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ABSTRACT: The formation of giant polyoxometalate
(POM) species is relatively underexplored, as their self-
assembly process is complex due to the rapid kinetics.
Polyoxopalladates (POPds) are a class of POMs based on
Pd, the largest of which is the {Pd84}

Ac wheel, and its
slower kinetics mean the system is more amenable to
systematic study. Here, we show that it is possible to
follow the assembly of two types of Pd wheels, {Pd84}

Gly

and the smaller {Pd72}
Prop, formed using glycolate and

propionate ligands, respectively. We analyzed the
formation of {Pd72}

Prop and {Pd84}
Gly using mass

spectrometry (SEC-HPLC-MS and preparative desalting
followed by MS). This was accompanied by studies that
followed the chemical shift differences between the outer/
inner ligands and the free ligand in solution for the
{Pd84}

Ac, {Pd72}
Prop, and {Pd84}

Gly species using NMR,
which showed it was possible to track the formation of the
wheels. Our findings confirm that the macrocycles
assemble from smaller building blocks that react together
to form the larger species over a period of days. These
findings open the way for further structural derivatives and
exploration of their host−guest chemistry.

Polyoxometalates (POMs) are metal oxide clusters formed
by transition metals like Mo, V, and W that are able to

self-assemble in complex, high-nuclearity structures from
simple precursors.1 Noble metals Pd, Pt, and Au, and even
lanthanides like Ga, can form high-nuclearity metal oxide
structures, such as wheel-like {Gd140}.

2,3 One of the challenges
in this field is to understand the assembly process, especially
for the systems that form gigantic ring clusters, and only a few
mechanistic studies have been explored. These studies have
been limited due to the rapid kinetics,4 and mechanistic data
have been restricted to low-nuclearity moieties.5−8 However,
the formation of curved units is suggested to be the driving
force in the formation of both spherical molybdenum brown
Keplerate {Mo132}

9−12 and ring-shaped molybdenum blue ring
{Mo154}.

13

To address this issue, we decided to target systems that form
gigantic structures but assemble more slowly.14,15 The first of
these is a smaller {Pd72}

Prop wheel of general formula
Na60[Pd72O36(C2H5CO2)24(PO4)36]·200H2O, containing 24
bridging propionate ligands. The second is an exact structural
analogue of the original {Pd84}

Ac wheel,14 denoted {Pd84}
Gly, of

general formula Na56H14[Pd84O42(CH4CO3)28(PO4)42]·
200H2O (Figure 1). This structural analogue contains 28

glycolate ligands in place of acetate. To directly probe the
mechanisms of formation of the {Pd72}

Prop and {Pd84}
Gly in

situ, we used mass spectrometry (MS) and 1H NMR. However,
MS cannot be used to follow the process in the reaction
solutions directly due to ion suppression issues arising from the
high salt concentration. Therefore, we developed a separation
“desalting” step. To do this we used SEC-HPLC-MS to
separate the species present in the reaction based on their size.
The second method was the direct injection of aliquots of
mother liquor which had been prepared by “desalting” in small
disposable size-exclusion columns (MicroBioSpin 6).
Preliminary studies had suggested that the manual desalting

columns are more effective at removing salt from the Pd
macrocycle reaction mother liquor, and therefore give higher
quality mass spectra, see Figure 2 and Table 1. Furthermore,
initial observations had also suggested that the {Pd72}

Prop and
{Pd84}

Gly macrocycles are not as stable as {Pd84}
Ac under SEC-

HPLC-MS conditions. Therefore, the desalting technique was
employed as a complementary approach to the SEC-HPLC
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Figure 1. Scheme showing the studies done to explore the self-
assembly of the palladium-based macrocycles, shown in space filling
representation, with the corresponding overall and inner cavity
diameters. Pd, blue; O, red; P, yellow; C, gray.
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method. Initially, a direct comparison of the two MS
techniques was carried out on pure crystalline {Pd84}

Ac.
Aliquots of identical solutions of the crystalline {Pd84}

Ac

(conc ∼20 mg/mL) were analyzed by SEC-HPLC-MS and
by passing the sample through the desalting columns followed
by direct injection into the mass spectrometer. This showed
that 5−12 ligands were removed from the macrocycle.
Conversely, the assignments for the sample of {Pd84}

Ac,
which was manually desalted, revealed a fully intact wheel (28
acetate ligands) across all the charge states (Table 1).
We propose that the observed ligand loss when the sample

undergoes SEC-HPLC is due to partial breakdown of the
wheel in pure water, suggesting {Pd84}

Ac has limited stability in
pure water. This is consistent with 1H NMR experiments on
pure {Pd84}

Ac in D2O, which reveal dissociation of the acetate
ligands (Supporting Information (SI), Figure S1). This is
because the desalting procedure is a “softer” method of sample
preparation than SEC-HPLC-MS in which the sample travels
through a significantly shorter column, is not under pressure,
and is not mixed with water for a prolonged period of time.
Hence, {Pd84}

Ac remains fully intact when analyzed using this
method. Table 1 shows the simplified assignments for SEC-
HPLC-MS vs desalting + MS of {Pd84}

Ac, showing the number
of acetate (Ac) ligands present in each case (counterions and
associated water molecules have been omitted for clarity; full
assignments can be found in SI, Table S1). Having established
the difference between the SEC-HPLC-MS and manual

desalting methods. We carried out experiments using both of
these techniques to analyze the formation of {Pd72}

Prop and
{Pd84}

Gly. Unexpectedly, the SEC-HPLC-MS study of the
{Pd72}

Prop synthesis showed no products with m/z > 1300.
However, all the spectra contained peaks at m/z ∼1100 and
764, which can be assigned as {[Pd6O2−4(C3H5O2)1−4-
(PO4)2−4]NaxHy(H2O)z}

− and {[Pd12O5−7(C3H5O2)4−6-
(PO4)5−7]NaxHy(H2O)z}

3−, respectively, corresponding to
the propionate analogues of the {Pd6} and {Pd12} subunits.
Conversely, the mass spectra obtained through the preparative
desalting technique revealed a fully intact {Pd72}

Prop wheel
present in solution from day 5 onward (Figure 2b), consistent
with an increasing concentration of the macrocycle in solution.
We also wanted to assess the formation of {Pd72}

Prop and
{Pd84}

Gly via SEC-HPLC alone; for synthetic procedures see
the SI. This was a particularly interesting experiment because
both {Pd72}

Prop and {Pd84}
Gly appeared to break down

completely during SEC-HPLC-MS when water was used as
the mobile phase. On day 1 of the {Pd72}

Prop reaction, a small
shoulder peak could be detected around 19.4 min in the SEC
trace, which grows in intensity and sharpens over time,
resulting in another distinct peak at 19.2 min on day 4, see
Figure 3a.

The retention time of this species corresponds to what is
expected for the {Pd72}

Prop wheel,15 and the emergence of the
small shoulder peak, which grows over the course of this study,
is further evidence to suggest that the {Pd72}Prop wheel forms
whereby the small building units aggregate to form the final
macrocyclic structure. The mother liquor for {Pd84}

Gly was also
analyzed by SEC-HPLC alone, see Figure 3. Two peak maxima
can be seen at 19.3 and ∼18.8 min, which grow in intensity
over days 1−6. The peak at 18.8 min corresponds to {Pd84}

Gly

and can be seen to shift gradually to a lower retention time
from day 1 through day 4. Interestingly, the peak at 19.3 min,
which is between the sizes of those of {Pd15} and {Pd84}

Ac, is
thought to correspond to the {Pd30} species observed in SEC-
HPLC-MS. The {Pd84}

Gly wheel and the {Pd30} species are
present in solution simultaneously, which could indicate that
{Pd30} behaves as an intermediate or template in the self-
assembly process.
Complementary to the MS study, 1H NMR experiments

were conducted on the mother liquor to explore the self-

Figure 2. Mass spectra of pure crystalline {Pd84}
Ac obtained by (a)

SEC-HPLC-MS and (b) preparative desalting followed by direct
injection into the mass spectrometer.

Table 1. Simplified Mass Spectra Assignments of Crystalline
{Pd84}

Ac Analyzed Using (a) SEC-HPLC-MS and (b)
Preparative Desalting + MS (Ac = Acetate Ligand)

m/z

z obs calc assignment

(a) SEC-HPLC-MS
−11 1328 1328.1 {Pd84O42(Ac)16(PO4)42}

11−

−10 1470 1469.6 {Pd84O42(Ac)17(PO4)42}
10−

−9 1648 1648.2 {Pd84O42(Ac)20(PO4)42}
9−

−8 1867 1866.8 {Pd84O42(Ac)21(PO4)42}
8−

−7 2147 2147.7 {Pd84O42(Ac)23(PO4)42}
7−

(b) Desalting + MS
−11 1450 1449.9 {Pd84O42(Ac)28(PO4)42}

11−

−10 1595 1595.0 {Pd84O42(Ac)28(PO4)42}
10−

−9 1790 1789.0 {Pd84O42(Ac)28(PO4)42}
9−

−8 2023 2023.3 {Pd84O42(Ac)28(PO4)42}
8−

−7 2323 2323.0 {Pd84O42(Ac)28(PO4)42}
7−

Figure 3. SEC-HPLC chromatograms (eluting with 0.05 M NaOAc
solution) recorded on days 1−6 of (a) {Pd72}

Prop mother liquor and
(b) {Pd84}

Gly mother liquor, plotted against a 1:1 mix of {Pd84}
Ac and

{Pd15} for size comparison.
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assembly of the Pd wheels. Here 1H NMR was used directly to
follow the change of chemical shift of the carboxylic ligands
that are necessary for the assembly of {Pd72}

Prop, {Pd84}
Ac, and

{Pd84}
Gly macrocycles in solution. The signal at 1.63 ppm

corresponds to the 14 acetate ligands located inside the Pd84
wheel; this signal is shifted compared to that of the free acetate
in solution (1.73 ppm). The smaller intensity peak corresponds
to the 14 acetate ligands located outside the Pd84 wheel (2.21
ppm) and indicates a change in the electronic environment of
the ligand inside the wheel compared to the free acetate in
solution, see Figure 4.

This is similar to that found for the inclusion guests within
the spherical {Mo132}.

9,10 The chemical shift differences
observed in {Pd84}

Ac between the outer or inner acetates and
the free acetate in solution allowed quantification of the
amount of the free versus inner acetate in Pd wheel synthesis.
Similar differences were seen for the {Pd72}

Prop and {Pd84}
Gly

species, see SI, and the percentage of inner/free ligands in the
mother liquor solution was determined from the intensity ratio
of the 1H NMR resonance, see Figure 5 and see SI for
{Pd84}

Gly. The results show a 30% decrease of the free acetate
in solution over the 10 day period in the case of {Pd84}

Ac, and a
smaller 10% decrease of free propionate for {Pd72}

Prop.
The 1H NMR results combined with the two different mass

spectrometry techniques (SEC-HPLC-MS and desalting
followed by MS) were used to study the buildup mechanism
of {Pd72}

Prop and {Pd84}
Gly over 10 days. Initial studies showed

that the SEC-HPLC process caused loss of acetate ligands from
{Pd84}

Ac. This was verified by carrying out a comparative study
on a pure sample of {Pd84}

Ac crystals analyzed using both MS
methods. This ligand loss was attributed to the instability of
{Pd84}

Ac in water (the mobile phase used in SEC-HPLC-MS).
SEC-HPLC-MS revealed no clear signals in the mass spectra at
m/z > 1300 for the {Pd72}

Prop reaction. This was attributed to
its rapid water loss during the SEC-HPLC process, which had
already been seen to occur to a lesser extent with {Pd84}

Ac.
Despite this, {Pd6}

Prop and {Pd12}
Prop building blocks were

detected throughout the study. The mass spectra obtained
through desalting the {Pd72}

Prop mother liquor revealed the
presence of a fully intact {Pd72}

Prop wheel from day 5 onward.
SEC-HPLC was consistent with the desalting MS, showing a

peak at retention time 19.2 min on day 5 corresponding to
{Pd72}

Prop: this peak is seen to emerge over the 6 day study.
Overall, we can conclude that {Pd72}

Prop takes 5 days to form
in solution, and the presence of {Pd6}

Prop and {Pd12}
Prop could

indicate a buildup regime similar to that of {Pd84}
Ac. Using the

desalting technique, {Pd84}
Gly was found to form in solution

after 4 days. Similar to the {Pd72}
Prop study, SEC-HPLC-MS

was unable to identify the intact {Pd84}
Gly wheel on any day of

the study. However, the spectra showed a {Pd6}
Gly unit which

decreased in intensity over time, suggesting this could be the
building block which is gradually consumed as it assembles
into larger species. Finally, we also found that the SEC-HPLC-
MS spectra also showed the presence of a {Pd30} species; this
was detected from day 1 and from day 4 through day 10, and
can also be detected by SEC-HPLC alone. Thus, we postulate
this unit could act as a template, indicating that the rings are
built via gradual chain elongation in solution, as described in
Figure 6.
In summary, we have used a combination of techniques to

explore the assembly of gigantic polyoxopalladates, and this

Figure 4. 1H NMR spectra of {Pd84}
Ac, general formula [Pd84O42-

(PO4)42(CH3CO2)28]
70−, mother liquor at day 10: (a) maleic acid

standard (6.28 ppm), (b) outer acetate (2.21 ppm), (c) inner acetate
(1.63 ppm), and (d) free acetate in solution (1.73 ppm).

Figure 5. 1H NMR data comparison of the % free ligand (acetate or
propionate) versus the % inner ligand in the mother liquor, 10 day
buildup of (a) {Pd8}

Ac and (b) {Pd72}
Prop.

Figure 6. General mechanism of assembly for three giant POPds,
{Pd72}

Prop, {Pd84}
Ac, and {Pd84}

Gly, suggested by our spectroscopic
studies. The scheme depicts the chains as unconnected, but equally
the smaller chains might be able to be connected and ring expansion
with further building blocks could occur.
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allowed us to follow the formation of the rings in solution,
which suggested a common mechanism. Compared to the self-
assembly of the {Mo154} wheel family,13 this system requires
much more time (from less than a second to several days).
Also, the possibility of a ring-expansion rather than chain-
growth mechanism might be considered, given the nature of
the kinetics for the assembly of Pd systems. Further studies
exploring the nature of the {Pd30} species as a possible
template or building block are ongoing.
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