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Abstract—In partial diffusion-based least mean square
(PDLMS) scheme, each node shares a part of its intermediate
estimate vector with its neighbors at each iteration. In this paper,
besides being involved in more general PDLMS scheme, we figure
out how the noisy links affect deterioration of network perfor-
mance during the exchange of weight estimates. We investigate
the steady state mean square deviation (MSD) and derive a
theoretical expression for it. We demonstrate that the PDLMS
algorithm is stable and convergent in both mean and mean-square
sense under non-ideal links. However, unlike the established
statements on PDLMS scheme under ideal links, the trade-off
between MSD performance and the number of selected entries
of the intermediate estimate vectors as a sign of communication
cost is mitigated. Strictly speaking, considering non-ideal links
condition adds a new complexity to MSD relation that has a
noticeable effect on its performance. This term violates the trade-
off between communication cost and estimation performance
of the networks in comparison to noise-free condition on the
links. Our simulation results substantiate the effect of noisy links
on PDLMS algorithm and verify the theoretical findings. They
match well with theory.

Index Terms—Adaptive networks, distributed estimation, least
mean-square, noisy links, partial diffusion.

I. I NTRODUCTION

W E consider the problem of distributed estimation in
the diffusion adaptive networks context, where the

spatially-scattered nodes have adaptation and learning capabil-
ities. In such networks, the nodes are linked together through
a topology and exchange information through localized in-
network processing to perform decentralized information pro-
cessing and optimization in a cooperative and online manner.
The local interactions and diffusion of information across the
network enable the nodes to respond in real-time to the drifts
in statistical properties of the data and to the changes in
network topology [1]–[4]. Several strategies for distributed
estimation over adaptive networks have been reported in the
literature. Diffusion strategies [5]–[10] are among the most
popular propositions, in the literature. They are scalable as
well as robust to link/node failure and have good adaptability
and tracking performance with respect to other strategies [2].
In adaptive diffusion implementations, the nodes communi-
cate with their immediate neighbors and the information is
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processed locally and simultaneously at all nodes across the
network.

It is obvious that the weight estimates that are exchanged
among the nodes can be subject to different perturbations such
as quantization errors, noisy input data, additive noise over the
communication links and wireless link impairments. Studying
the degradation in performance that results from the mentioned
perturbations can be found in [11]–[17].

Due to the limited power and bandwidth resources for
communication among nodes over a distributed networks (such
as wireless sensor networks), the most expensive part of
realizing a cooperative task is the data transmission through the
links. Generally speaking, although the benefits of diffusion
strategies achieved by increasing internode communications,
they compromised by the communication cost. As the conse-
quence, since different nodes can have different numbers of
neighbors, they may require disparate hardware or consume
power differently. Therefore, reducing the amount of internode
communications, while maintaining the benefits of cooperation
is of practical importance. There have been several efforts
to achieve the mentioned objective such as reducing the
dimension of the estimates [18]–[20], selecting a subset of
the entries of the intermediate estimate vectors [21], [22], set-
membership filtering [23]–[25] and partial updating [26].

Among these methods, we focus on [21] where the LMS al-
gorithm for adaptive distribute estimation has been formulated
and analyzed by utilizing partial-diffusion. In [21], an adapt-
then-combine (ATC) PDLMS algorithm has been reported
for distributed estimation over adaptive networks with ideal
links. In the mentioned algorithm, at each iteration, each
node transmits a subset of the entries of intermediate estimate
vector to its neighbors. However, as we mentioned earlier, in
practice the weight estimates that are exchanged among the
nodes can be subject to additive noise over communication
links. In this paper, besides being involved in more general
PDLMS scheme, we figure out how the noisy links affect
deterioration of network performance during the exchange of
weight estimates. Among other results, our analysis provides
some useful insights on the communication cost and estimation
performance trade-off for general PDLMS scheme under non-
ideal links. Our main contributions in this paper include:

(i) Focusing on [21] which involves transmission of a subset
of the entries of the internode estimate vectors named
partial diffusion, we provide a more general algorithmic
structure of which [21] is just a special case. To achieve
this, we consider the fact that weight estimates ex-
changed among the nodes can be subject to quantization
errors and additive noise over communication links. Like
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[21], we also consider two different schemes for select-
ing the weight vector entries for transmission at each
iteration. We allow for noisy exchange just during the
two combination steps. It should be noted that since our
objective is to minimize the internode communication,
the nodes only exchange their intermediate estimates
with their neighbors;

(ii) Using the energy conservation argument [27] we analyze
the stability of algorithms in mean and mean square
senses under certain statistical conditions.

(iii) We illustrate the comparable convergence performance of
PDLMS algorithm with noisy links in different numerical
examples.

The main aim of this paper is that the noisy links are the
main factor in performance degradation of a partial diffusion
least mean squares (PLMS) algorithm running in a network
with noisy links. In other words, considering noisy links adds
an extra term to MSD relation. This term seriously upset
the balance of the trading off between communication cost
and the estimation performance, in comparison with the ideal
case. Because, the more entries are communicated at each
iteration, the more perturbed weight estimates are interred in
the consultation phase.

This work is organized as follows. In Section II, we for-
mulate the PDLMS under noisy information exchange. The
performance analyses are examined in Section III. We provide
simulation results in Section IV and draw the conclusions in
Section V.

A. Notation

We use the lowercase letters to denote vectors, uppercase
letter for matrices, plain letter for deterministic variables, and
the boldface letters for random variables. We also use(·)∗ to
denote conjugate transposition,tr(·) for the trace of matrix,
⊗ for Kronecker product, andvec {·} for a vector formed by
stacking the columns of its matrix argument. We further use
diag{·} to denote a (block) diagonal matrix formed from its
argument, andcol{·} to denote a column vector formed by
stacking its arguments on top of each other. All vectors in our
treatment are column vectors, with the exception of regression
vectors,uk,i.

II. PARTIAL DIFFUSION ALGORITHMS WITH NOISY

INFORMATION EXCHANGE

Consider a connected network consisting ofN nodes. Each
nodek collects scalar measurementsdk,i and1×M regression
data vectorsuk,i over successive time instantsi ≥ 0. Note
that we use parenthesis to refer to the time-dependence of
scalar variables, as indk,i, and subscripts to refer to the time-
dependence of vector variables, as inuk,i. The measurements
across all nodes are assumed to be related to an unknown
M×1 vectorwo via linear regression model of the form [27]:

dk,i = uk,iw
o + vk,i (1)

wherevk,i denotes the measurement or model noise. We are
now interested in solving optimization problems of the type:

wo = min
w

N∑
k=1

E
[
|dk,i − uk,iw|2

]
(2)

The nodes in the network would like to cooperate with
each other in order to estimatewo by solving the equation
above in an adaptive manner. Putting an accurate interpretation
on solution vectorwo from (2) depends on application under
consideration. One possible interpretation is that the entries of
wo represent the location coordinates of a flying object (such
as tracking a projectile) that agents are trying to find. In other
applications, the entries ofwo describes an underlying tapped-
delay-line model also known as finite-impulse-response (FIR)
that agents are interested in estimating the parameters of an
FIR model, such as taps of a communication channel or the
parameters of some (approximate) model of interest in finance
or biology [2]. We review the diffusion adaptation strategies
with noisy links below.

A. Diffusion Adaptation with Noisy Information Exchange

Consider the following general adaptive diffusion strategies
corresponding to the case in which the nodes only share weight
estimates fori ≥ 0:

φk,i =
∑
l∈Nk

c1,lkwl,i−1 (3)

ψk,i = φk,i−1 + µku
∗
k,i

[
dk,i − uk,iφk,i−1

]
(4)

wk,i =
∑
l∈Nk

c2,lkψl,i (5)

Local estimators ofwo, that nodek computes based on
observations{dk(j),uk,j |j ≤ i} in addition to intermediate
estimators up to and including timei, are denoted byM × 1
vectors

{
φk,i,ψk,i,wk,i

}
. The physical meanings of these

vectors andwo are exactly the same. The scalars{c1,lk, c2,lk}
are non-negative real coefficients corresponding to the(l, k)
entries ofN×N combination matrices{C1, C2}, respectively.
They are zero whenever nodel /∈ Nk, whereNk denotes the
neighborhood of nodek. These matrices are assumed to satisfy
the conditions:

CT
1 = 1N , CT

2 = 1N (6)

where the notation1N denotes anN × 1 column vector with
all its entries equal to one.

We model the noisy data received by nodek from its
neighborl as follows:

wlk,i−1 = wl,i−1 + v(w)
lk,i−1 (7)

ψlk,i = ψl,i + v(ψ)
lk,i (8)

where v(w)
lk,i−1 (M × 1) and v(ψ)

lk,i (M × 1) are the noise
observations. It should be noted that the subscriptlk indicates
thatl is the source andk is the sink and the flow of information
is from l to k.
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Using the perturbed data (7) and (8), the adaptive strategy
(3)-(5) becomes

φk,i =
∑
l∈Nk

c1,lkwlk,i−1 (9)

ψk,i = φk,i−1 + µku
∗
k,i

[
dk,i − uk,iφk,i−1

]
(10)

wk,i =
∑
l∈Nk

c2,lkψlk,i (11)

B. Partial Diffusion with Noisy Links

In this paper, we adopt a similar approach proposed in [21]
and build up our algorithm upon it. Selecting and scattering
L out of M , 0 ≤ L ≤ M , entries of the intermediate estimate
vector of each nodek at time instanti, make the realization
of reducing internode communication possible. According to
this scheme, the selection of to be scattered elements could be
realized by a diagonal selection matrix,Kk,i. Multiplication
of
{
wlk,i−1,ψlk,i

}
by Kk,i that haveL ones andM−L zeros

on its diagonal replaces its non-selected entries with zero. The
positions of the ones on diagonal ofKk,i determine the entries
of nodek that are selected to diffused at timei. Note that, the
integerL is fixed and pre-specified [21]. According to (9) and
(11)

φk,i = c1,kkwk,i−1 +
∑

l∈Nk\{k}

c1,lk[Kl,i−1wlk,i−1

+ (IM −Kl,i−1)wlk,i−1] (12)

ψk,i = φk,i−1 + µku
∗
k,i

[
dk,i − uk,iφk,i−1

]
(13)

wk,i = c2,kkψk,i +
∑

l∈Nk\{k}

c2,lk[Kl,iψlk,i

+ (IM −Kl,i)ψlk,i−1] (14)

whereIM is the identity matrix of sizeM ×M .
The most fundamental problem, we are faced with, hinges

on ambiguities in non-diffused elements of nodes in combi-
nation phase. When intermediate estimate are partially trans-
mitted, the non-communicated entries are not available to take
part in this phase. However, each node requires all entries of
intermediate estimate vectors of its neighbors for combination.
To avoid this ambiguity, nodes can replace the entries of
their own intermediate estimates instead of the ones from the
neighbors that are not available. substitute

(IM −Kl,i−1)wk,i−1, ∀l ∈ Nk\ {k} (15)

for

(IM −Kl,i−1)wlk,i−1, ∀l ∈ Nk\ {k} (16)

and

(IM −Kl,i)ψk,i, ∀l ∈ Nk\ {k} (17)

for

(IM −Kl,i)ψlk,i, ∀l ∈ Nk\ {k} (18)

Based on this approach, we formulate general PDLMS
under noisy information exchange as follows:

φk,i = c1,kkwk,i−1 +
∑

l∈Nk\{k}

c1,lk[Kl,i−1wlk,i−1

+ (IM −Kl,i−1)wk,i−1] (19)

ψk,i = φk,i−1 + µku
∗
k,i

[
dk,i − uk,iφk,i−1

]
(20)

wk,i = c2,kkψk,i +
∑

l∈Nk\{k}

c2,lk[Kl,iψlk,i

+ (IM −Kl,i)ψk,i−1] (21)

Remark.The probability of transmission for all the entries at
each node is equal and expressed as

ρ = L/M (22)

Moreover, the entry selection matrices,Kk,i, do not depend
on any data/parameter other thanL andM .

From (7), (8), expression (19)-(21) can be written as:

φk,i−1 = c1,kkwk,i−1 +
∑

l∈Nk\{k}

c1,lk[Kl,i−1wl,i−1

+(IM −Kl,i−1)wk,i−1]

+
∑

l∈Nk\{k}

c1,lkKl,i−1v
(w)
lk,i−1 (23)

ψk,i = φk,i−1 + µku
∗
k,i

[
dk,i − uk,iφk,i−1

]
(24)

wk,i = c2,kkψk,i +
∑

l∈Nk\{k}

c2,lk[Kl,iψlk,i

+(IM −Kl,i)ψk,i]

+
∑

l∈Nk\{k}

c2,lkKl,iv
(ψ)
lk,i (25)

Introducing the following aggregateM × 1 zero mean noise
signals:

v
(w)
k,i−1 =

∑
l∈Nk\{k}

c1,lkKl,i−1v
(w)
lk,i−1 (26)

v
(ψ)
k,i =

∑
l∈Nk\{k}

c2,lkKl,iv
(ψ)
lk,i (27)

where
{
v

(w)
k,i−1,v

(ψ)
k,i

}
represent the aggregate effect on node

k of all selected exchange noises from its neighbors while
exchanging the estimates

{
wl,i−1,ψl,i

}
during the two com-

bination steps. TheM×M covariance matrices of these noises
are given by:

R
(w)
v,k =

∑
l∈Nk\{k}

c2
1,lkρ

2R
(w)
v,lk (28)

R
(ψ)
v,k =

∑
l∈Nk\{k}

c2
2,lkρ

2R
(ψ)
v,lk (29)
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C. Entry Selection Methods

To select L-subset of a set onM elements containing
exactly L elements, we employ a similar approach proposed
in [21]. Doing so, there exist two different scheme named
sequential and stochastic partial-diffusion. These methods
are analogous to the selection processes in sequential and
stochastic partial-update schemes [26], [28]–[30]. In sequential
partial-diffusion the entry selection matrices,Kk,i, is diagonal
matrix:

Kk,i =

κ1,i · · · 0
...

...
...

0 · · · κM,i

 , κ`,i =

{
1 if ` ∈ J(imodB̄)+1

0 otherwise

(30)
with B̄ = dM/Le. The number of selection entries at each
iteration is limited byL. The coefficient subsetsJi are not
unique as long as they meet the following requirements [26]:

1) Cardinality ofJi is between1 andL;
2)
⋃B̄
τ=1 = S whereS = {1, 2, . . . ,M};

3) Jτ ∩ Jη = Ø, ∀τ, η ∈
{
1, . . . , B̄

}
andτ 6= η.

The description of entry selection matrices,Kk,i, in stochas-
tic partial-diffusion approach is similar to that of sequential
one. The only difference is as follows. At a given iteration
i, the sequential case one of the setJτ , τ =

{
1, . . . , B̄

}
is chosen in a predetermined fashion, whereas for stochas-
tic case, one of the setsJτ is sampled at random from
{J1,J2, . . . ,JB̄}. One might ask why these methods are con-
sidered to organize mentioned selection matrices. To answer
this question, it is worth mentioning that the nodes need to
know which entries of their neighbors’ intermediate estimates
have been transmitted at each iteration. These schemes are not
subject to such requirements.

III. PERFORMANCEANALYSIS

We now move on to examine the behavior of the general
PDLMS implementations (23)-(25), and the influence of the
mentioned perturbations on convergence and steady-state per-
formance. For this reason, we shall study the convergence of
the weight estimates both in the mean and mean-square senses.

Assumptions.In order to make the analysis tractable, we
consider the following assumptions on statistical properties of
the measurement data and noise signals.

(i) The regression datauk,i are temporally white and spa-
tially independent random variables with zero mean and
covariance matrixRu,k , E

[
u∗k,iuk,i

]
≥ 0 where

k = {1, . . . , N}.
(ii) The noise signalsvk,i, v

(w)
k,i−1 and v(ψ)

k,i are temporally
white and spatially independent random variables with
zero mean and co(variance)sσ2

v,k, R
(w)
v,k and R

(ψ)
v,k , re-

spectively. In addition, The quantities
{

R
(w)
v,lk, R

(ψ)
v,lk

}
are

all zero if l ∈ Nk or whenl = k.
(iii) The regression data{um,i1}, the model noise signal

vn (i2), and the link noise signalsv(w)
l1k1,j1

andv(ψ)
l2k2,j2

are mutually independent random variables for all in-
dexes{i1, i2, j1, j2, k1, k2, l1, l2,m, n}.

(iv) The step-sizes,µk ,∀k, are small enough such that their
squared values are negligible.

We are interested in examining the evolution of the weight-
error vectors. To do so, we introduce the error vectors:

φ̃k,i , wo − φk,i (31)

ψ̃k,i , wo −ψk,i (32)

w̃k,i , wo −wk,i (33)

Substituting the linear model (1) into adaptation step (24) and
subtraction of both sides fromwo give:

ψ̃k,i =
(
IM − µku

∗
k,iuk,i

)
φ̃k,i−1 − µku

∗
k,ivk,i (34)

Using conditions (6), we can rewrite (23) and (25) as

φk,i−1 =

IM −
∑

l∈Nk\{k}

c1,lkKl,i−1

wk,i−1

+
∑

l∈Nk\{k}

c1,lkKl,i−1wl,i−1

+v(w)
k,i−1 (35)

wk,i =

IM −
∑

l∈Nk\{k}

c2,lkKl,i

ψk,i
+

∑
l∈Nk\{k}

c2,lkKl,iψl,i

+v(ψ)
k,i (36)

Subtracting (35) from

wo =

IM −
∑

l∈Nk\{k}

c1,lkKl,i−1

wo

+
∑

l∈Nk\{k}

c1,lkKl,i−1w
o (37)

and (36) from

wo =

IM −
∑

l∈Nk\{k}

c2,lkKl,i

wo

+
∑

l∈Nk\{k}

c2,lkKl,iw
o (38)

gives

φ̃k,i−1 =

IM −
∑

l∈Nk\{k}

c1,lkKl,i−1

 w̃k,i−1

+
∑

l∈Nk\{k}

c1,lkKl,i−1w̃l,i−1

−v(w)
k,i−1 (39)
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w̃k,i =

IM −
∑

l∈Nk\{k}

c2,lkKl,i

 ψ̃k,i
+

∑
l∈Nk\{k}

c2,lkKl,iψ̃l,i

−v(ψ)
k,i (40)

To describe these relations in more closed form, we collect
the information from across the network into block vectors and
matrices. Stacking the error vectors from across all nodes into
the following N × 1 block vectors, whose individual entries
are of sizeM × 1 each we have:

φ̃i , col
{
φ̃1,i, . . . , φ̃N,i

}
(41)

ψ̃i , col
{
ψ̃1,i, . . . , ψ̃N,i

}
(42)

w̃i , col {w̃1,i, . . . , w̃N,i} (43)

Also, collecting the noise signal (26) and (27), and their
covariances from across the network intoN ×1 block vectors
andN ×N block diagonal matrices as follows:

v
(w)
i , col

{
v

(w)
1,i , . . . ,v

(w)
N,i

}
(44)

v
(ψ)
i , col

{
v

(ψ)
1,i , . . . ,v

(ψ)
N,i

}
(45)

R
(w)
i , col

{
R

(w)
v,1 , . . . , R

(w)
v,N

}
(46)

R
(ψ)
i , col

{
R

(ψ)
v,1 , . . . , R

(ψ)
v,N

}
(47)

Subsequently, we can verify that

φ̃i−1 = A1,i−1w̃i−1 − v(w)
i−1 (48)

ψ̃i = (INM −MRu,i)−Msi (49)

w̃i = A2,iψ̃i−1 − v
(ψ)
i (50)

where
M , diag {µ1IM , . . . , µNIM} (51)

Ru,i , diag
{
u∗1,iu1,i, . . . ,u

∗
N,iuN,i

}
(52)

with
E [Ru,i] = Ru = diag {Ru,1, . . . , Ru,N} (53)

si , diag
{
u∗1,iv1(i), . . . ,u∗N,ivN,i

}
(54)

Here,si denotesN × 1 block column vector, whose entries
are of sizeM × 1 each. Following Assumption (i), we have

E [si] = 0 (55)

The covariance matrix ofsi is N × N block diagonal with
blocks of sizeM ×M :

S = E [sis∗i ] = diag
{
σ2
v,1Ru,1, . . . , σ

2
v,NRu,N

}
(56)

INM is also the identity matrix of sizeMN×MN . Moreover,

Ar,i =

A1,1,i · · · A1,N,i

...
...

...
AN,1,i · · · AN,N,i

 ,∀r ∈ {1, 2} (57)

where

Ap,q,i =


IM −

∑
l∈Np\{p} cr,lpKl,i if p = q

cr,qpKq,i if q ∈ Np\ {p}
OM otherwise

(58)

So that the network weight error vector,w̃i, evolves accord-
ing to the following stochastic recursion:

w̃i = A2,i (INM −MRu,i) A1,i−1w̃i−1

−A2,i (INM −MRu,i)v
(w)
i−1

−A2,iMsi − v(ψ)
i (59)

A. Convergence in Mean

Taking expectation of both sides of (59) underRemark
and Assumptions, we find that the mean error vector evolves
according to the following recursion:

E [w̃i] = Q2 (INM −MRu) Q1E [w̃i−1] (60)

where

Q1 = E [A1,i−1] (61)

Q2 = E [A2,i] (62)

Like [21], Qr, r ∈ {1, 2} can be obtained for both stochas-
tic and sequential partial-diffusion using the definition of
Ar,i, r ∈ {1, 2}, see (61) and (62). What is most noteworthy
here is to find the value of eachQr, r ∈ {1, 2} entries after
applying expectation operator. Therefore, we can write

E [Ap,q,i] =


(1− ρ + ρcr,lp) IM if p = q

ρcr,qpIM if q ∈ Np\ {p}
OM otherwise

(63)

All the entries ofQr, r ∈ {1, 2} are real and non-negative and
all the rows ofQr, r ∈ {1, 2} add up to unity. This property
[21] can be established for both stochastic and sequential
partial-diffusion schemes and for any value ofL .

Theorem1 (Convergence in Mean). Consider the problem of
optimizing the global cost (2), PickQ1 andQ2 with are real
non-negative entries and all their rows add up to unity. Assume
each node in the network measures data that satisfy conditions
described inAssumptions, and run adaptive diffusion algorithm
(23)-(25). Assume further that the exchange of the variables{
wl,i−1,ψl,i

}
is subject to additive noise as (7) and (8).

Moreover, the regressors and desired signals are assumed not
to exchang among the nodes. Then, all estimates{wk,i} across
the network converge in the mean to optimal solutionwo if
the step-size parameters{µk} satisfy

0 < µk <
2

λmax {Ru,k}
,∀k (64)

Proof: The weight error vectors{w̃i} converge to zero
if, and only if, the matrixQ2 (INM −MRu)Q1 in (60) is
a stable matrix. Matrix stability means that all its eigenvalues
should lie inside the unit circle. From the established statement
on [21], all the entries ofQ1 and Q2 are real non-negative
and all the rows ofQ1 andQ2 add up to unity, we know that
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Q2 (INM −MRu) Q1 is stable if the matrix(INM −MRu).
or

|λmax {INM −MRu}| < 1 (65)

It is know simple and easy to understand confirm that condi-
tion (65) ensures the stability of(INM −MRu)

B. Mean-Square Stability

It is not sufficient to ensure the stability of the weight-error
vectors in the mean sense. We need to examine how small the
error vectors become. Doing so, we perform a mean-square
error analysis. The purpose of the analysis is to evaluate how
the variancesE

[
‖w̃k,i‖2

]
evolve with time and what their

steady-state values are, for each nodek. Here, we use the
notation‖x‖2

Σ to denote the weighted square quantityx∗Σx,
for any column vectorx and matrixΣ.

From recursion (59), we introduce

Bi , A2,i (INM −MRu,i) A1,i−1 (66)

Hi , A2,i (INM −MRu,i) (67)

So, we can rewrite (59) as

w̃i = Biw̃i−1 −Hiv
(w)
i−1 −A2,iMsi − v(ψ)

i (68)

Taking the squared weighted Euclidean norm of both sides
of (68) and apply the expectation operator together with
using Remarkand Assumptionsyield the following weighted
variance relation:

E
[
‖w̃i‖2

Σ

]
= E

[
w̃∗
i−1B

∗
iΣBiw̃i−1

]
+ E

[
s∗iMAT

2,iΣA2,iMsi

]
+ E

[
v
∗(w)
i−1 H∗

iΣHiv
(w)
i−1

]
+ E

[
v
∗(ψ)
i Σv(ψ)

i

]
(69)

Let us evaluate each of the expectations on the right-hand
side. The first expectation is given by

E
[
w̃∗
i−1B

∗
iΣBiw̃i−1

]
= E

[
E
[
w̃∗
i−1B

∗
iΣBiw̃i−1|w̃i−1

]]
= E

[
w̃∗
i−1 (E [B∗

iΣBi])
]

= E
[
w̃∗
i−1Σ

′w̃i−1

]
= E

[
‖w̃i‖2

Σ′

]
(70)

where we introduce the nonnegative-definite weighting matrix

Σ′ , E [B∗
iΣBi]

= E
[
AT

1,i−1 (INM −MRu,i)
∗ AT

2,iΣ

A2,i (INM −MRu,i) A1,i−1

]
(71)

It is convenient to introduce the alternative notation‖x‖2
σ

to refer to the weighted square quantity‖x‖2
Σ, where σ =

vec {Σ}. We shall use these two notations interchangeably.
Using the following equalities for arbitrary matrices

{U,W,Σ, Z} of compatible dimensions:

(U ⊗W ) (Σ⊗ Z) = UΣ⊗WZ (72)

vec {UΣW} =
(
WT ⊗ U

)
vec {Σ} (73)

tr (ΣW ) =
[
vec
{
WT

}]T
vec {Σ} (74)

we have

σ′ = E
[
AT

1,i−1 ⊗AT
1,i−1

] [
(INM −MRu,i)

∗⊗

(INM −MRu,i)
T

]
E
(
AT

2,i ⊗AT
2,i

)
vec {Σ}

= D1

[
(INM −MRu,i)

∗ ⊗ (INM −MRu,i)
T
]
D2σ

(75)

where

σ = vec {Σ} (76)

σ′ = vec {Σ′} (77)

D1 = E
[
AT

1,i−1 ⊗AT
1,i−1

]
(78)

D2 = E
[
AT

2,i ⊗AT
2,i

]
(79)

In Appendix B, we calculateD1 andD2 for both stochastic
and sequential partial-diffusion schemes. That is,

σ′ = Fσ (80)

where we are introducing the coefficient matrix of size
(NM)2 × (NM)2:

F = D1

[
E (INM −MRu,i)

∗ ⊗ (INM −MRu,i)
T
]
D2

(81)
Second term on RHS of (69)

E
(
s∗iMAT

2,iΣA2,iMsi

)
= vecT {G}D2σ (82)

where
G = ME [sis∗i ]M (83)

By consideringAssumptions, G is evaluated as

G =
{
µ1σ

2
v,1Ru,1, . . . , µNσ2

v,NRu,N

}
(84)

Third term on RHS of (69)

E
[
v
∗(w)
i−1 H∗

iΣHiv
(w)
i−1

]
= E

[
v
∗(w)
i−1 (INM −Ru,iM) AT

2,i×

ΣA2,i (INM −MRu,i)v
(w)
i−1

]
= E

[
tr
(

ΣA2,i (INM −MRu,i)

v
(w)
i−1v

∗(w)
i−1 (INM −Ru,iM)AT

2,i

)]
= E

[
vecT

{
A2,i (INM −MRu,i)×

v
(w)
i−1v

∗(w)
i−1 (INM −Ru,iM) AT

2,i

}]T
vec {Σ}

= vecT
{

(INM −MRu) R(w)
v ×

(INM −MRu)
}

E
[
AT

2,i ⊗AT
2,i

]
σ

= vecT
{
UR(w)

v U∗
}
D2σ (85)
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where

U , E [INM −MRu,i] = (INM −MRu) (86)

Last term on RHS of (69):

E
[
v
∗(ψ)
i Σv(ψ)

i

]
= E

[
tr
(
Σv(ψ)

i v
∗(ψ)
i

)]
= vecT

{
R(ψ)
v

}
σ (87)

The variance relation becomes

E
[
‖w̃i‖2

σ

]
= E

[
‖w̃i‖2

Fσ

]
+
(

vecT {G}D2 + vecT
{
UR(w)

v U∗
}
D2

+ vecT {R(ψ)
v }

)
σ (88)

Theorem2 (Mean-Square Stability). Consider the same setting
of Theorem1. Assume sufficiently small step-sized to justify
ignoring terms that depend on higher power of the step-sizes.
The perturbed adaptive partial diffusion algorithm (23)-(25) is
mean-square stable if, and only if, the matrixF defined by
(81), or its approximate defines further (89), is stable. This
condition is satisfied small for step-sizes{µk} as is (64).

Proof: A resonable approximate expression forF for
sufficiently small step-sizes is

F ≈ D1

[
(INM −MRu)

T ⊗ (INM −MRu)
T
]
D2 (89)

Recall that, in the Kronecker product case(C = B ⊗A),
eigenvalues are the outer product of the eigenvalues of the
two matrices. Therefore, using expression (89), we have that
ζ (F) = [ζ (INM −MRu)], whereζ (A) is the spectral radius
A. It follows thatF is stable if, and only if,(INM −MRu)
is stable. we already mentioned in (1) that (65) ensures the
stability of (INM −MRu).

Corollary (Steady-State Variance Relation). Consider the same
setting of Theorem 2. The weight-error vector,w̃i , of the
(PDLMS) (23)-(25) satisfies the following equation in steady-
state:

E
[
‖w̃i‖(IN2M2−F)σ

]
=(
vecT {G}D2 + vecT {UR(w)

v U∗
}
D2

+ vecT {R(ψ)
v }

)
σ (90)

for any Hermitian nonnegative-definite matrixΣ which follows
(76).

C. Mean-Square Performance

Expression (90) prove a very useful relation; it allows us
to evaluate the network MSD through appropriate selection of
the weighting matrixΣ. The network MSD is defined as the
average value:

MSDnetwork , lim
i→∞

1
N

N∑
k=1

E
[
‖w̃k,i‖2

]
(91)

which amounts to averaging the MSDs of the individual nodes.
Therefore,

MSDnetwork = lim
i→∞

1
N

E
[
‖w̃i‖2

]
= lim
i→∞

E
[
‖w̃i‖2

1/N

]
(92)

This means that in order to recover the network MSD from
(90), we should select the weighting vectorσ such that

(IN2M2 −F) σ =
1
N

vec {INM} (93)

Solving for σ and substituting back into (90) we arrive at
the following expression for the network MSD

MSDnetwork
noisy =

1
N

(
vecT {G}D2 + vecT {UR(w)

v U∗
}
D2

+ vecT {R(ψ)
v }

)
× (IN2M2 −F)−1 vec {INM}

(94)

When links are ideal, the last two terms of (90) do not
arise. So, we can conclude that the network MSD deteriorates
as follows:

MSDnetwork
noisy = MSDnetwork

ideal +
1
N

(
vecT {UR(w)

v U∗}D2 + vecT {R(ψ)
v }

)
×

(IN2M2 −F)−1 vec {INM} (95)

IV. D ETAILED DISCUSSION ON THENETWORK MSD

So far we have mentioned based on Theorems 1 on 2 that the
partial diffusion LMS strategy does not diverge due to noisy
links. But, it is the main factor on performance degradation
of steady-state network MSD. Moreover, focus on (95) and
compare it with that stated at [21], there exist an additional
term, denoted as channel noise term, that plays a crucial rule
on the performance degradation of network MSD performance.
It is abundantly clear that this term has been arose from
channel noise condition. Here we concentrate on (95) to
explicitly highlight characterization of how convergence and
performance of PDLMS affects by the presence of noisy
channels. We analyze steady-state network MSD under the
following assumptions:

Assumptions.

(v) Nodes run ATC PDLMS at each iteration, i.e.,C1 = IN .
For the sake of simplicity of notation we consider,C2 =
C andD2 = D.

(vi) The step size, noise variance, input covariance matrix
and channel noise covariance matrix all are the same in
the network, i.e.,µk = µ, σ2

v,k = σ2
v , Ru,k = Ru, and

R
(ψ)
v,k = R

(ψ)
v , ∀k ∈ 1, . . . , N .

(vii) During any M consecutive iterations, the intermediate
estimate vector does not differ considerably at each node
k [21].

ConsideringAssumptions(v), (vii), and using the results of
analysis mentioned in [21], we have

D = (1− ρ) IN2M2 + ρC ⊗ C (96)

where,C = C ⊗ IM .
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To specify the network performance in steady-state, we
consider the global MSD describe at (95) and denote it by
ηL. We have

ηL =
1
N

(
vecT {G}D + vecT {R(ψ)

v }
)( ∞∑

n=0

Fn
)

vec {INM}

=
1
N

∞∑
n=0

(
vecT {G}D + vecT {R(ψ)

v }
)

×
[(
UT ⊗ UT

)
D
]n

vec {INM} (97)

Substituting (96) into (97) results in

ηL =
1
N

∞∑
n=0

(1− ρ)n+1 vecT {G} [(U)n ⊗ (U)n]T

× vec {INM}

+
1
N

∞∑
n=0

ρn+1vecT {G}
[
C
(
UTC

)n ⊗ C
(
UTC

)n]
× vec {INM}

+
1
N

∞∑
n=0

(1− ρ)n vecT
{

R(ψ)
v

}
[(U)n ⊗ (U)n]T

× vec {INM}

+
1
N

∞∑
n=0

ρnvecT
{

R(ψ)
v

}[
C
(
UTC

)n ⊗ C
(
UTC

)n]
× vec {INM} (98)

Utilizing vec {.} property, (98) can be rewrite as

ηL =
1
N

∞∑
n=0

(1− ρ)n+1 vecT
{[

(U)n GT (U)n
]T}

× vec {INM}

+
1
N

∞∑
n=0

ρn+1vecT
{[
C
(
UTC

)n GC (UTC)n]}
× vec {INM}

+
1
N

∞∑
n=0

(1− ρ)n vecT
{[

(U)n
(
R(ψ)
v

)T
(U)n

]T}
× vec {INM}

+
1
N

∞∑
n=0

ρnvecT
{[
C
(
UTC

)n
R(ψ)
v C

(
UTC

)n]}
× vec {INM}

(99)

Using trace properties, we have

ηL =
1
N

∞∑
n=0

(1− ρ)n+1 tr
{[

(U)n GT (U)n
]T}

+
1
N

∞∑
n=0

ρn+1tr
{[
C
(
UTC

)n GC (UTC)n]}
+

1
N

∞∑
n=0

(1− ρ)n tr

{[
(U)n

(
R(ψ)
v

)T
(U)n

]T}

+
1
N

∞∑
n=0

ρntr
{[
C
(
UTC

)n
R(ψ)
v C

(
UTC

)n]}
(100)

In view of Assumption(v), we have

M = µIN ⊗ IM ,

U = IN ⊗ (IM − µRu) ,

G = µ2σ2IM ⊗Ru,

and

R(ψ)
v = Rv

Calculating the trace terms at (100), we get

tr
{[

(U)n GT (U)n
]T}

= Nµ2σ2

×tr
{

[(IN − µRu)
n

Ru (IN − µRu)
n]T
}

,

tr
{[
C
(
UTC

)n GC (UTC)n]} = µ2σ2
vtr
{(

CT
)n+1

Cn+1
}

×tr {(IM − µRu)
n

Ru (IM − µRu)
n} ,

tr

{[
(U)n

(
R(ψ)
v

)T
(U)n

]T}
=

N × tr
{[

(IN − µRu)
n (Rv)

T (IN − µRu)
n
]T}

,

and

tr
{[
C
(
UTC

)n
R(ψ)
v C

(
UTC

)n]}
=

tr
{(

CT
)n+1

Cn+1
}
× tr {(IM − µRu)

n
Rv (IM − µRu)

n}

where

tr
{(

CT
)n+1

Cn+1
}

=
N∑
k=1

‖cn+1,k‖2
, n ≥ 0

In equation above,cn+1,k is the k-th column of Cn+1.
Considering a connected network holds that,

‖cn+1,k‖2
< 1, n ≥ 0,∀k.

This fact yields

tr
{[
C
(
UTC

)n GC (UTC)n]} < tr
{[

(U)n GT (U)n
]T}

< tr
{[
C
(
UTC

)n GC (UTC)n]}+ tr
{[
C
(
UTC

)n
R(ψ)
v C

(
UTC

)n]}
(101)

Moreover, for the case of non-cooperative, i.e.L = 0 andρ =
0,, full diffusion case with ideal links, i.e.L = M , ρ = 1, and
Rv = OM , full diffusion case with noisy links, i.e.L = M ,
ρ = 1 andRv 6= OM , whereOM is andM ×M zero matrix,
we have

η0 =
1
N

∞∑
n=0

tr
{[

(U)n GT (U)n
]T}

, (102)

ηM =
1
N

∞∑
n=0

tr
{[
C
(
UTC

)n GC (UTC)n]} (103)

and
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Fig. 1. Variance of the noise (top) and Covariance matrix trace of the input
signal (bottom) at each node.

ηM =
1
N

∞∑
n=0

(
tr
{[
C
(
UTC

)n GC (UTC)n]}
+ tr

{[
C
(
UTC

)n
R(ψ)
v C

(
UTC

)n]})
(104)

respectively. Accordingly, it follows from (97)-(104)

ηM < ηM−1 < . . . < ηL < . . . < η1 < η0

< ηnoisy1 < . . . < ηnoisyL < . . . < ηnoisyM−1 < ηnoisyM

This indicates that under ideal channels the more entries
are transmitted at each iteration, the better the steady-state
network MSD performance occurred. In other words, par-
tial diffusion settles a communication performance trade-off.
However, considering noisy channels the more entries are
communicated at each iteration, the worse the steady-state
network MSD performance occurred. This means that partial
diffusion seriously upset the balance of mentioned trade-off.

V. SIMULATION RESULTS

In order to illustrate the PLDMS performance under noisy
information exchange, we consider an adaptive network with
a random topology andN = 10 where each node is, on
average, connected to two other nodes. The measurements
were generated according to model (1), and regressors,uk,i,
were chosen Gaussian i.i.d with randomly generated different
diagonal covariance matrices,Ru,k. The additive noises at
the nodes are zero mean Gaussian with variancesσ2

v,k and
independent of the regression data. The traces of the covari-
ance matrix regressors and the noise variances at all nodes,
tr (Ru,k) and σ2

v,k, are shown in Fig. 1. We also use white

Gaussian link noise signals such thatR
(w)
w,lk = σ2

v,lkIM and

R
(ψ)
v,lk = σ2

ψ,lkIM . All link noise variances{σ2
w,lk, σ

2
ψ,lk} are

randomly generated and illustrated in Fig. 2.
We assign the link number by the following procedure. We

denote the link from nodel to nodek as `l,k, wherel 6= k.
Then, we sort the links{`l,k, l ∈ Nk\ {k}} in an ascending
order ofl in the listLk (which is a set with ordered elements)
for each node. We concatenate{Lk} in an ascending order of
k to obtain the overall listL = {L1,L2, . . . ,LN}. Eventually,
themth link in the network is given by themth element in the
list L. We adopt different step-sizesµk, randomly generated,
but within the limits in (65) for all agents. It is noteworthy
that we adopt the network MSD learning curves of all figures
by averaging over 50 experiments and the unknown parameter
wo of lengthM = 8 is randomly generated.
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Fig. 2. The variance profiles for various sources of link noises in dB,
including

{
σ2
ψ,lk, σ2

w,lk

}
, σ2
ψ,lk (top) andσ2

w,lk (bottom).
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Fig. 3. Simulated network MSD curves and theoretical results (95) for partial
diffusion ATC algorithms using sequential (top) and stochastic (bottom) with
different number of entries communicated under noisy links.

In the first simulation, we evaluate the theoretical deriva-
tions. To this end we consider the experimental network MSD
learning curves (ATC strategy) of PDLMS algorithm and
theoretical results using both sequential and stochastic partial
diffusion schemes under noisy links for different numbers of
entries,L. We use uniform weights for{c1,lk, c2,lk} at the
combination phase at this stage. The plots are given in Fig.
3 where we can see that there is a good match between our
theoretical derivations with simulation results. Similar plots
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Fig. 4. Simulated network MSD curves and theoretical results (95) for partial
diffusion CTA algorithms using sequential (top) and stochastic (bottom) with
different number of entries communicated under noisy links.

for CTA strategy are given in Fig. 4.
To further examine our theoretical findings, both theoretical

and experimental steady-state network MSD of the ATC
PDLMS algorithm as a function of communicated entries,L,
for different values of{σ2

ψ,lk}, for stochastic and sequential
schemes are plotted in Fig. 5. This figure not only supports
our analysis, but it also reveals that when channel between
agents is assumed ideal (σ2

ψ,lk = 0 in the figure), an increase
in communicated entries results in the network performance.
It must be noted that this in not the case when links among
the nodes are noisy and the performance of network is
deeply affected by variance of channel noise. This particular
behaviour of the PDLMS algorithm in the presence of noisy
links is better understood from Fig. 6 where the steady-state
MSDs of all nodek for different values ofL and different
link conditions are plotted in Fig. 6.

It is also notable that in the presence of noisy links, the
PDLMS algorithm exhibits different behaviour as the step
size changes. To show this behaviour, the steady-state MSD
as a function ofµ for different values ofσ2

ψ,lk is shown in
Fig. 7. As it is obvious from Fig. 7, for the case of ideal
links σ2

ψ,lk = 0 the MSD curve is a monotonically increasing
function of µ [14], whereas, for noisy links, decreasing the
step size increases the steady-state MSD value. Also, we can
see from Fig. 7 that asσ2

ψ,lk increases, the effect of noisy
links increases as expected. Finally, it must be noted that
although the performance of PDLMS algorithm deteriorates
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Fig. 5. Theoretical and experimental steady-state network MSDs versus the
number of entries communicated at each iteration for different values ofσ2

ψ,lk
using sequential (top) and stochastic (bottom). Note that solid line and dashed
line represent the theoretical and experimental results respectively.

in the presence of noisy links, it is still able to provide to
deliver better performance in comparison with some similar
methods, such as a consensus based algorithm. To show this,
the MSD performance for different algorithms including non-
cooperative, consensus, full diffusion and partial-diffusion (for
L = 2 and L = 4) under noisy links is illustrated in Fig.
8. We can observe that the DLMS algorithm exhibits better
performance than the consensus algorithm.

From the results above, we can make the following obser-
vations:

• The PDLMS algorithm delivers a trade-off between com-
munications cost and estimation performance under ideal
link. This statement is the main aim of [21].

• Unlike the statement above that labels a communication-
performance trade-off to PDLMS algorithm, there is no
direct relation between MSD performance and number
of selected entries under noisy information exchange.
In other words, the more entries are communicated at
each iteration, the more perturbed weight estimates are
interred in consultant phase that leads to worse steady-
state network MSD.

• The sequential partial-diffusion schemes outperform the
stochastic partial-diffusion for noisy and ideal links.

• The ATC PDLMS strategy outperforms the adaptive CTA
PDLMS strategy for both noisy and ideal cases.
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Fig. 6. Theoretical and experimental steady-state MSDs at each node for
different numbers of entries communicated at each iteration under ideal links
(top) and noisy links (bottom). Note that solid line and dashed line represent
the theoretical and experimental results respectively.
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VI. CONCLUSION

In this work, we present a general form of PDLMS al-
gorithms, formulate the ATC and CTA version of PDLMS
under noisy links condition, and investigate the performance
of partial-diffusion algorithms under several sources of noise
during information exchange for both sequential and stochastic
cases. We also illustrate that the PDLMS strategy can still sta-
bilize the mean and mean-square convergence of the network
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Fig. 8. Comparison of network MSDs for: non-cooperative, consensus, full
diffusion, and partial diffusion strategies.

with non-ideal links. We derived analytical expressions for
network learning curve MSD. Furthermore, we established that
there is not a direct relation between the MSD performance
and the number of selected entries under imperfect information
exchange. In other words, the more entries are communicated
at each iteration, the more perturbed weight estimates are
interred in consultant phase. The simulation results verify the
theoretical findings and how well they match with theory.
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