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Abstract 1 

Purpose of review 2 

The current review focuses on the neonatal presentation of disorders of sex development, 3 

summarise the current approach to the evaluation of newborns and describes recent advances 4 

in understanding of underlying genetic aetiology of these conditions. 5 

Recent findings 6 

Several possible candidate genes as well as other adverse environmental factors have been 7 

described as contributing to several clinical subgroups of 46, XY DSDs. Moreover, registry-based 8 

studies showed that infants with suspected DSD may have extra-genital anomalies and in 46, XY 9 

cases, being small for gestational age (SGA), cardiac and neurological malformations are the 10 

commonest concomitant conditions.   11 

Summary 12 

Considering that children and adults with DSD may be at risk of several co-morbidities a clear 13 

aetiological diagnosis will guide further management. To date, a firm diagnosis is not reached in 14 

over half of the cases of 46, XY DSD. Whilst it is likely that improved diagnostic resources will 15 

bridge this gap in the future, the next challenge to the clinical community will be to show that 16 

such advances will result in an improvement in clinical care. 17 
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Introduction  1 

Disorders of sex development (DSDs) is a collective term for a group of relatively rare congenital 2 

conditions that are associated with an alteration in chromosomal, gonadal, or anatomic sex [1]. 3 

Atypical genitalia at birth are the commonest manifestation of DSD and in epidemiological 4 

studies, this may occur in approximately 1 in 300 births [2] although true genital ambiguity 5 

requiring comprehensive medical assessment may only occur in 1 in 4500 live births [3]. Registry 6 

based studies show that over three quarters of cases of atypical genitalia present with a 7 

hypospadias [2], have a 46, XY karyotype [4] and are raised as boys [5]. In addition, it is likely that 8 

more infants with this presentation will be raised as boys in the future [6] and long-term 9 

management of these boys will require a detailed knowledge of the underlying pathological 10 

diagnosis [7]. However, systematic and thorough investigations in these boys with a 46, XY 11 

karyotype reveal endocrine abnormalities in only a quarter of cases whilst molecular genetic 12 

assessment may reveal a molecular genetic cause in almost half, depending on the extent of 13 

genetic analysis [8-10]. Thus, as a group, 46, XY neonates with atypical genitalia represent the 14 

greatest challenge in terms of diagnosis and long-term management. Whilst clinical guidelines 15 

stress the importance of an integrated multidisciplinary approach for the assessment and 16 

management of these conditions [1, 11], rapid advances in genetic knowledge as well as 17 

technology are altering the stepwise investigational strategies that have traditionally been 18 

employed in this field [12, 13]. This review will focus on the neonatal presentation of DSD and 19 

summarise the current approach to the evaluation of these children.  20 

 21 

Clinical presentation of a newborn with DSD  22 

A thorough initial evaluation of an affected newborn including a family history, pregnancy history 23 

and an assessment of feeding, electrolyte and blood sugar abnormalities is an important first 24 

step. Unlike the cases that present late, when the diagnosis of DSD is suspected by a disorder of 25 



puberty, in neonates the classical presentation includes the presence of atypical genitalia and, in 1 

some cases, associated anomalies. Features of atypical genitalia include clitoromegaly or 2 

posterior labial fusion in genitalia that are otherwise 'apparently female' and bilateral 3 

cryptorchidism, microphallus, hypospadias, or bifid scrotal folds in an otherwise 'apparently 4 

male' infant [1].  In addition to a thorough examination and palpation of the gonads, the 5 

phenotype of the involved neonate can be more comprehensively assessed by using scoring 6 

systems. While the Prader scale is primarily employed to assess the extent of virilization of the 7 

female genitalia in congenital adrenal hyperplasia (CAH), the external masculinization score 8 

(EMS) is often used as a standardized tool to guide the need for investigations [11, 14]. However, 9 

such objective scores as well as the appearance of the external genitalia do not seem to play a 10 

critical role in guiding sex of rearing as evident from registry-based studies [6, 15].  11 

Infants with suspected DSD may often have extra-genital anomalies and in 46, XY cases, cardiac 12 

and neurological malformations may be identified in 20% of cases [4]. However, the most 13 

common associated condition is being small for gestational age (SGA) which has been reported 14 

in almost quarter of cases [4]. The highest frequency of concomitant conditions was in those with 15 

gonadal development disorders. Although the occurrence of extra-genital abnormalities may be 16 

associated with the severity of under-masculinization [16] no correlation was made between the 17 

presence of variants in AR and SGA [17]. In fact, the presence of SGA is more likely in those who 18 

may have been labelled as PAIS (partial androgen insensitivity syndrome) on phenotype but do 19 

not have a confirmed diagnosis on AR analysis [17]. Thus, initial evaluation and further 20 

comprehensive clinical assessment can guide complementary diagnostic procedures. 21 

 22 

Causes of 46, XY DSD  23 

The causes of DSD should be considered through the prism of the pathogenesis of condition. 24 

According to the classification proposed in Chicago in 2005 [1], there are three major subgroups 25 



of 46, XY DSDs:  disorders of gonadal development, disorders of androgen synthesis and 1 

androgen action.  The aetiology of DSD is multifactorial and the study of molecular mechanisms 2 

of sex development have revealed several possible candidate genes as well as other adverse 3 

environmental factors.  4 

 5 

Disorders of Gonadal Development 6 

46, XY disorders of gonadal development include the complete (CGD) and partial (PGD) forms of 7 

gonadal dysgenesis that are characterized by a variable presence of Müllerian and Wolffian ducts, 8 

variably functioning gonads and a spectrum of external genitalia from normal male to normal 9 

female genitalia. The development of the gonads throughout embryogenesis from the urogenital 10 

ridge is influenced by signalling pathways that lead to changing expression of genes involved [18]. 11 

The first testis-determining factor, the sex determining region Y (SRY), was discovered in 1990 12 

[19] and to date, over 90 different mutations within this gene have been identified within the 13 

high mobility group (HMG) box domain [20] as well as beyond [21]. SRY variants cause CGD in 14 

less than 15% of cases [22] whereas the prevalence of this condition is only 1.2 per 100 000 [23].  15 

A number of other genes have also been implicated in disorders of gonadal development, such 16 

as SOX9, NR5A1, DAX1 (NR0B1), DHH, WT1, WNT4, GATA4, MAP3K1, DMRT1 and WWOX (Table 17 

1). SOX9 variants were detected in patients with gonadal dysgenesis and concomitant bone 18 

abnormalities due to the lack of chondrocyte-specific enhancer activity [78]. Although a small 19 

number of individuals were found to be carriers of variants in DHH, gonadal cancer was evident 20 

in almost 30% of them [60] and it was commonly associated with peripheral minifascicular 21 

neuropathy [61, 79, 80]. 46, XY PGD and CGD due to missense variants in WT1 were recognised 22 

in Denys Drash syndrome [81] and concurrent renal abnormalities [82]. NR5A1, encoding the SF-23 

1 protein, plays a pivotal role in the development of gonads and steroidogenesis. Phenotypes 24 

associated with NR5A1 variants are highly diverse ranging from CGD with female external 25 



genitalia and Müllerian remnants, severe adrenal insufficiency [40] to isolated glandular 1 

hypospadias with intact adrenal steroidogenesis, normal male genitalia with infertility as well as 2 

normal gonadal function with progressive deterioration in gonadal function [51, 83]. Thus, 3 

dysregulation of genetic pathways responsible for sex determination and steroidogenesis 4 

determines the complexity of the phenotypes in 46, XY gonadal dysgenesis. 5 

 6 

Disorders of Androgen Synthesis 7 

Disorders of androgen synthesis include luteinizing hormone receptor defects and defects in the 8 

testicular steroidogenesis pathway (Table 2).  The gonadal expression of human lutropin-9 

choriogonadotropin receptor gene (LHCGR) is stimulated by placental human chorionic 10 

gonadotropin (hCG) during the fetal period and results in increased testosterone synthesis and 11 

subsequent development of genitalia. Inactivating variants in LHCGR lead to Leydig cell 12 

insensitivity to hCG and luteinizing hormone (LH) stimulation [103] can lead to a variable level of 13 

undermasculinization including completely female external genitalia and a blind-ended vagina 14 

[104].  Androgen synthesis is impaired in cases of congenital hypogonadotropic hypogonadism 15 

and Kallman’s syndrome and although this has usually been described in association with 16 

microphallus and cryptorchidism at birth [105], more recent reports suggest that variants in a 17 

number of hypogonadotropic hypogonadism genes have identified in cases of hypospadias [9]. 18 

Among all forms of 46, XY DSD, the genetic causes are clear for those presenting with enzyme 19 

deficiencies of ‘classic’ androgen biosynthesis pathways, including 17β-hydroxysteroid 20 

dehydrogenase type 3 (17β-HSD3) or 3β-hydroxysteroid dehydrogenase type 2 (3β-HSD2) 21 

deficiency. Whilst the deficit of 17β-HSD3 may interfere only with androgen production and more 22 

often is detected because of virilization at puberty, 3β-HSD2 may affect all steroidogenic 23 

pathways and, therefore, results in severe salt-wasting and non-salt wasting forms of CAH and 24 

ambiguous genitalia in affected boys [106, 107]. Over 45 causative mutations have been reported 25 



in HSD17B3 and the prevalence has been reported about 1 per 150 000 [108]. The conversion of 1 

testosterone to dihydrotestosterone (DHT), the active androgen in peripheral target tissue, is 2 

regulated by the ‘alternative’ pathway and controlled by the members of the AKR1C family and 3 

5α-reductase, type 1 enzyme encoded by SRD5A1. Splice site variants in AKR1C2 and AKR1C4 4 

genes resulting in reduced function to about 10% of activity were reported by Fluck, et al. [102] 5 

in three previously described familial cases of 46, XY girls [109]. Among two known 5-alpha-6 

reductase enzymes only expression of type 2 was detectable in different androgen-sensitive 7 

tissues [110] and over 70 missense mutations in SRD5A2 have been described as a cause of 8 

genital ambiguity in boys.  9 

 10 

Disorders of Androgen Action 11 

A resistance to androgen action in 46, XY has been defined as an androgen insensitivity syndrome 12 

(AIS) which has phenotypically consisted of complete (CAIS) and partial (PAIS) forms.  The 13 

appearance of genitalia in PAIS may vary extensively from slightly atypical to almost female 14 

whereas CAIS is associated with completely female external genitalia which often results in a 15 

later presentation with primary amenorrhea in adolescent girls. Most genetic analyses reveal 16 

defects in both, DNA-binding and steroid-binding, functional domains of the coding region of 17 

androgen receptor gene (AR) as a cause of this condition [111-113] that results in reduced 18 

androgen binding activity. The AR locus is positioned on the X chromosome between Xq13 and 19 

Xp11 [114], and, therefore, the majority of variants are maternally inherited whilst about 30% 20 

are de novo [115].  Although the presence of inactivating variants in AR may be evident in over 21 

80% of girls and women with CAIS [15, 116], AR variants in PAIS are much rarer. It is possible that 22 

in some cases, these variants may exist beyond the AR coding region [117]. It is also possible that 23 

androgen insensitivity may be due to a defect in the coactivators binding process to the AR [118]. 24 

However, there is a need to explore more effective methods of selecting cases that may display 25 

http://omim.org/entry/600451?search=akr1c%20family&highlight=akr1c%20family#3


androgen insensitivity. Whilst in the past this has involved assessment of AR binding in genital 1 

skin fibroblasts [119, 120] or measurement of circulating androgen responsive proteins in 2 

response to androgen stimulation [121, 122], in the future it may be possible to use other 3 

methods such as measurement of apolipoprotein D in genital skin fibroblasts [117] or assessment 4 

of changes in an androgen responsive transcriptome within circulating polymorphonuclear blood 5 

cells [123].   Variants in several other genes, such as INSL3, AMH, AMHR2, MAMLD1, TAC3, 6 

WDR11, TACR3, HS6ST1, CHD7, may also contribute to DSD [124].  7 

Although the number of studies emphasizing the role of endocrine-disrupting chemicals in genital 8 

malformations have increased over the last decade, the epidemiological data are scarce [125]. 9 

Nevertheless, one study highlighted the risk of contact with hair cosmetics and veterinary 10 

insecticides during pregnancy [126]. Other studies concentrating on organic solvents have 11 

indicated the association between urinary tract anomalies including hypospadias and 12 

cryptorchidism in babies and maternal exposure to these chemicals [127, 128]. Rodent studies 13 

have reported a negative impact of the phthalate exposure on rat genital development [129-14 

131]. Whilst the influence of environmental and occupational risk factors on prenatal gonadal 15 

and genital development cannot be underestimated, there is a need for further studies to 16 

understand the true risk that is posed by these environmental disruptors. 17 

  18 

What should be done immediately 19 

After initial examination, infants with suspected DSD require an extended clinical, biochemical, 20 

and genetic evaluation soon after birth in order to exclude life threatening conditions and 21 

confirm the karyotype. The initial diagnostic approach to an infant with suspected DSD has been 22 

outlined in detail [11]. Since girls with CAH will more likely be severely virilized it is important to 23 

measure serum plasma glucose, serum 17-hydroxyprogesterone (17-OHP), and serum 24 

concentration of sodium, potassium, chloride, and urea. However, biochemical changes may only 25 



emerge after the third or fourth days of life for 17-OHP and electrolytes. Serum level of AMH and 1 

ultrasound examination can give an insight about the presence of testicular tissue and the latter 2 

can clarify the presence of Müllerian structures. A rapid quantitative fluorescent PCR should 3 

effectively detect Y chromosome fragments [132, 133] and will guide further investigations [11]. 4 

 5 

Likelihood of finding an abnormality  6 

Although a number of environmental exposures have been described as risk factors for genital 7 

malformations, the vast majority of aetiological studies in the field of DSD are being conducted 8 

to discover causative variants.  Confirming a definitive diagnosis is one of the crucial diagnostic 9 

aspects for such type of conditions in order to predict co-morbidities and long-term outcomes 10 

[134, 135]. However, despite the existence of a wide range techniques available and a desire of 11 

clinicians to use them on a routine basis, the decision to perform these tests was reported to be 12 

restricted by geography or availability of the test, when the more extended analyses were 13 

accessible only through the research projects [13]. Although one study reported a diagnostic yield 14 

of  64% [136], most do not demonstrate such a high level of diagnostic yield. In a recent study 15 

published by Nixon, et al. [10] copy number variants (CNVs) identified using Comparative 16 

Genomic Hybridization or single gene variants detected by Sanger sequencing of seven DSD 17 

associated genes was present in about 50% of the cohort of boys with suspected DSD. 18 

Interestingly, despite the presence of a genetic abnormality, almost half of these patients had 19 

normal endocrine test results. Furthermore, the detection of CNV may be higher when 20 

investigating those with associated abnormalities. Another study reached a diagnostic yield of 21 

genetic abnormalities of almost 50% in 46, XY DSD using a massive parallel sequencing 22 

technology [9]. Currently, the known prevalence of genetic findings in XY DSD patients may 23 

principally depend on the extent of molecular genetic assessment [10]. High-throughput NGS 24 

technology has become available in many clinical centers and this may lead to a higher diagnostic 25 



yield. However, it is likely that this will also place greater demands on careful and detailed 1 

phenotypic as well as bioinformatic analysis and will require close collaboration within a specialist 2 

multidisciplinary diagnostic team that consists of experts with a knowledge of the clinical field as 3 

well as complex biochemistry and molecular genetics. 4 

 5 

Conclusion  6 

In summary, DSD are a group of rare congenital conditions that commonly result in atypical 7 

appearance of genitalia or delayed/impaired puberty and an underlying causative diagnosis 8 

remain unclear in the majority of patients. In the long-term, children and adults with DSD may 9 

be at risk of several co-morbidities and a clear aetiological diagnosis will guide management. To 10 

date, this diagnosis is not reached in over half of the cases of 46, XY DSD. Whilst it is likely that 11 

improved diagnostic resources will bridge this gap in the future, the next challenge to the clinical 12 

community will be to show that such advances will result in and improvement in clinical care. 13 

 14 

Key points 15 

 Neonates affected by DSD usually present with atypical genitalia and, in some cases, 16 

associated anomalies and require a thorough evaluation 17 

 Evaluation of a neonate with suspected DSD requires a systematic approach with a focus on 18 

first line investigations that ensure that the child is not at risk of any life-threatening events 19 

 The aetiology of DSD is multifactorial and genetic abnormalities may be currently identifiable 20 

in around 50% of cases but this may depend on the extent of molecular genetic assessment 21 

 Children and adults with DSD may be at risk of several co-morbidities and a detailed 22 

knowledge of the underlying genetic abnormality may guide management 23 
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Table 1. Genetic causes of 46, XY gonadal dysgenesis 1 

 2 
Gene Locus Gene/Locus  

MIM 
number 

Phenotypes  Comments  
 

Sex- 
determining 
region Y (SRY) 

Yp11.2 480000 46, XY CGD, 46, XY PGD or 46, XY woman with 
partial ovarian function 

Most of the variants described were found in the HMG box domain 
[24], however, some  variants  at both 5′ and 3’ flanking sequences 
of SRY have been also identified  [25-27].  A de novo Gln2X point  
variant was reported in a 28 year-old 46, XY woman with partial 
ovarian function [28] 

46, XX testicular DSD or 46,XX ovotesticular 
DSD 

SRY-positive 46, XX karyotype in male may occur due to 
translocation of the gene to one of the X chromosome or autosome 
[29, 30]  

SRY-BOX 9 
(SOX9)  

17q24.3–25.1  608106  46, XY CGD/PGD and campomelic or 
acampomelic dysplasia  

Campomelic dysplasia (CD) was associated with 46, XY DSD in about 
75% of patients [31]. CD is an autosomal dominant disorder due to 
loss-of-function mutations in SOX9 [32]. Milder clinical variants of 
the disease and longer survival are typical for patients with 
translocation breakpoints [32-34]. Acampomelic dysplasia is a rare 
form of campomelic dysplasia, characterized by milder phenotype 
and absence of long bone curvature [31, 35]  

46, XX testicular DSD or 46, XX ovotesticular 
DSD  

Interstitial chromosome duplications located around 600 kb 
upstream of  SOX9 [36] 

Zinc finger 
protein, 
multitype 2 
(FOG2; ZFPM2)  

8q23.1 603693  46, XY PGD with congenital heart disease and 
bilateral clinodactyly of the 5th finger 

Altered FOG-2 expression due to de novo balanced 
t(8;10)(q23.1;q21.1) translocation [37] 

46, XY CGD with bilateral clinodactyly of the 5th 
finger and no heart disease 

Single case of XY female with heterozygous c.1206T.A variant 
inherited from maternal grandmother [38] 

46, XY PGD with mental retardation, congenital 
heart disease, and Langer-Giedion syndrome 

De novo chromosomal translocation: 46, XY t(8;18)(q22; q21) [39] 
 

46, XY PGD and autistic spectrum disorder One de novo heterozygous (c.779G.A) as well as previously reported 
homozygous (c.1631G.A) missense variants of FOG2 were found in 
46XY female born from consanguineous marriage. Both parents had 
the c.1631G.A allele [38] 

Nuclear 
receptor 
subfamily 5, 
Group A, 

9q33  184757  46, XY DSD and adrenal insufficiency  Heterozygous loss-of-function variant in exon 3 of NR5A1 reported. 
Rodent functional study using G35E mutant form revealed 
eliminated impaired binding of NR5A1 to a canonical binding site 
[40]  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3419292/


Member 1 
(NR5A1)  

46, XY CGD or PGD or testis with ambiguous 
external genitalia with normal adrenal function  

Loss of function  variants in NR5A1 46, XY DSD gonadal dysgenesis 
and/or ambiguous external genitalia in up to 20% of all cases [41-44]  

46, XY hypospadias and microphallus  Single case of XY patient bearing heterozygous NR5A1 variant 
(p.Arg281Pro) associated with altered Sertoli cell function [45]   

46, XY bilateral anorchia and microphallus 1 case reported,  a novel heterozygous partial loss of function 
mutation (V355M) in NR5A1was reported in a boy with a micropenis 
and testicular regression syndrome [46] 

46, XY hypospadias  Single case with isolated glandular hypospadias and normal testis 
within the scrotum [47]  

46, XX primary adrenal failure  1 case reported, heterozygous p.Arg255Leu mutation with 
apparently normal functioning ovaries in a 14-month-old girl 
without further follow-up description [48]  

46, XX primary ovarian insufficiency  Phenotypes ranging from ovarian dysgenesis to premature ovarian 
failure reported [49, 50] 

46, XY spermatogenic failure with normal male 
external genitalia  

Most patients are moderate/severe oligospermic or azoospermic, 
may have risk of testes deterioration [51, 52] 

46, XX testicular DSD or 46,XX ovotesticular 
DSD 

Heterozygous missense variant (p.Arg92Trp) in NR5A1 was reported 
to be found in 3 46,XX males with testes and  2 46,XX females with 
ovotestes as well as in 46, XY female with PGD [53] 

GATA-binding 
protein 4 
(GATA4)  

8p23.1–p22  600576  46, XY PGD and minor systolic murmur;  
46, XY PGD with azoospermia and no heart 
disease;  
46, XY micropenis and minor systolic murmur  

Missense variant in GATA4 (p.Gly221Arg) was reported in a familial 
case of 46, XY DSD associated with congenital heart disease [54] 

Wilms’ tumour 
gene 1 (WT1)  

11p13  607102  46, XY CGD with progressive glomerulopathy  
and high risk of gonadoblastoma development 
(Frasier Syndrome) 

Point variants in the donor splice side in intron 9 of WT1 cause an 
imbalance in the expression of KTS isoforms [55] 
 

46, XY CGD/PGD early-onset renal failure and 
Wilms’ tumour (Denys-Drash syndrome) 

Most of the variants localized in exons 8 and 9. Unusual case with 
no nephropathy by 31 months of life bearing heterozygous 
missense variant in exon 7 (c.905G>T) and a splicing  variant in 
exon 6 (IVS6-1G>T) reported [56, 57]   

Desert 
hedgehog 
(DHH)  

12q13.12 605423  46, XY PGD and peripheral minifascicular 
neuropathy 

Homozygous missense  variants in exons 1 and 2 of the DHH [58-60] 

46, XY CGD  Homozygous variants in the mature amino-terminal and carboxyl-
terminal domains of the DHH protein [61, 62] 

Chromobox 
homolog 
2, Drosophila 

17q25.3 602770  46, XY girl with normal female internal and 
external genitalia, normal ovaries (FSH levels 
elevated)  

Single case report with two heterozygous variants: p.Pro98Leu 
inherited from the father and p.Arg443Pro inherited from mother  
[63] 

http://omim.org/geneMap/12/319?start=-3&limit=10&highlight=319


polycomb class 
(CBX2)  

Alpha 
thalassemia/me
ntal retardation 
syndrome X-
linked (ATRX)  

Xq13.1-q21.1 300032  46, XY PGD/CGD with developmental delay and 
microcephaly and apparent absence of a-
thalassemia 

Affected XY members of a large pedigree had variable gonadal 
phenotypes from CGD to hypospadias in 80% of cases [64]. A 
hemizygous missense variant of uncertain clinical significance 
(p.G1900C)  have been reported [65] 

Mitogen-
activated 
protein kinase 
kinase kinase 1 
(MAP3K1)  

5q11.2  600982  46, XY CGD and 46, XY PGD  No concomitant anomalies reported; familial and sporadic variants 
in MAP3K1 result in altered MAP kinase signalling pathway and are 
the commonest cause of the GD in 46, XY individuals [66, 67] 

Testis-specific Y-
encoded-like 
protein 1 
(TSPYL1)  

6q22.1  604714  46, XY PGD and viscero-autonomic dysfunction  
in early life, followed by death before age 12 
months due to abrupt cardiorespiratory 
distress (Sudden infant death with dysgenesis 
of the testes syndrome)  

Twenty-one affected individuals among the Old Order Amish were 
reported. Homozygous frameshift variant (457_458insG) causing 
premature truncation of the TSPYL at codon 169 revealed. All 
parents of affected children were carriers of the same heterozygous 
mutation [68]  

Aristaless-
related 
homeobox 
(ARX)  

Xp21.3  300382  Variable degree of genital ambiguity and a 
broad spectrum of neurocognitive disorders (X-
linked lissencephaly, microcephaly, agenesis of 
the corpus callosum, neonatal-onset intractable 
epilepsy, hydranencephaly, temperature 
dysregulation, chronic diarrhoea) 

Carriers of non-conservative missense variants within the homeobox 
of ARX seem to be less severely undermasculinized than those 
individuals who owned premature termination mutations [69]   

WW domain 
containing 
oxidoreductase 
(WWOX) 

16q23.3-q24.1 605131 Variable phenotypes from 46, XY male with 
micropenis, hypospadias and descended testes 
to 46, XY PGD  

Heterozygous deletion within the WWOX reported [70]. Duplication  
Phenotype and genetic findings in patients with Variants of 
unknown significance in WWOX were identified in two undervirilized 
46, XY males and 46,XX female with primary amenorrhea and 
hypergonadotropic hypogonadism  [65] 

Duplication 
1p35  

1p35  603490 Variable phenotypes from 46, XY male with 
cryptorchidism to 46, XY CGH 

Overexpressed WNT-4 results in an XY female phenotype due to up-
regulation of DAX1 [71]  
 

Deletion 
9p24.3  
 

9p24.3  154230  46, XY CGD/PGD with craniofacial 
dysmorphism, psychomotor delay and various 
congenital malformations (Deletion 9p 
syndrome)  

Variable size of causal deletions underlies different phenotypes [72] 
 

Duplication 
Xp21.2  

Xp21.2  300018  46, XY CGD and 46, XY PGD associated with or 
without multiple congenital anomalies  

Large duplications on the X chromosome overlapping DAX1 (NR0B1) 
reported  [73, 74] 
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Table 2. Genetic causes of 46, XY disorders of androgen synthesis 2 
Gene  Locus  Gene/Locus 

MIM number 
Phenotypes  Comments 

Luteinizing 
hormone/chori
ogonadotropin 
receptor 
(LHCGR) 

2p16.3 152790 Leydig cell hypoplasia; the 46, XY 
phenotypes spectrum ranges from normal-
appearing female external genitalia to 
hypoplastic male external genitalia or 
hypospadias 

LHCGR, activated by the placental hCG during embryologic and 
fetal life, induces Leydig cell proliferation and initiates 
testosterone synthesis. Variants in the LHCGR arise from the 
impaired processes of hormone binding or signal transduction 
[84, 85]  

Steroid 5-alpha-
reductase 2 
(SRD5A2) 

2p23.1 607306 5-alpha-reductase type 2 deficiency; 
affected males have normal male internal 
reproductive structures and external 
ambiguous genitalia, urogenital sinus, blind 
ending vagina, hypoplastic prostate. The 
testes are either in the labia, or inguinal 
canals or intra-abdominal 

Enzyme converts testosterone to DHT which is responsible for 
the growth and differentiation of penis and scrotum, as well as 
the maturity of male secondary sexual characteristics during 
puberty. Most SRD5A2 variants are autosomal recessive [86] 

Steroidogenic 
acute 
regulatory 
protein (StAR)  

8p11.23  600617  Lipoid CAH; Female external genitalia, rarely 
ambiguous or male. Adrenal failure, salt-
losing crisis in the first 2 months of life. Rare 
cases with milder presentation in late 
infancy 

A severe defect in fetal conversion of cholesterol to 
pregnenolone results in disrupted adrenal and gonadal 
steroidogenesis. Homozygotes or compound heterozygotes 
variants. Milder phenotype due to partial biological activity of 
mutated proteins [87, 88]  

7-
Dehydrocholest
erol reductase 
(DHCR7)  

11q13.4  602858  Smith-Lemli-Opitz Syndrome; variable 
phenotype including facial abnormalities, 
metabolic errors, intellectual disability, 
hypotonia, anomalies of the heart, lungs, 
brain, limbs, genitalia and kidneys  

Enzyme converts 7-dehydrocholesterol to cholesterol, required 
for testosterone biosynthesis. Rare autosomal recessive variants, 
most of them are missense [89]  

Cytochrome 
P450, subfamily 
XIA, 
polypeptide 1 
(CYP11A1)  

15q24.1 118485  From normal female to ambiguous genitalia 
with blind vaginal pouch in 46, XY 
individuals; early-onset or later-onset 
adrenal failure; prematurity 

The conversion of cholesterol to pregnenolone is regulated by 
CYP11A1 encoding the cholesterol side chain cleavage enzyme 
(P450scc). The enzymatic block results in glucocorticoids, 
mineralocorticoids, and sex steroids deficiency. Cases with 
partial enzyme deficiency and late-onset adrenal failure reported 
[90, 91] 

Deletion 
10q26.1  

10q26.1  609625  Variable degree of genital ambiguity from 46, 
XY male with urogenital anomalies to 46, XY 
CGD  

EMX2−/− mice exhibits an absence of kidneys, ureters, gonads, and 
genital tracts [75]. Several cases of 10q microdeletion encompassing 
EMX2 associated with genital anomalies have been reported [76, 77] 



3-Beta-
hydroxysteroid 
dehydrogenase 
2 (HSD3B2)  

1p12  613890  Salt-wasting and non-salt-wasting CAH with 
or without ambiguous genitalia in 46, XY 
patients. Gynaecomastia and usually normal 
masculinization at puberty  

HSD3B2 variants affect glucocorticoid and mineralocorticoid 
synthesis and impair steroidogenic pathway in both the adrenals 
and the gonads. Rare autosomal recessive disorder, nonsense 
and frameshift variants reported [92, 93] 

Cytochrome 
P450, family 17, 
subfamily A, 
polypeptide 1 
(CYP17A1)  

10q24.32  609300  17α-hydroxylase and 17–20 lyase deficiency 
in XY patients: female or undervirilized 
external genitalia with cryptorchidism, 
hypoplastic internal male genitalia, 
gynaecomastia at puberty, arterial 
hypertension and hypokalemia. 
Isolated 17–20 lyase deficiency XY patients: 
ambiguous genitalia, micropenis, severe 
hypospadias and undescended testes 

CYP17 encoding cytochrome P450c17 is responsible for 17alpha-
hydroxylase and 17,20-lyase enzymes synthesis. CYP17A1 
variants affect the synthesis of glucocorticoids and sex steroids 
whereas mineralocorticoid precursors are being overexpressed. 
Recessive homozygous and compound heterozygous variants 
reported [94] 

17-Beta 
hydroxysteroid 
dehydrogenase 
III (HSD17B3)  

9q22.32  605573  Normal female or various degrees of genital 
ambiguity and cryptorchidism in 46, XY 
patients 

Autosomal recessive homozygous or compound heterozygous 
variants reported [95, 96]  

Cytochrome 
P450 
Oxidoreductase 
(POR)  

7q11.23  124015  P450 oxidoreductase deficiency. In 46, XY 
boys phenotypes vary from slightly 
undermasculinized to ambiguous genitalia. 
Most patients have skeletal malformations 
that are similar to Antley Bixler syndrome  

 

POR variants underlie steroidogenic cytochrome P450 enzymes 
defect. Genotype-phenotype correlations: mild degree of 
skeletal malformations was associated with compound 
heterozygous for missense variants, whereas severe forms 
carried a major loss-of-function defect in POR [97, 98] 

Cytochrome b5, 
Type A (CYB5A)  

18q22.3  613218  Isolated 17, 20 lyase deficiency. Variable 
phenotypes ranging from normal-appearing 
female external genitalia to hypoplastic 
male external genitalia or hypospadias. May 
be associated with excessive congenital 
methemoglobinemia 

Optimal 17,20-lyase activity, an enzyme necessary for the 
production of sex steroids, depends on the activity of cofactor 
cytochrome b5 (CytB5). In isolated 17,20-lyase deficiency 
glucocorticoid synthesis is not affected. Homozygous nonsense 
and missense variants reported [99, 100] 

Aldo-keto 
reductase 
family 1, 
members C2/4 
(AKR1C2 and 
AKR1C4) 

10p15.1 600450 and 
600451 

Undervirilized male external genitalia and 
cryptorchidism or completely female 
external genitalia without evidence of 
Müllerian structures 

Human aldo-keto reductases AKR1C2 and AKR1C4 are involved in 
the synthesis of 5α-pregnane-3,20-dione and 3α-hydroxy-5α-
pregnane-20-one, a precursor of androsterone and DHT [101]. 
Heterozygous missense variants in the coding region of AKR1C2 
and a splicing variant in AKR1C4 were reported in a 46, XY female 
individuals [102] 
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