more than d

√
q − 1 e + 4 generators in such a way that the resulting

Cayley graph Cay(G,S∗) will have the required properties; namely, it will
have degree d = q + O(

√
q), order q2(q − 1) = d3 − O(d2.5), and diameter 3

(by a combination of Lemma 4.2 and Theorem 5.1).

We begin by developing the item (a). Let u = [x] be a fixed vertex of B(q);
for later convenience we will fix the vertex u = [1, 0, 0, 1] of B(q) throughout.
By the regular action of G on vertices of B(q), for every neighbour w of u
in B(q) there is exactly one gw ∈ G represented by a matrix Mw as in (6)
such that w = ugw = [x]Mw. To see what happens with adjacency in an
arbitrary vertex, just apply an arbitrary element g ∈ G to this situation to
conclude that a vertex ug is adjacent to wg = u(gwg) for every neighbour
w of u. Let now S be the set of all the gw ∈ G where w ranges over all
neighbours of u in B(q). The regular action of G enables us to identify G
with the vertex set of B(q) by means of the bijection g 7→ ug and the same
bijection gives an isomorphism of the Cayley graph C(G,S) onto B(q); note
that this isomorphism maps the identity of G onto the fixed vertex u. The
adjacency rule in C(G,S) follows from the above, namely, g ∈ G is adjacent
to gwg for every gw ∈ S.

By Table 1 and the description of the orbit O5, the neighbourhood of u
in B(q) is the set {[1, x, 1, x]; x ∈ F, x 6= 1} of size q − 1. The elements
gw ∈ S are thus matrices M(r; a, b) from (6) such that [1, 0, 0, 1]M(r; a, b) =
[1, x, 1, x], x 6= 1. A quick calculation reveals that we must have b = 1, and
a, r are tied by the equation aω+2 + rω+2 = 1. This equation has a unique
solution a = a(r) 6= 1 for every r ∈ F ∗, given by a(r) = (1 + rω+2)1−ω/2

(recall that every element in F ∗ has a unique square root). One can verify
that [1, 0, 0, 1]M(r; a(r), 1) = [1, a, 1, a], a 6= 1. We have therefore identified
the generating set as S = {M(r; a(r), 1); r ∈ F ∗}; this set is closed under
taking inverses by the above construction. Summing up, we have:

Lemma 4.1. The graph B(q) is isomorphic to the Cayley graph C(G,S) of
degree q − 1 with the generating set S = {M(r; a(r), 1); r ∈ F ∗}. 2
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In contrast to A(q) the diameter of B(q) is larger than 3. This is a
consequence of the following fact. Assume that v and w are vertices of A(q)
such that v represents a point of W (q) and w a line of W (q) not containing
the point and such that v and π(w) are not on a line of W (q). Then, by
properties of generalised quadrangles, there is a unique path from v to w of
length 3 in A(q), and no shorter path, and removing vertices from A(q) will
destroy some of these paths. Our aim is to extend the generating set S of the
Cayley graph C(G,S) ' B(q) by just a ‘few’ new generators to ensure that
the new Cayley graph (which will contain B(q) as a spanning subgraph) has
diameter 3. We thus need to identify pairs of vertices of B(q) that could end
up at distance larger than 3 after the removal of the sets O1 – O4 from A(q).
Since B(q) is a Cayley graph, it is sufficient to do this for pairs of vertices
u, v ∈ O5 in which u = [1, 0, 0, 1] is our fixed vertex.

In the considerations below we will frequently refer to Table 1 without
explicit alerts. In the graph A(q), our fixed vertex u = [1, 0, 0, 1] ∈ O5 is
adjacent to the two vertices u1 = [1, 1, 1, 1] ∈ O1, u2 = [0, 1, 0, 1] ∈ O2,
and has q − 1 neighbours inside B(q), all of the form [1, x, 1, x] for x ∈ F ,
x 6= 1. The neighbour u1 = [1, 1, 1, 1] ∈ O1 of u in A(q) is adjacent to
u′2 = [0, 1, 1, 0] ∈ O2 and to another q − 1 vertices [1, z+1, z+1, 1], z ∈ F ∗,
in B(q). It follows that when restricting to B(q) we lose the paths of length
2 from u via u1 to the q − 2 vertices in the set L(u1) := N(u1)\{u, u′2} =
{[1, z+1, z+1, 1]; z ∈ F ∗\{1}}. Similarly, the neighbour u2 ∈ O2 of u in A(q)
is adjacent to u3 = [0, 0, 1, 0] ∈ O3, u

′
1 = [1, 0, 1, 1] ∈ O1, and has further

q − 1 neighbours [1, 0, z+1, 1], z ∈ F ∗, in B(q). Again, when restricting to
B(q) we lose the paths of length 2 from u through u2 to the q− 2 vertices in
the set L(u2) := N(u2)\{u, u3, u′1} = {[1, 0, z+1, 1]; z ∈ F ∗\{1}}.

The vertex u′1 is adjacent in A(q) to u2 = [0, 1, 0, 1] ∈ O2 and to the q− 1
vertices forming the set L(u′1) := N(u′1)\{u2} = {[1, z, 1, z+1]; z ∈ F ∗}.
The neighbourhood of u′2 in A(q) consists of u1 = [1, 1, 1, 1] ∈ O1, u

′
3 =

[0, 0, 1, 1] ∈ O3, and the q − 1 vertices in the set L(u′2) := N(u′2)\{u1, u′3} =
{[1, 1, z+1, z+1]; z ∈ F ∗}. This implies that when restricting our attention
to the graph B(q) we lose the paths of length 3 of the form uu1u

′
2w for

w ∈ L(u′2) and uu2u
′
1w for w ∈ L(u′1).

We now pass onto the item (b) of the outlined strategy. So far we have
identified four sets of vertices, L(u1), L(u2), L(u′1) and L(u′2), to which we
lose paths from u through u1 and u2 when considering B(q); we note that no
vertex in B(q) is adjacent to u3. For convenience of the reader and for later
use in this and the forthcoming section we list the vertices ui, u

′
i and the sets
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L(ui) and L(u′i) for i = 1, 2 in a tabular form.

u1 = [1, 1, 1, 1] ∈ O1 L(u1) = {[1, z+1, z+1, 1]; z ∈ F ∗\{1}}
u′1 = [1, 0, 1, 1] ∈ O1 L(u′1) = {[1, z, 1, z+1]; z ∈ F ∗}
u2 = [0, 1, 0, 1] ∈ O2 L(u2) = {[1, 0, z+1, 1]; z ∈ F ∗\{1}}
u′2 = [0, 1, 1, 0] ∈ O2 L(u′2) = {[1, 1, z+1, z+1]; z ∈ F ∗}

Table 2: Vertices ui, u
′
i and the sets L(ui) and L(u′i) for i = 1, 2.

In order to make up for the loss of the paths mentioned above we will suitably
extend the generating set S in the Cayley graph C(G,S) ' B(q). To do so
we first determine the action of G on the four sets, which is equivalent to
determining the vertex stabilisers in G of u1, u2, u

′
1 and u′2.

Lemma 4.2. The stabilisers in G of u1, u2, u
′
1 and u′2 are all cyclic and

isomorphic to F ∗. In more detail:

• StabG(u1) = StabG(u′2) = {M(r; r+1, r+1); r ∈ F ∗} ' F ∗, acting reg-
ularly on both L(u1)∪{u} and L(u′2) by [1, z+1, z+1, 1]·M(r; r+1, r+1)
= [1, zr+1, zr+1, 1] and [1, 1, z+1, z+1]·M(r; r+1, r+1) = [1, 1, zrω+1+
1, zrω+1 + 1].

• StabG(u2) = StabG(u′1) = {M(r; 0, 1+rω+1); r ∈ F ∗} ' F ∗, acting reg-
ularly on both sets L(u2)∪{u} and L(u′1) by [1, 0, z+1, 1]·M(r; 0, 1+rω+1)
= [1, 0, zrω+1, 1] and [1, z, 1, z+1] ·M(r; 0, 1+rω+1) = [1, zr, 1, zr + 1]
for z ∈ F ∗.

Proof. Calculation of the stabilisers from the equation [x]M(r; a, b) = [x]
for [x] ∈ {u1, u′2, u2, u′1} and solving for a, b in terms of r is straightfor-
ward. Regarding isomorphism of the stabilisers with F ∗, for StabG(u1) =
StabG(u′2) it is given by θ1 : r 7→ M(r; r+1, r+1) since one can check that
M(r; r+1, r+1)M(s; s+1, s+1) = M(rs; rs+1, rs+1) for all r, s ∈ F ∗. The
same type of isomorphism θ2 : r 7→ M(r; 0, 1+rω+1) works for StabG(u2) =
StabG(u′1), as one can easily verify that M(r; 0, 1+rω+1)M(s; 0, 1+sω+1) =
M(rs; 0, 1+(rs)ω+1) for every r, s ∈ F ∗. The actions of the stabilisers on the
four sets are obvious. 2
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5. Large Cayley graphs of diameter 3 and small degree

For any integer m ≥ 3 let cm denote the smallest number of elements in a
generating set X of a Cayley graph of a cyclic group C(Zm, X) of diameter
two. The best available general upper bound on cm, which is, of course, the
degree of C(Zm, X), is cm ≤ 2d

√
m e, see [8] for a short proof. Applying this

to the cyclic group F ∗ of order m = q − 1 we have the existence of a Cayley
graph C(F ∗, X) of diameter 2 with |X| = cq−1 ≤ 2d

√
q − 1 e. Taking images

of C(F ∗, X) under the isomorphisms θ1 and θ2 from the proof of Lemma 4.2,
that is, letting S1 = θ1(X) and S2 = θ2(X) and denoting H1 = StabG(u1) =
StabG(u′2) and H2 = StabG(u2) = StabG(u′1), we have constructed Cayley
graphs C(H1, S1) and C(H2, S2) of degree cq−1 and diameter 2.

We are now ready to describe a suitable ‘small’ extension of our gen-
erating set S from Lemma 4.1 in the Cayley graph C(G,S) ' B(q) to
obtain a graph of diameter three. Let M1 = M(1; 1, 1), M2 = M(1; 1, 0),
S3 = {M1,M

−1
1 ,M2,M

−1
2 } and let S∗ = S ∪ S1 ∪ S2 ∪ S3; note that S∗ is

closed under taking inverses.

Theorem 5.1. For every n ≥ 1 and q = 22n+1 the Cayley graph C(G,S∗)
of order q2(q − 1) and degree q + 2cq−1 + 3 has diameter 3.

Proof. The Cayley graph C(G,S∗) has order |G| = q2(q − 1), degree |S|
that evaluates to q + 2cq−1 + 3, and it contains the Cayley graph C(G,S) '
B(q) as a spanning subgraph. We may thus identify the vertex set of C(G,S∗)
with the orbit O5 of the group G on the set V as we did in the isomorphism
from C(G,S) onto B(q).

We proceed by extending some of our earlier observations made for the
fixed vertex u to arbitrary vertices of B(q). By the action of G on vertices
of the entire graph A(q) and by the regular action of the same group on
the vertex set O5 of the graph B(q), every vertex v ∈ O5 has one neighbour
v1 ∈ O1, one neighbour v2 ∈ O2, and q− 1 neighbours within B(q). Further,
in A(q), the vertex v1 is adjacent to one vertex v′2 ∈ O2 and to a set L(v1) of
q − 2 vertices in B(q) distinct from v, and the vertex v2 has one neighbour
v3 ∈ O3, another neighbour v′1 ∈ O1 and q − 2 neighbours in a set L(v2)
of vertices of B(q) distinct from v. Moreover, by our isomorphism from the
Cayley graph C(G,S) onto B(q) constructed earlier, the subsets L(v1) and
L(v2) of O5 are g-images of the sets L(u1) and L(u2) for the element g ∈ G
that carries u onto v = ug. Also, note that the unique vertex [0, 0, 0, 1] of O4
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of degree q is incident only to q vertices in O3 and the neighbours of every
vertex of O3 (except [0, 0, 0, 1]) lie in O2.

Equipped with this we now prove that the diameter of C(G,S∗) is 3.
We know that it is sufficient to check distances from our fixed vertex u =
[1, 0, 0, 1]. Since the diameter of A(q) is 3, it is sufficient to show that for
every path P of length at most 3 in A(q) from u to an arbitrary vertex
w ∈ O5 and passing through a vertex outside O5 the distance between u and
w is still at most 3 in C(G,S∗). By our earlier examination of possibilities,
and referring also to Table 2 and the notation introduced in the previous
paragraph, such a path P can only have one of the following eight forms:

1) P = uu1w, with w ∈ L(u1),
2) P = uu2w, with w ∈ L(u2),
3) P = uu1w

′w for some w′ ∈ L(u1), with w /∈ L(u1) ∪ {u},
4) P = uu2w

′w for some w′ ∈ L(u2), with w /∈ L(u2) ∪ {u},
5) P = uu1u

′
2w, with w ∈ L(u′2),

6) P = uu2u
′
1w, with w ∈ L(u′1),

7) P = uvv1w for some v ∈ O5, with w ∈ L(v1), or
8) P = uvv2w for some v ∈ O5, with w ∈ L(v2).
Since S1, S2 ⊂ S∗, we may apply Lemma 4.2 to conclude that the sub-

graphs of C(G,S∗) induced by the subsets L(u1) ∪ {u} and L(u2) ∪ {u} are
isomorphic to the Cayley graphs C(H1, S1) and C(H2, S2), both of diameter
2. This implies that the distance between u and w is at most 3 in the cases
1) – 4). Similarly, since H2 is also equal to StabG(u′1) and H1 is equal to
StabG(u′2), by Lemma 4.2 (which also describes the action of H2 and H1)
the distances in C(G,S∗) between vertices in the sets L(u′1) and L(u′2) are at
most 2. Having included the elements M1 = M(1; 1, 1) and M2 = M(1; 1, 0)
in S∗, we have an edge from u = [1, 0, 0, 1] to uM1 = [1, 1, 1, 0] ∈ L(u′1) and
an edge from u to uM2 = [1, 1, 0, 0] ∈ L(u′2). It follows that we have paths
of length 3 from u to w inside C(G,S∗) also in the cases 5) and 6).

Let v be a vertex as in the cases 7) and 8), incident with u in B(q). By
the regular action of G on the vertex set of B(q) there exists a (unique) g ∈ G
such that v = ug. From the previous paragraph we know that, for i = 1, 2,
the subgraph of C(G,S∗) induced by the vertex set L(ui)∪{u} is isomorphic
to the Cayley graph C(Hi, Si). But since L(vi) ∪ {v} = (L(ui) ∪ {u})g for
i = 1, 2, the subgraph of C(G,S∗) induced by the set L(vi)∪{v} is isomorphic
to the one induced by the set L(ui)∪{u}, which is the Cayley graph C(Hi, Si).
It follows that in the cases 7) and 8), for i = 1, 2, the vviw-part of the path P
can be replaced by a path of length at most two in the subgraph of C(G,S∗)
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induced by the set L(vi) ∪ {v}, since the diameter of C(Hi, Si) is 2. This
completes the proof. 2

Letting d = q + 2cq−1 + 3 ≤ q + 4d
√
q−1 e + 3 for q = 22n+1 and asymp-

totically expressing the order q2(q− 1) of C(G,S∗) in terms of d, we obtain:

Corollary 5.2. There exists an infinite increasing sequence of values of d for
which there are Cayley graphs of degree d, diameter 3 and order d3−O(d2.5)
as d→∞. 2

We thus have lim supd→∞ Cay(d, 3)/M(d, 3) = 1, that is, the Moore
bound for diameter 3 can be asymptotically approached by Cayley graphs.

6. Remarks

Our construction of an infinite sequence of Cayley graphs of diameter 3,
degree q + o(q) and order q3 − o(q3) was based on the existence of a group
G of order q2(q − 1) for q = 22n+1, regular on the vertex set of a subgraph
obtained from the point-line incidence graph of a generalised quadrangle
W (q) by factorisation by a polarity. Moreover, the group G is (isomorphic
to) a subgroup of index q2 + 1 of the Suzuki group Sz(q) = 2B2(q), a simple
group of order q2(q2+1)(q−1), acting doubly transitively on the Suzuki-Tits
ovoid (of order q2 + 1) in the generalised quadrangle W (q); see [17] for more
details.

It is tempting to consider an analogous approach for constructing an
infinite sequence of Cayley graphs of diameter 5, degree q + o(q) and order
q5− o(q5) from a suitable group acting regularly on some subgraph obtained
from the incidence graph I(q) of a generalised hexagon H(q) factored by a
polarity. By known results summarised in [17], a generalised hexagon H(q)
admits a polarity if and only if q = 32n+1, n ≥ 1. For such q, the graph I(q),
of diameter 5 and order q5 + . . .+ q+ 1, has q5 + q4 + q2 + q vertices of degree
q + 1 together with the q3 + 1 vertices of degree q that correspond to the
Ree-Tits ovoid formed by the absolute (that is, self-polar) points of H(q).
It turns out that, up to field automorphisms, the automorphism group of
I(q) can be identified with the collineation group that preserves the Ree-Tits
ovoid, which is the Ree group Re(q) = 2G2(q).

Unfortunately, by the classification of maximal subgroups of the Ree
groups [13, 12], the group Re(q) = 2G2(q), which is a simple group of or-
der q3(q3 + 1)(q− 1), does not contain a subgroup of order O(q5) for q →∞.
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The approach that works for construction of large Cayley graphs of diameter
2 from generalised triangles in [1], and of diameter 3 from generalised quad-
rangles in this article, thus does not carry over to an analogous construction
for diameter 5 from generalised hexagons.
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