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ABSTRACT
Period estimation is an important task in the classification of many variable astrophysical
objects. Here we present GRAPE: Genetic Routine for Astronomical Period Estimation, a
genetic algorithm optimised for the processing of survey data with spurious and aliased
artefacts. It uses a Bayesian Generalised Lomb-Scargle (BGLS) fitness function designed
for use with the Skycam survey conducted at the Liverpool Telescope. We construct a set
of simulated light curves using both regular and Skycam survey cadence with four types
of signal: sinusoidal, sawtooth, symmetric eclipsing binary and eccentric eclipsing binary.
We apply GRAPE and a BGLS periodogram to this data and show that the performance
of GRAPE is superior to the periodogram on sinusoidal and sawtooth light curves with
relative hit rate improvement of 18.2% and 6.4% respectively. The symmetric and eccentric
eclipsing binary light curves have similar performance on both methods. We show the Skycam
cadence is sufficient to correctly estimate the period for all of the sinusoidal shape light curves
although this degrades with increased non-sinusoidal shape with sawtooth, symmetric binary
and eccentric binary light curves down by 20%, 30% and 35% respectively. The runtime of
GRAPE demonstrates that light curves with more than 500-1000 data points achieve similar
performance in less computing time. The GRAPE performance can be matched by a frequency
spectrum with an oversampled fine-tuning grid at the cost of almost doubling the runtime.
Finally, we propose improvements which will extend this method to the detection of quasi-
periodic signals and the use of multiband light curves.
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1 INTRODUCTION

The era of wide-field large sky surveys has facilitated the collection
of data on a huge quantity of periodically variable sources (Udalski
et al. 1997; Alcock et al. 2000; Rahal et al. 2009; Flewelling et
al. 2016). The next generation of surveys such as the Large Syn-
optic Survey Telescope (LSST) will further expand this catalogue
of objects (LSST Science Collaboration 2009; Ivezić et al. 2014).
Periodic variables include many varieties of stellar systems with
different evolutionary states and morphologies. Examples of these
objects include pulsating giant stars and eclipsing binary systems of
many configurations (Wood & Sebo 1996; Eyer & Mowlavi 2008;
LaCourse et al. 2015). These objects grant us insight into stellar
evolution and the wider galactic evolution around the sources. The
rapid classification of newly discovered candidates of these objects
for follow-up is of great importance. Machine Learning techniques
have been used to great effect to automate this task which is neces-
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sary given the quantity of survey data being produced (Debosscher
et al. 2007; Bloom & Richards 2011; Richards et al. 2011, 2012).

The individual observations of a source in a given filter can be
used to generate a light curve, a time-series detailing the magnitude
or flux of an object at a set of given time instants. Whilst a large
number of parameters have been, and continue to be, developed to
characterise the variability in light curves, the three globally dom-
inant ones are period, colour and amplitude (Bloom & Richards
2011; Richards et al. 2011). Colour can be evaluated using multi-
band photometry with many surveys collecting data in at least three
filters. Period and amplitude have a more complicated interdepen-
dency with the amplitude being a function of a candidate period
with a variability class dependent relationship (Debosscher et al.
2007; Bloom & Richards 2011).

It is therefore clear that the successful extraction of the pe-
riod for a periodic source is of great importance to successful and
reliable object classification. Many periodic variable types such as
the Mira-type red giant long-period variables, the classical cepheid
giants and the population II cepheid giants inhabit a strict range
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of periods (Glass & Evans 1981; Stetson 1996; Tanvir et al. 2005;
Yoachim et al. 2009). This is due to the properties of the stellar
atmosphere pulsations driving the variability of these objects (Saio
1993).Mira-type stars exhibit strong, multi-hundred day long nearly
sinusoidal variations with amplitudes of greater than 2.5mag in the
optical bands (Glass & Evans 1981). The classical cepheids have
shorter periods of days to a few months and smaller amplitudes of
a few tenths to about 2mag in the optical bands, usually positively
correlated with the period (Stetson 1996). The shape of these vari-
ations is not sinusoidal and is closer to an asymmetrical sawtooth
(Tanvir et al. 2005; Yoachim et al. 2009). This can result in diffi-
culties for methods designed to detect sinusoidal variability. Some
periodic sources such as eclipsing binaries have a large number of
configurations with a wide range of periods (Prsa et al. 2008). In
these cases the precise determination of the period of these eclipses
is still required for the generation of the characteristic eclipse shapes
(Paegert et al. 2014).

In this paper we introduce a new approach to facilitate the rapid
estimation of light curve periodicity through the use of a tuned ge-
netic algorithm named GRAPE: Genetic Routine for Astronomical
Period Estimation. This method combines genetic parameter opti-
misation with astronomical period estimation functions and alias
correction routines allowing the quick and accurate evaluation of
candidate periods across a large potential period range for light
curves with many observations (Charbonneau 1995). The fitness
function for a given candidate period is determined by a Bayesian
Generalised Lomb-Scargle (BGLS) periodogram capable of detect-
ing periodic variability in light curves with substantial noise com-
ponents (Mortier et al. 2015; Mortier & Cameron 2017). Genetic
algorithms, by the virtue of their ability to quickly move around
large, high dimension, parameter spaces allow this period estima-
tion task to be performed with a high speed even on light curves
with thousands to tens of thousands of data points. The versatility
and speed of this method is offset by a difficulty in fine-tuning the
solution as genetic algorithms sacrifice absolute accuracy on a final
solution with finding it in such a large parameter space.

In §2 we briefly review the different metrics possible for char-
acterising variability at a candidate period and discuss the difficul-
ties inherent to traditional frequency spectrum approaches. In §3 we
introduce GRAPE and describe how the genetic algorithm is able to
optimise across the period space to the best performing candidate
period based on the chosen fitness function. We also discuss the
tuning parameters such an approach requires as well as the prop-
erties of ’white noise jitter’ an important argument in the BGLS
method (Mortier et al. 2015). In §4 we evaluate the peformance and
runtime of GRAPE in the detection of periodicity in synthetic light
curves of different shapes. We also compare the performance with
two different sampling cadences, a more traditional survey cadence
and a variable cadence generated from time instants extracted from
SkycamT, a wide-field cameramounted on the Liverpool Telescope,
images (Mawson et al. 2013). We discuss our results and conclude
with the possibilities of this method and the future work which will
expand its capability in §5.

2 PERIOD ESTIMATION MEASURES

2.1 Periodograms

The identification of periodic components in astrophysical signals
is usually accomplished through a decomposition of the signal us-
ing a Periodogram (Schuster 1898; Schwarzenberg-Czerny 1996).

Periodograms transform a time-series into frequency space using
techniques like the Discrete-time Fourier Transform (DFT) and
associated Fast Fourier Transform (FFT) (Singleton 1967). These
powerful techniques are of limited use in astronomy due to the un-
even sampling common to observational science. As a result, an
alternative metric based on Fourier transforms was proposed by
two independent approaches and is known as the Lomb-Scargle
periodogram (LSP) (Lomb 1976; Scargle 1982).

When viewed from a maximum likelihood viewpoint, this
method computes sinusoidal models across candidate frequencies
and determines the resulting best fit (VanderPlas 2017). Fluctuating
phase offsets for differing candidate frequencies are calibrated by
a phase correction term in the LSP calculation. The statistic, often
referred to as spectral power, is computed for a set of candidate
frequencies linearly distributed with a given density named the fre-
quency spectrum. The method is capable of operating on unevenly
distributed measurements allowing direct application to observa-
tional data. Unfortunately, it suffers from a number of drawbacks.
The data points are not weighted in the calculation allowing photo-
metrically poor data to unduly influence the quality of the fits. The
metric does not provide for a constant offset requiring the data points
to be centred on zero. This is commonly performed by computing the
mean/median of the data points and subtracting this value. Whilst
this approach is often satisfactory, if the sample mean/median is
different to the underlying population mean/median, it will result in
erroneous frequencies. These two drawbacks have been addressed
with the computation of a more sophisticated Periodogram named
the generalised Lomb-Scargle periodogram (GLS) (Zechmeister &
Kürster 2009). As the underlying model is sinusoidal the LSP and
GLS both exhibit decreased performance on non-sinusoidal astro-
physical signals such as sawtooths and eclipsing binaries (Richards
et al. 2012; Graham et al. 2013). Introducing additional harmon-
ics for the sinusoidal model was proposed to allow for better fits to
these non-sinousoidal signals (Baluev 2009). This was found to also
introduce ambiguity into the period due to increased response in fits
at periods which are multiples or submultiples of the real period of
the signal (VanderPlas 2017).

The spectral power statistic is a somewhat abstract measure-
ment but by introducing Bayesian symbolism to the best-fit statistic,
the probability of a sinusoidal fit at a candidate frequency is present
in the light curve given a sinusoidal prior resulting in a Bayesian
Generalised Lomb-Scargle Periodogram (BGLS) (Mortier et al.
2015; Mortier & Cameron 2017). This takes into account the er-
ror associated with the photometric measurements although it also
requires an additional term named white noise jitter. This term is
required to describe the amplitude of other possible underlying sig-
nals and correlated noise in the data and underestimating this value
will result in the probabilities for all candidate periods collapsing
to zero with a total loss of usable information.

2.2 The frequency spectrum

All the above methods produce a statistic which is a function of
period or frequency. Of course, this makes perfect sense as deter-
mining strong periods is the result we are hoping to obtain. However,
all these approaches select trial periods through the creation of a
frequency spectrum. This discretised vector of candidate periods
limits the precision of best-fit period the algorithms can present.
Whether the method looks for a minimum or a maximum of a given
statistic, or perhaps something more complicated, the period as-
sociated with this optimised candidate period is still one of these
initial candidates. Period estimation pipelines often use a fine-grid
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search to mitigate this by performing ever finer grids around strong
candidates which results in increased computational effort (Deboss-
cher et al. 2007; Richards et al. 2011, 2012). It is also likely that
many of the trial frequencies contain nothing of value and large sec-
tions of the frequency spectrum may be filtered out prior to more
computationally expensive calculations. Yet, despite the capability
of frequency spectrum approaches, it is clear that the true period
parameter space is a continuous variable space. The discretised fre-
quency spectrum can be oversampled to a degree where frequency
estimation errors associated with the finite observational data are
larger than the gaps between consecutive candidate frequencies. As
true frequencies produce gaussian shape peaks due to finite-length
data (VanderPlas 2017), a candidate frequency which is slightly
out of position from the true frequency might only be evaluating
the side of the gaussian peak. This would result in a lower valued
statistic than would be appropriate for the true period resulting in an
increased potential for an incorrect result. This can be seen in long
period variability candidates as the frequency spectrum is recipro-
cal to the period space. The treating of the period parameter space
as a continuous variable allows for the correction of this artefact.

Trial period extraction using the bands method was used as
a followup to the development of the Correntropy Kernalised Pe-
riodogram (CKP) (Huijse et al. 2012). Due to the increased com-
putational complexity of this calculation, it was determined that
preselecting trial periods was optimal (Protopapas et al. 2014). The
bands method was introduced as a method to conduct this preselec-
tion. The approach operates on the idea that data points of similar
magnitude are likely to be found at integer multiples of any un-
derlying period within magnitude percentile bands which contain a
strong signal component. A candidate variable light curve can be
dismantled into a number of percentile bands. Nb percentile bands
have their spectral window function computed on a linearly spaced
frequency grid and the resulting Nt local maxima are retained. This
results in NbNt trial periods for further analysis with the values of
Nb and Nt chosen as a trade off between computational load and
correct trial estimation (Protopapas et al. 2014). This trial period
selection approach, whilst still relying on frequency grids, suggests
that it is possible to rapidly evaluate sections of the candidate pe-
riod parameter space. With our proposed method, we consider an
approach that can treat the period parameter as a continuous vari-
able whilst simultaneously exploring the period parameter space
and isolating regions of interest to optimise to the true underlying
period.

3 PERIOD ESTIMATION WITH GRAPE

3.1 Genetic Algorithms for period estimation

Period estimation tasks are best described as a global optimisation
problem across a continuous parameter space. This optimisation
must be solvable with a minimal computation of trial periods to
identify a global minimum in a cost function. This is a function
of the parameter we wish to evaluate, in this case the period of a
light curve, and the trial period at the global minimum is the de-
sired result (Charbonneau 1995; Rajpaul 2012). Many optimisation
routines have been developed but the complexity of the underly-
ing cost function can rapidly diminish the performance of many
problems until they are no better than a brute force approach. Evo-
lutionary algorithms are inspired by biological evolution and are
capable of exploring a large, possibly high dimesion, parameter
space efficiently whilst also selecting good candidate results with

Figure 1.A simulated sinusoidal signal with white noise sampled with more
traditional regular cadence and the Skycam highly variable cadence. Top left
is the regular cadence raw light curve, top right is the regular cadence phased
light curve, bottom left is the Skycam cadence raw light curve and bottom
right is the Skycam cadence phased light curve. Skycam cadence clearly
introduces new structures into the data which can produce spurious and
aliased results in period estimation tasks.

a high precision (Charbonneau 1995). Genetic algorithms are the
most popular subset of evolutionary algorithms and utilise compu-
tational variants of many well known staples of biological evolution
(Holland 1975). These include natural selection (survival of the
fittest), genetic recombination, inheritance and mutation (Rajpaul
2012). Genetic algorithms have been utilised in a number of prob-
lems in astrophysics (Rajpaul 2012) including period estimation
(Charbonneau 1995). To our knowledge, we have not seen them
employed with current generation periodograms using their highly
capable models in the form of a fitness function whilst allowing the
genetic algorithm to optimise to the desired period result without
requiring a frequency spectrum.

To explain how these processes are inherent in our approach,
we must describe how a genetic algorithm can be constructed for
the period estimation task. We introduce the method we developed
named GRAPE: Genetic Routine for Astronomical Period Estima-
tion. The method was needed to improve the performance of period
estimation on the Skycam database, a collection of light curves
with a three year baseline produced by the reduction of images
from SkycamT, a wide field optical instrument on the Liverpool
Telescope (Steele et al. 2004). This instrument co-points with the
telescope and takes 10 second exposures every minute the telescope
is in operation with a 35 second readout time (Mawson et al. 2013).
The instrument, at the time of the collection of these images be-
tween March 2009 and Match 2012, had a Field of View (FoV) of
21◦ × 21◦ and, whilst unfiltered, had a limiting magnitude which
was USNO-B catalogue calibrated to approximately 12mag in the
R band (Mawson et al. 2013; McWhirter et al. 2016). As a result of
not controlling the motion of the telescope, Skycam has a unique
variable cadence compared to more regular surveys. There are no
guarantees when an object will be resampled and often a cluster
of data points with a sampling of minutes are seperated by gaps
many days long. This can lead to difficulties such as aliasing where
sampling periods reflect signals across the parameter space. Figure
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1 demonstrates the difference between Skycam cadence and regular
cadence for a simulated sinusoidal signal with white noise.

3.2 GRAPE initialisation method

Genetic algorithms operate by employing a set number of individ-
uals (or phenotypes) named the population. These individuals are a
set of candidate solutions (in our case candidate periods). The indi-
viduals are distributed across the feature space in either a random or
in an organised approach, such as from a previously identified under-
lying distribution. Despite these varying degrees of complication,
generally the improvement from a uniformly random distribution
is minimal. We describe how GRAPE establishes its initial popu-
lation below as it requires definitions of the parameter space. This
population is evolved from generation i to generation i + 1 until a
cut-off point has been reached, either when the best answer reaches
a given precision or a predefined number of generations has been
computed (Charbonneau 1995).

The parameters of the solution, which in our case is just a
single period parameter, must be encoded into a string named a
chromosome with each character named a gene. GRAPE utilises
base-10 chromosomes where each gene can have an integer value
I ∈ Z ∈ [0, 9] where Z is the set of integers. Our encoding process
is very simple and is dependent on the size of the period parameter
space to be explored. GRAPE operates in frequency space and the
frequency search is performed from a minimum frequency fmin
defined in Equation 1.

fmin =
1

tmax − tmin
(1)

where tmax is the time instant of the last data point and tmin is the time
instant of the first data point to a maximum frequency of fmax = 20
(McWhirter et al. 2016). All units of frequency are in cycles per
day (d−1). For any candidate frequency fcan, which always obeys
fmin 6 fcan < fmax, the encoded chromosome is generated by
first rescaling the frequency space so that any candidate frequency
∈ [0, 1] using Equation 2.

fscaled =
fcan − fmin
fmax − fmin

(2)

The frequency is rounded to 10 decimal places and the value of
each decimal is encoded into the associated gene creating chromo-
somes containing 10 genes. Using this calculation and its inverse
the genetic algorithm can perform generational updates on the chro-
mosomes and extract new candidate frequencies for testing. Whilst
we discuss our treatment of period as a continuous variable, it is
important to recognise that we still have a precision limit with this
method. The base-10 chromosomes can encode ten decimal places
of the normalised period space. Skycam light curves have a base-
line of approximately 1000 days which results in a precision of
10−10 days for extremely short periods and 10−3 days for periods
close to the maximum period. Light curves with baselines of up
to several hundred years should still maintain a 0.1 day precision
at candidates close to this maximum. A frequency spectrum from
0.05 days to 1000 days and an oversampling factor of 10 would only
achieve equivalentworst-case precision on periods under 3 days, and
are as low precision as 2+ day precision above 100 days. Therefore,
we believe that our precision is sufficient to justify our description
of a continuous parameter space.

The initial GRAPE population (individuals of generation 1)
of number Npop is generated using two distributions to sample
sufficiently across the parameter space prioritising regions where

periodic variability is common. The first half of the population
is generated using a distribution which is base-10 logarithmic in
frequency space shown in Equation 3.{

Pop1
}
i = 10runif(log10( fmax)−log10( fmin))+log10( fmin) (3)

where
{
Pop1

}
i is the ith first half set candidate frequency, rerun

for i = 1, ..., 1000 to give
{
Pop1

}
, the set of first half set candidate

frequencies, runif is a set of uniformly distributed random numbers
generated between 0 and 1 and fmin and fmax are as above. This
distribution skews the population towards lower frequencies and
therefore higher periods yet it still heavily samples the low period
end of the parameter space as it is a function of frequency. The
second half of the population is produced by a function linear in
period space and therefore a reciprocal in frequency space. This
set of individuals is generated using Equation 4 with the same
definitions as above.{

Pop2
}
i =

1

runif
(

1
fmin
− 1

fmax

)
+ 1

fmax

(4)

where
{
Pop2

}
i is the ith second half set candidate frequency, rerun

for i = 1, ..., 1000 to give
{
Pop2

}
, the set of second half set candidate

frequencies. This distribution is highly skewed to low frequencies
and therefore high periods and is required to ensure the long period
end of the parameter space is sufficiently explored. Had we used a
distribution that was simply linear in frequency space it would often
remain in the low period end of the parameter space resulting in
a heavy loss of performance. Figure 2 demonstrates this candidate
generation process showing a set of generated candidate periods.
The candidate frequencies must then be sorted based on their per-
formance on a fitness function which computes how well they fit the
data. This sorting is then used to determinewhich candidate frequen-
cies should be retained to subsequent generations. GRAPE uses the
Bayesian generalised Lomb-Scargle periodogram (BGLS) as its fit-
ness function (Mortier et al. 2015; Mortier & Cameron 2017). This
method is quickly computable due to a lack of any operation more
complex than simple summations. Despite this light computational
complexity, it was one of the best performing periodograms when
trialed on SkycamT light curves which had been matched to known
periodic variable stars through cross-matching with the American
Association of Variable Star Observers (AAVSO) Variable Star In-
dex (VSI) catalogue. We surmise this is likely due to the methods
flexibility on population mean and data point weighting combined
with the ability to control the signal and noise components through
the careful use of the white noise jitter argument. Whilst we make
use of BGLS as our fitness function, it is important to note that the
genetic algorithm design is highly modular and other periodograms
or combinations of periodograms may be used. Our main priority
was to maintain high accuracy across the entire period space whilst
limiting the processing time on the Skycam data which exhibits
136,420 light curves with more than 2000 data points which can be
computationally intensive with the frequency spectrum approach
(Mawson et al. 2013).

3.3 Evolutionary implementation

The candidate frequencies chromosomes, sorted by the BGLS fit-
ness function,must be used to create the next generation propagating
through knowledge gained from the initial population whilst allow-
ing flexibility to explore regions that were not initially scanned.
Genetic algorithms use a mechanism analogous to sexual repro-
duction to generate the subsequent generation. A number of the
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Figure 2. A demonstration of the creation of the initial population of can-
didate frequency chromosomes. The top left plot shows the probability
distributions used to generate the randomly initialised candidates. The red
line with circular points is the logarithmic distribution from equation 3 and
the blue line with triangular points is the reciprocal distribution from equa-
tion 4. The top right set shows 20 candidate periods drawn from these two
distributions, 10 from each distribution. The bottom right set shows these
periods are transformed into frequencies and normalised based on the mini-
mum and maximum allowed frequencies for the optimisation. In the bottom
left set the candidate frequencies are rounded to 10 decimal places and these
10 decimals become the 10 genes which makes up the genetic chromosome
for each candidate. The chromosomes are strings of ten digits where each
digit represents a gene. This representation allows precision with our 0.05 to
1000 day period range of 10−3 days at the long period extreme to 10−10 days
at the short period extreme. This precision allows the optimisation to treat
the parameter space as a continous variable.

previous generation are paired up into Npairups partners. Unlike sex-
ual reproduction, the pairups can be with two copies of the same
individual if the genetic algorithm selects it. It is also important
to utilise a parameter named selection pressure for this operation.
This determines what quantity of the fittest individuals are selected
to reproduce, the parents. Selection pressure can take several forms
such as Tournament selection where random subsets of the indi-
viduals compete to be selected as a parent or Roulette selection
where a probability of selection is assigned to each individual sum-
ming to one based on their fitness function evaluation. For GRAPE
we have only tested the Roulette selection pressure method which
is superior at preserving important genetic diversity than simply
selecting the top best-fitting individuals. We employ an argument
named Pfdif ∈ R ∈ [0, 1]which defines the contribution of the sorted
fitness function to selecting the parent individuals. The argument
Pfdif = 1 results in a high contribution and essentially results in
the best performing individual pairing up with itself Npairups times.
Whilst it would seem to be a good idea as it uses the best fitting
frequency, the loss of all other genetic information greatly hinders
the algorithms ability to explore other areas of the frequency space.
The algorithm would likely get stuck at one of the intial candidate
frequencies and fail to find the true frequency. On the otherhand,
Pfdif = 0means that the parents are chosen randomly from the previ-
ous generation meaning very little learned knowledge of the fitness
function is propogated to the next. This results in an algorithm that
haphazardly jumps around the parameter space randomly requiring
a ’lucky hit’ in one of the final generations to produce a reasonable
result. Ultimately, a value must be determined that results in a pro-
pogation of fitness information without a complete loss of genetic
diversity. It is also extremely important that the rank number for the
sorted chromosomes be used, not the raw BGLS statistic, or else
the selection might still focus on the best performing chromosome
despite the selection pressure. This is due to the large difference
between BGLS statistic values for even two similarly performing
candidate frequencies (Charbonneau 1995). Selection pressure is
what introduces the survival-of-the-fittest into our approach.

Upon the selection of the Npairups reproduction events, the chil-
dren of these events must be determined. Each two parents produce
two children as part of the reproduction. These children inherit ge-
netic information from their parents but may also be a new unique
formulation of this information. This means that the reproduction
will often produce two new candidate frequencies for evaluation
in the next generation. These frequencies use genetic information
from the previous generation whilst still exploring a new part of
the parameter space. The two mechanisms used for this modifica-
tion of the parents chromosomes are called crossover and mutation.
Crossover is analogous to how children inherit traits from both their
parents by splitting the parent chromosomes into sections and then
recombining them into two children with combinations of both par-
ents chromosomes. GRAPE utilises the simplest form of crossover
by performing a single split on both parent chromosomes. First, an
argument named Pcrossover ∈ R ∈ [0, 1] determines the probabil-
ity that any given reproductive event will result in a crossover. If
a crossover is triggered during a reproduction, a uniform random
number generator selects an integer value ∈ Z ∈ [1, 10]. This deter-
mines at what location the split will occur. Child chromosome 1will
contain the genes from parent chromosome 1 up to the split location
and the genes from the parent 2 chromosome after the split location.
Child chromosome 2 is the inverse with the first part being from
parent 2 and the second part from parent 1. If no crossover occurs,
the children chromosomes are identical to the parent chromosomes
at this point. Next the mutations are calculated. Mutations are ran-
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Figure 3. A demonstation of the primary evolutionary methods utilised by
GRAPE. As seen in figure 2, the candidate frequencies are expressed as a set
of chromosomes encoding the frequency information. A set of the population
is selected to produce the next generation. The first operation utilises the
fitness function, in our case a BGLS function. This function is used to rank
the candidate frequencies in order of their response as the candidates selected
for reproductive operations are dependent on their model performance. The
crossover operation selects two chromosomes and generates two children by
splitting the chromosome at a given point between two genes and placing the
starting genes of parent one with the final genes of parent two and vice versa.
Finally, the mutation operation can select any of the genes for a change, also
known as a ‘copy error’. Once complete, the newly generated chromosomes
are ranked and become part of the next generation. This generational update
is then repeated as many times as required to produce a population of high
performing individuals based on the chosen fitness function.

domly selected gene changes inside the children chromosomes. For
each gene in the two children chromosomes, an argument muta-
tion determines the probability that a mutation occurs. A uniform
random number generator ∈ R ∈ [0, 1] generates a value for each
of the 20 genes in the two children chromosomes. Any genes for
which the associated generated value is below or equal to Pmutation
is determined to have undergone a mutation. For each mutated gene,
a uniform random number generator computes an integer value be-
tween 0 and 9 and assigns this value as the new gene value at that
location. Mutation allows the genetic algorithm to create new candi-
date frequencies in previously unvisited locations without requiring
the two parents to contain this information in their chromosomes.
As each child gene is subjected to this mutation probability, it is
usually recommended to use a low value for the later generations to
prevent the genetic algorithm from jumping away from optimised
answers. Upon the completion of the reproductive events, any new
child chromosomes are evaluated using the BGLS and appropriately
ranked by the fitness function. Figure 3 shows an example of this
genetic evolution using some of the chromosomes created in figure
2. These operations result in a generation i + 1 population of size
Npop + 2Npairups. As each subsequent generation would produce
new offspring, the population size would rapidly increase introduc-
ing extra computational complexity with zero benefits. Therefore,
we must remove 2Npairups candidate frequencies from the popula-
tion in a process analogous to biological death with the exception
that, if the algorithm chooses it, any individual could live forever.

We employ an ‘anti-selection’ pressure to accomplish this which
we call the death fraction. This is, like selection pressure, a proba-
bility Pdfrac ∈ R ∈ [0, 1] which determines what proportion of the
removed candidate frequencies were from the poorest performing
BGLS frequencies verses randomly eliminating chromosomes of
any fitness ranking. The only difference from selection pressure,
is that we always retain the best performing candidate frequency
from the current generation to preserve its genetic knowledge. This
last step produces the individuals of generation i + 1 and the cycle
continues as described towards the production of generation i + 2.
This cycle is repeated until a predetermined cut off or generation
Ngen is produced. The fittest individual from this final generation
is then returned as the genetically chosen fittest chromosome. It is
then decoded into a chosen frequency and returned to the user. Fig-
ure 4 demonstrates how the exploration of the period space evolves
across the generations due to the propagation of genetic informa-
tion on the performance of the fitness function for a sinusoidal light
curve. It is clear that the whole period space is investigated initially
and by generation 40 the only remaining regions are the true period
and its multiples. By generation 80 all regions of the period space
apart from that located at the best fit period are discarded. The final
generations are utilised for fine tuning the ultimate result.

3.4 Vuong Closeness test for periodic model discrimination

Many period estimation methods including the Bayesian Gener-
alisedLomb-Scargle used in theGRAPEfitness function suffer from
common failure modes as a result of the cadence of a light curve
and non-sinusoidal shape. This translates into the periodogram as
multiple significant peaks of which any one may be the true astro-
physical period. Therefore our genetic algorithm must be capable
of identifying not just a global optimum but clusters of persistent
local optima which are then optimised to a candidate period. Addi-
tionally, whilst it would be preferred if the chosen frequency could
be trusted as the best possible result for a given set of data, genetic
algorithms suffer from the disadvantage that they are somewhat a
black box. The propogation of the candidate frequencies from gen-
eration to generation is heavily controlled by randomness sourced
from random number generators as obvious from the method de-
scribed above. This can result in differences in the exploration of the
parameter space purely due to the use of different random number
seed values in each run. Therefore, GRAPE has been designed to
detect Nt trial periods through the use of k-means clustering for
each generation of the routine where k = Nt with a ‘dominant’ seed
value. The clusters with a standard deviation below a critical value
σt are recorded per generation. The routine continues until standard
deviation of the cluster means for a given generation drops below
σt . The cluster means are then rounded to 2 decimal places and
analysed for repetition across multiple generations. The top Nt − 1
clustermeans are selected as candidate periods alongwith the global
minimum of the genetic run. Due to the randomness of the genetic
algorithm this operation is performed a second time with a different
‘submissive’ seed value. In the event that any of the candidate peri-
ods are close repetitions of any other candidate period, the repeated
candidate periods are replaced with new candidate periods from the
submissive run.

Upon the production of Nt candidate periodswhichmay ormay
not be similar, they are fine tuned through the use of Nt single-period
genetic runs with Nfinegen generations to achieve an optimised result
for a period range of±10% of the candidate period. The Nt candidate
periods are then tested to determine which period produces the best
performing fit to the light curve. It is possible to use the BGLS
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Figure 4. Plots of the exploration of the period space against generation
number for a simulated sawtooth light curve. The top plot shows the simu-
lated light curve that GRAPE is processing. It is a Skycam cadence simulated
sawtooth with a period of 87.58 days and a signal-to-noise ratio (SNR) of 2.
It has 1721 data points sampled in yearly seasonal windows with a strong
diurnal sampling. The middle and bottom plots demonstrate the evolution
of the GRAPE genetic algorithm across the 100 generations of genetic opti-
misation. The middle plot shows the minimum and median statistics of the
BGLS fitness function for every candidate in each generation. The red line
with circular points is the minimised candidate for each generation and the
blue line with triangular points is the median of the fitness of every candidate
for each generation. The bottom plot shows the location of each generations
candidate frequencies in period space. The candidate periods selected by the
genetic optimisation are demonstrated by the black horizontal lines.

to determine the best performing of these frequencies, however,
GRAPE utilises a more powerful information-theoretic statistic.
The Vuong closeness test is a statistical model similarity measure
based on the Kullback-Leibler Information Criterion (Vuong 1989).
This method was proposed in the discrimination of aliased periods
during the period estimation task (Baluev 2009). Aliased periods
are reflections of true periodic signals with a sampling period, also
known as a spurious period. They are calculated by Equation 5
(Heinze et al. 2018).

Pj,k = k
tsid

(tsid/Pt ) + j
(5)

where Pj,k is a set of alias periods produced by a trial period Pt ,
tsid = 0.99726957 days is the sidereal day, k is an integer value
from a vector of values, k = [1, 2, 3] which defines the multiples
of the trial period and j = [−3,−2,−1,−0.5, 0, 0.5, 1, 2, 3], the set
of possible alias frequencies limited to | j | 6 3. This is due to
higher values of j producing aliases with fitness function response
of similar order to the noise continuum (VanderPlas 2017). For
each of the Nt periods, GRAPE generates 27 sinusoidal regression
models for the 27 P−1

j,k
frequencies with 4 parameters, an intercept,

a linear trend and a sine and cosine component. These models
are used to compute the Vuong Closeness statistic between the
trial period Pt model and each of the Pj,k models. If the Vuong
Closeness statistic indicates one of the Pj,k models outperforms the
trial period, the trial period is replaced with the Vuong Closeness
maximising candidate period as long as it is not a known spurious
period calculated previously.

Upon the generation of the chosen Nt periods by the genetic
algorithm, GRAPE generates another set of Nt+2 sinusoidal regres-
sion models with 4 parameters, as above. The frequency of these
Fourier components are defined as the Nt genetically chosen fre-
quencies, a constant model with only an intecept and a daily model
with a period of one day. Finally, the Nt models for the chosen
periods are compared using the Vuong closeness test to select the
final period. GRAPE offers two options for this method. In the first,
the model of every chosen period from each rerun are compared.
This requires the computation of N2

t − Nt Vuong closeness tests.
Alternatively, if the value of Nt is prohibitively high (although this
many reruns is unlikely), the chosen periods are all compared to
a constant model with no linear or sinusoidal terms. This requires
Nt Vuong closeness tests. This method does have the disadvantage
that it may screen out the correct period in favour of one due to the
sampling and therefore we recommend the first option. This last step
completes the GRAPE routine and results in a determined periods.

The chosen period is used to compute the Vuong Closeness
statistic between the chosen frequency model and the constant and
one sidereal day model (a sinusoidal model with a frequency of
t−1
sid

cycles/day). These statistics are used to describe the signifi-
cance of the chosen period relative to a purely non-periodic model
as well as comparing any periodicity detected to the one sidereal
day dominant spurious period. A significant periodic signal may
produce a high value against the constant model, but will have a
much lower value in the one day model if it is due to a sampling
periodicity. A real astrophysical signal would be expected to be sig-
nificant in both of these statistics. GRAPE ulimately returns for a
given light curve, an optimised period which has been checked for
multiplicity and aliasing with a sinusoidal model and two Vuong
closeness test statistics for the sinusoidal model of this optimised
period calculated against a constant signal model and a sinusoidal
signal with a period of the sidereal day. No confidence margins
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are applied to the Vuong closeness statistics although they can be
generated from them.

4 EVALUATION OF PERIOD ESTIMATION

4.1 Experimental Design

We presume that GRAPE should exhibit improved performance
over a standard frequency spectrum approach due to the treatment
of period as a continuous variable. In terms of the processing time
for each light curve, GRAPE should require less calculations than a
frequency spectrum as only newly computed candidate frequencies
must be evaluated and low interest areas of the period space can be
avoided.

We designed an experiment using simulated light curves in
order to compare the performance of GRAPE against the traditional
BGLS, with a dense frequency spectrum, periodogram. As our
method is designed as a component of a classification pipeline for
the Skycam instruments, we decided to produce two sets of light
curves. The first set uses the variable Skycam cadence produced
by an instrument with no control over the movement of the parent
telescope. The second simulates a more traditional cadence with
seasonal gaps added to reproduce light curves similar to standard
surveys. We started with the generation of the Skycam cadence time
instants. We accessed the SkycamT database and randomly selected
1000 light curves, of which 250 had 100 6 n < 200, 250 had
200 6 n < 500, 250 had 500 6 n < 1000 and the final 250 had
1000 6 n < 2000, where n is the number of data points in each light
curve. This was chosen to generate simulated light curves with a
wide range of entries but with a median much closer to low values,
a statistical trait of the Skycam survey. The time instants of these
light curves recorded in Modified Julian Date (MJD) are recorded
as the Skycam-cadence set. To generate the regular-cadence set we
took the minimum and maximum time instant value for each light
curve in the Skycam-cadence set and generated a linear grid of
time instants with a separation of 0.1 days for each light curve. This
grid of time instants was phased with a period of 365.25 days and
only time instants with an associated phase of 0.0 6 ph < 0.5
are retained. Finally, n of these time instants are randomly selected
where n is the number of data points in the Skycam-cadence time
instants for each of the 1000 light curves. We then generated 1000
periods for these two sets of 1000 time instant vectors. We used
a uniform random number generator with the function shown in
Equation 6.

Pi = 10runif×(log10(Pmax)−log10(Pmin))+log10(Pmin) (6)

wherePi is test period i, rerun 1000 times for i = 1, ..., 1000 to obtain
{P}, the set of test periods, runif ∈ R ∈ [0, 1] is a uniform random
number generator, Pmin = 0.05, Pmax = 1000 are minimum and
maximum periods in the period space we wish to optimise. We
use a logarithmic projection to skew the period distribution to low
periods of which there are more known object classes (Debosscher
et al. 2007; Richards et al. 2011, 2012). With the two lists of 1000
light curve time instant vectors and 1000 simulated periods, we may
now generate light curves of various shapes to test our method.

We chose to generate light curves of four different shapes, sinu-
soidal, sawtooth, symmetric eclipsing binary and eccentric eclipsing
binary. This resulted in 2000 light curves of each shape, one with
Skycam cadence and one with regular cadence resulting in 8000
total light curves to test with the two algorithms. The light curves

are populated with gaussian white noise using Equation 7.

As = σn
√

2(SNR) (7)

where As is the sinusoidal amplitude of the synthetic signal, σn
is the standard deviation of the white noise, and SNR is the de-
sired Signal-to-Noise ratio. For this experiment all the light curves
are generated with a SNR of 2 which is determined as a 0.4 unit
amplitude to a 0.2 unit standard deviation of white noise. The sinu-
soidal light curves were generated using the time instants and the
associated simulated period using Equation 8.

yi = Assin
(

2πti
P

)
+ σnεi (8)

where yi is the magnitude value of data point i, ti is the time instant
of data point i, εi is a normal distributed error value for data point
i with a mean of 0 and a standard deviation of 1 and P is the
simulated period. As and σn are as above. Sawtooth light curves
use the function shown in Equation 9.

yi = 2As

( ti
P
−

⌊ ti
P

⌋ )
+ σnεi (9)

where bxc is the closest integer to x rounded down, the ‘floor’ of
x. For the eclipsing binary light curves, we decided to keep transit
duration and shape at constant phases, i.e. they are a linear function
of the underlying period. We concede this is not a perfectly physical
representation as the parameters of two binary stars and their orbital
properties allow many different possible eclipse shapes (Prsa et al.
2008; Paegert et al. 2014) however, we wished to test GRAPE on
eclipse light curve shape independent of period. Research has been
conducted into the performance of eclipsing binary detection with
alternate eclipse shapes and periods (Prsa et al. 2011; Wells et al.
2017). We follow a similar process to generate both symmetric and
eccentric eclipsing binary simulated light curves. First we popu-
late the light curve with a constant signal with white noise using
Equation 10.

yi = σnεi (10)

We then phase the simulated data points around the period. Data
points between the phases 0.0 6 phi 6 0.1 and 0.9 6 phi 6
1.0 are located within the primary eclipse and have a triangular
subtraction applied with depth of 2As and of base length phase of
0.2. After these operations, the symmetric and eccentric light curve
method diverges. The symmetric light curves have a secondary
eclipse located at ph = 0.5 with a triangular subtraction of depth
As and a base length phase of 0.1. The eccentric light curves have a
secondary eclipse of identical size but centred at ph = 0.7. Figure
5 demonstrates the phased light curves of these four signal shapes.

The results of GRAPE and the BGLS are determined by tak-
ing the input period and the estimated period and computing if the
relationship is one of six possible types: a hit, a multiple, a submul-
tiple, a one-day alias, a half-day alias or an unknown mode. A hit is
when the estimated period matches the estimated period to within a
tolerance and is true if it satisifes the inequality shown in Equation
11.

|Pi − Pe | < εPi (11)

where Pi is the input period, Pe is the estimated period and ε is
the tolerance. A multiple is a realistic integer multiple of the input
period and is defined as any relationship which does not satisfy the
hit inequality, satisfies Pe > Pi , and satisifies the inequalities in
either Equation 12 or 13.⌊

Pe

Pi

⌋
6 3 and

���� Pe

Pi
−

⌊
Pe

Pi

⌋���� < ε (12)
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Figure 5.Phased simulated light curves of a sinusoidal, sawtooth, symmetric
eclipsing binary and eccentric eclipsing binary.

⌈
Pe

Pi

⌉
6 4 and

���� Pe

Pi
−

⌈
Pe

Pi

⌉���� < ε (13)

where dxe is the closest integer to x rounded up, the ‘ceiling’ of
x. A submultiple is similar to the multiple and is a realistic integer
division of the input period and is defined as any relationship which
does not satisfy the hit inequality, satisfies Pe < Pi , and satisifies
the inequalities in either Equation 14 or 15.⌊

Pi

Pe

⌋
6 3 and

���� Pi

Pe
−

⌊
Pi

Pe

⌋���� < ε (14)

⌈
Pi

Pe

⌉
6 4 and

���� Pi

Pe
−

⌈
Pi

Pe

⌉���� < ε (15)

If the estimated period is the one day alias of the input period, the
inequality shown in Equation 16 is satisfied.�������� Pi

1 ± Pi

���� − Pe

���� < ε (16)

The presence of a half-day alias can be determined using a similar
inequality shown in Equation 17.�������� Pi

1 ± 2Pi

���� − Pe

���� < ε (17)

Any light curve period estimation task where Pi and Pe do not
satisfy any of the above inequalities are declared unknown failures.

4.2 Period estimation performance

GRAPE ran the data set with 3 different dominant seeds SeedD =
[1, 2, 3] to screen out poor convergence events with the Vuong close-
ness test with the submissive seed set to SeedS = SeedD +100. The
input arguments were as follows: Npop = 200, Npairups = 50, Ngen =
100, Nfinegen = 50, Pcrossover = 0.65, Pmutation = 0.8 − 0.008i,
where i is the generation, Pfdif = 0.6 and Pdfrac = 0.7. These val-
ueswere established by a grid-search cross-validation operation on a
stratified subset of 100 synthetic light curves although the sinusoidal
light curves indicated a lower gradient of Pmutation = 0.8 − 0.003i
on the mutation rate. This was determined to be a result of the se-
lection of all Nt trial periods in the same period region as the true
period. The number of candidate periods selected by the GRAPE
genetic clustering method is Nt = 5 which are then analysed by
the Vuong Closeness test. This only applies in situations where the
signal is purely sinuosidal with Gaussian noise and was therefore
rejected. The linear decay gradient on the mutation value has an
important effect on exploring the parameter space as well as fine
tuning the final period. We discuss more about this property in the
next section.

The BGLS periodogram is performed by selecting the top Nt

independent peak periods with an oversampling factor, which de-
termines the density of the frequency spectrum, of Nofac = 5. The
Vuong Closeness test is then applied to these Nt = 5 peaks as
well as their multiples and aliases in a similar operation to the one
performed on the GRAPE candidate periods. The best performing
period model is selected as the BGLS periodogram final period.
There are also a number of shared arguments for the BGLS fitness
function between both GRAPE and the periodogram. The white
noise jitter, which tunes the probability response for candidate peri-
ods, jit = 0.4 · Alc where Alc is the estimated amplitude of the light
curve determined by Equation 18.

Alc =
|ymax − ymin |

2
(18)

where ymin and ymax are the minimum and maximum values of
the measurement unit for a given light curve. The period space is
Pmin = 0.05 days to Pmax = (tmax − tmin) days where tmin and
tmax are the minimum and maximum time instants for a given light
curve. The gaussian filter for spurious period removal is left unused.

The confidence intervals of the GRAPE and BGLS peri-
odogram performances on the synthetic light curves is determined
using 100,000 bootstrapped samples from the 3000 GRAPE light
curve period estimations (all 3 seeds on the 1000 synthetic light
curves) and 1000 BGLS periodogram period estimations. In this
bootstrapping operation the results are resampled with replacement
100,000 times and used to compute a mean performance and the
95% confidence intervals through the selection of the 5th and 95th

percentile performance values for the hit rate, the multiple rate (sum
of the multiples and submultiples) and the aliasing rate (the sum of
the one day and half day aliases).

Table 1 shows the results of this experiment using GRAPE on
the regular cadence four light curve typeswith an accuracy tolerance
of ε = 0.01, a one percent allowed error in period. Note, it is possible
for the row sum of a light curve to be above 1 as some periods can
satisfy both a submultiple and an alias simultaneously and we do not
presume which is the mode responsible for this error. Table 2 shows
the GRAPE performance on the Skycam cadence light curves, table
3 for the BGLS periodogram on the regular cadence light curves
and table 4 for the BGLS periodogram on the Skycam cadence light
curves.

GRAPE clearly outperforms the BGLS periodogram in the
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Table 1. GRAPE period estimation results on regular cadence simulated
light curves with a tolerance ε = 0.01.

Type Hit Multiple Alias

Sinusoidal 0.831 ± 0.011 0.001 ± 0.001 0.004 ± 0.002
Sawtooth 0.741 ± 0.013 0.006 ± 0.002 0.006 ± 0.003
Symmetric EB 0.032 ± 0.005 0.637 ± 0.014 0.024 ± 0.006
Eccentric EB 0.362 ± 0.014 0.280 ± 0.014 0.011 ± 0.005

Table 2. GRAPE period estimation results on Skycam cadence simulated
light curves with a tolerance ε = 0.01.

Type Hit Multiple Alias

Sinusoidal 0.824 ± 0.011 0.000 ± 0.001 0.026 ± 0.007
Sawtooth 0.527 ± 0.015 0.007 ± 0.003 0.141 ± 0.004
Symmetric EB 0.015 ± 0.004 0.358 ± 0.014 0.075 ± 0.010
Eccentric EB 0.149 ± 0.011 0.158 ± 0.011 0.112 ± 0.012

Table 3. BGLS periodogram period estimation results on regular cadence
simulated light curves with a tolerance ε = 0.01.

Type Hit Multiple Alias

Sinusoidal 0.703 ± 0.024 0.001 ± 0.002 0.000 ± 0.000
Sawtooth 0.696 ± 0.024 0.002 ± 0.003 0.001 ± 0.002
Symmetric EB 0.031 ± 0.009 0.632 ± 0.025 0.024 ± 0.009
Eccentric EB 0.426 ± 0.026 0.251 ± 0.023 0.012 ± 0.007

Table 4. BGLS periodogram period estimation results on Skycam cadence
simulated light curves with a tolerance ε = 0.01.

Type Hit Multiple Alias

Sinusoidal 0.717 ± 0.023 0.001 ± 0.002 0.030 ± 0.009
Sawtooth 0.508 ± 0.026 0.010 ± 0.005 0.143 ± 0.021
Symmetric EB 0.021 ± 0.008 0.382 ± 0.025 0.085 ± 0.016
Eccentric EB 0.159 ± 0.019 0.166 ± 0.020 0.121 ± 0.019

correct period estimation of the sinusoidal light curves with a hit
rate improvement of 10%. Sawtooth light curves performed better
on GRAPE by 2% for the regular cadence light curves and sim-
ilarly on the Skycam cadence light curves as well as identifying
some poorer quality light curves as aliases. The symmetric and
eccentric eclipsing binaries suffer from a significant submultiple
failure mode. This is a well understood result of the Lomb-Scargle
method and its extensions. GRAPE maintains the performance of
the BGLS periodogram within the statistical confidence levels for
the symmetric eclipsing binaries. The eccentric eclipsing binaries
were the worst performing shape on both GRAPE and the BGLS
periodogram as they were the least sinusoidal of the light curves
and therefore the BGLS fitness function is not tuned for them. The
periodogram slightly outperformed GRAPE for this shape of light
curve. This is likely due to the importance of the fitness function in
the propagation of genetic information. For eccentric binaries, the
response from the correct period did not outperform a poor period
by a significant margin and therefore it was never optimised heavily,
whereas the frequency spectrum would sample a period close to the
true period by default. These failings are not a required disadvan-
tage of GRAPE. It is entirely possible to replace the fitness function

Figure 6. Performance vs Tolerance for the regular cadence sinusoidal light
curves. The hit rate rapidly rises to nearly perfect very quickly showing
GRAPE can effectively fine tune sinusoidal periods.

Figure 7. Performance vs Tolerance for the regular cadence sawtooth light
curves. The hit rate rise is similar to the sinusoidal light curves but with an
increased number of multiple and aliased periods.

with another more appropriate to the required task and achieve the
same performance increase as the sinusoidal light curves did with
the BGLS fitness function. Ultimately, this experiment shows that
GRAPE exhibits a similar performance to the BGLS periodogram
with Vuong Closeness for every light curve shape other than purely
sinusoidal. This demonstrates that the performance of the method
is primarily driven by the Vuong Closeness test and its ability to
distinguish between hit, multiple and aliasedmodels. The frequency
spectrum approach did not appear to result in the expected loss of
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Figure 8. Performance vs Tolerance for the regular cadence symmetric
eclipsing binaries. The N = 2 submultiple is the dominant failure mode
until the tolerance reaches ε = 0.5. Here, the submultiple satisfies the hit
inequality and causes the seen performance swap. This failuremode is caused
by the secondary eclipse at phase 0.5. The sinusoidal model provides a better
hit at half the true period through the combined eclipses as it is unable to
sufficiently model the differentially sized eclipses at the true period.

Figure 9. Performance vs Tolerance for the regular cadence eccentric eclips-
ing binaries. Here about half the non-aliased light curves are hits and N = 3
submultiples. This is a result of the eccentric secondary eclipse being at 0.7,
close to 0.667. Therefore, depending on the sampling, some light curves
appear as a third of the period with a missing third eclipse or else the eccen-
tricity of the phased light curve results in the best fit being at the true period.
This is only expected to happen for secondary eclipse phases near 0.333
and 0.667 as half the eclipses would be missing for the N = 4 submultiple
variant at phases 0.25 or 0.75 which would prevent period matching at a
quarter of the true period.

Table 5. GRAPE period estimation results with a seed of 1 on regular
cadence simulated light curves with a tolerance ε = 0.01.

Type Hit Multiple Alias

Sinusoidal 0.833 ± 0.019 0.001 ± 0.002 0.000 ± 0.000
Sawtooth 0.754 ± 0.023 0.004 ± 0.004 0.004 ± 0.003
Symmetric EB 0.026 ± 0.009 0.647 ± 0.025 0.025 ± 0.010
Eccentric EB 0.371 ± 0.025 0.279 ± 0.024 0.007 ± 0.005

Table 6. GRAPE period estimation results with a seed of 2 on regular
cadence simulated light curves with a tolerance ε = 0.01.

Type Hit Multiple Alias

Sinusoidal 0.823 ± 0.020 0.001 ± 0.002 0.009 ± 0.006
Sawtooth 0.727 ± 0.023 0.009 ± 0.005 0.004 ± 0.004
Symmetric EB 0.037 ± 0.010 0.619 ± 0.025 0.026 ± 0.009
Eccentric EB 0.352 ± 0.025 0.286 ± 0.024 0.010 ± 0.007

Table 7. GRAPE period estimation results with a seed of 3 on regular
cadence simulated light curves with a tolerance ε = 0.01.

Type Hit Multiple Alias

Sinusoidal 0.838 ± 0.019 0.001 ± 0.002 0.004 ± 0.004
Sawtooth 0.741 ± 0.023 0.005 ± 0.004 0.011 ± 0.007
Symmetric EB 0.032 ± 0.009 0.644 ± 0.025 0.021 ± 0.008
Eccentric EB 0.364 ± 0.025 0.274 ± 0.023 0.017 ± 0.009

performance. It is likely that the use of the multiple models in the
Vuong Closeness test corrected for this weakness.

We also decided to investigate the tolerance of the twomethods.
For the previous experiment we produced results with a tolerance
ε = 0.01. It is desirable to achieve high hit-rates at as low a tolerance
as possible but as GRAPE has been designed for use in a classifica-
tion pipeline, we can still generate informative light curve features
if additional light curves require a higher tolerance. Figures 6 to 9
show plots of the tolerance of 0.0 6 ε 6 1.0 against the recovered
rate of hits, multiples, submultiples and aliases for the four different
light curve shapes with the regular cadence. The Skycam cadence
light curves show a much higher incidence rate of aliases due to the
poorer phase sampling of some periods.

Due to the random seeds used in GRAPE, we repeated the
experiment with three different seed values SeedD = [1, 2, 3] to
see how the performance varied with the random processes inside a
genetic algorithm. Table 5 shows the performance of the SeedD = 1
period estimation on the 1000 synthetic light curves with table 6
showing SeedD = 2 performance and table 7 showing SeedD = 3
performance. The reported errors are the 95% confidence intervals
as computed by a bootstrapping confidence estimator with 100,000
resamples. For the modes with sufficient population to determine
an accurate confidence interval, the confidence intervals indicate
that the results of GRAPE are consistent over a large set of light
curves. Whilst the performance of an individual light curve can
vary depending on seed, the overall percentage of matched light
curves should remain consistent for a large dataset. For important
individual light curves, GRAPE can be rerun with different seeds
or alternatively, with a larger set of returned candidate periods as
this will reduce the chance that a good trial period is not detected
and evaluated.
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Table 8. GRAPE and BGLS periodogram period estimation results with
three different light curve additive noise models on Skycam cadence simu-
lated light curves with a tolerance ε = 0.01.

Data Hit Multiple Alias

GRAPE lcseed 10 0.348 ± 0.040 0.128 ± 0.028 0.073 ± 0.023
GRAPE lcseed 20 0.363 ± 0.040 0.120 ± 0.028 0.098 ± 0.023
GRAPE lcseed 30 0.365 ± 0.040 0.103 ± 0.025 0.080 ± 0.023
BGLS lcseed 10 0.310 ± 0.038 0.128 ± 0.028 0.090 ± 0.028
BGLS lcseed 20 0.313 ± 0.038 0.110 ± 0.025 0.090 ± 0.025
BGLS lcseed 30 0.335 ± 0.040 0.103 ± 0.025 0.095 ± 0.030

We also computed a stratified subset of 400 of the light curves,
100 for each shape. This stratified set was generated two more times
in addition to the previous set resulting in three different additive
noise generations to determine the consistency of the period estima-
tion performance. This was performed for the Skycam cadence light
curves. The confidence intervals are again the 95% confidence inter-
vals as determined from a bootstrapping estimation using 100,000
resamples. The results are shown in table 8 with the Data column in-
dicating the period estimation algorithm and the additive noise seed
number [10, 20, 30] utilised in the bootstrap. As with the GRAPE
seed performance, the different noise models are consistent to the
95% confidence intervals. Therefore, we suggest that the perfor-
mance of GRAPE and the BGLS periodogram are consistent for
large datasets independent of the random seeds used for either noise
generation or genetic algorithm operation.

Our next experiment is to determine if the failure modes of
GRAPE and the BGLS periodogram have a dependence on the
period. In the frequency spectrum case of the BGLS periodogram,
we would expect to see the performance of the periodogram be a
function of the candidate period. We therefore plot two histograms
of the GRAPE estimated periods and the periodogram estimated
periods on the sinusoidal light curves and is displayed in figure 10.
The histogram clearly shows that bothmethods performmore poorly
the closer the period is to Pmax . This is due to poorer sampling of
the phase space as there are less complete cycles viewed inside of the
light curve baseline. Additionally, the BGLS periodogram suffers a
much greater performance loss at this extreme. This is likely due to
a combination of the frequency spectrum selecting a submultiple of
the true period followed by a Vuong Closeness test correction. As
this correction must be an integer multiple of the initially detected
period, this introduces an error near Pmax . This can be seen in
figure 10 as a selection of light curves with BGLS periodogram
estimated periods between 1000 and 1200 days. GRAPE performs
much better in this range due to treating the parameter space as
a continuous variable whereas the periodogram samples the high
periods extremely sparsely and thusGRAPEdoes not need to rely on
the Vuong Closeness test to correct as many long periods. Figure 11
demonstrates the same histogram for the Skycam cadence sinusoidal
light curves. The performance on the Skycam cadence sinusoidal
light curves was similar to the regular cadence sinusoidal light
curves except with a larger instance of aliased periods due to poor
sampling. This is an interesting result and demonstrates that the
Skycam sampling does not adversely effect the performance of the
period estimation when the fitness function is a good match to the
data. Figure 12 shows the same histogram for the regular cadence
sawtooth light curves and figure 13 shows the histogram of the
Skycam cadence sawtooth light curves. The same effects can be
seen but with additional extremely long periods found by GRAPE
and the BGLS periodogram due to the vuong closeness test deciding

Figure 10. Histogram of the base-10 logarithm of the frequency of light
curves with a given period as a function of the estimated period for the
regular cadence sinusoidal light curves. The white regions indiciate that
there were more initial light curves in this period range than identified by
either algorithm, it is the initial configuration of the test periods. For the
sinusoidal light curves, performance was good from both fitness functions,
as seen in figure 6. GRAPE performs better at longer periods due to the
frequency spectrum sampling this region poorly. The overabundance of
BGLS periodogram results around 900-1200 days are likely Vuong-reflected
submultiples of the poorly detected longer periods.

to pick a multiple of the identified period for many light curves with
periods between 850-1000 days. This effect appears worse in the
regular cadence light curves with the Skycam cadence light curves
showing a higher rate of aliases instead. This is likely due to the
testedmodel being a simple sinusoid which does not fit the sawtooth
signal combined with aminimal number of observed cycles. Amore
generalised model for the Vuong closeness test would be desirable
for this event especially if a different non-sinusoidal fitness function
is selected.

The symmetric eclipsing binary histograms in figures 14 and
15 show similar errors to the sawtooth light curves with poor Vuong
Closeness estimating periods outside of the long period range. The
periods are highly underestimated above 500 days due to the com-
mon N = 2 submultiple failure mode of symmetric eclipsing bi-
naries. The eccentric eclipsing binaries are split almost equally be-
tween hits and the N = 3 submultiple showing a moderate long pe-
riod depletion. The eccentric eclipsing binaries perform extremely
poorly at long periods in both regular and Skycam cadence as seen
in figures 16 and 17. This is a result of many of the long periods
exhibit the N = 3 failure mode due to the small number of sampled
eclipses. Additionally, at long periods the phase sampling often fails
to measure the eclipse at all due to the seasonal sampling windows
we have added to our light curves, especially for the Skycam ca-
dence. This is a common issue in real survey eclipsing binaries
(Prsa et al. 2011; Wells et al. 2017) and arguably a bigger problem
as our simulated light curves have unphysically large eclipse dura-
tions at long periods which decrease the probability that the eclipse
will be missed. It is interesting to note that the Vuong Closeness
test long period multiplication failure mode does not seem to occur
on the Skycam cadence light curves. This is possibly due to the
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Figure 11. Histogram of the base-10 logarithm of the frequency of light
curves with a given period as a function of the estimated period for the
Skycam cadence sinusoidal light curves. The performance on the Skycam
cadence sinusoids is similar to that of the regular cadence sinusoids. This is
an interesting result as it indicates that the uneven sampling of Skycam may
not be significantly detrimental to continuous variations.

Figure 12. Histogram of the base-10 logarithm of the frequency of light
curves with a given period as a function of the estimated period for the
regular cadence sawtooth light curves. Many very long estimated periods are
obvious due to mispredictions by the Vuong closeness test in both GRAPE
and the BGLS periodogram. There are also many spurious detections near
the time span of the light curves for this test despite being on regular cadence
as the sawtooth shape diverges from the expectations of the BGLS fitness
function.

Figure 13. Histogram of the base-10 logarithm of the frequency of light
curves with a given period as a function of the estimated period for the
Skycam cadence sawtooth light curves. The performance of the Skycam
cadence sawtooth light curves appears similar to the regular cadence. There
is a noticible lack of period estimations near 1000 days likely due to sampling
difficulties with a single sawtooth variation.

poor long duration sampling producing poor quality models that do
not improve over the initial period estimation model. Alternatively,
the alias of the period might be selected instead due to the strong
Skycam aliases.

4.3 Cadence-dependent performance

The error in the estimated periods against the period span is an
excellent indicator of the performance of the GRAPE period esti-
mation due to cadence against the simulated period. Period span
is defined as the baseline of the light curves divided by the input
period and is the number of cycles present in the light curve. It is
calculated by Equation 19.

Pspan =
tmax − tmin

Pi
(19)

where tmin is the minimum time instant of the light curve, tmax

is the maximum time instant of the light curve and Pi is the input
period. For low values of Pspan, the performance is expected to
be poorer as there are less complete cycles and the cadence results
in unsampled regions of the phase space. Large performance errors
occuring where Pspan = tmax − tmin also indicate that the cadence
is resulting in substantial aliasing. The estimated error is calculated
by Equation 20 and is the fractional error from the input period.

ξ =
|Pi − Pe |

Pi
(20)

Figure 18 shows this plot for the regular cadence light curves of the
four types and figure 19 shows the results of GRAPE on the Sky-
cam cadence light curves. Symmetric eclipsing binaries estimated
periods have been doubled due to the common Lomb-Scargle fail-
ure mode. The regular cadence light curves show only two main
patterns. The increase in error near log10

(
Pspan

)
= 0 is due to the

poorer sampling of the shape of the light curve. This is less of an
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Figure 14. Histogram of the base-10 logarithm of the frequency of light
curveswith a given period as a function of the estimated period for the regular
cadence symmetric eclipsing binaries. There is a significant depletion in the
long periods after 500 days due to the common N = 2 failure mode. Some of
the longer periods are correctly estimated possibly due to sampling resulting
in no data points from the secondary eclipse. In this case, the best fitting
sinusoidal model is at the correct period.

Figure 15. Histogram of the base-10 logarithm of the frequency of light
curves with a given period as a function of the estimated period for the
Skycam cadence symmetric eclipsing binaries. The Skycam cadence light
curves have similar performance to the regular cadence light curves except
for additional long period hits. This is likely due to the even greater chance
of loosing either eclipse at long periods due to the sampling rate of Skycam
cadence compared to the regular cadence.

Figure 16. Histogram of the base-10 logarithm of the frequency of light
curveswith a given period as a function of the estimated period for the regular
cadence eccentric eclipsing binaries. Many of the light curves have been
underestimated into the N = 3 submultiple. This results in an overabundance
of periods below 500 days. About half of the period estimates are correct
and the other half are in this N = 3 submulitple failure mode.

Figure 17. Histogram of the base-10 logarithm of the frequency of light
curves with a given period as a function of the estimated period for the
Skycam cadence eccentric eclipsing binaries. The poor performance at de-
tecting many of the long period light curves is due to limits in the BGLS
fitness function at fitting eccentric eclipsing binaries. Additionally, the Sky-
cam cadence results in many of the eclipses being unobserved resulting in a
spurious period estimation.
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Figure 18. Plot of the base-10 logarithm of the period span of light curves
with a given period as a function of the estimated period fractional error for
the regular cadence light curves.

issue in the sinusoidal light curves as the model can interpolate
the missing data but it becomes progressively a bigger problem as
the light curve shape becomes more non-sinusoidal. Missing the
eclipses in the eclipsing binary light curves also causes smaller
Pspan values to perform poorly. There is also a number of failed
period estimations near log10

(
Pspan

)
= 1 due to the seasonal sam-

pling periodicity as the Vuong Closeness test incorrectly determines
multiples of the period due to unsampled data.

The Skycam cadence plot in Figure 19 exhibits the same pat-
terns but with an additional uncorrelated set of erroneous period
estimations due to the sampling of these light curves being insuffi-
cient despite many cycles being present in the baseline. The domi-
nant feature of this failure mode is the increased period estimation
errors near log10

(
Pspan

)
= 3 which is close to the sidereal day spu-

rious period. The light curves of this additional failure mode also
increases in number as the underlying signal becomes more non-
sinusoidal. It is clear that the Skycam sampling appears inferior to
the regular cadence yet this analysis can be used to augment the
spurious and alias correction steps present in GRAPE. Ultimately,
the advantage in Skycams capability of performing survey astron-
omy independently of the operations of the Liverpool Telescope
is met with the significant disadvantage that many variable objects
observed by the instruments will not be sampled at sufficient quality
to detect.

4.4 Runtime considerations

The previous experiments have shown the GRAPE performance to
be consistent with the BGLS periodogram and even improved for
signals close to the modelled fitness function. This fulfills the first
major requirement for this method as an application to the Skycam
survey data. The second requirement, which is also the original driv-

Figure 19. Plot of the base-10 logarithm of the period span of light curves
with a given period as a function of the estimated period fractional error for
the Skycam cadence light curves.

ing force behind the development of GRAPE, is the requirement for
the period estimation task to be as computationally efficient as pos-
sible. Many of the important properties of the Skycam light curves
are extracted from statistics which are a function of the candidate
period and therefore require the estimation of a period prior to cal-
culation. For large numbers of light curves this calculation must be
as rapid as possible whilst maintaining performance. To understand
the runtime requirements of GRAPE compared to a periodogram
approach we calculated the average light curve processing time by
calculating the mean runtime for the stratified set of 400 regular
cadence light curves and 400 Skycam cadence light curves used
in the testing of the additive noise models. These light curves are
seperated by the number of data points they contain based on the in-
tervals selected when generating the synthetic data. Figure 20 shows
the mean runtime in seconds of the groups of light curves against
the binned number of data points for the regular cadence dataset
seperated by light curve shape and period estimation method. A
number of interesting patterns emerges in this result. Firstly, the
periodogram has an exponential dependency on the number of data
points compared to GRAPE. This is expected as the periodogram
algorithm is an O(N2) method whereas GRAPE, whilst having an
additional overhead due to the generational updates which are not a
function of data point number, is an O(N) method. As both meth-
ods use the Vuong Closeness test, its contribution is present in both
operations. The effect of Vuong Closeness is visible in the form of
the runtime separation of the different light curve shapes. For the
periodogram, this results in sinusoidal and sawtooth light curves
requiring less runtime at low numbers of data points compared with
eclipsing binary light curves. At higher numbers of data points, the
runtime required by theO(N2) periodogram becomes dominant and
all the runtimes converge. For GRAPE, the effect is to also sepa-
rate the sinusoidal and sawtooth runtimes from the slower eclipsing
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Figure 20. Plot of the average runtime of the different shaped light curves as
a function of the number of data points for the regular cadence light curves.

Table 9. GRAPE and BGLS periodogram period estimation results on 100
stratified regular cadence sinusoidal light curves with various fine-tuning
oversampling runs. All non-hit estimated periods are of unknown relation.

Data Hit Multiple Alias

GRAPE 0.803 ± 0.037 0.000 ± 0.000 0.000 ± 0.000
BGLS Periodogram 0.650 ± 0.080 0.000 ± 0.000 0.000 ± 0.000
ofac = 20 finetune 0.810 ± 0.070 0.000 ± 0.000 0.000 ± 0.000
ofac = 50 finetune 0.820 ± 0.070 0.000 ± 0.000 0.000 ± 0.000

binary runtimes. However, due to the linear dependence on data
points of GRAPE, this runtime difference remains to higher data
point light curves.

For the Skycam cadence results shown in figure 21, the run-
times are longer and similar effects to the regular cadence light
curves are seen but are suppressed. This suppression is likely a re-
sult of the poorer sampling quality of the light curves. This results
in increased computational effort required by both GRAPE genetic
optimisation and the Vuong Closeness test used in both GRAPE and
the periodogram. As a result, the periodogram requires more time
to process the lower data point light curves as the aliased periods are
more dominant. The separation of the runtimes on the sinusoidal
and sawtooth light curves compared to the eclipsing binary light
curves is still apparent but reduced as the sinusoidal and sawtooth
light curves require additional computation to deal with aliased pe-
riods. Ultimately, for the Skycam cadence light curves, which is
of more interest due to them more closely reproducing the prop-
erties of the real survey data, GRAPE appears to maintain similar
performance to the periodogram for the sinusoidal and sawtooth
light curves and requires less runtime than the periodogram on light
curves with greater than 500−1000 data points. Whilst many of the
interesting Skycam light curves do have data points in this range,
there are many light curves with data points from 1000 − 15, 000
data points which would require an unacceptably long time to run
using a periodogram (due to theO(N2) requirement of this method).
GRAPE provides an approach to obtain the desired results in less
time.

We also peformed one final experiment to determine the run-
time required for the BGLS periodogram, with Vuong Closeness,
to obtain similar results to GRAPE on the regular cadence and Sky-
cam cadence sinusoidal light curves through the use of a fine-tuning
step on the initial Nt = 5 candidate periods with a ±10% search

Figure 21. Plot of the average runtime of the different shaped light curves as
a function of the number of data points for the Skycam cadence light curves.

Table 10. GRAPE and BGLS periodogram period estimation results on 100
stratified Skycam cadence sinusoidal light curves with various fine-tuning
oversampling runs. There are no multiple estimated periods in this dataset.

Data Hit Multiple Alias

GRAPE 0.780 ± 0.040 0.000 ± 0.000 0.013 ± 0.013
BGLS Periodogram 0.660 ± 0.080 0.000 ± 0.000 0.050 ± 0.040
ofac = 20 finetune 0.760 ± 0.070 0.000 ± 0.000 0.020 ± 0.030
ofac = 50 finetune 0.790 ± 0.070 0.000 ± 0.000 0.010 ± 0.020

radius using a boosted oversampling factor. As the ofac = 5 of
the previous experiments was sufficient for all non-sinusoidal light
curves, we perform this only on the set of 100 stratified regular
cadence sinusoidal light curves and 100 stratified skycam cadence
sinusoidal light curves. Table 9 demonstrates the results of this ex-
periment on the regular cadence light curves using the results of the
GRAPE performance contrasted with the base periodogram perfor-
mance with ofac = 5 and with two fine-tuning variants, one with
ofac = 20 and one with ofac = 50. Table 10 demonstrates the re-
sults of this experiment on the Skycam cadence light curves with
the same oversample fine-tuning. The results indicate that the pe-
riodogram can replicate the performance of GRAPE on sinusoidal
light curves through an additional oversampling finetuning opera-
tion. For the regular cadence light curves this is possible with a
fine-tuning step with an oversampling factor of 20. For the Sky-
cam cadence light curves the fine-tuning oversampling factor was
required to be 50. These performance gains do come at a compu-
tational cost which further effects the runtime of the periodogram
compared to GRAPE. The mean light curve runtime for GRAPE on
the regular cadence sample was 37.32 seconds and the BGLS peri-
odogram with no fine-tuning mean runtime was 45.43 seconds. For
Skycam cadence these runtimes were increased due to the higher
difficulty in identifying candidate periods with a mean runtime of
52.59 seconds on GRAPE and 57.55 seconds on the periodogram.
The fine-tuning operation with ofac = 20 increase this runtime to
54.94 seconds on the regular cadence data and 64.25 seconds on the
Skycam cadence data. For the ofac = 50 fine-tuning operation, the
computational expense increases to 56.77 seconds on the regular
cadence data and 64.46 seconds on the Skycam cadence data. Ul-
timately, whilst the fine-tuning operations allow the periodogram
to match the performance of GRAPE, it is a the cost of increasing
the required runtime. As the fine-tuning operation is also frequency
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spectrum based, this additional computational effort is also O(N2)
complexity meaning for light curves with many observations, the
processing time will be prohibitive for real-time analysis.

5 DISCUSSION AND CONCLUSION

In this paper we introduced GRAPE, a period estimation statistic
embedded in a genetic algorithm with a Vuong closeness test based
alias and multiple model discrimination procedure. BGLS was se-
lected as the period estimation statistic to be used as the fitness
function. We note that other methods can be used instead as the
role of the fitness function is highly modular and different measures
can be combined. In our future work we intend to test other fitness
functions as well as develop a machine learning method which can
linearly combinemultiple methods for improved performance (Saha
2017). Our experiments in this paper show that Lomb-Scargle type
methods function on poorly sampled data due to sinusoidal interpo-
lation. This does also mean that non-sinusoidal signal performance
degrades rapidly. The simple sinusoidal models used as part of the
Vuong closeness test method are also limited due to the presump-
tion of a sinusoidal signal which results in failures for this test most
notably for the non-sinusoidal regular cadence light curves shown
in figures 12, 14 and 16. An alternative model for this period cor-
rection would be ideal and is something we will consider for future
research direction.

It is also important to caution the use of Bayesian periodogram
methods in the search for periodicity of generic signal shapes.
Bayesian periodograms output probablistic statements based on the
assumption that the data has been drawn from a sinusoidal model
(VanderPlas 2017). This results in the suppression of features in
the periodogram which would normally convey information on the
nature of the underlying periodicity. However, GRAPE has been
designed for automated functionality and therefore it is important
that potential failure modes be tightly controlled. As a major risk
of any optimisation method is becoming trapped in local minima,
the suppression of aliases is highly useful in propagating the ge-
netic information. Therefore, BGLS has been deployed in this work
despite the output being unreliable in the regime of non-sinusoidal
periodicity. It is possible that the use of a quantum evolutionary
algorithm would afford additional protection from populations be-
coming trapped at insignificant local minima and therefore sever
our current dependency on the Bayesian periodogram (Abs da Cruz
et al. 2007).

GRAPE outperformed the periodogram frequency grid in all
datasets with sinusoidal signals which are well described by the
fitness function. We suggest, as discussed at the beginning, that
GRAPE treating the period space as a continuous variable leads
to this success as the genetic algorithm could fine tune the result.
This is further supported by the fine-tuning periodogram method
which used a frequency spectrum with ofac = 50 to oversample the
10% period range around the Nt candidate periods. The sinusoidal
light curves had a relative hit rate improvement of 18.2% using
GRAPE compared to the periodogram for the regular cadence data
and 14.9% for the Skycam cadence data with both methods utilising
the same BGLS fitness function. This was determined by assuming
that the failed matches in GRAPE were also failures in the peri-
odogram and calculating the percentage of additional failures in the
periodogram. Using the same method, we determine that the saw-
tooth light curves had a 6.4% improvement on regular cadence and
3.7% on Skycam cadence when using GRAPE although this is close
to the 95% confidence interval. The symmetric EB and eccentric

EB light curves are too much of a departure from the sinusoidal
assumptions of the Lomb-Scargle method and exhibited a GRAPE
relative performance similar, possibly slightly inferior, to the pe-
riodogram when comparing the hit and submultiple rate. This is
likely a result of the reliance of GRAPE on the genetic propagation
of useful information about the period space during the evolution
of the candidates. On a sinusoidal light curve, the genetic algorithm
places additional candidates near the sinusoidal signal period due
to the prevalence of superior fitting models in this region of the
period space. The algorithm can then fine tune the resulting period
from this region. For the eccentric EBs, the fitness function returns
a substantially weaker response to candidate periods near the true
underlying simulated period. As a result, it only requires the pres-
ence of a similar-strength false model (such as on a spurious or
aliased signal) to ‘kick’ candidate periods out of this region of the
period space and removing it from the fine-tuning operation. In this
case, the brute force approach of the periodogram frequency grid
outperformed GRAPE purely because a candidate period close to
the true period would always be sampled. These results are an over-
all measure of the relative performance and, as can be seen in the
histograms in figures 10 to 16, the actual performance of the meth-
ods is strongly dependent on both the shape of the underlying light
curve, the value of the true period and the baseline (total measured
time) of the light curve.

Our experiments show the sampling inherent to the Skycam
mode of surveying will lead to objects insufficiently sampled for
successful identification however the yield looks reasonable based
on the relative performance degradation between the regular ca-
dence and Skycam cadence data for sinusoidal and sawtooth light
curves. Unfortunately, the loss of eclipsing binaries will be substan-
tial for the Skycam survey regardless of period estimation method
from a sampling viewpoint. The simulated data we present in this
research contains only a signal and white noise component. In real-
ity, red (correlated) noise sources are common in real light curves.
GRAPE currently makes no attempt to address the presence of red
noise within candidate light curves, with the BGLS fitness function
assuming purely white noise residuals. Whilst this is something
that can be addressed in future work, at the moment we make use
of a prewhitening technique to eliminate large correlated systematic
signals when applying this method to real light curves from the
Skycam database.

GRAPE has a notable computational time benefit over the fre-
quency spectrum on light curves with more than 500-1000 data
points, occasionally with increased performance likely based on the
chosen fitness function. This is due to the genetic algoritms O(N)
dependency on the number of data points in a light curve compared
with the O(N2) of the frequency spectrum approach. We found that
the topology of our genetic algorithm, as defined by the arguments
listed in the previous section, are close to the fastest implementation
we could produce before a substantial loss in performance due to
having insufficient population or generations to explore the period
space. We found that the linear decay of mutation was an incred-
ibly powerful way of maintaining performance whilst decreasing
the number of generations. The mutation can be described with a
thermodynamic analogy. At the beginning themutation is extremely
high and the candidate periods jump rapidly across the parameter
space like hot particles escaping a nearby potential. As the mutation
rate decreases, the population has less energy to climb out of the
potential wells and therefore begin to fine tune the local periods
compared to exploring new regions of the parameter space. Eventu-
ally the mutation rate is so low that very little to no new exploration
is occuring as the population cannot stray far from the local poten-
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tial. Individuals located in poor areas of the parameter space die off
leaving the group near the true period to reproduce solely with the
purpose of fine tuning this result. We are satisfied with the compu-
tational overhead required as many Skycam light curves do have a
large number of data points which become prohibitively difficult to
compute a periodogram on combined with the improved accuracy
of GRAPE over the periodogram. For a Skycam light curve with
5114 data points it takes the frequency spectrum periodogram about
454.7 seconds to complete whereas GRAPE completes the same
task in 93.5 seconds. We are working on upgrading the classical
genetic algorithm used in this code to a quantum genetic algorithm
(Abs da Cruz et al. 2007). This method makes use of a quantum
population which encodes the candidate periods as a probability
density with a centroid and width. This allows for a smaller pop-
ulation to accomplish the same exploration and fine tuning of the
parameter space decreasing the runtime further.

GRAPE is currently specifically designed to identify purely
periodic phenomena. There are many quasi-periodic and semireg-
ular variable objects in astronomy. These objects suffer a signifi-
cance degradation in a method such as this as amplitude and phase
changes cannot be mapped across the baseline. GRAPE uses only a
single dimensional parameter space despite genetic algorithms be-
ing highly functional at the exploration of high dimensional space
(Charbonneau 1995; Rajpaul 2012). We are currently implementing
an improved algorithm (Bunch of GRAPES) which can stack dif-
ferent combinations of the data points into multiple period spaces
simultaneously and use the genetic methods to optimise to a single
answer across all the combinations. Alternatively, depending on the
combinations of data points stacked by the algorithm, this single
answer could instead be a set of results expressed as a function of
amplitude and phase allowing for quasi-periodic signals to be ex-
pressed in the output. This multi-dimensional approach can also be
used to implement amulti-band light curve variant ofGRAPEwhich
can determine a set of candidate periods from their simultaneous
performance at successfully fitting data in multiple bands. This is
accomplished through a modification to the fitness function where
the initial single-dimension statistic is weighted against the other
dimensions as the chosen candidates should provide satisfactory
fits in every band. The Vuong Closeness test can also be modi-
fied to evaluate multi-dimensional hyperplanes constructed from
multiple sinusoidal models in each dimensional band. Expanding
genetic algorithms into multiple period spaces has very interesting
applications in upcoming next generation astronomical surveys.
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