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 1 

Abstract  2 

Study Design: Controlled Trial 3 

Background: An inverted pendulum model represents the mechanical function of able-bodied 4 

walking accurately, with centre of mass height and forward velocity data plotting as sinusoidal 5 

curves, 180 degrees out of phase.  6 

Objectives: The current study investigated whether the inverted pendulum model represented 7 

level gait in individuals with a unilateral transfemoral amputation. 8 

Methods: Kinematic and kinetic data from ten individuals with unilateral transfemoral 9 

amputation and fifteen able-bodied participants were recorded during level walking.  10 

Results: During level walking, the inverted pendulum model described able-bodied gait well 11 

throughout the gait cycle, with median relative time shifts between centre of mass height and 12 

velocity maxima and minima of between 1.2%-1.8% of gait cycle. In the group with unilateral 13 

transfemoral amputation, the relative time shift was significantly increased during the prosthetic-14 

limb initial double-limb support phase by 6.3%.  15 

Conclusion: The gait of individuals with unilateral transfemoral amputation shows deviation 16 

from a synchronous inverted pendulum model during prosthetic limb stance. The reported 17 

divergence may help explain such individuals’ increased metabolic cost of gait. Temporal 18 

divergence of inverted pendulum behaviour could potentially be utilised as a tool to assess the 19 

efficacy of prosthetic device prescription. 20 

Word count: 191 21 

 22 
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Clinical Relevance: The size of the relative time shifts between CoM height and velocity 1 

maxima and minima could potentially be used as a tool to quantify the efficacy of innovative 2 

prosthetic device design features aimed at reducing the metabolic cost of walking and improving 3 

gait efficiency in individuals with amputation. 4 

Keywords: 5 
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Background 1 

Researchers have previously used an inverted pendulum model to represent the mechanical 2 

functioning of normal, bipedal overground walking (e.g. 1, 2-5). The inverted pendulum model 3 

is, by intention, simplistic. It represents each of the lower limbs as a single rigid segment, capable 4 

of rotation about the ankle during stance, with the whole-body centre of mass (CoM) located at 5 

its superior end. This model sits comfortably with the mechanical reality of walking, as the 6 

vertical trajectory of the CoM and its forward velocity vary during the gait cycle in a similar 7 

manner to that of the bob of an oscillating pendulum. The CoM is higher and slower during 8 

single-limb support and lower and faster during double-limb support. When plotted graphically, 9 

CoM height and CoM forward velocity appear as sinusoidal curves, 180° out of phase, with CoM 10 

peak forward velocity coinciding with the lowest CoM height and CoM minimum forward 11 

velocity coinciding with maximum CoM height. 12 

Individuals with a unilateral lower-limb amputation, are mechanically constrained during walking 13 

by the prosthetic device used (6). As a result, they e.g. walk more slowly (7), fall more often (8) 14 

and have a higher metabolic cost of walking (9-11) when compared to able-bodied individuals. 15 

Multiple issues may affect the gait pattern of any given population of individuals with lower-limb 16 

amputation, such as e.g. the ability of the prosthetic ankle and/or knee joint to allow flexion 17 

during stance. It is not well understood if the mechanical constraints imposed by prosthetic 18 

devices mean a mechanical model of walking could be applicable to individuals with a lower-19 

limb amputation. It has been demonstrated not to be the case in individuals with a unilateral 20 

transtibial amputation (UTT), where peak CoM forward velocity and minimum CoM height did 21 

not coincide during prosthetic-limb initial double-limb support (12). In such individuals, the CoM 22 
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accelerates forward to peak velocity after the minimum CoM height occurs, therefore whilst the 1 

CoM is being elevated.  2 

 3 

Specific gait characteristics have been reported for individuals with unilateral transfemoral 4 

amputation (UTF). For example, those with UTF are likely to retain a more vertical projection of 5 

the CoM at prosthetic-limb toe-off (13) and commonly use a vaulting mechanism, e.g. via 6 

increased plantarflexion, during the intact-limb stance phase. This vaulting strategy supports the 7 

elevation of the CoM and hence allows for sufficient prosthetic-limb toe clearance during swing 8 

(14). Also, during the prosthetic-limb stance phase, prosthetic knee flexion is restricted in order 9 

to prevent it unlocking and collapsing during weight bearing (15). Both aspects could affect the 10 

efficacy of applying the inverted pendulum model to UTF gait, as the model does not include 11 

varying pendulum lengths (as induced by the vaulting mechanism) and restrained knee flexion. 12 

Additional the mechanical constraint to rotate around the flexion/extension axis of the ankle 13 

might affect the synchrony of the inverted pendulum model . To date, the possibilities of applying 14 

the inverted pendulum model to the gait of individuals with a UTF has not been established and it 15 

remains unclear to what extent their specific gait characteristics influence the efficacy of applying 16 

this model. Given the importance of step-to-step transitions in determining the metabolic cost of 17 

walking (5, 11), and that disruptions of energy transformations associated with the inverted 18 

pendulum mechanism can lead to increased energy expenditure (16), any breakdown of 19 

compliance with the inverted pendulum model may partially explain the higher metabolic cost of 20 

walking for those with a lower-limb amputation as demonstrated by Houdijk, Pollmann (11) for 21 

individuals with UTT.  22 
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Therefore, the objective of this study was to investigate whether the level ground gait of 1 

individuals with UTF is represented by an  inverted pendulum model . It was hypothesized that 2 

the model would during intact-limb stance perform similar for individuals with UTF compared to 3 

able-bodied individuals, but different during prosthetic-limb stance.   4 

 5 

Methods 6 

Study Design: As study design, a controlled trial was chosen, comparing able-bodied individuals 7 

with individuals with a unilateral transfemoral amputation.   8 

Participants: The UTF group consisted of ten participants, all using the same prosthetic foot 9 

(Esprit; Chas. A. Blatchford & Sons, Basingstoke, UK). Data from eight (Mean (SD) age: 42 10 

(14.8) years, mass: 86.3 (15.3) kg, height: 1.74 (0.06) m.) walking over level ground, previously 11 

published in De Asha, Munjal (12), were re-analyzed. Data from two further individuals with 12 

UTF (Mean (SD) age: 53 (2.8) years, mass: 74.1 (14.9) kg, height: 1.81 (0.11) m) and 15 able-13 

bodied (AB) male individuals (Mean (SD) age: 27 (5) years, mass: 75.1 (9.1) kg, height: 1.81 14 

(0.05) m) were collected at the University of Salzburg. All UTF participants had undergone 15 

amputation at least two years prior to participation, were free from neurological, musculoskeletal 16 

(other than limb amputation) or cardiovascular disorders, and had used their current prostheses 17 

for at least six months. All were classed as being at least K3 on the Medicare scale by their 18 

prescribing clinician and all used their habitual knee component (1x Orion, 1x EUK SAKL, 2x 19 

KX06: all Chas A Blatchford & Sons, Basingstoke, UK;  1x C-leg, 1x 3R45: both Otto Bock, 20 

Duderstadt, Germany;  and 3x Total Knee: Ossur, Reykjavik, Iceland). Institutional bioethics 21 
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committee approval was obtained at both locations and written informed consent was provided by 1 

all participants prior to data collection. 2 

Data acquisition: In addition to the data from De Asha, Munjal (12), kinematic and kinetic data 3 

were collected at 250 Hz and 1000 Hz respectively using an eight camera motion capture system 4 

(Vicon, Oxford, UK) and two force plates (AMTI, Watertown, MA, USA). Participants walked at 5 

their self-selected walking speed on an 8 m (8 TF, 12) and 6 m (2 TF all AB, Salzburg) walkway 6 

with the two force platforms embedded in the middle of the walkways.  7 

Reflective markers were attached to participants according to the Cleveland Clinic Marker Set 8 

(Motion Analysis Corp, Santa Rosa, USA), which uses an anatomical landmark calibration 9 

technique (17). Markers on the prosthetic knee were placed medially and laterally of the 10 

rotational or approximated (for polycentric knee componentes) joint centre.  At the prosthetic 11 

ankle and foot, the markers were placed to correspond with those on the intact side. For all UTF 12 

participants the mean of six trials at self-selected walking speed were analysed, while for the AB 13 

group one representative trial was analysed for each participant. 14 

Data processing: Labeling of marker trajectories was undertaken in Workstation and Nexus 15 

software (Vicon, Oxford, UK) before all data were exported to Visual3D (C-Motion, 16 

Germantown, USA) from which point on the processing was identical for all participants. 17 

Kinematic and kinetic data were filtered using a fourth order, zero-lag Butterworth filter with a 6 18 

Hz cut-off. A nine segment model (head, trunk, pelvis, thighs, shanks and feet) of each 19 

participant was constructed. Initial contact (IC) and toe off (TO) were defined as the instants the 20 

vertical component of the ground reaction force first went above or below 20 N, respectively. The 21 

gait cycle was defined from IC of the prosthetic (UTF) or right (AB) limb to the consecutive IC 22 
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of the ipsilateral limb and normalized to 100%. In instances where no kinetic data were available 1 

(i.e. a missed or incomplete force platform contact), IC and TO were defined using kinematic 2 

data (18, 19). From these events phases of single-limb support(SS) and double-limb support 3 

(DS), were defined. The position of the whole-model CoM was calculated as the weighted 4 

average of the model’s segmental CoMs (20-22). Forward velocity of the CoM was defined as 5 

the first derivation of the  CoM position in the walking direction, which was in line with the 6 

global coordinate system of the respective laboratory. The height of the CoM was defined as the 7 

instantaneous vertical distance between the CoM and the walking surface. For the UTF group 8 

timings, normalised to the gait cycle, of the minimum and maximum CoM height and forward 9 

velocity were identified in the following four phases: (i) Prosthetic initial double-support 10 

(IDS_P); (ii) Prosthetic single-support (SS_P); (iii) Prosthetic terminal double-support (TDS_P); 11 

(iv) Intact single-support (SS_I) (Figure 1). For the AB group these timings were identical,  only 12 

the analyzed gait cycle started with the right foot always, resulting in prosthetic phases 13 

corresponding to the right side and  SS_I corresponding to the left side (Figure 1).  14 

 15 

 For each phase, the relative time shift was calculated as the time difference between the maxima 16 

and minima of CoM vertical position and forward velocity normalised to gait cycle duration. 17 

Assuming inter-limb symmetry in the AB group, the mean of both, left and right, limbs were 18 

calculated for the metric values. In case of perfect compliance with the inverted pendulum, a time 19 

shift of zero would be observed with increasing time shift magnitude indicating reduced 20 

adherence to the inverted pendulum model. 21 

---Figure 1--- 22 
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Statistical analysis: Statistical testing was performed using SPSS software (v.23, IBM, Armonk, 1 

NY, USA). UTF data were not normally distributed, thus a non-parametric statistical approach 2 

was adopted for all participants.  3 

The data first was analyzed to detect main effect of groups (UTF and AB) using a Friedman 4 

Analysis of Variances by ranks . A second Friedman Analysis of Variances by ranks was used to 5 

detect the main effect of phases (IDS_P, SS_P, TDS_P, SS_I).  Post-hoc tests were conducted 6 

where significant main effects were identified using a) for each phase the Mann-Whitney U-test 7 

to detect differences between groups (AB vs. UTF) and b) for each group the Wilcoxon signed 8 

rank test to detect differences between the phases  ).  For all statistical tests an alpha level of 5% 9 

(p < 0.05) was set. Post-hoc test were conducted using a Bonferroni-corrected alpha of p = 0.008 10 

for phase comparisons, and p = 0.013 for group comparisons. Effect sizes were calculated as r 11 

(23) with the boundaries of 0.1, 0.3 and 0.5 for small, medium and large.   12 

 13 

Results 14 

During level walking there were significant effects of group (p = 0.004), gait cycle phase (p < 15 

0.001) and a group by phase interaction (p < 0.001) on the relative timings of CoM height and 16 

velocity maxima and minima. Between gait phases the AB group did not show significant 17 

differences in time shifts between CoM maxima and minima of height and forwards velocity, 18 

with median relative time shifts ranging between 1.2% and 1.8% of gait cycle duration (p > 19 

0.087, Figure 1 & 2). For the UTF group the median relative time shift was significantly 20 

increased during IDS_P phases compared to the TDS_P (p = 0.005, r = 0.89) and SS_I phase (p = 21 

0.005, r = 0.89)  (Figure 1). Post hoc analysis of differences between the UTF and the AB group 22 



10 

indicated the difference was only significant during the IDS_P phase, when the UTF group 1 

displayed increased relative time shifts compared to the AB group (IDS_P,  p < 0.001, r = 0.79), 2 

indicating that maximum CoM velocity occurred after minimum CoM height. In the TDS_P 3 

double-limb support phase the maximum CoM velocity was almost synchronous with minimum 4 

CoM height (Table 1, Figure 2).  5 

---Figure 2--- 6 

 7 

Table 1: Median (IQR) of relative time shift of unilateral transfemoral (UTF) and able-bodied 8 

(AB) participants during initial and terminal double and single-limb support phases in level gait 9 

 10 

  Phase AB UTF 
p-value  

AB-UTF 

ES r 

AB-UTF 

relative time shift [%] 

IDS_P 1.2 (1.5) 6.3 (4.8) 0.000* 0.79 

SS_P 1.8 (2.6) 5 (5.8) 0.026 0.44 

TDS_P 1.2 (1.5) -0.5 (4.1) 0.318 0.2 

SS_I 1.8 (2.6) 3.7 (2) 0.028 0.44 
IDS_P: Initial double-limb support, prosthetic-limb leading limb, SS_P: Single-limb support with 
prosthetic-limb, TDS_P: Terminal double-limb support, prosthetic-limb tailing limb, SS_I: Single-limb 
support with intact-limb  AB: able-bodied group, UTF: group with unilateral transfemoral amputation , ES 
r: Effect size r 
* indicates significant difference between AB and UTF group, Bonferroni-corrected p=0.013 

 11 

 12 

Discussion 13 

The aim of the current study was to assess the efficacy of the application of an inverted pendulum 14 

model to the overground gait of individuals with UTF. The prosthetic limb of individuals with 15 

UTF more closely replicates the characteristics of a rigid segment than does an intact leg, due 16 

primarily to the non-articulation or reduced articulation of the prosthetic knee during stance and 17 

also the mechanical nature of prosthetic componentry making up a large proportion of the 18 
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affected limb. However constrained movement in the prosthetic ankle joint  may act against the 1 

inverted pendulum model. Therefore, it is not intuitively clear, whether the inverted pendulum 2 

model would represent UTF gait well.  The results of the current study partially support the 3 

hypothesis that the inverted pendulum model would be applied similarly to both AB gait and 4 

UTF gait during intact-limb stance, but less so during prosthetic-limb stance. As hypothesised, 5 

the magnitude of relative time shifts between CoM height and velocity maxima and minima in 6 

the AB group were consistently close to zero across all phases of the gait cycle, indicating that an 7 

inverted pendulum model is a reasonable estimation of AB gait. In the UTF group, the relative 8 

time shifts were not consistent across all phases of the gait cycle and showed an increased 9 

relative time shift for IDS_P, during which the prosthetic-limb was being loaded, compared to the 10 

gait phases in which the prosthetic-limb was in single-limb support, terminal double-limb 11 

support, or in swing. During IDS_P, the maximum CoM forwards velocity occurred after the 12 

minimum CoM height, as has been reported previously in individuals with UTT (12). The IDS_P 13 

was the only phase showing a statistically significant increase in relative time shift between the 14 

CoM height and forward velocity maxima and minima for the UTF group, compared to the AB 15 

group. This suggested that whilst an inverted pendulum model of gait could be applied 16 

appropriately to AB gait, this was not generally the case in the UTF group, especially during the 17 

IDS_P phase. However, the lowest observed relative time shift in the UTF group also occurred 18 

during prosthetic-limb stance, during TDS_P. During TDS_P, UTF gait appeared to function in 19 

accordance with the inverted pendulum model in a way most like that of the AB group, with 20 

maximum CoM velocity occurring almost synchronously with minimum CoM height (median 21 
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difference - 0.5 % gait cycle), therefore the hypothesis that the model would perform less well 1 

during prosthetic stance was only partially supported.  2 

The results from the current study are similar to that of previous research, where the application 3 

of an inverted pendulum model to the gait of individuals with UTT was found to be inappropriate 4 

(12). The current study demonstrates that for individuals with UTF, during the IDS_P phase 5 

when the prosthetic-limb is being loaded, significant temporal separations between CoM 6 

maximum velocity and minimum height occur. This can possibly be explained by an altered  7 

loading response knee flexion pattern induced by the  prosthetic knee type resulting in minimum 8 

CoM height occurring earlier than in the AB group. If this was due to the possible use of the 9 

controlled stance phase flexion provided by 7 out of the 10 knee types or due to a locked knee 10 

during stance phase cannot be answered by this study.  Thus peak CoM velocity is observed 11 

whilst the CoM is being elevated in individuals with UTF. Conversely, the two events are 12 

coincident in AB individuals, as loading response knee flexion appears to extend the CoM 13 

lowering phase in order to allow minimum CoM height to coincide with CoM peak forwards 14 

velocity (Figure 1). Similarly, the same direction of temporal offset between minimum CoM 15 

height and peak CoM velocity observed in UTT participants, where the CoM is accelerating 16 

forwards while it is being elevated (12), may be due to reduced loading response flexion, which 17 

typically occurs in such individuals because of impingement of the knee by the socket and the 18 

desire to reduce in-socket/residuum torques. Given that both UTF and UTT participants have 19 

similar relative time shifts between maximal and minimal CoM displacements and velocities 20 

during IDS_P, it would appear reasonable that restricted loading response knee flexion could, at 21 

least partially, be an explanation for this temporal offset. 22 
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During the transition from one leg to the other in AB gait, progression is typically accomplished 1 

via positive work through ankle plantarflexion of the trailing leg. Individuals with lower-limb 2 

amputation cannot actively generate power at the prosthetic ankle, and hence use a more 3 

energetically costly strategy involving positive work at the residual hip during early intact-limb 4 

stance (2, 24). All participants in the current study used the same, non-articulating energy storing 5 

and returning prosthetic foot device, so (lack of) power generation at the prosthetic ankle was 6 

likely similar for all. However, the UTF participants were most divergent from the inverted 7 

pendulum model during IDS_P, when the intact-limb was pushing off. This suggests that it is the 8 

leading, weight accepting limb that modulates the timing of CoM maximum velocity and 9 

minimum height during double-limb support and ultimately, adherence to the inverted pendulum 10 

model of gait. While a large body of research focuses on the (lack of) propulsion provided during 11 

TDS_P, the results of the current study point at the reduction in passive and eccentric work 12 

during IDS_P also being an important factor in the higher metabolic cost of gait experienced by 13 

individuals with lower-limb amputation. Increased energy expenditure has been proposed to be 14 

associated with disruptions in energy transformations within the inverted pendulum model (16), 15 

which would support this supposition. There are no supporting data, but our suggestion would be 16 

that while a lack of active work at the prosthetic ‘ankle’ during late stance undoubtedly 17 

contributes to the previously reported increased metabolic cost of walking in individuals with 18 

lower limb amputation (9, 10), the lack of passive, or eccentric, energy absorption during early 19 

and mid-stance does so too. This suggestion is supported by a previous finding in individuals 20 

with UTT, who experienced a significant reduction in mechanical work, per meter travelled, done 21 

at the intact leg when they used a hydraulically articulating ankle foot device that absorbed more 22 
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energy during early stance, and returned less energy during late stance, than their customary, non-1 

articulating prosthetic feet (25). This should certainly be the subject of future study.  2 

Finally, as impairments in gait function seem to be reflected by compliance, or lack of, to the 3 

inverted pendulum model, the resulting relative time shift might be of clinical relevance. For 4 

example, the size of the relative time shifts between CoM height and velocity maxima and 5 

minima could potentially be used as a tool to quantify the efficacy of innovative prosthetic device 6 

design features aimed at reducing the metabolic cost of walking and improving gait efficiency in 7 

individuals with amputation. 8 

It has to be kept in mind, that while a high standardization of used components is wished for, it 9 

often does not reflect reality. While all participants used the same type of ankle device, a 10 

variation of knee components were used and possible individual specific gait patterns induced by 11 

specific knee components were not considered.  Additionally it has to be kept in mind, that the 12 

results reflect the gait using a rigid ankle device which does not reflect the nature of the inverted 13 

pendulum as such that the pendulum pivots over a rotation center, which could also explain the 14 

increased time shift in the initial prosthetic double support phase.  15 

In conclusion results from the current study demonstrate that during level walking, an inverted 16 

pendulum model represents AB gait well, but deviation to the model were seen in parts of the 17 

UTF gait. In addition, UTF gait functioned mechanically most like AB gait during prosthetic-18 

limb single and terminal double-limb support and intact-limb single-limb support. Divergence 19 

from inverted pendulum behaviour during the initial prosthetic double-limb support phase 20 

following prosthetic-limb IC indicates that it is the loading limb that primarily modulates timing 21 

of CoM maximum velocity and minimum height, rather than the unloading limb. These findings 22 
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may also help explain the increased metabolic cost of walking, compared to the able-bodied, in 1 

individuals with UTF. This relationship should be further investigated. 2 

Word count: 2835 3 
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Figure Headings 1 

Figure 1: Mean forward CoM velocity (dotted lines) and CoM height relative to the CoM position 2 

at initial contact (solid lines) for all AB (black lines) and UTF (grey lines) participants throughout 3 

a normalised gait cycle during level walking. Initial and terminal Double-limb support (IDS, 4 

TDS) and single-limb support (SS) phases are indicated by solid vertical lines, the relative time 5 

shift between maximum and minimum positions is shown as shaded areas.  6 

 7 

Figure 2: Boxplots of relative time shift between extreme values of CoM height and CoM 8 

forward velocity in the initial and terminal double-limb support (IDS_P and TDS_P) and single-9 

limb support (SS_P and SS_I) phase of level gait. 10 

Note: UTF = participant with unilateral transfemoral amputation, AB = able bodied participant, 11 

IC = initial contact, TDS = terminal double-limb support, P = prosthetic-limb, I = intact-limb, R 12 

= right limb, L =  left limb, * indicates significant difference (p < 0.050), r = effect size, s = 13 

small, m = medium, l = large 14 

 15 
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