
Open Research Online
The Open University’s repository of research publications
and other research outputs

A Formal Dialogue Model for Ontology Authoring
Conference or Workshop Item
How to cite:

Power, Richard (2014). A Formal Dialogue Model for Ontology Authoring. In: Proceedings of the 50th Anniversary
Convention of the AISB, 01-04 Apr 2014, Goldsmiths, University of London, UK.

For guidance on citations see FAQs.

c© [not recorded]

Version: Version of Record

Link(s) to article on publisher’s website:
http://doc.gold.ac.uk/aisb50/AISB50-S21/AISB50-S21-Power-paper.pdf

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/159766451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://doc.gold.ac.uk/aisb50/AISB50-S21/AISB50-S21-Power-paper.pdf
http://oro.open.ac.uk/policies.html


A formal dialogue model for ontology authoring
Richard Power 1

Abstract. Several research teams have proposed controlled frag-
ments of English suitable for building ontologies for the Semantic
Web. These Controlled Languages are typically employed in appli-
cations that allow users to compose texts through guided authoring;
the sentences in the text are parsed and interpreted to obtain axioms
in OWL. We investigate here a variant of this approach in which
the user enters sentences one at a time through an instant messag-
ing interface, and receives an immediate response in English from
the authoring system before typing in the next sentence. Such an ap-
plication can support a variety of dialogue moves by the user—not
only assertions, but also retractions, questions, requests for explana-
tion, and so forth—and for each, we need to define an appropriate set
of responses for the authoring system. To illustrate the interest and
complexity of this task, we develop a formal model for just one case:
responses to an assertion.

1 Introduction
This paper proposes a formal model for responding to assertions in an
ontology authoring dialogue. The context is an application in which
an Ontology Management System (henceforth ‘the program’) sup-
ports an ontology developer (henceforth ‘the user’) in building an
ontology, through a dialogue in a controlled fragment of English.
The dialogue is conducted using an instant messaging interface, and
is made up of two-utterance exchanges, each exchange comprising
a sentence from the user followed by a response from the program.
Such an application might support a variety of dialogue acts by the
user, including questions, retractions, and requests for explanation,
but we focus here only on exchanges where the user asserts an ax-
iom; the point at issue is how the program ought to respond.

Before describing the background in more detail, it is worth look-
ing at a short example of such a dialogue. Let us suppose that the
user is aiming to encode some facts from the ‘People+Pets’ domain
proposed as an exercise by Horrocks [3], and that starting from an
empty ontology, the dialogue opens with the following exchanges,
with user assertions numbered for reference, and program responses
shown in italics:

1. Rover is a dog.
Okay.
2. Every dog lives in a kennel.
Okay, so Rover lives in a kennel.
3. No dog is a cat.
Okay.
4. Butch is a dog that lives in a kennel.
Okay, but I can infer that Butch lives in a kennel.
5. Butch is a cat.
Inconsistent, since no dog is a cat.
6. Every kennel is a kennel that is located near a house.

1 Open University, UK, email: FirstName.SecondName@open.ac.uk

Okay, but I have simplified as follows: Every kennel is located
near a house.
7. Every dog that lives in a kennel is a pet.
Okay, but since every dog lives in a kennel, you could simplify
as follows: Every dog is a pet.

The controlled language in this example is a variant of OWL Simpli-
fied English [4] (henceforth OSE). Each sentence can be interpreted
deterministically as representing an expression in OWL. As can be
seen, the program does not merely accept any assertion that the user
provides: sometimes an assertion is reformulated, or at least a possi-
ble reformulation is suggested; sometimes the assertion is rejected as
contradictory. These are not responses to the English formulation of
the axiom, but to the axiom itself; thus they would apply equally to
any OWL encoding. This is shown by the following list, which gives
interpretations of each assertion in description logic notation, along
with comments on the program’s response.
(1) Rover ∈ dog

No problem with the assertion, and nothing to report.
(2) dog v ∃livesIn.kennel

The program can give useful feedback by reporting new entail-
ments.

(3) dog u cat v ⊥
Here the program does not report the entailment that Rover is a
non-cat. In principle an unlimited number of entailments can be
drawn, so there is a policy is needed over which ones to report.

(4) Butch ∈ dog u ∃livesIn.kennel
Can be refactored to two statements, Butch ∈ dog and Butch ∈
∃livesIn.kennel, of which the first is informative, but the second
can be inferred using axiom 2.

(5) Butch ∈ cat
Because of axioms 3 and 4, this entails that Butch belongs to the
unsatisfiable class dogu cat, and would therefore make the ontol-
ogy inconsistent if accepted. Accordingly the program refuses to
add it to the ontology.

(6) kennel v kennel u ∃locatedNear.house
This axiom would be partly redundant in any context, since it can
be refactored to two statements of which the first is the tautology
kennel v kennel.

(7) dog u ∃livesIn.kennel v pet
In context this could be simplified to dog v pet while leaving the
entailments of the ontology unchanged. However, there is an ar-
gument for allowing this redundancy in case the user later decides
to retract axiom 2.

As well as introducing the application, the example shows that even
starting with no domain knowledge at all, the program can exploit its
reasoning abilities in order to detect redundancies or contradictions
in the information provided, and also to report implications. Where
flaws are detected, there is a choice between allowing them to remain,
at least temporarily, or rejecting them (i.e., refusing to add the axiom
to the developing ontology). Our aim is to lay out these response
options systematically, and suggest principles for determining which
response the program should choose in any given case.



2 Assumptions
An advantage in investigating this specialised class of dialogues is
that we can define precisely the purpose of the interaction between
user and program, and the range of permissible moves by both par-
ties. We know that the purpose is to create an efficient and consistent
description of a domain, encoded in OWL or some well-defined frag-
ment thereof. We know that assertions by the user should conform to
the grammar of a controlled natural language, with interpretations in
the prescribed fragment of OWL. From the semantics of OWL we
can define possible problems such as redundancy or inconsistency.
The task therefore lends itself to formal modelling, as pioneered es-
pecially by Hamblin [1, 2].

In Hamblin’s mathematical models, a dialogue is defined as an
ordered set of locutions, each produced by a participant. Rules are
laid down for the syntax and semantics of locutions, and also their
pragmatic effects: for instance, the assertion of proposition P by a
participant, if unopposed, commits all participants to the assump-
tion that P is true.2 Having thus modelled the effects of a locution,
criteria can be stated for evaluating locutions as either legitimate or
anomalous. For instance, once a participant has asserted P , it would
be inappropriate for any participant to assert P again, or to assert a
proposition that blatantly contradicts P . In this way, Hamblin defines
a subset of dialogues that are legal—i.e., fully conformant to these
criteria. Of course the criteria of legality are not arbitrary, but based
on a over-riding assumption about the purpose of the dialogue: that
of promoting the ‘efficient exchange of information’ [2].

As will be obvious, many of these ideas apply directly to the dia-
logues that concern us here. Like Hamblin, we have formal rules of
syntax and semantics; we also have a set of propositions that have
been asserted and accepted—namely, the ontology under develop-
ment.3 We have noted above examples of assertions by the user that
are flawed, in ways that correspond to criteria like redundancy and
consistency in Hamblin’s rules for legality. However, there are dif-
ferences too. In Hamblin’s models, the participants are on the same
footing; in our case, user and program have different roles associated
with different constraints. To be useful, our model cannot merely re-
ject some locutions by the user as ‘illegal’, so invalidating the entire
dialogue; instead, we have to accept that some contributions will be
flawed, and provide rules for generating helpful responses.

2.1 General principles
Following Hamblin’s approach, we will develop rules for a series of
dialogue models. In the first model, the subject of this paper, the user
is permitted only to assert potential axioms; elsewhere we will pro-
pose further models in which the user may also retract assertions, ask
questions, and so forth. This approach is merely a convenience: obvi-
ously there would be little practical value in a dialogue that allowed
assertion but not retraction. In considering how the program should
respond to an assertion, we therefore keep in mind that the model
will later be expanded to allow other dialogue moves as well.

The model developed here resembles in its scope Hamblin’s Sys-
tems 1 and 2 [2], which also allow assertions but not retractions.4 We
will label this model OAD-1, with the evident intention of develop-
ing successors labelled OAD-2, OAD-3, etc. in which the user may
also peform retractions, questions, and so forth. The acronymn OAD
stands for Ontology Authoring Dialogue, and reminds us that all
these envisaged models have something in common. Leaving aside
details of which moves are allowed and which are not, they all ad-
dress a context in which a human user collaborates with a computer

2 This does not mean that participants are required to believe all they are told,
only that they either contest the proposition, or assume it for purposes of
the dialogue.

3 Hamblin calls this set of propositions a ‘commitment slate’ or a ‘commit-
ment store’.

4 In System 1 a locution is illegal if it repeats an earlier proposition; in System
2 it is also illegal if it is entailed by earlier propositions.

program in order to encode domain knowledge in an ontology. We
should therefore begin with a clear statement of principles common
to all these models, and this we provide in figure 1.

Note that these principles are at least partly informal: for instance,
we have given criteria of quality and efficiency without saying ex-
actly how they might be measured. Their value lies rather in the
guidance they provide when constructing detailed models. To give
just one example, consider the issue (raised above) of how the pro-
gram should respond when the user asserts an axiom that is already
entailed. On grounds of quality, the assertion should probably be re-
jected, leaving the ontology equally informative while more com-
pact. However, as the principles in figure 1 point out, we have to take
account also of the efficiency of the authoring process, and the falli-
bility of the user: perhaps it is better to retain a redundant axiom in
case the axioms that entail it are later retracted (see assertion 4 in the
introduction for a case in point).

2.2 Outline model
Figure 2 gives rules for OAD-1, a simple dialogue in which the only
move available to the user is to assert axioms from a restricted subset
of OWL, and the only move by the program is to respond to the user’s
last assertion. In responding, the user has three options: either accept
the statement as it is, or accept it in some modified form, or reject it.
If an axiom can be refactored into two statements, they may receive
different responses. For instance, a sentence like ‘Every kennel is a
kennel that is located near a house’ (assertion 6 in the introductory
example) can be refactored into ‘Every kennel is a kennel’ and ‘Ev-
ery kennel is located near a house’; the program should reject the
former as a tautology, but might accept the latter.

To state more precisely the grounds for simplifying or rejecting an
assertion, we need to classify systematically the various kinds of re-
dundancy and contradiction that can be found in our logical fragment
(roughly EL++), and it is to this we now turn.

3 Redundancy
We have mentioned that both classes and statements can be redun-
dant, and moreover, that they can be redundant in two ways, which
we will call inherent redundancy and contextual redundancy. Cross-
ing these distinctions (class vs statement, inherent vs contextual) we
obtain a fourfold classification, which we can illustrate by a variant
of the sample dialogue in the introduction. Suppose axioms 1-2 be-
low have already been asserted, and consider options 3a-3d for axiom
3:

1 Every dog lives in a kennel.
2 Rover is a dog.

3a Every dog that is a dog is a pet.
3b Every dog that is a pet is a pet.
3c Every dog that lives in a kennel is a pet.
3d Rover lives in a kennel.

All of 3a-3d are redundant, but in different ways:
• 3a has an inherently redundant class, ‘dog that is a dog’. This

class is redundant because it can be simplified to ‘dog’; moreover,
it would be redundant in any context, not just the context provided
by axioms 1-2.

• 3b is an inherently redundant statement because it would be true
in any context (the predicate is contained in the subject).

• 3c has a contextually redundant class because once we have as-
serted (axiom 1) that every dog lives in a kennel, ‘dog that lives in
a kennel’ can be simplified to ‘dog’. The statement then becomes
‘Every dog is a pet’.

• 3d is a contextually redundant statement because although it is
stated in its simplest form, it already follows from axioms 1-2.
There is therefore no need to assert it at all.



1. The participants are a human user and a computer program.
2. The purpose of the dialogue is to build an ontology that encodes information about a domain.
3. At the start of the dialogue, the user has some knowledge of the domain, while the program has none.

The program has no other source of domain knowledge except the user.
4. The program can remember exactly what it has been told, and reason with its knowledge reliably.

The user is fallible both in memory and reasoning.
5. The product of the dialogue (the ontology) should be judged by criteria of quality including accuracy,

consistency, completeness, and compactness.
6. The process of authoring the ontology should be judged by criteria of efficiency including the time

and effort demanded of the user.

Figure 1. General principles for Ontology Authoring Dialogues

1. The dialogue comprises a series of two-utterance exchanges, the first in each pair by the user, the
second by the program.

2. Within each exchange, the first locution (by the user) asserts an axiom in the controlled language
(OSE); the second locution (by the program) responds to this assertion, and may include English
sentences outside OSE.

3. The axioms asserted by the user should conform to the description logic fragment known as EL++
but with the further restriction that literals, datatypes and data properties are disallowed.

4. If the axiom asserted by the user is a tautology (inferable in any context), the program should point
this out and reject it.

5. If the axiom has an equivalent simpler form in any context, the program should point this out and
accept it only in this simpler form.

6. If the axiom has been asserted before, the program should point this out and refuse to add it again.
7. If the axiom would make the ontology inconsistent or incoherent, when added to those already

present, the program should point this out and reject it.
8. If the axiom, although not asserted already, is entailed by the axioms already present, the program

should accept it but with a warning pointing this out.
9. If the axiom can be stated more simply by taking account of axioms already present, the program

should accept it in full but with a warning pointing out the simpler form.
10. If the axiom can be refactored into two statements, the program should repond to these statements

separately applying the rules given above.
11. If the axiom is accepted (possibly in part, possibly simplified), the program should give feedback on

entailments (if any) that result from adding it to the ontology.

Figure 2. Outline rules for dialogue model OAD-1



Formal definitions of these redundancy categories can be given as
follows, using the usual extensional semantics for description logic.
1. A constructed class CR is inherently redundant if it contains a

constituent class C that has the same extension as CR under all
interpretations.

2. A constructed class CR is contextually redundant if it contains
a constituent class C that has the same extension as CR for any
interpretation satisfying all other axioms in the ontology. (This is
the same as saying that the other axioms entail C ≡ CR.)

3. A subsumption statement of the form C v D is inherently redun-
dant if the extension of C is a subset of the extension of D under
all interpretations.

4. A subsumption statement of the form C v D is contextually re-
dundant if the extension of C is a subset of the extension of D
for any interpretation satisfying all other axioms in the ontology.
(This is the same as saying that the statement is entailed by the
other axioms.)

To be fully precise, the definition of a contextually redundant class
or statement should also stipulate that the class/statement is not in-
herently redundant (otherwise, any inherently redundant expression
will also be contextually redundant).

4 Contradiction
In description logic it is customary to distinguish two kinds of con-
tradiction: inconsistency, and incoherence. An ontology is inconsis-
tent if it has no interpretation. It is incoherent if at least one named
class is unsatisfiable (i.e., can have no members without introducing
inconsistency.

For contradiction as well as redundancy we can distinguish state-
ments that are inherently contradictory from statements that are con-
textually contradictory. We thus obtain another fourfold classifica-
tion:
1. A statement is inherently inconsistent if it has no interpretation

(e.g., Rover ∈ ⊥).
2. A statement is contextually inconsistent if it has no interpreta-

tion that also satisfies the other axioms in the ontology (e.g.,
Rover ∈ cat u dog in an ontology that entails that cats and dogs
are disjoint).

3. A statement is inherently incoherent if there is no interpretation in
which all its named classes are satisfiable (e.g., dog v ⊥).

4. A statement is contextually incoherent if there is no interpretation
satisfying the other axioms in the ontology in which all its named
classes are satisfiable (e.g., pekinese v catu dog in an ontology
that entails that cats and dogs are disjoint).

As before, to be pedantically precise we should include in the defini-
tion of a contextual contradiction that it is not inherently contradic-
tory.

5 Reformulation
The rules proposed for OAD-1 (figure 2) require the program to refor-
mulate assertions by the user when they contain redundant classes, or
when they can be divided into multiple assertions which can be eval-
uated separately. These reformulations are based on two assumptions
concerning the optimal encoding of an ontology:

1. Minimise the number of constructed classes.
2. Minimise the average complexity of axioms.

These objectives often work together, since by splitting up a complex
axiom like C v D u E into two simpler ones C v D and C v
E, we may also obviate the need for the constructed class D u E,
so favouring the first objective as well as the second. In proposing
them, we are refining point 5 in our statement of general principles

(figure 1), relating to the quality of the ontology, and specifically its
compactness. We are saying, in effect, keep your classes and your
axioms as simple as possible, even if this means that you need more
axioms. Reducing the number of axioms might be desirable in itself,
but in case of conflict, give priority to reducing axiom complexity.

This policy probably has intuitive appeal: it reminds us of famil-
iar precepts from books on literary style, such as Strunk’s maxim
‘Omit needless words!’ [5]. Requirements for an ontology are not
necessarily the same, but I would suggest the following as support-
ive arguments:
• In computing the entailments of an ontology, it is convenient to re-

strict their number by considering only subsumption relationships
between classes that occur in the axioms. This task is simplified if
we keep the number of such classes to a minimum.

• Explanations of entailments typically show how they are derived
from axioms. If we allow axioms that aggregate a number of state-
ments, we may find that some of these are relevant to an explana-
tion and some are not; this would mean that we have to included
an extra step in the explanation, pointing out which part of the
axiom is relevant.

• If the user asserts an aggregated axiom such as ‘Rover is a dog
that lives in a kennel’, he/she might later wish to retract part of
this assertion (e.g., ‘Rover lives in a kennel’), leaving the rest in-
tact. This can be implemented more efficiently if we divide the
assertion into its parts, so that retraction consists in removing a
simple axiom rather than simplifying a complex one.

• Similarly, if the user makes an assertion that partially duplicates
an assertion made earlier (e.g., ‘Rover is a dog that lives in a ken-
nel’ following ‘Rover is a dog that is owned by a farmer’), the
duplication can be checked more easily if the axioms have already
been disaggregated, allowing the program to add ‘Rover lives in a
kennel’ while ignoring the repetition of ‘Rover is a dog’.

Leaving aside the trade-off between axiom number and axiom com-
plexity, note that the principles stated above also oppose redundancy,
which increases both the number of constructed classes and the av-
erage complexity of axioms, without yielding any compensating ad-
vantage at all.

5.1 Removing aggregation and inherent
redundancy

Having defended these general principles of reformulation, let us
consider how the program should proceed when responding to a user
assertion that may flout them. An outline procedure—not the only
possible one—is shown in figure 3. Note that the purpose of this pro-
cedure is not to decide which statements should be added to the ontol-
ogy, but rather to draw up a list of candidates that meet our standards
on formulation. Whether these candidates are actually added will de-
pend on the context of the axioms already asserted, and in particular
on criteria of duplication and contradiction that will be discussed in
a later section.

So far as I can see, the only alternative to the procedure in figure
3 is to reverse the order of the first two steps. Suppose for instance
that the user asserts ‘Rover is a dog that is a thing’. Following figure
3, the first step is to simplify the inherently redundant class ‘dog
that is a thing’ to ‘dog’; starting instead with disaggregation, the first
step would be to divide the assertion into two parts, ‘Rover is a dog’
and ‘Rover is a thing’. The final result will be the same, since the
inherently redundant statement ‘Rover is a thing’ will be removed in
step 3. However, if we disaggregate first, we need to add a further step
checking that the set of disaggregated statements has no duplicates:
this would result for example from ‘Rover is a dog that is a dog’.
Following the order in figure 3, the class ‘dog that is a dog’ is already
simplified to ‘dog’ in step 1, so this extra check is unnecessary.

Turning to the detailed implementation of step 1, we need to spec-
ify rules for simplifying class expressions in the relevant fragment of



1. Check the subject and predicate classes of the new assertion, and simplify them if necessary to
remove inherent class redundancy.

2. Check whether the resulting assertion can be disaggregated (i.e., whether its predicate class is an
intersection), and if so, replace it by an equivalent set of statements which cannot be further disag-
gregated.

3. Check whether each statement in this set is inherently redundant (i.e., a tautology), and if so remove
it.

Figure 3. Outline procedure for reformulating an assertion

description logic, along with a strategy for applying them. The task
can be compared with the simplification of an arithmetical expres-
sion such as ((2 × 3) + 4) + (5 × 6); as well as knowing the rules
for adding and multiplying, we need a strategy for which constituent
to simplify first. For arithmetic many people would adopt a left-to-
right depth-first strategy, and thus begin by evaluating 2 × 3, then
6 + 4, then 5 × 6, then finally 10 + 30. Our task is a little different
since not all expressions can be simplified, but given a complex class
like ∃P.C u ∃P.(> u C) we could still follow a left-to-right depth-
first strategy, first confirming that ∃P.C cannot be simplified, then
simplifying > u C to C, then simplifying ∃P.C u ∃P.C to ∃P.C.5

The class simplification rules can be stated most easily if we as-
sume that intersections never have arguments that are also intersec-
tions: in other words, an expression like C u (D u E) is flattened
out to C u D u E. Otherwise it is harder to detect repetitions such
as C u (D u C) where the second C is nested further down. The
following rules then suffice:

(a) If an intersection contains the argument ⊥, replace the whole in-
tersection by ⊥ (e.g., C uD u ⊥ ⇒ ⊥).

(b) If an intersection contains the argument > (one or more times),
remove it (e.g., C u > u > ⇒ C).

(c) If an intersection contains the same argument more than once, re-
move all repetitions (e.g., C uD u C u C ⇒ C uD).

(d) If a restriction is defined over the argument ⊥, replace the whole
restriction by ⊥ (e.g., ∃P.⊥ ⇒ ⊥).

If when applying any of these rules we reduce the arguments of an
intersection to only one, then as usual we replace the intersection by
this argument. Applying these rules to the example at the start of this
section, we obtain:
∃P.C u ∃P.(> u C)
≡ ∃P.C u ∃P.C [by rule (b)]
≡ ∃P.C [by rule (c)]

A corresponding explanation in natural language could be given as
follows:

Your assertion can be simplified:
Step 1
Rover lives in a kennel and lives in a thing that is a kennel.
Rover lives in a kennel and lives in a kennel.
(‘thing’ adds nothing since it applies to everything)
Step 2
Rover lives in a kennel and lives in a kennel.
Rover lives in a kennel.
(the phrase in italics was repeated)
The axiom added to the ontology is therefore: Rover lives in a
kennel.

5 One can find cases in which this strategy is inefficient, because it may lead
to evaluation of a constituent that is later discarded. Applied for example to
((2 × 3) + 4) × 0, it would waste time evaluating the left constituent to
10, before multiplying it by zero. But such refinements would take us too
far afield.

After disaggregating (point 2 in figure 3), we obtain a set of potential
axioms in which no classes are inherently redundant, and no state-
ment has an intersection as its predicate class. The next task (point
3 of figure 3) is to remove any potential axioms that are inherently
redundant (i.e., tautologies). Here there are just three cases for the
logical fragment under consideration:

• The statement has a subject class identical to its predicate class
(i.e., it has the form C v C). Example: ‘Every dog is a dog’.

• The statement’s subject class is the bottom class ⊥ (i.e., it has the
form ⊥ v C). Example: ‘Every nonexistent entity is a dog’.6

• The statement’s predicate class is the top class > (i.e., it has the
form C v >). Example: ‘Every dog is a thing’.

5.2 Noting contextual redundancy
Having refactored the user’s original assertion as a set of disaggre-
gated statements containing no inherent redundancy, the next step is
to check whether there are possible simplifications that depend on
the context—that is, on the axioms already present. Recall that the
purpose of these checks is to advise rather than correct: contextually-
based simplifications are reported as warnings, but not directly im-
plemented, in case the user later decides to retract the assertions on
which they are based (see rules 8 and 9 in figure 2).

The process of simplifying a contextually redundant class is sim-
ilar to that for an inherently redundant class: simplification rules are
applied to a complex expression, using some navigation strategy such
as left-right depth-first. In this case only one simplification rule is
needed, and as before it can be stated most easily if we assume that
embedded intersections such as Cu(DuE) are flattened out, in this
case to C uD u E. follows:

If an intersection of two or more classes contains two classes
C and D for which the subsumption relationship C v D can
be inferred from the ontology (either as an axiom or an entail-
ment), remove D from the intersection.

Thus we may simplify ‘dog that is owned by a farmer and lives in a
kennel’ to ‘dog that is owned by a farmer’ if the statement ‘Every dog
lives in a kennel’ can be inferred from the axioms already asserted.

In principle a complication can occur here: what if two classes in
an intersection are equivalent, so that we can infer both C v D and
D v C? Plainly we should remove either C or D, but not both; but
how do we choose which? I would suggest, as a solution, remov-
ing whichever class is more complex or, if they are equally complex,
removing the class that was introduced later. Complexity can be mea-
sured by counting the number of atomic terms (classes, individuals
or properties) that occur in the class expression: thus for example
‘dog that is owned by the queen’ has complexity equal to 3 since it
contains one atomic term of each kind.

6 This sentence sounds odd since there is no natural phrase for the bottom
class in English, nor any reason to make generalisations about members of
a class that has no members. Such statements are therefore very unlikely to
occur in practice, and the rule is given only for completeness.



Identification of contextually redundant statements is even sim-
pler: a statement is contextually redundant if it can be inferred from
the axioms already asserted, either as axiom or entailment.

6 Accept or reject
So far we have disaggregated, removed inherent redundancy, and
noted contextual redundancy. The next step in computing the pro-
gram’s response is to decide, for each disaggregated statement,
whether it should be added to the ontology. This requires consid-
eration of two issues: first, does the statement duplicate an axiom
already present; secondly, does the statement introduce a contradic-
tion, as discussed in section 4.

As pointed out already, detecting duplication is facilitated by our
policy of disaggregating the axioms proposed by the user. However,
there remains a problem of what we should do when the new ax-
iom is equivalent to an existing one, but not syntactically identical.
Here again one can distinguish two kinds of equivalence, inherent
and contextual. As an illustration of this distinction, suppose axioms
1-3 below have already been asserted, and consider options 4a-4b for
axiom 4:

1 Every dog is a domestic canine.
2 Every domestic canine is a dog.
3 Every pet that is a dog is a pet dog.

4a Every dog that is a pet is a pet dog.
4b Every domestic canine that is a pet is a pet dog.

The question at issue is whether to accept axiom 4, or whether to re-
ject it as equivalent to axiom 3. The answer might depend on whether
the user asserts 4a or 4b. The equivalence between 3 and 4a is inher-
ent, because it depends only on the commutivity of the intersection
operator u, which means that the classes C uD and D u C will be
equivalent whatever the values of C and D. The statements 3 and 4b
are instead only contextually equivalent, because their equivalence
depends on other axioms in the ontology, specifically on axioms 1
and 2. If one or both of these axioms was later retracted, axioms 3
and 4b would no longer be equivalent.

We would suggest, then, that a new statement should be rejected
as a duplicate either if it is syntactically identical to an existing ax-
iom, or inherently equivalent to it. For our logical fragment, inherent
equivalence can be due only to a different ordering of the terms in an
intersection.

The other reason for rejecting a statement is contradiction, and
here we suggest the strict policy of rejecting all statements that in-
troduce a contradiction, of whatever kind (inconsistency or inco-
herence, inherent or contextual). Probably the only debatable issue
here is whether one should allow statements that introduce contex-
tual incoherence—that is, a statement like ‘Every corgi is a cat’ in a
context that already asserts that every corgi is a dog, and no dog is
a cat. The trouble is that if a named class like corgi is unsatisfiable
(i.e., equivalent to the bottom class ⊥), then every statement of the
form corgi v C, for any C, can be inferred, so flooding the ontol-
ogy with absurd entailments. Against this, it might be argued that no
harm is done if the ontology is temporarily incoherent: perhaps the
new statement should be admitted for now, but with advice on which
existing axioms need to be retracted to restore coherence. This is an-
other trade-off between quality of ontology and efficiency of process
(see points 5 and 6 in figure 1).

7 Feedback on new entailments
We have discussed at some length responses by the program to asser-
tions by the user that are in some way flawed—either redundant or
contradictory, wholly or partially. Although we believe it is useful to
perform these checks and corrections, we would not expect them to
be needed often. Unless the user is particularly obtuse or eccentric,

an authoring dialogue should consist mostly of non-redundant non-
contradictory assertions which can be safely and efficiently added to
the ontology. In this case, we assume that the program’s reply should
give helpful feedback on any new entailments that result from the
latest assertion.

To illustrate this task, table 1 shows the development of an ontol-
ogy (initially empty) as the user adds four assertions, numbered in
the left column. The right column represents the program’s growing
knowledge, and includes not only all axioms asserted up to that point,
possibly reformulated, but also some entailments that can be derived
at each stage (these are shown in italics). One possible policy would
be to respond to each new assertion by reporting all or some of the
new entailments.

To implement such a policy, we need some method for generating
useful entailments. A reasoner such as FACT++ [6] will correctly de-
termine whether a specified statement is entailed, but there are always
many such statements, most of them of no interest to the user. In row
4 of table 1, for example, we could have included the following, all
new entailments:

Every dog that lives in a kennel is a pet.
Rover is a pet that lives in a shelter.
Rover is a pet that is a thing that is a thing . . . [etc.]

Why are these entailments less useful than those in table 1? We might
answer this question by appealing to the concepts of redundancy and
aggregation discussed above: for instance, by excluding entailments
that contain inherently redundant classes like ‘pet that is a thing’,
or aggregations such as ‘pet that lives in a shelter’. However, we still
need an efficient method for generating the potential entailments that
satisfy these requirements.

The simplest approach to this problem, in our view, is to begin
by listing all the classes that are essential in order to state the cur-
rent set of axioms. Let us call this the set of primary classes. It will
include all named classes, and also all classes constructed using in-
tersection and existential restriction. To these we can add all classes
{I} that contain only a named individual I , thus reducing all state-
ments to subsumption relationships between classes.7 In a dialogue
containing only assertions, the list of primary classes will grow as
more assertions are added, as shown (again in English) in table 2.

N Assertion Primary classes
1 Rover is a dog Rover

dog
2 Every dog is an animal that animal

lives in a kennel kennel
lives in a kennel

3 Every kennel is a shelter shelter
4 Every animal that lives in lives in a shelter

a shelter is a pet animal that lives in a shelter
pet

Table 2. Adding primary classes

Having determined the primary classes at a given stage in the di-
alogue, we can adopt the policy of reporting only entailments that
express subsumption relationships among primary classes; we may
call these primary entailments. This means that the reasoner only
has to consider N2 potential entailments for N primary classes (or
more precisely, N(N−1), since we can eliminate the trivial cases of
the form C v C). These could be represented by an array of N ×N
cells in which each cell [i, j] corresponds to a potential entailment
Ci v Cj , and a tick inside a cell means that the subsumption rela-
tionship holds. The program could proceed by constructing such an

7 Thus a class membership relationship I ∈ C will be reduced to the equiva-
lent subsumption relationship {I} v C.



N Assertion Axioms and entailments
1 Rover is a dog Rover is a dog
2 Every dog is an animal that Every dog is an animal

lives in a kennel Every dog lives in a kennel
Rover is an animal
Rover lives in a kennel

3 Every kennel is a shelter Every kennel is a shelter
4 Every animal that lives in Every animal that lives in a shelter is a pet

a shelter is a pet Every dog is a pet
Rover is a pet

Table 1. Adding axioms and their entailments

array, ticking all cells along the diagonal (i = j), ticking all cells
corresponding to axioms, and then submitting all cells that are still
empty to the reasoner.

Having computed the set of primary entailments, the program
must finally decide which are worth reporting. This is partly a sub-
jective judgement, since it implies an evaluation of which statements
are most interesting or helpful to the user. In the absence of empir-
ical studies, we would suggest that the following factors might be
relevant:

• Entailments that hold trivially should not be reported. In table 2,
for example, ‘animal that lives in a shelter’ and ‘animal’ are both
primary classes, yielding the entailment ‘Every animal that lives
in a shelter is an animal’, an inherently redundant statement.

• Entailments should be given priority when they share either their
subject class or their predicate class with the latest assertion, so
that the user perceives a link between the two statements.

• On grounds of efficiency one might prefer entailments that depend
on a larger set of axioms. On this basis, the entailment ‘Rover is
a pet’ might be preferred to ‘Every dog is a pet’, which requires a
less complex inference.

The first of these suggestions is intuitively obvious, but the others
are debatable. We think the topic is worth exploring, not only in the
context of ontology authoring, but as a skill relevant to all dialogues
in which a listener wants to signal understanding.

8 Conclusion
We have sought precise rules for responding to an assertion, in a di-
alogue between an ontology author and a program with logical com-
petence but no knowledge of the domain. We find that the program
requires a surprising range of analytical skills in order to recognise
possible flaws in the assertion and decide whether to accept it, either
in its original form or in a revised form. When an assertion is ac-
cepted, another set of skills is brought into play, to decide which of
many implications should be reported to the user. Ontology author-
ing provides a well-defined context in which these generic dialogue
skills can be studied formally.

ACKNOWLEDGEMENTS
We would like to thank the referees for their comments which helped
improve this paper.

REFERENCES
[1] C. L. Hamblin, Fallacies, Methuen, London, UK, 1970.
[2] C. L. Hamblin, ‘Mathematical models of dialogue’, Theoria, 37, 130–

155, (1971).

[3] Ian Horrocks, ‘Ontologies and the semantic web’, Communications of
the ACM, 51(12), 58–67, (December 2008).

[4] Richard Power, ‘OWL Simplified English: A Finite-State Language for
Ontology Editing.’, in CNL, eds., Tobias Kuhn and Norbert E. Fuchs,
volume 7427 of Lecture Notes in Computer Science, pp. 44–60. Springer,
(2012).

[5] William Strunk, Jr. and E. B. White, The Elements of Style, Macmillan,
third edn., 1979.

[6] D. Tsarkov and I. Horrocks, ‘FaCT++ Description Logic Reasoner: Sys-
tem Description’, in Proceedings of the International Joint Conference
on Automated Reasoning (IJCAR 2006), volume 4130 of Lecture Notes
in Artificial Intelligence, pp. 292–297. Springer, (2006).


