Apparent Ferromagnetism in the ‘Pinwheel’ Artificial Spin Ice
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Magnetic artificial spin ice provides examples of how competing interactions between magnetic
nanoelements can lead to a range of fascinating and unusual phenomena. We examine theoretically
a class of spin ice tilings, called pinwheel, for which near degeneracy of spin configuration energies
can be achieved. The pinwheel tiling is a simple but crucial variant on the square ice geometry, in
which each nanoelement of square ice is rotated some angle about its midpoint. Surprisingly, this
rotation leads to an intriguing phase transition; and even though the spins are not parallel to one
another, a ferromagnetic phase is found for rotation angles near 45°. Here, magnetic domains and
domain walls are found when viewed in terms of net magnetisation. Moreover, the ferromagnetic
behaviour of the system depends on its anisotropy which we can control by array shape and size.

I. INTRODUCTION

An unusual class of magnetic material systems has ap-
peared called ‘artificial spin ice’ [1, 2]. These are care-
fully structured magnetic materials composed of periodic
arrangements of magnetic building blocks [3]. Each mag-
netic block has sub-micron dimensions and arrays typi-
cally contain hundreds of elements. By tiling these tiny
magnets in specific geometrical arrangements, it is pos-
sible to create physical properties and functionalities not
displayed by the constituent materials [1]. For instance,
it has been recently demonstrated that artificial spin ice
structures can display glass-like behaviour [3, 4], config-
urable charge ordering [5] and topological structures that
can be analogous to magnetic monopoles [6, 7] and Dirac
strings [8, 9].

The square ice geometry can be described by vertices
formed from four adjacent islands meeting head-on, as
shown in Fig. 1(a) and (c) [3, 10]. The ‘two-in, two-
out’ state has the lowest energy configuration for ele-
ments interacting through stray magnetic field produced
by the elements [2]. The possibility of observing experi-
mentally thermally driven domain formation was demon-
strated for Kagome and square ice geometries by Morgan
et. al. [11] and Qi et. al. [12]. Emergent properties arise
from the interactions between islands which, according to
their shape and position, lead to correlations and compe-
titions that generate non-trivial dynamics and complex
magnetic orderings [3].

We present a system in which the interaction of neigh-
boring spin pairs is chosen such that near degeneracy is
obtained for the energies of different neighbouring spin
pairs. This is done by deforming the artificial square ice
into a ‘pinwheel” geometry by rotating each spin around
its midpoint through an angle ¥ (see Fig. 1(a) and (c)).
This rotation changes the interaction between elements
so that ferromagnetic ordering is energetically favoured
for some angles of rotation. This is a general result first
predicted by Landau and Binder in the context of Ising
spins [13]. However, the discrete geometry considered

here has interesting consequences on ordering processes
[14], which we explore in this paper. For instance, one of
the possible pinwheel tillings has been recently studing by
Gliga and co-wrkers who showed how dynamic chirality
can emerge in these structures and how a ferromagnetic
ordering is favoured [15]. We examine the effect of ar-
ray geometries on stable and meta-stable configurations
of mesoscopic domains and how their growth is medi-
ated by 'wall-like’ boundaries. Because of this ferromag-
netic ordering, the array as a whole can posses a shape
anisotropy that can compete with the shape anisotropies
of individual elements. This competition can be under-
stood in terms of the topology of the array edges.

II. THEORETICAL CONSIDERATIONS

We consider element geometries where each magnetic
island is a ferromagnetic single domain with strong shape
anisotropy such that its magnetic moment behaves as an
Ising-like spin. The lattice constant, a, is the distance be-
tween the centres of a spin and its next-nearest neighbour
(nnn) as shown in Fig. 1(a) and (c). We approximate
each island as a point magnetic dipole. This approxima-
tion can capture key features of square ice systems when
compared to micromagnetics or experiments. In the case
of the pinwheel ice, we will see that the approximation is
much more severe. In the dipole-dipole approximation,
the interaction between magnetic moments in the array
is given by a dipole Hamiltonian of the form [16, 17]
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where D = pou? /4w and the distance between two spins
is gi by 72 =4 (ri — )2 +4- (r: —r:)2. where th
is given by ri; = & (r; — ;)" + ¢ (rj — r;)", where the
vectors 7; and 7; give the x and y positions of spins at
the i-th and j-th site [18, 19].

The spin at the i-th site has a magnetic moment S; =
ws;0; where s; = £1. p; is the total moment and the unit
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FIG. 1. Square ice lattice arrangements with (a) ‘open edges’ and (c) ‘closed edges’.
(e) Dipolar energy for nn, nnn and 3nn spin pairs as a function of ¢¥. Open
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and closed symbols are for favourably and unfavourably arranged spin pairs respectively.

vector ; represents its orientation specified in terms of 1J.
Using the spin system depicted in Fig. 1(c), in the global
frame of reference, 6; = (cos¥, — sin}) for the horizontal
spins and J; = (sind,cosd) for the vertical spins. We
call the structure with rotated spins as ‘pinwheel’ and
consider two possible tillings for finite arrays defined by
the orientation of array edge relative to the lattice: The
‘Tucky-knot edge’, depicted in Fig. 1(b), and the ‘diamond
edge’, shown in Fig. 1(c).

The resulting dipolar energies for nearest neighbour
(nn), next-nearest-neighbour (nnn) and third nearest
neighbour (3nn) spin pairs as a function of ¢} are pre-
sented in Fig. 1(e). The open and closed symbols repre-
sent the favorable and unfavorable spin pair alignments
respectively. For nn pairs, the interaction is maximal at
¥ = 0° but goes to zero at ¢ = 45°. Thus, square spin
ice (¥ = 0°) is a system dominated primarily by nearest
neighbour interactions [20] whereas pinwheel (9 = 45°)
is a system dominated by interactions between more dis-
tant neighbours. A similar behaviour is observed for nnn
pairs: namely, their contribution to the total energy de-
creases as rotation angle increases towards 45°. By con-
trast, the dipole energy between 3nn spin pairs increases
with rotation angle, until it peaks at ¥ = 45°. Indeed,
at ¥ = 45°, the strongest pair-wise interaction of any
type is between 3nn and all other interactions are slightly
smaller. In general all interactions in pinwheel ice are of
comparable magnitude out to neighbour pairs within a
radius of approximately 4a. Therefore, throughout this
work the full dipole sum with all possible neighbours is
performed when evaluating Eq. 1.

III. THERMAL PROCESSES

In order to obtain thermodynamic averages for the
Hamiltonian given in Eq. 1, we use a single-spin flip
Monte Carlo approach. A single Monte Carlo step (MCS)
is Ly x L, single-spin flips these being the = and y lengths
of the arrays (in terms of a) respectively. We have consid-
ered array sizes varying from 625 to 10* spins. In general,
10* MCS were sufficient to reach equilibrium. For the re-
sults presented in this paper, we have used 10° MCS to
obtain the thermodynamic averages. In such cases the
fluctuations in energy were never greater than 5%.

For comparison we note thermal properties of a spin
ice system when periodic boundaries are imposed. In
Fig. 2(a), the specific heat as a function of tempera-
ture is given for various values of ¢. The specific heat,
c= ((E?)—(E)?)/kpT where E is the total energy of the
system, exhibits a peak for all angles shown. If we look at
the case of a square ice lattice (¢ = 0°) a peak in the spe-
cific heat is seen at approximately 7.2D/kp. The position
of this peak is consistent with that obtained previously
by Silva et. al. [16]. The ground state configuration for
this case is twofold degenerate and obeys the ice rule.

Since the magnetic nano-islands can be modelled as
Ising spins, it is expected that the phase transition from a
disordered state to an ordered state is consistent with the
well-known behaviours of Ising model transitions, such as
that shown by Binder and Landau [13]. So far, we have
investigated this transition by looking at the behaviour
of the aforementioned specific heat ¢. This quantity is
of particular interest in this work as it can be applied to
all angles of rotation in the same way. However, another
physical quantity, the magnetic order parameter M, is



also extremely useful when characterising a novel system.
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FIG. 2. (a) Heat capacities ¢ for different values of ¥ and
(b) Magnetic Susceptibilities x for various angles of rotation
and as a function of temperature T. Note that only ¢ = 45°
and ¥ = 40° are highlighted in part (b) as arrays at smaller
angles do not have a net moment. In (c) T as a function of
¥ showing a phase transition from AFM to FM is given. The
inset in (c) shows the effect of considering the dipole sum only
up to nn, nnn and 3nn when calculating Tc¢.

For the case of classic artificial square ice geometries,
this magnetic order parameter has been defined in a va-
riety of ways. For instance, Xie et. al. has defined M
as an exponential position [18] while Wysin et al defined
masks for each spin vertex [21]. so that in both cases M
would always add up to unity at the equilibrium. There
are numerous ways in which to define a susceptibility,

x- We have chosen to investigate the magnetisation of a
single sub-lattice in calculating

((M?) + (M)?)
M) = S )

The critical temperature of T(¢) agrees well with that
obtained from the heat capacities for those angles which
possess ferromagnetic ground states. For angles outwith
this ferromagnetic region, the magnetisation within each
sub-lattice vanishes, and thus x also vanishes as shown
in Fig 2(b).

As the spins are rotated about their midpoint (each by
the same angle, and in the same sense), the value of T
moves towards lower values in a non-monotonic manner
in the range between 0° to 45°. A phase diagram sum-
marising the behaviour of T¢ as function of rotation an-
gle is shown in Fig. 2(c). In the present case, the system
transitions from a two-in, two-out ice rule ground state
at ¥ = 0° to a state in which sublatices have moments
aligned parallel to each other at ¢ = 45°. This resembles
the classical zero-field phase transition diagrams shown
by Landau and Binder [13] in systems where interaction
strength between neighbours decreases. An example of
the resulting ferromagnetic single domain arrangement
of spins at ¥ = 45° is shown in Fig. 3(b) and (f). The
corresponding arrangements of the element moments are
shown in Fig. 3(a) and (e). Since pinwheel elements do
not meet head-on, we call the square ice vertex equivalent
a pinwheel ‘unit’.

There are two additional features to note from Fig.
2(c): the first is that the ferromagnetic region is quite
narrow; and the second is that T¢ is never zero. The first
feature is seen because the range of angles for which the
system shows ferromagnetic behaviour (approximately
45° +° 8) corresponds to the range for which the nn in-
teraction ceases to be the strongest relative to the other
neighbour interactions (see Fig. 1(e)). The second fea-
ture is mainly due to the contributions from beyond near-
est neighbours as shown in inset in Fig. 2(c). For the
¥ = 45° pinwheel, the nearest neighbour interaction is
suppressed because the two moments are perpendicu-
lar to each other and the interaction cancels by sym-
metry in the dipole approximation. Thus, T vanishes
at ¥ = 45° if only nn interactions are considered but is
always greater than zero when interactions between more
distant neighbouring spin pairs are included.

IV. EDGE EFFECTS

We now focus our attention on the ¢ = 45° pinwheel
geometry. The diamond-type array edge has the mag-
netisation of a domain pointing along the four cardinal
points, while lucky-knot arrays edges have unit spin do-
mains pointing along one of the four corners of the array.
In the thermodynamic limit, infinite arrays uniformly
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FIG. 3. Ground state configuration of (a) diamond and (e) lucky-knot pinwheel arrays with periodic boundary conditions.
Parts (b) and (f) show their respective net magnetisation and stray field. Effect of (¢) diamond and (g) lucky-knot edges on a

finite size array. (d) and (h) shows their respective stray field.

magnetised in any of these configurations are degener-
ate in energy. Examples for the uniform ferromagnetic
configuration are shown for reference in Fig. 3(a) and
(e), for periodic boundary conditions. The effects of ‘di-
amond’ and ‘lucky-knot’ edges for square-shaped arrays
are shown in Fig. 3(c)-(g). In both cases, a structure sim-
ilar to that of a closure domain is energetically preferable
over that of a single domain once the array is of sufficient
size. For both edges, the critical size is at least three pin-
wheel units which is enough to form flux closure in the
magnetisation and minimise the total energy, when com-
pared with a uniformly magnetised array.

For the case of ‘diamond’ edges, a flux closure struc-
ture is preferred. This behaviour is similar to that ob-
served in soft ferromagnetic media with cubic anisotropy
[24, 25] as it reduces surface charges, and minimises the
stray field. For comparison, we show the intensity and
fieldlines of the stray field for both single domain and
flux closure structures in Fig. 3(b) and (d) respectively.
These plots indicate a clear reduction in the maximum in-
tensity of the stray field. Similarly, the energy of the flux
closure structure is lower than that of the single domain
state for these sufficiently large arrays. The intensity
of the stray field is normalised to that of the uniformly
magnetised array shown in Fig. 3(b). In this case, when
compared to Fig. 3(b), stronger field lines are seen and
the intensity of the stray field for a closure structure de-
creases almost immediately beyond the array edges.

For the case of a ‘lucky-knot’ edges shown in Fig. 3(g),
four square domains can combine to form a different flux
closure structure. Unlike the ‘diamond’ edge case — and
due to the geometry of the nano-islands — the net magne-
tization cannot be arranged so as to totally minimise the
stray field. Even though there is not the same minimiza-

tion of uncompensated charges as for the diamond edges,
this state is still energetically favourable over the single
domain state. We compare the equivalent stray field for
both systems in Fig. 3(f) and (h). Note that the intensity
decreases in a way similar to that of the diamond edge
array. Because of how to the magnetisation is geometri-
cally constrained, there are uncompensated charges and
the stray field forms small loops across the array edges.

V. ASPECT RATIO AND SIZE EFFECTS

For pinwheel ice, the importance of the stray field on
domain formation of the unit spin depends on array edge
type. However, the array shape and size are also im-
portant. The global shape anisotropy of rectangular ar-
rays, for instance, can be expected to act as a uniax-
ial anisotropy in analogy with continuous ferromagnetic
nanobars. Thus, both array edges and aspect ratio play
an important role in structure of the magnetic domains
observed.

In the case of a rectangular pinwheel lattice with dia-
mond edges, the emergent patterns resemble those seen
in permalloy nanobars [22]. Fig. 4(a) shows a struc-
ture of two vortices reminiscent of diamond walls, while
Fig. 4(b) describes an elongated Landau flux closure pat-
tern. Both panels are for arrays of the same size, ther-
malised under the same conditions, but taken from Monte
Carlo repetitions starting with different initial states.
Comparing energies, we find that both configurations
are nearly degenerate. Their energies differ by approxi-
mately 1.25%. The closure structures form through the
creation of ‘mesoscopic’ domain walls within the arrays
i.e. domain walls whose internal structure is composed of
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FIG. 4. To the left of (a)-(b) and (c)-(d) nearly-degenerate configurations for different thermal annealing are shown for diamond
and lucky-knot edges respectively. To the right their respective unit net magnetisation orientation is given. The inset in (a)
shows the formation of 90° Néel walls and in (b) show, from left to right, a pinwheel unit with circular magnetisation, no net
magnetisation and the formation of 180° Néel walls. The insets in (c)-(d) show the formation of only 90° Néel walls.

unit spins. In the first case, two such wall structures are
given in the insets of Fig. 4(a) and (b). These resemble
classical Néel walls in which the net moment of the unit
reorients direction in the plane of the array. The cost in
creating such a 90° wall unit is higher than that of creat-
ing a simple ferromagnetic unit of aligned net moments.
However, this cost is compensated by the reduction in
global array stray field.

When a Landau flux closure pattern is formed, another
type of wall is observed. These are analogous to 180°
Néel walls in continuous media. These walls are made of
two pinwheel units and therefore the energy-per-spin is
higher than a single ferromagnetic unit and a 90° Néel
wall unit. However, the total energy of the system is
still smaller than a single magnetised domain due to the
minimisation of uncompensated charges.

We note that the number of vortices in a diamond

structure is related to the aspect ratio. Here, we have
chosen an aspect ratio of 2:1 where no more than two vor-
tices are formed — forming more than two vortices does
not bring about a significant enough reduction in the en-
ergy associated with stray field compared with the cost
in forming the walls themselves. Different aspect ratios
(given in supplementary [27]) have analogous structure
or more complex combinations of the structures shown
in Fig. 4(a)-(b) depending on dimension.

We have mentioned previously that the effect of in-
creasing the array size in a square shaped array of pin-
wheels with lucky-knot edges is to facilitate formation of
smaller domains. This is shown for a single closed flux
vortex structure of a small array in Fig. 5(a) becomes
four closed flux vortex structures in an array with four
times as many elements. However, even though the four
vortex structure is a possible configuration, it forms only



when the spin system is sufficiently large. The threshold
array size depends on balancing the magnetostatic en-
ergies arising from uncompensated charges at the edges
with the magnetostatic costs of internal charge distribu-
tions associated with the mesoscopic domain boundary
wall structures.
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FIG. 5. Effect of size on square shaped arrays: (a) schematics
of the domains breakdown as the array size is doubled and
(b) simulation of doubling the array size from 25x25 to 50x50
(in units of vertices) for arrays with lucky-knot edges. The
magnetisation configuration in a large array with diamond
edges is shown in (c).

In large spin systems, such as the one depicted in
Fig. 5(b), there are several possible arrangements which
also minimize the total energy. This leads to long lived
metastable state formation because once the system gets
stuck in such a meta-stable state it is unlikely that a
large number of spin will flip again in order to form the
arrangement shown in Fig. 5(a). In the language of
continuous film ferromagnets, the pinning strengths are
large for the artificial spin ice. Pinning for the artificial
spin ice is intrinsic in that it originates from the coerciv-

ity of individual elements. This can be large, but is also
something that can be controlled in the design of arrays.

In the case of square shaped arrays of pinwheels with
diamond edges, the single flux closure magnetisation vor-
tex is always favorable. This is because the the magneti-
sation structure, differently from that seen in lucky-knot
edges, always minimizes the stray field. However, as the
size of the array increases, a combination of multiple Lan-
dau patterns can also be achieved as seen in Fig. 5(c).
This is also consistent with the bahaviour of continuous
ferromagnet films. As observed in measurements done
by Cherifi et. al in Co films, the probability of finding
double Landau patterns in square-shaped films increases
with the lateral dimensions of the film [23].

VI. DISCUSSION AND CONCLUSIONS

In this work we have shown how multiple possible pat-
terns can exist with nearly the same energy as the unit
types that compose walls, vortex (and anti-vortex) cen-
tres, and domains all have similar energy. These degen-
eracies can be understood by examining the dipolar en-
ergy of the different pinwheel unit types shown in Fig.
6. At 9 = 0°, the energies are well separated with the
energy of a Type 1 much lower than all others. As the
angle increases, all these energies approach zero and be-
come nearly degenerate [26, 27]. At a narrow range of
angles around ¥ = 45° the energy of a Type 2 is now
lower than all the others. However, the domain walls are
formed of Type 3s and the centre of vortices is composed
of a single Type 4. This is a consequence of the pref-
erence of the system for a magnetisation configuration
which minimises the stray field and total energy.

N\Y %

IS

FIG. 6. Pinwheel unit types and respective dipolar energies
as a function of the rotation angle 9.

In Figs. 4(c)-(d), we show the effect of lucky-knot edges
on rectangular arrays comparable in size to those of dia-
mond. The arrangement of Fig 4(c) shows a combination
of two of the vortices shown in Fig. 3(b). In order to ar-



range the magnetisation in this way, it is necessary to
form an anti-vortex in the middle of the array. For the
lucky-knot array edge, only 90° Néel walls are seen. This
is the same as that observed in the diamond-edge case
(though rotated through by 45°). These unusual vortices
are formed by breaking one large ferromagnetic domain
into small square ferromagnetic domains with circulating
direction of net magnetisation.

In contrast to diamond-edge arrays, the lucky-knot
edges do not promote the formation of 180° Néel walls.
Instead, the system often prefers to form a state with a
net moment parallel to the long-axis of the array, but
which is broken up into several domains.

Our results show that the pinwheel spin ice can be-
have as a ‘macro-ferromagnet’, despite its non-collinear
spins, with a tendency to form domains and domain walls
analogous to those in continuous ferromagnetic materials
[23-25]. In the cases we studied, only 90° and 180° Néel
walls have been observed in the ground state configura-
tions. However, experimental work on pinwheel arrays

shows that a variety of unusual charge ordered domain
walls is possible in field driven magnetization processes
[14]. Similar wall structures have also been observed in
our calculations during the thermal annealing. However,
the magnetization configurations induced by such walls
are not stable against thermal fluctuations.

The unit geometry defines two easy and two hard axes
which can compete with the shape anisotropy. This is
what drives the different domain structures observed for
lucky-knot and diamond edges. Moreover, the variety
of stable and metastable configurations affects avalanche
dynamics during domain growth and creates sensitivity
to array edges.

Finally, interactions at the critical angle at which the
system changes from antiferromagnetic to ferromagnetic
prevent T, from going to zero. Such behaviour is not seen
in the system investigated by Binder and Landau. We
believe this indicates potential for frustration between
phases and the possibility of suppression of magnetic or-
der around these angles.
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