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Abstract

This paper studies the evolutionary stability of the unique Nash equilibrium
of a first price sealed bid auction. It is shown that the Nash equilibrium is not
asymptotically stable under payoff monotonic dynamics for arbitrary initial popu-
lations. In contrast, when the initial population includes a continuum of strategies
around the equilibrium, the replicator dynamic does converge to the Nash equilib-
rium. Simulations are presented for the replicator and Brown–von Neumann–Nash
dynamics. They suggest that the convergence for the replicator dynamic is slow
compared to the Brown–von Neumann–Nash dynamics.

JEL Classification: C73, D44

1 Introduction

Auctions have been extensively studied using classical game theory equilibrium concepts.1

On the other hand, surprisingly little is known about the out-of-equilibrium properties
of these auctions.2 Since there are many predictions of the standard theory that are not
observed in practice,3 out-of-equilibrium dynamics might provide some valuable insight
about real world auctions.

This note presents a new approach to first price auctions. It consists in applying tools
from the theory of evolution in games with continuous strategies. The main objective is
to analyze the stability properties of the Nash equilibrium under the replicator dynamic
as well as general payoff-monotonic dynamics.4

We will consider a standard model of evolution, the continuous time replicator dy-
namic and its generalizations, payoff–monotonic dynamics. The literal interpretation of

1See for example Krishna (2002) and Milgrom (2004) for surveys.
2Exceptions include some learning models as the ones of Hon-Snir, Monderer, and Sela (1998) and

Saran and Serrano (2007).
3See Kagel and Levin (2008) for a survey.
4The cornerstone solution concept in evolutionary game theory is the Evolutionarily Stable Strategy

(ESS). However, in a game with infinitely many strategies, as it is the case with auctions, it is by
now well known that ESS is not sufficient to guarantee dynamic stability (see for example Oechssler
and Riedel (2002), Cressman, Hofbauer, and Riedel (2006)). Analogous concepts have been introduced
for continuous strategy games, like the Continuously Stable Strategy (CSS) of Eshel (1983) and the
Neighborhood Invader Strategy (NIS) of Apaloo (1997).
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evolutionary reproduction and fitness does not apply to auctions, of course; however,
many learning algorithms that are more plausible for human interactions lead to such dy-
namics as well, in particular those based on imitation5. We thus believe that our results
provide valuable insights into the robustness of the unique Nash equilibrium of first–price
auctions for boundedly rational agents.

Our main result is a negative one: the unique Nash equilibrium fails to be asymp-
totically stable under regular payoff–monotone dynamics. This might come as a surprise
as the Nash equilibrium is not only unique but also strict. However, we find strategies
that are able to invade the Nash equilibrium. Even though the invader strategies are not
best reply to themselves (i.e. they are not equilibria), they fare better against themselves
than the equilibrium strategy.

We prove our result with the help of a static stability concept, Neighborhood Invader
Stability, or NIS. We show that our Nash equilibrium fails to be NIS. Similarly to a result
of Eshel and Sansone (2003) and and Cressman (2005), we then show that the Bayesian
equilibrium is NOT asymptotically stable under replicator dynamics (and similar regular
payoff–monotone dynamics). This is a negative result which shows that, maybe, first
price auctions are more difficult to play for boundedly rational players. Indeed, we cannot
expect convergence to the equilibrium from arbitrary initial conditions.

Our negative result begs the question: how do evolutionary and learning dyanmics in
first–price auctions look like? We shall show next that for “many” initial distributions, in
particular those with full support, the bidding behavior is close to the Nash prediction.
As long as evolutionary deviations are sufficiently dispersed, we can thus expect to see
bidding behavior close to the Bayesian Nash prediction, even though convergence to the
exact equilibrium cannot be expected.

One reason for this might be that – when restricting the strategy space to a suitably
parametrized class – the equilibrium does satisfy another static stability concept, namely
continuous stability, or CSS. In a first price auction, this condition is good enough to
ensure convergence to the Nash equilibrium for many (but not all!) initial distributions
close to the Nash equilibrium.6

Finally, we present some simulations based on different initial conditions. There
are two main reasons for running them. First, they allow to see the behavior of some
dynamics for which there are very few theoretical results, such as the BNN dynamic.
Second, theoretical results are asymptotic in nature, but there is very little known about
the evolutionary process in the medium run.

In these simulations we find that the replicator dynamic converges to the equilibrium
if the initial distribution is sufficiently well dispersed as predicted by the theory, but
convergence takes place at a very slow rate. The Brown–von Neumann–Nash dynamic
converges much faster in our simulations.

The paper is organized as follows. Section 2 presents the model. The theoretical
results regarding convergence are found in Section 3. Section 4 include the simulations
of the model done for the replicator and BNN dynamics. Concluding remarks are offered
in Section 5.

5See Schlag (1998). Sandholm (2010) includes several different imitative models that lead to the
replicator dynamic.

6Louge (2010) presents some conditions that guarantee the convergence to CSS.
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2 The model

We consider a single object for sale through a first price sealed bid auction. There are 2
bidders, 1 and 2. The valuation for bidder i is vi. Valuations are drawn independently
from the uniform distribution on the interval [0, 1]. Player i bids according to measurable
function si : [0, 1]→ R+. The player with the highest bid wins the auction and the pays
his own bid. In case of a tie, each bidder wins the object with equal probability.

It is well known that the unique symmetric Nash equilibrium of this game is s1(v) =
s2(v) = s∗(v) = v

2
.7 This equilibrium is strict, so it implies that s∗ is an ESS.

We consider a restricted game where players choose strategies of the form

s(θ, v) =
vθ

2
(1)

for some parameter θ > 0. In this restricted game, the strategy set of players is Θ = R++

and the unique Nash equilibrium is to play θ∗ = 1 for both players. Let S(Θ) denote
the set of bidding functions in the restricted game. Notice that S(Θ) allows for both
overbidding (when θ < 1) and underbidding (when θ > 1).

We compute next the ex ante payoff.

Lemma 1. The payoff function for bidder i against bidder j in the restricted game is

π(θi, θj) =
θiθj(1 + 2θj)

2θ2
i + 2θ2

i θj + 6θiθj + 4θiθ2
j + 4θ2

j

(2)

Proof. See the Appendix.

Lemma 1 shows that even a simple class of bidding function can result in a payoff
function more complex than the standard quadratic payoffs used in the evolution litera-
ture.

We will consider a standard model of evolution, the continuous time replicator dy-
namic. This dynamic is probably the most studied in the literature, introduced originally
by Taylor and Jonker (1978) for biological reproduction in finite games. It is very popular
in economics as well, since it is the outcome of appealing models of imitative behavior.8

At time t ∈ [0,∞), the state is given by a population Pt ∈ ∆Θ. Let Π (P,Q) denote
the expected payoff of population P against population Q. The excess payoff is defined
as

σ (θ, P ) = Π (δθ, P )− Π (P, P ) (3)

where δθ is the Dirac distribution on θ.
For an initial population P0, the trajectory PR

t evolves according to the replicator
dynamic if

dPR

dt
(A) =

∫
A

σ
(
θ, PR

)
PR(dθ) (4)

where A is a set in the Borel σ-algebra of Θ. Oechssler and Riedel (2001) have shown
that (4) is well defined and has a unique solution.

7In general, the equilibrium strategy in a first price auction is given by bi = E [maxj 6=i vj |vi]. See
Krishna (2002).

8See Schlag (1998). Sandholm (2010) includes several different imitative models that lead to the
replicator dynamic.
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The replicator dynamic can be generalized to the class of payoff monotonic dynamics.
We will use the definition introduced in Oechssler and Riedel (2002). Let Π̂ be the average
conditional payoff on a Borel set A with positive probability P (A) > 0:

Π̂ (A,P ) =
1

P (A)

∫
A

Π (δθ, P )P (dθ) (5)

A dynamic is called payoff monotonic if for all strategy sets A,B with P (A), P (B) > 0,

Π̂ (A,P ) > Π̂ (B,P ) if and only if
1

P (A)

dP

dt
(A) >

1

P (B)

dP

dt
(B) (6)

3 Dynamic (In)Stability

In this section we will state our main results regarding the stability of the Nash equilib-
rium of the auction. We will consider initial populations that contain θ∗ in their support.
As it was argued by Oechssler and Riedel (2002), the relevant notion of distance is the
Prohorov metric.

3.1 Instability

When considering all possible initial populations, we obtain a negative result: the Nash
equilibrium is not asymptotically stable under any payoff monotonic dynamic.

Theorem 1. The unique Bayesian Nash equilibrium in first–price auctions with uniform
types is not asymptotically stable under payoff monotonic dynamics, in particular the
replicator dynamic.

Proof. We prove this result by showing first that the Nash equilibrium fails to be NIS in
our restricted game. Note that for instability, it is enough to find one possible invader.
Our parametrization is thus not a loss of generality.

Recall that θ∗ is NIS if if there exists an ε > 0 such that for all θ with |θ − θ∗| < ε

π(θ∗, θ) > π(θ, θ) (7)

We can thus quickly check this condition.

π(1, θ)− π(θ, θ) =
θ

2(1 + 2θ)
− 1 + 2θ

6(2 + θ)
(8)

= − (1− θ)2

6(2 + θ)(1 + 2θ)
< 0 (9)

The condition (7) for a NIS fails for all θ 6= θ∗.
Fix ε > 0. Consider any initial distribution P with support on {θ∗, θ}, for some θ

such that |θ − θ∗| < ε. Then,

ρ(δθ∗ , P ) = min {p∗, |θ − θ∗|} < ε (10)

where ρ is the Prohorov distance and p∗ = P ({θ∗}). The average conditional payoffs are

Π̂({θ∗}, P ) = p∗π(θ∗, θ∗) + (1− p∗)π(θ∗, θ) (11)

Π̂({θ}, P ) = p∗π(θ, θ∗) + (1− p∗)π(θ, θ) (12)
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From (9), there exists p̄ ∈ (0, 1) such that if p∗ < p̄, then Π̂({θ∗}, P ) < Π̂({θ}, P ).
Since the dynamic is payoff monotonic, we obtain

1

p∗
dp∗

dt
<

1

1− p∗
d (1− p∗)

dt
(13)

Since p∗ ∈ (0, 1), it follows that d
dt
p∗ < 0. Therefore, δθ∗ is not asymptotically stable

under the replicator dynamic.

The proof exploits the fact the equilibrium fails to satisfy the NIS criterion. If a
strategy is not NIS, then it is not asymptotically stable under replicator dynamics, as
it is shown in Eshel and Sansone (2003) and Cressman (2005). Theorem 1 provides a
general argument for payoff monotonic dynamics. Since the equilibrium is not a NIS, then
there exists an invader that is close enough to the equilibrium such that the equilibrium
is not locally superior. If the initial population is dimorphic and the weight on the
invading strategy is high enough, then the equilibrium obtains a lower conditional average
payoff. Under the class of payoff monotonic dynamics, the population drifts away from
the equilibrium.

3.2 Stability in the restricted game

The argument presented in the previous section relies of an invading population with
finite support. We find that a positive result can be obtained by imposing some conditions
on the initial population. In particular, if the support of the population is an interval
(that includes the equilibrium strategy θ∗) then the replicator dynamic converges to the
equilibrium. One reason for this is that the Bayesian Nash equilibrium does satisfy a
certain static stability condition, CSS.

Recall that θ∗ ∈ Θ is called continuously stable, or CSS, if it is evolutionarily stable
(ESS) and there exists an ε > 0 such that for all θ with |θ − θ∗| < ε there exists η > 0 so
that for all θ′ ∈ Θ with |θ − θ′| < η

π(θ′, θ) > π(θ, θ) if and only if |θ − θ∗| > |θ′ − θ∗| . (14)

Proposition 1. In the restricted game, the Bayesian Nash equilibrium θ∗ = 1 is CSS.

Proof. See the Appendix.

The next step is to notice that our restricted game exhibits strategic complementari-
ties. It is straightforward that the best response function BR is increasing, where

BR (θ) =

√
2θ√

1 + θ
. (15)

We can obtain then the following result.

Proposition 2. In the restricted game, if the support of the population is an interval
that contains the equilibrium strategy θ∗, then the replicator dynamic converges to the
Bayesian Nash equilibrium in the Prohorov metric.

The result Proposition 2 follows from Louge (2010), where an argument based on
iterated dominance shows that CSS are stable in games with strategic complements if
the support of the population is a continuum.
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The only qualification to this positive result is that considers only the game restricted
to strategy set S(Θ). One could also consider the game restricted to a different class of
bidding functions. We have also considered linear bidding functions, obtaining the same
results9.

4 Simulations for Replicator and BNN Dynamics

In this section we present some simulations using different initial distributions. These
were conducted for the replicator dynamic as well as the BNN dynamic. We start with
the definition of the BNN dynamic. The positive part of the excess payoffs is

σ+ (θ, P ) = max {σ (θ, P ) , 0} (16)

A trajectory PB
t evolves according to the BNN dynamic if

dPB

dt
(A) =

∫
A

σ+

(
θ, PB

)
dθ − PB(A)

∫
Θ

σ+

(
θ, PB

)
dθ (17)

for all A in the Borel σ-algebra of Θ.
We ran simulations of the replicator and the BNN dynamics for the set S(Θ) of bidding

functions. The strategy space considered is Θ =
[

1
2
, 3

2

]
and it was discreticized in 101

equidistant points.
The differential equations were approximated by the Euler method, with a time step

d. In other words, for dynamic N = R,B we have,

PN
t+d(θi) = PN

t (θi) + d× PN
t (θi)× dPN

dt
(θi) (18)

The simulation was iterated 1,000,000 times with time step d = 0.1. Below we show
the distributions for each dynamic after 100,000 and 1,000,000 iterations.

Figure 1 is obtained from a uniform initial distribution. We can see that both dynam-
ics appear to converge to the Nash equilibrium, although the replicator dynamic appears
to be much slower. Interestingly, the mean strategy coincides with the Nash equilibrium
at the initial distribution, but immediately becomes larger than one for both dynam-
ics (recall that θ > 1 corresponds to underbidding). This jump is much larger for the
replicator dynamic.

Figure 2 from an initial distribution that puts .99 of probability on θ = 1.05 and
divides the remaining probability equality among all other strategies. In this case, the
behavior of our two dynamics is dramatically different. The BNN dynamic moves the
distribution gradually towards the equilbrium. It can also be seen that the mean strategy
also moves towards θ∗ = 1, although not as fast as expected. For the replicator dynamic,
the distribution appears not to move. We know, however, that the initial distribution is
not a restpoint. In the fourth graph in can be seen that the probability of θ = 1.04 is
increasing, but remaining always a very small magnitude. This shows that convergence
predicted by the theory is taking place, but at a very small rate.

Figure 3 considers a normal distribution with mean 1.05 and standard deviation 0.1.
Similarly to Figure 1, it appears that both dynamics move towards the equilibrium, with
the BNN dynamics being the fastest.

9The results are available from the authors upon request.
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Figure 4 considers an initial distribution that puts .99 of probability (divided equally)
on two strategies: θ1 = 0.9 and θ2 = 1.1. The remaining probability is distributed
uniformly for all other strategies. In this case, replicator and BNN behave differently.
The BNN dynamic evolves toward a unimodal distribution centered around the Nash
equilibrium fairly fast. The mean strategy is never far from θ∗ = 1. On the other
hand, the replicator dynamic shifts very quickly all the weight from θ1 = 0.9 towards
θ2 = 1.1. Once this happens, the distribution starts a slow convergence path towards the
equilibrium.

Figure 5 considers an initial distribution that puts .99 of probability (divided equally)
on three strategies: θ1 = 0.9, θ∗ = 1 and θ2 = 1.1. For this initial distribution, both
dynamics appear to converge. The replicator dynamic, however, puts relatively more
weight in θ2 = 1.1 for the first hundred thousand periods, although this asymmetry is
corrected after that.

5 Conclusion

This note introduces a new approach to the study of evolution in auctions models. The
most general result obtained is a negative one: for an arbitrary initial population, the
unique Bayes Nash equilibrium of a first price is unstable under payoff monotonic dy-
namics. Since this is an instability result, the restriction of the strategy space is without
loss of generality.

In contrast, our second result is that when the initial population satisfy some regularity
condition (namely, full support around the equilibrium), then the replicator dynamic
converges to the Nash equilibrium of the auction. This result is qualified by the fact
that we consider only a class of bidding functions. Moreover, the same result holds with
different restrictions (e.g. linear bidding functions).

We consider a restriction of the strategy space in order to apply results from the theory
of evolution in continuous strategy games. While ideally the set of bidding functions
considered should be unrestricted, this note provides a first step in that direction.

Finally, some simulations are presented for different initial populations. The following
conclusions can be drawned. First, it confirms our convergence result for the replicator
dynamic, even when the initial population does not include a continuous interval around
the equilibrium but a grid. Second, it shows that the BNN appears to have even better
convergence properties. This is valuable since there are very few theoretical results for
the BNN dynamic. Third, it highlights the issue of the speed of convergence. It some-
what qualifies our positive result for the replicator dynamic, since the time needed for
convergence is surprisingly large in some cases.

This note suggests several paths for future research. First, the approach introduced
here can be used in a large number of economic applications, starting from other auctions
formats in particular to private information models in general where strategies are func-
tions from an infinite set of types. Second, more progress needs to be done by considering
a less restrictive strategy space.
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Appendix and Figures

Proof of Lemma 1. Since bidding functions are strictly incresing in v, the probability of
a tie is zero. Therefore, the ex-ante payoffs for a bidder using strategy si against strategy
sj are given by

π(si, sj) =

∫ 1

0

[vi − si(vi)] Pr [si(vi) > sj(vj) | vi] dvi (19)

According to (1), bidder i wins the auction against j whenever v
θj
j < vθii . It follows

then

π(θi, θj) =

∫ 1

0

[
v − vθi

2

]
v
θi
θj dv (20)

=
1

θi
θj

+ 2
− 1

2
(
θi
θj

+ θi + 1
) (21)

=
θiθj(1 + 2θj)

2θ2
i + 2θ2

i θj + 6θiθj + 4θiθ2
j + 4θ2

j

(22)

Proof of Proposition 1. We will use a result from Cressman (2009). Namely, an ESS θ∗

is a CSS if for all ε > 0 it is risk dominant in the 2 × 2 game with strategies {θ∗, θ},
where |θ − θ∗| < ε.

In other words, s∗ is a CSS if for all θ close to the equilibrium,

RD(θ) = [π(θ∗, θ∗)− π(θ, θ∗)]− [π(θ, θ)− π(θ∗, θ)] > 0 (23)

From Lemma 1, we obtain

RD(θ) ≡
[

1

6
− 3θ

2(2 + θ)(1 + 2θ)

]
− (1− θ)2

6(2 + θ)(1 + 2θ)
(24)

=
(1− θ)2

6(2 + θ)(1 + 2θ)
> 0 (25)

Therefore, θ∗ is risk dominant against any strategy θ 6= θ∗.

9



Initial 100,000 iterations 1,000,000 iterations

θ

Distribution

0.5 1 1.5

Replicator

0.44

θ

Distribution

0.5 1 1.5

BNN

0.44

Iterations

(hundreds of

thousands)

Mean θ

1

1.03

1.06

0 1 5 10
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Figure 1: Simulation for a uniform initial distribution
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Figure 2: Simulation for an initial distribution that puts .99 of probability on θ = 1.05
and its uniform in the rest of the strategy space
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Figure 3: Simulation for a normal initial distribution with mean 1.05 and standard devi-
ation 0.1
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Initial 100,000 iterations 1,000,000 iterations
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Figure 4: Simulation for an initial distribution that puts .99 of probability (divided
equally) on two strategies: θ1 = 0.9 and θ2 = 1.1
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Figure 5: Simulation for an initial distribution that puts .99 of probability (divided
equally) on three strategies: θ1 = 0.9, θ∗ = 1 and θ2 = 1.1
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