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Abstract This paper presents a numerical study of the magnetohydrodynamics, natural convection and 

thermodynamic irreversibilities in an I-shape enclosure, filled with CuO-water nanofluid and subject to a 

uniform magnetic field. The lateral walls of the enclosure are maintained at different but constant temperatures, 

while the top and bottom surfaces are adiabatic. The Brownian motion of the nanoparticles is taken into account 

and an extensive parametric study is conducted. This involves variation of Rayleigh and Hartmann numbers, and 

the concentration of nanoparticles and also the geometrical specifications of the enclosure. Further, the 

behaviours of streamlines and isotherms under varying parameters are visualised. Unlike that in other 

configurations, the rate of heat transfer in the I-shaped enclosure appears to be highly location dependent and 

convection from particular surfaces dominates the heat transfer process. It is shown that interactions between the 

magnetic field and natural convection currents in the investigated enclosure can lead to some peculiarities in the 

thermal behaviour of the system. The results also demonstrate that different parts of the enclosure may feature 

significantly different levels of heat transfer sensitivity to the applied magnetic field. Further, analysis of 

entropy generation indicates that the irreversibility of the system is a strong function of the geometrical 

parameters and that the variations in these parameters can minimise the total generation of entropy.  This study 

clearly shows that ignoring the exact shape of the enclosure may result in major errors in the prediction of heat 

transfer and second law performances of the system.  
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Nomenclature T  temperature, K 

 

a  geometric parameter, m v,u  velocity components in y,x directions, 

1s.m 
 

 

A dimensionless geometric parameter, a L  

 

U V,  dimensionless velocity components                

( fLu  , fLv  ) 

 

0
B  magnetic field strength 

 

w  heat source length, m 

 

b  geometric parameter, m 

 

W dimensionless heat source length (w/L)  

 

B dimensionless geometric parameter, b L  

 

y,x  Cartesian coordinates, m 

 

pC  specific heat, 
11 K.kg.J 

 

g  gravitational acceleration, 
2s.m 

 

 

Y,X  dimensionless coordinates ( Ly,Lx ) 

 

Ha  Hartmann number,    
0 nf nf f

0 5
B L   

.
 

 

Greek symbols 

  thermal diffusivity, 
12 s.m 
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k  thermal conductivity, 
11Km.W 

 

 

  thermal expansion coefficient,
1K 

 

 

L  length and height of enclosure, m   

 
  volumetric concentration of nanoparticles 

 

Nu  local Nusselt number on the heat source 

 
  dynamic viscosity, 

2m.s.N 
 

 

mNu  average Nusselt number 

 

  kinematic viscosity, 
12 s.m 

 

 

m
Nu

*
   Nusselt ratio, 

m,  m Ha 0
Nu Nu


 

 

  dimensionless temperature 

)TT(/)TT( chc   

m
Nu

**
 Nusselt ratio, 

  m m, 0
Nu Nu


 

 

  density, 3m.kg   

 

λ        irreversibility distribution ratio 

 

p    fluid pressure, Pa  

 

  stream function  

  

p  modified pressure ( gyp c ) 

 

Subscripts 

c  cold wall 

eff  effective 

eq  equivalent 

f  fluid (pure) 

h  heat source 

nf  nanofluid 

s  nanoparticle 

 

 

 

P  dimensionless pressure (
2
fnf

2 /Lp  ) 

 

Pr  Prandtl number ( ff  ) 

 

s
R  radius of nanoparticles, nm 

 

Ra   Rayleigh number, ( ffch
3

f )TT(Lg  ) 

Sgen       Entropy Generation 

 

 

1. Introduction 

The last two decades have witnessed an exceptionally rapid growth in the research activities on nanofluids [1,2]. 

Suspension of nanoparticles in a liquid increases the thermal conductivity of the fluid [3,4]. The augmented 

conductivity of the base fluid then results in improvements in heat convection in either of forced [5,6,7] or 

natural [8] modes. The general area of convective heat transfer in nanofluids has received significant attention 

[2,3,9]. In particular, natural convection of nanofluids has been vastly studied [3,8]. This is, perhaps, reflective 

of the growing significance of natural convection in modern applications such as electronics cooling [10]. It is 

also representative of the fact that there exists a considerable potential for improving natural convection through 

using nanofluids [9].  

      Many scholars have contributed to the field of natural convection of nanofluids and an exhaustive review of 

literature in this area is beyond the current discourse. Amongst other researchers, Ghasemi and Aminossadati 

[11], Khanfar et al. [12], Kefayati et al. [13] and Lai and Yang [14] conducted detailed studies on this problem. 

These authors have all reported an enhancement of convective heat transfer through increasing the volumetric 

concentration of nanoparticles in the base fluid. Mahmoudi et al. [15] numerically investigated the natural 

convection of water-copper nanofluid in a square enclosure containing a horizontal heat source on the vertical 

side of the enclosure. They concluded that the dimensions of the heat source are the most influential parameter 

dominating the flow and heat transfer properties. Their results also showed that for a specified length of heat 



3 
 

source and Rayleigh number, the average Nusselt number increases linearly with the increase in nanoparticles 

volume fraction [15].  

         Heat transfer in the presence of magnetic effects is an important necessity in a number of engineering 

applications including electric propulsion for space exploration, crystal growth in liquids, electronic packages 

and microelectronic devices. In almost all these applications natural convection is of primary importance. 

Magnetic field generates Lorentz force in electrically conducting fluids. This acts as a body force, which can 

then interact with buoyancy forces in the fluid and hence affect the natural convection of heat in the system [16]. 

Hamed et al. [17] and Gavili et al. [18] experimentally measured the effects of magnetic fields on heat transfer 

from vertical surfaces. They showed that intensifying the magnetic field reduces the velocity of the fluid flow. 

In keeping with this finding, other researchers showed that the modification of heat transfer rate by magnetic 

effects could be rather significant [19-21].  

         Over many years of research on natural convection of ordinary fluids, a large number of configurations 

have been investigated [22]. It is now well-documented that natural convection in enclosures is heavily 

dependent upon the geometry and configuration of the enclosure [23-25]. In recent years, some of these 

configurations have been re-investigated through considering natural convection of nanofluids [26]. Yet, the 

diversity of applications and the complexity of nanofluid convection under magnetic effects warrants further 

extension of these studies to the less explored configurations. Early works on simple rectangular enclosures 

filled by ordinary fluids and subject to magnetic fields were conducted by Sanokawa [27] and Ozoe and Okada 

[28]. Later Rudaiah et al. [29] numerically investigated natural convection in an ordinary fluid in the presence of 

a magnetic field and within a simple cubic enclosure. These authors showed that the magnetic field could 

significantly suppress the motion of the fluid inside the enclosure and therefore reduce the rate of heat transfer 

[29].  Similar conclusions were made by Pirmohammadi et al. [30] for tilted enclosures and Chamkha et al. [31] 

in an enclosure with internal heat generation. These studies clearly demonstrated that the application of 

magnetic fields to enclosures impedes the transfer of heat by natural convection. Despite this general qualitative 

trend, quantitate aspects of the problem were found strongly dependent upon the configuration and geometry of 

the enclosure [29-32]. 

         Improved thermal conductivity of nanofluid is expected to constructively affect the heat transfer process 

and boost the thermal performance of the system. This notion has been investigated in a series of numerical 

studies by Sheikholeslami and Ganji and their co-workers, e. g. [33-35].  Further, a wide variety of 

configurations have been analysed by other authors [21,36,37].  In particular, configuration with curved walls 

[38] and those containing multiphase-phase fluids [38, 39] have been extensively analysed.  Additional physical 

effects such as non-Newtonian and the slip velocities have been also considered [40,41]. These studies showed 

that similar to that encountered in ordinary fluids, the enclosures filled with nanofluid lose their heat transfer 

capability should the magnetic field be intensified. Nonetheless, the use of nanofluid leads to a higher average 

Nusselt number compared to those calculated for the ordinary fluids in the same configurations [33, 34,37].  

          In thermo-fluidic systems, energy quality losses inevitably occur as a result of irreversibilities. Generally, 

the extent of these irreversibilities can be quantified by entropy generation rate. The aim of entropy generation 

analysis is to understand how to minimise entropy generation, thereby maximising the energy available to do 

useful work [42–44]. In recent years, entropy generation analysis have been extended to MHD natural 

convection of nanofluid in enclosures. Hajialigal et al. [45] have discussed the influences of magnetic field on 
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mixed convection and entropy generation in nanofluid within three-dimensional microchannels. It was 

highlighted that as the strength of the magnetic field and the volume fraction of nanoparticles increase, the total 

entropy generation decreases. Mehrez et al. [46] have investigated the impacts of MHD on transfer of heat and 

entropy generation in a cavity filled with nanofluid. It was found that increasing the volume fraction of 

nanoparticles results in an enhancement of the average Nusselt number and also intensifies entropy generation. 

In another recent study Kefayati and Sidik [47] studied entropy generation within a non-Newtonian nanofluid 

inside an inclined cavity. The results showed enhancement in fluid friction and heat transfer irreversibility with 

increasing Rayleigh number. Fersadou et al. [48] conducted a numerical study to analyse the effect of magnetic 

field on entropy generation inside a vertical porous channel filled with Cu-water nanofluid. They also showed 

that nanoparticle addition increases the entropy generation of the system. 

         An important fact deducted from the literature is the existence of a strong configurational dependency in 

the problems involving natural convection in enclosures. Consideration of magnetic fields and nanofluids 

further intensifies this dependency. Importantly, the primary application of magnetohydrodynamic cooling is in 

electronic devices, in which the enclosures might be manufactured in a wide range of shapes [10]. In a recent 

review, Sheikholeslami and Ganji have provided a list of nanofluid enclosures, which have been theoretically 

and numerically investigated [26]. These include different enclosures with flat walls [49], spherical and 

cylindrical shapes [50], cylindrical configurations [51], titled enclosures [52] and a wealth of configurations 

with curved walls, e.g. [38]. It follows from this list that although a large number of configurations have been 

analysed, some classes of enclosures remain almost entirely unexplored. For instance, combined enclosures 

consisting of a number of interconnected simpler enclosures have received very little attention. This is 

surprising as in practice implementation of more complex enclosures is much more likely than those of simple 

geometry. Thus, analysis of more complex configurations is clearly the next step in the study of natural 

convection of nanofluids under magnetic effects.  

      Towards this aim, the current work considers an I-shape enclosure filled with water-CuO nanofluid and 

under the influence of a horizontally-applied magnetic field. To the best the authors’ knowledge, currently there 

is no study in the open literature on this particular problem. The I-shape enclosure may represent the cooling of 

electronic components with a non-planar wall. This can include a multi-pieces electronic chip or an electronic 

micro-coil influenced by the magnetic field. The study involves investigation of coupled hydrodynamic and 

thermal problems for varying values of Hartman and Rayleigh numbers and the volumetric concentration of 

nanoparticles. Also of interest are the influences of aspect ratio of the investigated enclosure upon the qualitative 

and quantitative behaviours of the thermal system.   

 

2. Problem configuration and numerical methods  

Figure 1 shows a schematic view of the problem under investigation. This includes an I-shape enclosure with 

the left walls maintained at high temperature, Th, and the right walls exposed to a low temperature, Tc. The 

bottom and top surfaces of the enclosure are assumed to be thermally insulated. The enclosure is filled with 

water-CuO nanofluid and is also subject to a constant magnetic field B0 along the x-axis.  

2.1. Assumptions and governing equations 

The following assumptions are made throughout the current study. 
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 The nanoparticles and water are in local thermal equilibrium and the nanofluid is a Newtonian and 

incompressible fluid. 

 The flow is considered to be laminar, steady and two-dimensional and radiative heat transfer is ignored. 

 The displacement current, induced magnetic field, dissipation and Joule heating are neglected and there 

is a no-slip boundary condition on all enclosure walls. 

The governing equations of continuity, momentum and transport of thermal energy can be, respectively, written 

in non-dimensional forms as follows [34].   

The equation of continuity reduces to  

(1) 

 

0
U V

 .
X Y

 
 

 
 

Momentum equation in X direction is written as 

(2) 
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Further, the transport of thermal energy takes the form of 

(4) 

 

2 2

2 2

nf

f

U V  
X Y X Y

   



   
  

   

 
 
 

, 

where the following non-dimensional parameters are used in the analysis.  

(5) 

 

2

2

, ,    

,       ,        ,       

,

f nf

c

cf f h

y a b
Y A B

L L L

T Tu L v L p L
U V P

T T

x
X

L


   

  


   





 

In these equations, L is the length of the enclosure and other variables have been defined in the nomenclature. 

The non-dimensional groups including Rayleigh, Prandtl and Hartmann numbers are defined as follows, 

(6) 
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0
Ra ,        Ha ,         Pr =

f h c nf f

f f nf f f

g L T T
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  . 

Further, the non-dimensional boundary conditions can be summarised as, 
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 along all the walls of the enclosure                   0U V   

 along the horizontal walls of the enclosure  / 0Y          (7) 

 along the left walls of the enclosure  1   

 along the right walls of the enclosure  0   

The rate of heat transfer can be expressed in terms of Nusselt number. The local Nusselt number on the hot 

walls is defined as  

(8) 

  

Nu ( )
nf

f wall

k
S

k N


 



 
 
 

, 

in which, N can be either of the dimensionless coordinates of X or Y. 

The average Nusselt number is obtained by integrating the local Nusselt number over the hot walls. That is 

(9) 

 
m

0

1
Nu Nu( )

S

S dS
S

    , 

where S is the surface area of the hot walls. 

The local entropy generation equation given by Bejan [42] can be adopted for nanofluid as [53]:  

(10) 
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where T0 = (TH+TC) /2. By using dimensionless parameters, the dimensionless local entropy generation reduces 

to 

(11) 
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Next, the irreversibility distribution ratio λ is defined as: 

(12) 
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0
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The dimensionless total entropy generation, St is obtained by integrating equation (11) over the entire 

computational domain and hence is given by 

(13) 

 
t genS S dV  . 
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2.2. Nanofluid thermophysical properties 

The properties of the nanofluid can be defined on the basis of the properties of the pure liquid and solid 

nanoparticles. Following Ref. [11] these are defined as 

 (14) 

 

(1 )nf f s         ,  

(15) 

 

( ) (1 )( ) ( )nf f s          ,

 

(16) 
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(17) 
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nf nf p nf
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(18) 

 

(1 )nf f s       ,

 

Different factors can potentially influence the heat transfer enhancement of nanofluids and hence different 

models of nanofluids have been suggested. In a conventional approach, the effect of the particles Brownian 

motion is neglected due to the large particle size. As the particle size approaches nanometre scale, the particle 

Brownian motion and its effects on the surrounding liquids are magnified. The contribution of Brownian motion 

of nanoparticles with enhancement of thermal conduction could happen in two different ways: first, due to the 

movement of the nanoparticles, which can transfer the heat and second, through microconvection of the fluid 

around individual nanoparticles [62]. To consider these, the following models of viscosity and thermal 

conductivity are implemented.  

 The Brownian motion of the nanoparticles is taken into account by the method introduced in Ref. [54]. 

(19) BrownianStaticnf   .     

In this equation 𝜇𝑆𝑡𝑎𝑡𝑖𝑐 is the static viscosity calculated by Brickman equation [55], where 

(20) 2.5
(1 )Static f    


  , 

and 𝜇𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛  is the viscosity due to Brownian motion of the nanoparticles and is expressed by 

(21) 
4

5 10
2

b
Brownian n f

s s

k T
 f(T, )  

R
   


  . 

Following Ref. [56], thermal conductivities are defined as  

(22) 
BrownianStaticnfk k k    , 
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In the Eq. (19), 𝑘𝑆𝑡𝑎𝑡𝑖𝑐 is the static thermal conductivity coefficient calculated through Maxwell's equation [57]. 

In Eq. (21), Kb is Boltzmann constant and β and f are modelling functions [56]. Table 1 shows the 

thermophysical properties of the investigated water and CuO nanofluid. In the proceeding calculations the 

numerical value of Prandtl number of water is considered to be 6.2. 

2.3. Numerical scheme and validations 

The governing Eqs. (1) - (4) with the corresponding boundary conditions given in Eq. (7) are solved using an in-

house code developed on the basis of control volume formulation and SIMPLE algorithm [58]. The convection–

diffusion terms are discretised by a power-law scheme and the system is numerically modelled in FORTRAN. A 

regular rectangular domain with a uniform grid is implemented. The following convergence criterion is 

considered. 

(26) 
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in which, n is the number of repetitions and γ stands for the non-dimensional parameters U, V and θ. 

          To verify the solution method and ensure the accuracy of the developed code, the numerical results were 

compared with those found in the literature. First, the results of natural convection in a differentially heated 

square enclosure obtained from the developed code was compared against the bench-mark solution of Davis 

[59]. Table 2 shows the outcomes of this comparison indicating negligible differences between the two Nusselt 

number groups. A square enclosure filled with water-CuO nanofluid featuring a heat source on the wall was 

previously modelled [60].  Figure 2 shows a comparison between the predictions of the developed numerical 

tool and those reported in Ref. [60].  Evidently, the two computations agree closely. In the next step, the 

accuracy of the code in modelling magnetohydrodynamic effects was evaluated. This assessment was carried 

out by comparing the results of the study of Pirmohammadi and Ghasemi [61]. These authors considered a two-

dimensional, square enclosure in which two opposing walls were maintained at different constant temperatures 

and the other two walls were thermally insulated. Figure 3 shows the variation of Num along the hot wall with a 

varying angle of the magnetic field calculated at three different Hartmann numbers. Clearly, the outputs of the 
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developed code feature a good agreement with the results of Pirmohammadi and Ghasemi [62]. In the final step, 

the effect of grid resolution was examined in order to select the appropriate grid density. Figures 4 shows the 

effect of the number of grid points on the average Nusselt number and the maximum value of stream function. 

This figure indicates that a 100 × 100 uniform grid can be used in the computations. The discussions presented 

in this sub-section serve as the full validation of the numerical simulations in the current study.  

 

3. Results and discussion  

The main objective of this investigation is to understand the influences of an I-shape enclosure upon the 

magnetohydrodynamics, natural convection of heat and generation of entropy of a nanofluid. Towards this aim, 

the computational tool developed and validated in section 2 is used in this section to conduct parametric studies. 

A large parametric space including Rayleigh number ( 63 10Ra10  ), Hartmann number (0 ≤ 𝐻𝑎 ≤ 80) and 

the nanoparticles volume fraction ( 0400 . ) is investigated. Further, the geometrical parameters of the 

enclosure are varied and the resultant modifications are analysed.     

3.1 Effects of Rayleigh and Hartmann numbers and nanoparticles volume fraction 

In this subsection the effects of Rayleigh number Hartmann number and nanoparticles volume fraction are 

investigated for fixed values of the enclosure geometric parameters (A=0.4 & B=0.4 in Fig.1).  Figure 5 shows 

the streamlines for the nanofluid and pure water at different Rayleigh and Hartmann numbers. The buoyancy-

driven circulating flows within the enclosure are evident for all investigated values of Rayleigh and Hartmann 

numbers. As expected, by increasing the value of Rayleigh number, the intensity of buoyancy forces and hence 

the maximum value of stream functions increases. Further, the streamlines are expanded throughout the 

enclosure, which is a clear indication of an increase in convection. Nevertheless, it is observed that the 

maximum value of stream function for the nanofluid is smaller than that of pure fluid. This could be attributed 

to the higher viscosity of nanofluid compared to the pure fluid, which slightly slows the flow. Figure 5 also 

shows that by intensifying the strength of the magnetic field, streamlines become symmetrical and the maximum 

flow velocity reduces. This can be readily verified by comparing the streamline patterns for Ra=104 and Ha=0 

and those with the same Rayleigh number and nonzero values of Ha. In the absence of any magnetic field, the 

flow pattern inside the enclosure is noticeably asymmetric. This behaviour persists for both pure water and 

nanofluid. However, addition of the magnetic effect totally removes the asymmetric pattern. Interestingly, this 

organsing effect becomes less noticeable at higher Rayleigh numbers. That is such that for moderate values of 

Ha and Ra of  105  and 106 some deviation from symmetric flow pattern is observed. Regardless of the 

magnitude of Rayleigh number, this deviation significantly decreases at high values of Hartmann number 

(Ha=80) and the flow becomes almost perfectly symmetric.  Figure 5, therefore, implies the opposing effects of 

Ra and Ha. The former generates a convection current in a complex and asymmetric way, while the latter 

attempts to organise the flow and maintain the symmetry.     

         Figure 6 depicts the isotherms for the same cases investigated in Fig. 5. This figure shows that for Ha=0 

and low Ra the pattern of isotherms is slightly asymmetric, which then becomes perfectly symmetric at finite 

values of Ha. At low values of Ra, the flow rate is relatively small and the heat transfer is dominated by 

conduction. Hence, the effect of magnetic field stands out rather clearly. Also, for Ra=104 the isotherms tend to 

be parallel to the hot and cold walls, which is once again an indication of a conduction dominated system. 
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However, as the Rayleigh number increases, the isotherms become complex and the population of them grows 

near the bottom right corner of the hot wall and the upper left corner of the cold wall. Magnetic field tends to 

suppress this behaviour and the density of isotherms decreases at Ha=80. Figures 5 and 6 indicate that at low Ra 

the geometrical, flow and thermal axes of symmetry are all identical and essentially coincide on the vertical axis 

passing through the centre of the enclosure. Interestingly, at high values of Ra, the geometric and flow axes of 

symmetry are still more and less the same. The intensity of magnetic field determines the extent of the 

difference between the two axes. Yet, high values of Ra significantly modify the thermal pattern of the system. 

This is such that the isotherms become almost diagonally symmetric and most of heat transfer occurs at the top 

and bottom cavities and less thermal activities are observed in the middle cavity. This trend can have 

pronounced effects upon the design of I-shape enclosures and distinguishes them from square cavities, in which 

there is no sharp thermal distinction along the lateral walls [60, 61].  

         It was observed in Fig. 5 that the magnetic field can significantly modify the flow pattern. In order to 

obtain a better understanding of the flow behaviour within the enclosure, the vertical velocities at the mid-

section of the enclosure, Y=0.5, are plotted in Fig. 7a for the highest Ra and three values of Ha. It is observed 

that by augmenting the magnetic field the maximum vertical velocity is reduced. This is such that for the case 

Ha=80 convection has been significantly suppressed. It is therefore concluded that at high values of Hartman 

number the vertical exchange of mass in the cavity is quite small. This renders the middle cavity rather 

insignificant in the overall convection problem, which is in keeping with the arguments made earlier on Fig. 6. 

Reduction of Ra in Figs. 7b and 7c leads to an overall decrease in the vertical velocity for all values of Ha, while 

the qualitative trend remains mostly unchanged. Nonetheless, a close comparison of Fig. 7a with Figs. 7b and 7c 

shows that at high Ra the maximum and minimum points on the velocity profile are always located close to the 

walls. However, at lower values of Ra number, these locations take a distance from the lateral walls and are 

situated closer to the centre of the duct. This strong motion of the fluid in the vicinity of the walls and the 

subsequent formation of boundary layer acts as a convective agent in the middle cavity. However, as shown in 

Fig. 6, the resultant heat transfer capability is still significantly lower than that of the top and bottom cavities. 

This is due to the fact that the rotation of the flow in the corners highly enhances the convection process near the 

sharp edges of the investigated geometry.  

         The values of average Nusselt number calculated on the hot walls for varying values of Ra, Ha and are 

given in Table 3. It is clear from this table that for high Rayleigh numbers there are higher average Nusselt 

numbers. In general, by increasing the volume fraction of nanoparticles the Nusselt number increases. This 

observation is in complete agreement with those reported in other geometries [9,26,38]. However, at Ra=105 and 

106 a different behaviour is observed in which for ≥0.02 increasing   results in a slight reduction of the 

Nusselt number. This can be explained by noting that at higher Ra the bulk motion of the fluid is rather 

significant. Through increasing the concentration of nanoparticles the viscosity of nanofluid increases. As 

shown in Fig. 5, this can impede the convection process and result in the reduction of Nusselt number. It is 

speculated that the multiple flow rotations and the induced strong shear stress in an I-shape enclosure magnify 

the influence of nanofluid viscosity upon the convection process.  Table 3 also shows that the average Nusselt 

number decreases through increasing Ha. These declines are more obvious at Ra=105 and 106, in which 

convection is the dominant mechanism of heat transfer and, once again, are in keeping with the literature [33-

36]. 
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        Figure 8 shows the variation of Nusselt number ratio, defined as 𝑁𝑢𝑚
∗∗ = 𝑁𝑢𝑚/𝑁𝑢𝑚,   𝜙=0, against the 

nanoparticles volumetric concentration (00.04) for different values of Rayleigh number. This figure shows 

that, regardless of the value of Rayleigh number, nanofluid always features a greater Nusselt number compared 

to pure water. It is clear from Fig. 8 that addition of 1% nanoparticles results in a considerable increase in 

Nusselt number ratio. The figure also reflects a clear Rayleigh number dependent trend, wherein the 𝑁𝑢𝑚
∗∗ graph 

bifurcates into two branches. The first branch corresponds to the lower values of Rayleigh number (Ra=103 and 

104) showing a monotonic increase of 𝑁𝑢𝑚
∗∗ with respect to the concentration of nanoparticles. The largest 

growth in Nusselt number ratio belongs to the lowest investigated concentration of nanoparticles, =0.01, while 

at higher concentrations the heat transfer enhancement is less significant. This branch includes weak convection 

or conduction dominated heat transfer processes. Under this condition, the increase in nanoparticles 

concentration and the resultant augmentation of the fluid thermal conductivity improve the heat transfer in 

comparison with that of pure fluid. The second or lower branch in Fig. 8, related to high Ra, shows a very 

different behaviour. Here,   𝑁𝑢𝑚
∗∗ increases with  at low concentration. However, it starts to slightly decrease 

for higher values of nanoparticle concentration.  This behaviour has been already discussed with regard to Table 

3 and is due to the viscous effects of nanofluid at strong convective modes. It implies that at higher values of Ra 

there exists an optimal value of nanoparticle concentration, which will be a function of Rayleigh and Hartmann 

numbers. Clearly, finding this optimal concentration of nanoparticles is of engineering significance.    

        The effect of nanoparticles volume fraction percentage on entropy generation for Ha= 0 and 40 has been 

shown in Fig. 9. It is observed that with increasing the volume fraction of nanoparticles entropy generation rises 

slightly. This behaviour is consistent with that reported in the literature for other configurations and hence is not 

further discussed here. The effects of Hartmann number on heat transfer rate are investigated in Figure 10. This 

figure depicts the variation of average Nusselt number ratio, defined as 𝑁𝑢𝑚
∗ = 𝑁𝑢𝑚/𝑁𝑢𝑚,   𝐻𝑎=0 , with 

Hartmann number for different concentrations of nanoparticles and Rayleigh number. Figure 10 indicates that at 

low values of Rayleigh, wherein heat transfer is essentially through conduction, the magnetic field does not 

impart any major effect on the heat transfer process. Thus the average Nusselt number ratio remains nearly 

unchanged or features only minor declines when Hartmann number increases. For higher values of Rayleigh 

number, however, the average Nusselt number ratio decreases significantly by increasing the Hartmann number. 

This is observed in the cases for which heat transfer is mainly due to convection and the magnetic field can 

suppress the fluid motion and weaken the heat convection.   

        In Fig.11 the profiles of total entropy generation against Hartmann Number are presented for different 

values of Ra. This figure shows that, in general, with increasing the intensity of the magnetic field, entropy 

generation decreased. However, the extent of this decrease is negligible for Ra=103 and 104 for which 

convection is quite weak and heat transfer is conduction dominated. Yet, it becomes more noticeable at Ra= 105, 

106 wherein convection dominates the heat transfer process. 

        Figures 12 illustrates the effects of Hartmann number on the average Nusselt numbers evaluated at 

different parts of the hot wall for Ra=104 and 106. The left side of the I-shape enclosure has been divided into 

five flat walls as specified in the subset of Fig. 12 and the average Nusselt number (see Eq. 9) was calculated on 

each wall.  Figure 12a shows that at low Ra the highest heat transfer rate belongs to the wall of the middle 

cavity, denoted by S3 in this figure. All other walls have significantly lower Nusselt numbers. This behaviour 

could be readily explained by noting that for low Rayleigh number heat transfer is essentially by conduction and 
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S3 is the closet wall to the cold side of the configuration. As a result, the thermal resistance associated with heat 

conduction on this wall is minimal and its heat transfer rate is the largest amongst all surfaces. As discussed 

earlier, application of the magnetic field in this case, generally, results in a small reduction of the heat transfer 

rate. Nonetheless, Fig. 12a shows that there are two exceptions to this general trend, in which surfaces S4 and S5 

feature a slight increase in Nusselt number at finite values of Hartmann number. This local increase in the 

Nusselt number can be explained by referring to the streamline patterns in Fig. 5.  This figure shows that at low 

Ra and in the absence of magnetic effects there is a weak natural convection flow from the bottom left to the top 

right corner of the enclosure. Hence, for Ha=0 the top left corner (S5 and S4) are not in contact with any 

noticeably moving fluid and heat transfer from them is purely conductive. Application of the magnetic field 

tends to organise the flow around the vertical axis (see Fig. 5) and therefore at Ha=40 there exists a vortex in the 

vicinity of S5 and S4.  The introduction of bulk fluid motion increases the rate of heat transfer on these two 

surface and results in the augmentation of Nusselt number. Further increase in Ha brings the vortex closer to the 

surfaces. Yet, it makes the flow slower and thus the gain in the Nusselt numbers of S5 and S4 becomes quite 

small at higher Hartmann numbers. It is noted that all other investigated surfaces in Fig. 12a are initially in 

contact with convection currents. These are then retarded by the magnetic field, which leads to the reduction of 

the Nusselt number on those surfaces.  It is, also, noted that at high values of Ha the surfaces on the top and 

bottom of the enclosure show very similar Nusselt number (compare Nusselt numbers for S1 and S2 with those 

for S5 and S4 in Fig. 12a). This is due to the fact that at high Ha the fluid motion and therefore natural 

convection is significantly suppressed. The system is, therefore, mainly conductive and the distance between the 

hot and cold surfaces is the main parameter dominating the rate of heat transfer. 

         Increase of Rayleigh number in Fig. 12b results in very pronounced increases in the Nusselt number of all 

surfaces. It also causes more noticeable reductions of Nusselt number at higher Hartmann number for some 

surfaces. It is inferred from Fig. 12b that the heat transfer at high Rayleigh and low Hartmann number is 

dominated by that of surface S1 (the bottom corner). This is consistent with the flow and thermal patterns shown 

in Figs. 5 and 6, in which there is a strong convection current near this surface. Interestingly, addition of the 

magnetic field decreases the share of surface S1 in the overall heat transfer process and at high Hartmann 

numbers the contributions of surfaces S1, S2 and S3 are quite comparable. The observed major surface 

dependency of heat transfer at varying Rayleigh and Hartmann numbers has strong implications in the design of 

enclosures. It highlights the significance of considering the precise geometry of the enclosure and the 

considerable errors associated with approximating an I-shape cavity with a square shape or any other 

configuration.  

 

3.2 Effect of geometrical parameters 

Figure 13 shows the influences of varying the geometrical parameters A and B (as defined by Eq. 5) upon the 

pattern of streamlines and isotherms. It is clear from this figure that changes in the geometry can lead to the 

development of a wide variety of hydrodynamic and thermal patterns. In the case of A=0.4 and B=0.8, the I-

shape enclosure approaches the classical square enclosure and the pattern of streamlines and isotherms resemble 

those of square cavities [14,15,30].  Moving to the cases of A=0.4 and B=0.2 and also that with A=0.2 and B=0.4 

changes the patterns considerably and makes them similar to those discussed in Figs. 5 and 6. However, the case 

of A=0.8 and B=0.4 shows a radically different behaviour, in which there is nearly no flow or heat transfer 
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within the top and bottom flaps. The flow in this case is limited to a central convection roll in the middle section 

of the enclosure and there exists strong heat transfer at the top and bottom corners of this part. 

         Figure 14 shows variation of the average Nusselt number with respect to the geometrical parameter A for 

three different values of Rayleigh number. Referring to the problem configuration in Fig.1, as A increases, the 

enclosure flaps become narrower. Figure 13 showed that in this case convection decreases proportionally and 

hence the average Nusselt number decreases. At Ra=104, a mild descending trend in Nusselt number with 

respect to A is observed. Figure 14 shows that by increasing the Rayleigh number to 105  there are only marginal 

modifications of the qualitative and quantitative behaviours of Nu compared to that at Ra=104. However, 

increasing Ra to 106 increases the Nusselt number substantially and makes it much more sensitive to variations 

in A.  Figure 14, once again, demonstrates the significant influences of the enclosure geometry upon the heat 

transfer and thermal response of the system to the applied magnetic field. The effects of variations in the height 

of the middle section or parameter B are investigated in Fig. 15. A comparison between Fig. 15 and Fig. 14 

indicates that the influences of parameters A and B are rather different. An increase in B has relatively small 

effects on the Nusselt number at high values of Rayleigh number, whereas it considerably reduces the Nusselt 

number at lower Rayleigh numbers. Figure 16 shows the effects of geometric parameters A on the total 

generation of entropy. It is observed that with rising A, the total entropy generation increases monotonically for 

Ra=104. This is analogous to the behaviour of average Nusselt number with respect to B for the same Rayleigh 

number, shown in Fig. 15. Interestingly, the monotonic trend changes at higher values of Rayleigh number and 

extremum points appear in the graphs of total entropy at  Ra=105 and Ra=106 of Fig. 16. This implies that there 

exist certain shapes of the enclosure for which the irreversibility of the system is minimal. The effects of 

geometric parameters B on the total generation of entropy are shown in Fig.17. It is observed that with rising B 

the total entropy generation decreases monotonically for all investigated values of Ra. This is distinctive to the 

variations of total entropy with respect to A, in which extremum points appear in the total entropy graphs. It 

indicates the dissimilar effects of geometrical parameters and hence highlights the importance of considering the 

exact geometry in the second law analyses of enclosures.  

  

4. Conclusions 

Magnetohydrodynamics and natural convection of heat in an I-shape enclosure filled with a nanofluid were 

investigated numerically for the first time in the literature. A computational code was developed and rigorously 

validated against a number of previous studies on other configurations. Brownian motion of the nanoparticles 

and their induced viscosity and thermal conductivity were numerically modelled. In keeping with other 

investigations in the field of magnetohydrodynamics, it was observed that application of a magnetic field retards 

the flow and therefore suppresses the overall heat transfer process. The specific findings of the analyses 

conducted in this paper can be summarised as follows. 

 At low Rayleigh numbers, where heat transfer is conduction dominated, application of magnetic field 

results in developing an almost perfectly symmetric pattern of streamlines and isotherms. 

Nevertheless, the organising effect of the magnetic field reduces as the Rayleigh number increases. 

 The hydrodynamics and heat transfer within the I-shaped enclosure were found strongly dependent 

upon the geometry. At high Rayleigh numbers, strong asymmetric rotating flows develop near the 

corners of the enclosures.  
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 Similar to the findings of the existing studies on other configurations, it was observed that, in general, 

increasing Ha results in the reduction of the average Nusselt number. 

 As a crucial peculiarity of the investigated configuration, it was found that there is a significant 

variation in the numerical value of Nusselt numbers calculated on the different surfaces of the 

enclosure.  These Nusselt numbers also feature different levels of Hartmann number sensitivity. 

 At low and moderate Rayleigh numbers, increasing the concentration of nanoparticles always results 

in augmentation of the Nusselt numbers. Yet, at high Rayleigh numbers, with strong convection 

currents, there is a small drift of Nusselt number after exceeding an optimal value of nanoparticle 

concentration. It was argued that this is due to the organising effects of the magnetic field in the I-

shape enclosure.  

 It was shown that geometrical specifications of the I-shape enclosures can significantly modify the rate 

of heat transfer. 

 The entropy generation decreases with the applied magnetic field and raises with increasing nano- 

particles. Variations in the geometrical parameters of the enclosure can minimise the total generation 

of entropy.  

The results presented in this paper clearly showed the significance of considering the exact configuration of the 

enclosure in thermal design of nanofluid filled cooling systems.  In particular, they indicate that approximating 

an I-shape enclosure with a square cavity could result in large error margins.  The physical insights developed in 

this study remain transferable to more sophisticated turbulent cases when very high Rayleigh numbers are 

considered.  
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Table Caption 

Table 1. Thermophysical properties of pure water and CuO [11] 

Table 2. Comparison between the simulations of the developed code and those reported in Ref. [59]                            

Table 3.  Variation of the average Nusselt number with different concentration of nanoparticles at varying 

Rayleigh and Hartmann numbers 
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Figure Caption 

Fig.1: A schematic diagram of the physical model 

Fig.2 : Comparison between the present simulations with that of Ref. [60] for square enclosure filled by 

nanofluid  

Fig.3: Comparison of the present simulation with those of Ref. [61] for square enclosure under different rotation 

angles of the magnetic field 

Fig.4: Grid independency study ( 50.04,Ha 40,Ra 10    ) 

Fig. 5: Streamlines  for the enclosures filled with CuO–water nanofluid   =0.04(  ) and pure water () at 

different Rayleigh and Hartmann numbers. 

Fig. 6: Isothermlines  for the enclosures filled with CuO–water nanofluid   =0.04(  ) and pure water () 

at different Rayleigh and Hartmann numbers. 

Fig. 7: Dimensionless vertical velocity profile at Y=0.5,    (a) Ra=106 ,(b)  Ra=105 , (c) Ra=104 

Fig. 8: Variation of average Nusselt number ratio with  at  Ha=40 

Fig. 9: Variation of the Total Entropy generation with  at (a) Ha=0 and (b) Ha=40 

Fig. 10: Effect of Hartmann number on the variation of the average Nusselt number ratio for different nano- 

particle concentrations  

Fig. 11: Effects of Hartmann number on the variation of the Total Entropy at =0.04 

Fig. 12: Effect of Hartmann number on the local Nusselt number at, (a) Ra=104 and (b) Ra=106. 

Fig. 13: Streamline (up) and isotherms (down). Ra=106, =0.04, Ha=40. 

Fig. 14: Effect of variation of the distance of the enclosure flaps, A, on the average Nusselt number, =0.04, 

Ha=40. 

Fig. 15: Effect of the connector of the enclosure (the web) thickness, B, on the average Nusselt number, =0.04, 

Ha=40. 

Fig. 16: Effects of variations in the distance of the enclosure flaps, A, on the Total Entropy generation, =0.04, 

Ha=40 B= 0.4 

Fig. 17: Effects of the thickness of enclosure connector, B, on the Total Entropy generation, =0.04, Ha=40,         

A= 0.4. 
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Table 1. Thermophysical properties of pure water and CuO [11]. 

CuO Pure water  

6320 997.1 ρ (kgm-3) 

531.8 4179 Cp (Jkg-1K-1) 

76.5 0.613 k (Wm-1K-1) 

1.8 21 ×10+5 (K-1)β 

 

 

Table 2.  Comparison between the simulations of the developed code and those reported in Ref. [59]. 

Difference  Num (Davis  [59]) Num  (present work)  Ra 

0.54% 1.116 1.110 103 

1.2% 2.234 2.207 104 

0.53% 4.503 4.524 105 

0.01% 8.789 8.799 106 
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Table 3.  Variation of the average Nusselt number with different concentration of nanoparticles at varying 

Rayleigh and Hartmann numbers. 

 

Figures: 

 

   

 

 

 

 

 

            Fig.1: A schematic diagram of the physical model. 
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Fig. 2. Comparison between the present simulations with those of Ref. [60] for square enclosure filled by 

nanofluid. 
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Fig.3. Comparison of the present simulation with those of Ref. [61] for square enclosure under different rotation 

angles of the magnetic field. 
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Fig. 4. Grid independency study ( 𝜙 = 0.04, 𝐻𝑎 = 40, 𝑅𝑎 = 105). 
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Fig. 5. Streamlines and the maximum values of steam functions for the enclosures filled with CuO–water 

nanofluid,   =0.04(  ) and pure water () at different Rayleigh and Hartmann numbers. 
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Fig. 6.  Isotherm lines for the enclosures filled with CuO–water nanofluid,   =0.04(  ) and pure water 

() at different Rayleigh and Hartmann numbers. 
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Fig. 7. Profiles of the dimensionless vertical velocity at Y=0.5,    (a) Ra=106 ,(b)  Ra=105 , (c) 

Ra=104. 
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Fig. 8. Variation of the average Nusselt number ratio with  at Ha=40. 
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Fig. 9 Variation of the Total Entropy generation with  at (a) Ha=0 and (b) Ha=40. 
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Fig. 10: Effects of Hartmann number on the variation of the average Nusselt number ratio for different nano- 

particle concentrations.  
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Fig. 11: Effects of Hartmann number on the variation of the Total Entropy at =0.04. 
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Fig. 12: Effects of Hartmann number on the local Nusselt number at   and  (a) Ra=104 and (b) Ra=106. 
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Fig. 13: Streamline (top) and isotherms (bottom). Ra=106, =0.04, Ha=40. 
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Fig. 14: Effects of variations in the distance of the enclosure flaps, A, on the average Nusselt number, =0.04, 

Ha=40. 
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Fig. 15: Effects of the thickness of enclosure connector, B, on the average Nusselt number, =0.04, Ha=40. 
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Fig. 16: Effects of variations in the distance of the enclosure flaps, A, on the Total Entropy generation, =0.04, 

Ha=40, B= 0.4. 
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Fig. 17: Effects of the thickness of enclosure connector, B, on the total entropy generation, =0.04, Ha=40,  A= 

0.4. 

 

 

 

 

 


