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Abstract 24 

Purpose: We aimed to explore the effects of low energy availability (EA)[15 kcal·kg lean body mass 25 

(LBM)-1·d-1] achieved by diet or exercise on bone turnover markers in active, eumenorrheic women. 26 

Methods: By using a crossover design, ten eumenorrheic women (VO2 peak: 48.1±3.3 ml·kg-1·min-1) 27 

completed all three, 3-day conditions in a randomised order: controlled EA (CON; 45 kcal·kgLBM-1·d-28 

1), low EA through dietary energy restriction (D-RES; 15 kcal·kgLBM-1·d-1) and low EA through 29 

increasing exercise energy expenditure (E-RES; 15 kcal·kgLBM-1·d-1), during the follicular phase of 30 

three menstrual cycles. In CON, D-RES and E-RES, participants consumed diets providing 45, 15 and 31 

45 kcal·kgLBM-1·d-1. In E-RES only, participants completed supervised running sessions (129±10 32 

min·d-1) at 70% of their VO2 peak that resulted in an exercise energy expenditure of 30 kcal·kg LBM-1·d-33 

1. Blood samples were collected at baseline (BASE) and at the end of the 3-day period (D6) and analysed 34 

for bone turnover markers (-CTX and P1NP), markers of calcium metabolism (PTH, albumin-adjusted 35 

Ca, Mg and PO4) and hormones (IGF-1, T3, insulin, leptin and 17β-oestradiol). Results: In D-RES, 36 

P1NP concentrations at D6 decreased by 17% (BASE: 54.8±12.7 µg·L-1, D6: 45.2±9.3 µg·L-1, P<0.001, 37 

d=0.91) and were lower than D6 concentrations in CON (D6: 52.5±11.9 µg·L-1, P=0.001). P1NP did 38 

not change significantly in E-RES (BASE: 55.3±14.4 µg·L-1, D6: 50.9±15.8 µg·L-1, P=0.14). β-CTX 39 

concentrations did not change following D-RES (BASE: 0.48±0.18 µg·L-1, D6: 0.55±0.17 µg·L-1) or 40 

E-RES (BASE: 0.47±0.24 µg·L-1, D6: 0.49±0.18 µg·L-1) (condition x time interaction effect, P=0.17). 41 

There were no significant differences in P1NP (P=0.25) or β-CTX (P=0.13) responses between D-RES 42 

and E-RES. Both conditions resulted in reductions in IGF-1 (-13% and –23% from BASE in D-RES 43 

and E-RES, both P<0.01) and leptin (-59% and –61% from BASE in D-RES and E-RES, both P<0.001); 44 

T3 decreased in D-RES only (-15% from BASE, P=0.002) and PO4 concentrations decreased in E-RES 45 

only (-9%, P=0.03). Conclusions: Low EA achieved through dietary energy restriction resulted in a 46 

significant decrease in bone formation but no change in bone resorption, whereas low EA achieved 47 

through exercise did not significantly influence bone metabolism. Both low EA conditions elicited 48 

significant and similar changes in hormone concentrations.  49 



Keywords: energy availability, dietary energy restriciton, exercise energy expenditure, bone 50 

metabolism, active eumenorrheic women  51 



1. Introduction1  52 

Active individuals may experience low energy availability (EA) though dietary energy restriction, 53 

exercise energy expenditure  or a combination of the two [1]. Low EA has been associated with low 54 

bone mass, impaired bone micro-architecture and increased risk for stress fracture injury [2-5]. These 55 

unfavourable bone outcomes have been highlighted by the Female Athlete Triad [6, 7] and the Relative 56 

Energy Deficiency in Sports (RED-S) model [8]. Short-term studies are important for providing insight 57 

into the time course over which bone metabolic changes occur, when periods of low EA are initiated 58 

[9-11]. We have previously shown that five days of low EA, at 15 kcal·kgLBM-1·d-1, achieved through 59 

dietary energy restriction and exercise energy expenditure resulted in decreased bone formation and 60 

increased bone resorption in active, eumeorrheic women, but not men [9]. The individual contribution 61 

of exercise and diet on these responses, however, is unknown.  62 

To date, short-term studies (< 7 days) that have compared the effects of low EA by different modalities 63 

(i.e., diet vs. exercise or diet vs. diet plus exercise) are lacking, and findings from long-term 64 

interventional studies on bone parameters are equivocal. Previous research has shown no skeletal 65 

benefits from exercise in weight loss programmes [12, 13], maintenance of bone mass with either 66 

dietary energy restriction and/or exercise-induced energy restriction [14, 15] or amelioration and 67 

prevention of weight loss-associated bone loss with the addition of exercise [16-19]. Notably, these 68 

studies have been conducted in middle-aged [13, 16, 17] or elderly [12, 18, 19] overweight and obese 69 

populations, but no previous study has been performed in active, eumenorrheic women. Most trials have 70 

compared diet to diet plus exercise [12, 13, 18], but few have compared diet to exercise alone [16, 17]. 71 

and have utilised exercise protocols suitable for obese/overweight (i.e., exercise of lower intensity or 72 

                                                      
1 Abbreviations  

ACa, Albumin-adjusted calcium; ANOVA, Analysis of variance; AUC, Area under the curve; BASE, Baseline; BMD, Bone 

mineral density; BMI, Body mass index; CON, Controlled energy availability trial; β-CTX, β-carboxyl-terminal cross-linked 

telopeptide of type I collagen; D, Day; D-RES: Low energy availability trial though diet; CV, Coefficient of variation; DXA, 

Dual energy X-ray absorptiometry; EA, Energy availability; E-RES, Low EA trial though exercise; ECLIA, Electro-

chemiluminescence immunoassay; EDTA, Ethylenediaminetetraacetic acid;; ELISA, Enzyme-linked immunosorbent assay; 

IGF-1, Insulin-like growth factor 1; IPAQ, International physical activity questionnaire; LBM, Lean body mass; MET, 

Metabolic equivalent; Mg, Magnesium; P1CP, Carboxyl-terminal propeptide of procollagen type 1; P1NP, Amino-terminal 

propeptide of procollagen type 1; PO4, Phosphate; PTH, Parathyroid hormone; RED-S, Relative energy deficiency in sport, 

SD, Standard deviation; T3, Triiodothyronine; VO2 peak, Peak aerobic capacity. 



exercise modes offering no or limited osteogenic stimulus, such as walking and cycling), rather than 73 

active individuals. Given that active individuals practise periods of intense training resulting in high 74 

exercise energy expenditure, which is not accompanied by an increase in dietary energy intake and/or 75 

severely restrict their dietary energy intake during non-training days or the off-season [1, 20], it would 76 

be valuable  to explore the effects of low EA, attained by diet or exercise, on bone metabolic responses 77 

in this population. 78 

Low EA has been associated with changes in metabolic and reproductive hormones [4, 5, 9, 10], which 79 

may depend on the way in which low EA is achieved [21-23]. Acute energy deficit (approximately 800-80 

1200 kcal·d-1) achieved via dietary energy restriction results in decreased peptide YY and increased 81 

ghrelin concentrations, but no compensatory alterations occur after exercise-induced energy deficit [21, 82 

22]. In contrast, leptin and insulin appear to be similarly reduced in response to low EA achieved 83 

through dietary restriction alone or combined with exercise [24]. Further evidence from studies on 84 

anorexia nervosa and functional hypothalamic amenorrhoea suggest that low EA, regardless of origin, 85 

results in  oestrogen deficiency with negative consequences for bone health [23]. A systematic approach 86 

to simultaneously determine changes in bone metabolism, metabolic and reproductive hormone 87 

responses to diet- and exercise-induced low EA in women with normal bone health and reproductive 88 

function is lacking.  89 

The aim of this study was to examine and compare the effects of low EA, at 15 kcal·kgLBM-1·d-1, 90 

achieved by either dietary energy restriction or  exercise energy expenditure on bone turnover markers 91 

in active, eumenorrheic women.   92 



2. Methods 93 

2.1. Participants  94 

Ten eumenorrheic women (Table 1.) provided written informed consent to take part in the study. The 95 

study was approved by the Nottingham Trent University Human Research Ethics Committee and the 96 

East Midlands NHS Research Ethics Committee (14/EM/1156) and was conducted in accordance with 97 

the Declaration of Helsinki. Inclusion criteria were 1) age: 18-40 years, 2) Caucasian, 3) self-reported 98 

regular and frequent menstrual cycles (menstrual cycle interval between 24 and 35 days), 4) currently 99 

injury free, 5) participation in moderate and vigorous exercise for ≥3 hours·week-1 and 6) BMI between 100 

18.5 and 30 kg·m-2. Exclusion criteria were 1) use of medication or suffering from any condition known 101 

to affect bone metabolism, 2) bone fracture within the previous year, 3) current smokers, 4) 102 

breastfeeding, 5) pregnancy, 6) use of any type of hormonal contraception within the past six months 103 

and 7) self-reported short (<24 days), long (>35 days) or irregular menstrual cycles. These criteria were 104 

confirmed verbally and in writing by a health screen with the experimenters, menstrual cycle 105 

questionnaire and the short-form version of International Physical Activity Questionnaire (IPAQ) [25].   106 



Table 1. Baseline participant characteristics (n=10). (Size: 1column) 107 

Demographics  

Age (y) 24±3 

Height (m) 1.66±0.05 

Body mass (kg) 61.1±7.0 

BMI (kg·m-2) 22.3±2.4 

Body composition  

Body fat (%) 29.3±5.1 

LBM (kg) 41.3±4.1 

Fat-free mass (kg) 44.3±4.3 

BMD T-score 1.10±0.84 

Menstual cycle characteristics   

Length of menstrual cycle (d) 28.5±3.7 

 

Length of flow (d) 4.9±0.9 

 

Training characteristics  

VO2 peak (ml·kg-1·min-1) 48.1±3.3 

VO2 peak (ml·kgLBM-1·min-1) 70.9±2.8 

Physical activity (MET-min·week-1) 4634±2382 

Dietary and energy expenditure characteristics 
1Habitual dietary energy intake (kcal·d-1) 2092±262 

1Lifestyle energy expenditure (kcal·d-1) 422±123 

1Habitual EA (kcal·kgLBM·d-1) 39.0±5.6 

Values are expressed as means±1SD.  108 

1Analysis performed in 8 participants with complete dietary and energy expenditure data.  109 

BMI: Body Mass Index; LBM: Lean Body Mass; BMD: Bone Mineral Density: VO2 peak: Peak Oxygen Capacity; 110 

MET: Metabolic Equivalents; d: days; EA: Energy Availability.  111 



2.2. Experimental design  112 

The study utilised a randomised (Latin square design), crossover design. Participants completed 113 

all three experimental conditions; energy-balanced, controlled EA (CON), low EA through diet 114 

(D-RES) and low EA through exercise (E-RES) (Figure 1.). Participants attended an initial 115 

preliminary visit (P) to establish inclusion criteria, take baseline measurements and determine 116 

their fitness level. They also completed a 3-day habitual dietary intake assessment (H1­H3). 117 

Participants notified the researchers at the onset of menstruation (D1), which indicated the first 118 

day of the experimental study. On the next morning (D2), a blood sample was collected and used 119 

as the baseline (BASE) sample prior to each experimental condition. The following 3 days of the 120 

protocol (D3­D5) were the experimental condition days. Over D3-D5, participants undertook 121 

CON, E-RES and D-RES. On D6, participants had their body mass measured and had a follow-122 

up blood sample (Figure 1.). Due to scheduling constraints, such as the availability of participants 123 

or the laboratory, it should be acknowledged that D2 may reflect the second or third day of 124 

participants’ menstrual cycle, with subsequent small deviations (±1 day) in the main experimental 125 

period (D3-D5). For consistency, we will refer to D2 as BASE, D3-D5 as the main experimental 126 

period and D6 as the follow-up. 127 

 128 

The controlled EA was set at 45 kcal·kgLBM-1·d-1 and achieved by dietary energy intake 129 

providing 45 kcal·kgLBM-1·d-1 without exercise. Both low EA conditions (E-RES and D-RES) 130 

were administered as 15 kcal·kgLBM-1·d-1, with this being achieved by dietary energy restriction 131 

in D-RES and by exercise energy expenditure in E-RES.  In D-RES, participants refrained from 132 

exercise and in E-RES, participants completed daily exercise sessions (duration: 129±10 min per 133 

day) at an exercise intensity of 70% of their peak aerobic capacity (VO2 peak) that resulted in an 134 

exercise energy expenditure of 30 kcal·kgLBM-1·d-1, with dietary energy intake at 45 135 

kcal·kgLBM-1·d-1 (Figure 1.). The onset of conditions was typically separated by approximately 136 

28 days, due to each session being initiated in the early follicular phase of the menstrual cycle. 137 

 138 



 139 

Figure 1. Overview of the study design. Participants completed all three experimental conditions; CON 140 

controlled EA (CON), low EA through diet (D-RES) and low EA through exercise (E-RES). 141 

Preliminary day (P) was performed before the first condition was performed. D1: Day 1 of menstruation 142 

and identification for experimental protocol initiation. D2: Baseline Testing, D3-D5: Condition Days 143 

and D6: Follow-up Testing. (Size: 2 columns)  144 



2.3. Experimental procedures  145 

2.3.1. Preliminary assessment  146 

Participants were weighed wearing tights and t-shirts without shoes on a weighing scale (Seca 875, UK), 147 

height was obtained barefoot using a stadiometer (Seca 217, UK) and BMI was calculated as body mass 148 

(kg) divided by the height squared (m2). Whole body Dual-energy X-Ray Absorptiometry (DXA; GE 149 

Lunar Prodigy Healthcare) scans were performed to assess body composition (LBM, fat mass) and 150 

baseline bone mineral density (BMD). All DXA scans were conducted and analysed by the same 151 

operator at Nottingham Trent University according to manufacturer’s guidelines. Participants provided 152 

a urine sample prior to the DXA scan to confirm normal hydration status (<800 mOsmolkg-1) via urine-153 

specific gravity (OsmocheckTM refractometer, 2595-ED4, Vitech-Scientific, UK). 154 

Participants performed a sub-maximal incremental test and a VO2 peak test on a motorised treadmill, (HP 155 

Cosmos, Germany) using the protocol of  [26], to establish the relationship between running speed and 156 

oxygen consumption during level running. Expired gas samples were continuously collected and 157 

analysed by a breath-to-breath automated gas analysis system (ZAN, nSpire Health, Germany). The 158 

running speed at each stage of the speed lactate incremental test was plotted against oxygen 159 

consumption (mL·kg·-1min-1) to determine the sub-maximal relationship between speed and oxygen 160 

consumption and, in combination with VO2 peak, was used to estimate the running speed corresponding 161 

to 70% VO2 peak at 0% gradient for the experimental exercise protocol. All participants were given 162 

accelerometers and food weighing scales (Home Digital Kitchen Scale, UK) to record lifestyle energy 163 

expenditure and habitual dietary energy intake over a 3-day lead in period (H1-H3; Figure 1.). 164 

2.3.2. Habitual Dietary Energy Intake and Lifestyle Energy Expenditure  165 

Participants weighed and recorded food intake during H1-H3 to provide information about their habitual 166 

dietary energy intake. Dietary analysis (macronutrient composition in g and % of total dietary energy 167 

intake) was performed by using Microdiet™ software. Participants wore an accelerometer 168 

(GT3X/GT3XE, Actigraph, Pensacola, FL) during all waking hours, except while bathing, to estimate 169 



lifestyle energy expenditure.  The equation developed by Freedson et al [27] was used to extract lifestyle 170 

energy expenditure data.  171 

2.3.3. Experimental diets 172 

In CON, D-RES and E-RES participants consumed diets providing 45, 15 and 45 kcal·kgLBM-1·d-1. 173 

The experimental diets consisted of the same commercial food products and had standardised 174 

composition (50% carbohydrates, 20% protein and 30% fat) in all experimental conditions. A registered 175 

dietitian designed menus for CON trial (45 kcal·kgLBM-1·d-1) for a reference individual with a LBM of 176 

45 kg using MicrodietTM
 software. For the same reference individual, quantities of all food items in 177 

CON (45 kcal·kgLBM-1·d-1) were divided by three in D-RES (15 kcal·kgLBM-1·d-1), but were 178 

unchanged in E-RES (45 kcal·kgLBM-1·d-1). Food quantities in all menus and conditions were 179 

multiplied by a scaling factor to account for differences in LBM compared to the reference individual. 180 

All meals were weighed to the nearest 1g (Home Digital Kitchen Scale, UK) and were packaged by the 181 

study investigators. Adherence to the diets was verbally confirmed throughout the protocol by asking 182 

the participants whether they consumed the pre-packaged food items in the quantities provided. A 183 

multivitamin, multi-mineral supplement (A - Z Tablets, Boots, Nottingham, UK-nutritional information 184 

of this product is available online: http://www.boots.com/boots-a-z-90-tablets-10149653) was supplied 185 

during D-RES to provide adequate micronutrient intake. 186 

2.3.4. Exercise energy expenditure 187 

In E-RES only, participants completed exercise sessions that resulted in an exercise energy expenditure 188 

of 30 kcal·kgLBM-1·d-1. Participants ran on a flat treadmill while being continuously supervised. 189 

Exercise intensity was controlled by setting the treadmill speed to achieve 70% of VO2 peak for each 190 

participant and exercise was administered in 15-minute bouts, with 5-minute rest periods between bouts. 191 

Small adjustments in running speed were made throughout the running protocol to maintain the exercise 192 

intensity at 70% of VO2 peak. To increase compliance, the total duration of the exercise per day was split 193 

into two sessions of equal duration. Expired gases were continuously collected and analysed using a 194 

breath-by-breath analyser (ZAN 600, nSpire Health, Germany). The required duration of exercise was 195 



determined using the oxygen uptake values and respiratory exchange ratio during the first exercise 196 

session (D3) and gas analysis was not performed during the remainder of the exercise sessions (D3 197 

afternoon-D5) to enhance compliance. Outside of the prescribed exercise, participants were instructed 198 

to refrain from exercise and perform only sedentary activities.  199 

2.4. Storage and analyses of blood samples 200 

Blood samples were obtained at the same time of day for each participant and between 07.30-08.15 h 201 

after an overnight fast (from 20:00 h the previous evening) on D2 (BASE) and D6. For plasma 202 

[ethylenediaminetetraacetic acid (EDTA) tubes, SARSTED, Nümbrecht, Germany], samples were 203 

centrifuged immediately at 1509 x g for 10 min at 4oC. Venous blood was dispensed into serum tubes 204 

and allowed to clot at room temperature for 30 min before being centrifuged under the same conditions. 205 

Resultant plasma and serum were aliquoted into Eppendorf tubes and stored at -80oC. -carboxyl-206 

terminal cross-linked telopeptide of type I collagen (β-CTX), amino-terminal propeptide of type 1 207 

procollagen (PINP), parathyroid hormone (PTH) and IGF-1 were analysed in EDTA plasma and leptin, 208 

insulin, T3, 17β-oestradiol, albumin, calcium (Ca), magnesium (Mg) and phosphate (PO4) in serum.  209 

2.5. Biochemical analysis  210 

β-CTX, P1NP, PTH, T3 and 17β-oestradiol were measured using electro-chemiluminescence 211 

immunoassay (ECLIA) (Roche Diagnostics, Burgess Hill, UK) on a Cobas e601 analyser. Inter-assay 212 

coefficient of variation (CV) for β-CTX was <3% between 0.2 and 1.5 µg·L-1 with sensitivity of 0.01 213 

µg·L-1. P1NP inter-assay CV was <3% between 20-600 µg·L-1 with a sensitivity of 8 µg·L-1. PTH inter-214 

assay CV was <4% between 1-30 pmol·L-1 with a sensitivity of 0.8 pmol·L-1. Sclerostin was measured 215 

using an enzyme-linked immunosorbent assay (ELISA) supplied by Biomedica GmbH (Vienna Austria) 216 

with a sensitivity of 2.6 pmol·L-1, which was established from precision profiles (22% CV of duplicates) 217 

and had a CV of <15% across the range 25-95 pmol·L-1. T3 inter-essay CV was <1% between 2.0-3.1 218 

nmol·L-1 with a detection limit of 0.3 nmol·L-1. The inter-assay CV for 17β-oestradiol was <3% between 219 

214.3-2156.7 pmol·L-1 with a detection limit of 18.4 pmol·L-1. Leptin was measured using ELISA 220 

(Biovendor, Czech Republic) and had an inter-assay CV of <7% across the range 1-50 µg·L-1 and a 221 



sensitivity of 0.2 µg·L-1. IGF-1 was measured using ELISA (Immunodiagnostic Systems Ltd, Boldon, 222 

UK) and had an inter-assay CV of <2.2% between 24.0-306.2 ng·mL-1 and a sensitivity of 4.4 ng·mL-1. 223 

Insulin was measured using ECLIA (Roche Diagnostics, Burgess Hill, UK), inter-assay CV was <6.1% 224 

across the range 44-505 pmol·L-1 and sensitivity was 1.8 pmol·L-1. Ca, albumin and PO4 were measured 225 

using standard commercial assays supplied by Roche Diagnostics performed on the Roche COBAS 226 

c501. The range of measurement in serum was 0.05-5.00 mmol·L-1 for Ca, 10-70 g·L-1 for albumin and 227 

0.10-6.46 mmol·L-1 for PO4. Fluctuations in protein concentrations, especially albumin, may cause total 228 

Ca concentrations to change independently of the ionised calcium concentration, as such Ca 229 

concentrations were ‘corrected’ to give an albumin-adjusted calcium (ACa) value using the following 230 

equation: (-0.8 *([Albumin] - 4)) + [Total Ca]. Mg was measured using a commercial assay supplied 231 

by Roche Diagnostics and analysed on a COBAS c501. The inter-assay CV was 0.9% across the range 232 

0.1-2.0 mmol·L-1 and the sensitivity was 0.05 mmol·L-1.  233 

2.6. Statistical analysis  234 

Based on the results of our previous low EA study [9] in active women, in which low EA was achieved 235 

by a combination of dietary restriction and exercise energy expenditure, the present study was powered 236 

to detect a change in P1NP (pre: 70.1 ± 15.1 mg·L-1; follow-up after 3-days: 60.1±11.6 mg·L-1, 237 

P<0.0001) due to low EA achieved by dietary energy restriction or exercise energy expenditure. An a 238 

priori power calculation determined that 8 women were required to achieve 80% power at P<0.05. 239 

Statistical analysis was carried out using Statistica 13.0 (Statsoft, USA). All data were checked for 240 

normality according to the Shapiro-Wilk test and logarithmic transformations were employed for non-241 

normally distributed data prior to statistical analyses. Baseline biochemistry and body mass prior to 242 

each experimental condition were compared with one-way repeated measures ANOVA, to assess for 243 

differences at baseline. A two-way, repeated measures ANOVA was performed to assess differences 244 

between the experimental conditions (CON, D-RES and E-RES) over time (BASE, D6) for body mass, 245 

bone turnover markers, markers of calcium metabolism, metabolic and reproductive hormones. 246 

Significant main or interaction effects were followed by Tukey’s post-hoc analysis. Data are presented 247 



as mean±1SD and effect sizes (Cohen’s d; small ≥ 0.20, medium ≥ 0.50, large ≥ 0.80) [28] are reported. 248 

Statistical significance was accepted at the 5% level.  249 

In addition to the statistical analysis performed on the whole data set, the individual responses of the 250 

bone turnover markers to D-RES and E-RES were also explored. To be considered a responder, β-CTX 251 

concentrations at D6 in D-RES or E-RES were >BASE (100%), > β-CTX concentrations at D6 in CON 252 

together with a difference >3% to account for CV of β-CTX assay. For P1NP, responders were 253 

identified if P1NP concentrations at D6 in D-RES or E-RES were <BASE (100%), <P1NP 254 

concentrations at D6 in CON together with a difference >3% to account for CV for P1NP assay.   255 



3. Results  256 

3.1. Baseline biochemistry and body mass  257 

There were no significant differences in any bone turnover marker, marker of calcium metabolism, 258 

metabolic or reproductive hormone between CON, D-RES and E-RES at BASE (all P-values 0.25-0.90) 259 

(Table 2.). There were no differences in body mass prior to CON, D-RES and E-RES (CON: 60.9±7.0 260 

kg, D-RES: 61.5±7.0 kg, E-RES: 61.1±6.3 kg; P=0.48).  261 

3.2. Body mass 262 

Body mass was reduced at D6 compared to BASE (main effect of time, P<0.001), but did not differ 263 

between conditions (main effect of condition, P=0.82). A significant condition x time interaction effect 264 

(P<0.001) was shown for body mass. Post-hoc analysis showed a trend towards a reduction in body 265 

mass in CON (BASE: 60.9±7.0kg, D6:60.3±6.7 kg, P=0.053, d=0.1). Body mass significantly 266 

decreased from BASE in D-RES (BASE: 61.4±6.8 kg, D6: 59.6±6.5 kg, P<0.001) and E-RES (BASE: 267 

61.1±6.3 kg, D6: 60.1±6.0 kg, P<0.001). Body mass at D6 in D-RES was also lower than body mass in 268 

CON (P<0.001) at the same time point.  269 

3.3. Bone turnover markers 270 

Mean β-CTX concentrations were inceased at D6 compared to BASE (main effect of time, P=0.044). 271 

No difference was shown for β-CTX concentrations between CON, D-RES and E-RES (main effect of 272 

condition, P=0.13) at any time point (condition x time interaction effect, P=0.17) (Table 2.).  273 

Mean P1NP concentrations were decreased at D6 compared to BASE (main effect of time, P<0.001), 274 

but did not differ across conditions (main effect of condition, P=0.25). The condition x time interaction 275 

effect approached significance (P=0.052) (Figure 2., Table 2.). Post-hoc analysis showed that P1NP 276 

concentrations at D6 decreased by 17% from BASE in D-RES (P<0.001, d=0.91) and were lower than 277 

P1NP concentrations in CON at the same time point (P<0.001; d=0.71). In E-RES, P1NP concentrations 278 



at D6 were not significantly different from BASE (-8% from BASE, P=0.14, d=0.30) or from 279 

concentration at D6 in D-RES (P=0.10, d=0.43) (Table 2.).  280 

3.4. Markers of calcium metabolism  281 

Mean PTH concentrations decreased with time (D6<BASE; main effect of time, P=0.02). PTH 282 

responses were not different between experimental conditions, as indicated by a non-significant main 283 

effect of time (P=0.21) and no condition x time interaction effect (P=0.90) (Table 2.).  284 

Mean ACa, Mg and PO4 concentrations did not change over time (all P values 0.22-0.51). ACa and Mg 285 

concentrations did not differ between CON, D-RES and E-RES at BASE or D6 (condition x time 286 

interaction effect, both P values 0.10-0.89). PO4 concentrations  decreased by 9% at D6 from BASE in 287 

E-RES trial only (P=0.03, d=1.0) (Table 2.).  288 

3.5. Metabolic and reproductive hormones  289 

Mean IGF-1 concentrations at D6 decreased from BASE (main effect of time, P=0.01). Mean IGF-1 290 

concentrations were lower in D-RES compared to CON (main effect of condition, P=0.03). IGF-1 291 

concentrations at D6 in D-RES and E-RES decreased by 13% (P=0.009, d=0.76) and 23% (P<0.001, 292 

d=0.97) from BASE and were both significantly lower than IGF-1 concentrations at D6 in CON 293 

(P<0.001, d>1.0) (Table 2.).  IGF-1 concentrations at D6 were not significantly different between D-294 

RES and E-RES (P=0.99, d=0.83). 295 

Mean T3 concentrations at D6 decreased from BASE (main effect of time, P<0.01). T3 concentrations 296 

at D6 in D-RES were decreased by 15% from BASE (P=0.002, d>1.0) and were lower than the 297 

concentrations in CON at the same timepoint (P=0.02, d=0.88) (Table 2.). In E-RES, T3 concentrations 298 

at D6 were not significantly different from BASE (P=0.21) 299 

Mean insulin concentrations remained unchanged over time (main effect of time, P=0.14) and did not 300 

differ by condition at any time point, as suggested by a non-significant main effect of condition (P=0.44) 301 

or any condition x time interaction effect (P=0.07) (Table 2.).  302 



Mean leptin concentrations decreased with time (D6<BASE; P<0.001). Overall, leptin concentrations 303 

were different across conditions (main effect of condition, P<0.001; D-RES<CON, P=0.006 and E-RES 304 

<CON, P=0.02). The condition influenced the response over time for leptin concentration (condition x 305 

time interaction effect, P<0.001). Post-hoc analysis showed that leptin concentrations at D6 in CON, 306 

D-RES and E-RES were significantly lower by 30% (P=0.04, d=0.72), 59% (P<0.001, d>1.0) and 61% 307 

(P<0.001, d>1.0) from BASE prior to each experimental condition. Concentrations at D6 in D-RES 308 

(P<0.001, d=0.98) and E-RES (P<0.001, d=0.80) were also lower than those at D6 in CON (Table 2.).  309 

Mean 17β-oestradiol concentrations increased over time (main effect of time, P=0.002) which is in line 310 

with the progression of the menstrual cycle. All participants had 17β-oestradiol that indicated early or 311 

mid-follicular phase at the end of the protocol (D6, Minimum: 88.1 pmol·L-1 and Maximum: 293.5 312 

pmol·L-1), in accordance with data produced by Stricker et al [29]. 17β-oestradiol concentrations were 313 

not different between CON, D-RES and E-RES (main effect of condition, P=0.47) over time (condition 314 

x time interaction, P=0.30) (Table 2.). 315 

3.6. Individual analysis  316 

Individual responses for β-CTX and P1NP, as well as altered bone metabolism due to increased β-CTX, 317 

decreased P1NP or both, in D-RES and E-RES trials are presented in Figure 1.  318 



Table 2. Bone turnover markers, markers of calcium metabolism, metabolic and reproductive hormones 319 

in CON, D-RES and E-RES trials (n=10). Values at D2 were used as BASE prior to each experimental 320 

condition. (Size: 2 columns) 321 

Values are expressed as means±1SD. 322 

*denotes a significant difference from BASE in the same condition (P<0.05). 323 

**denotes a significant difference from CON at the same time point (P<0.05). 324 

 325 

β-CTX: C-terminal cross-linked telopeptides of type I collagen; P1NP: Amino-terminal pro-peptides of type 1 326 

procollagen; PTH: Parathyroid hormone; Mg: Magnesium; ACa:  Albumin adjusted Calcium; PO4: Phosphate; T3: 327 

Triiodothyronine; IGF-1: Insulin-like growth factor 1; GLP-2: Glucagon-like peptide 2; BASE: Baseline; CON: 328 

Controlled EA trial; D-RES: Low EA trial through diet; E-RES: Low EA trial through exercise.   329 

 CON   D-RES  E-RES  

 BASE D6 BASE D6 BASE D6 

Bone turnover markers 

β-CTX (µg·L-1) 0.50±0.19 0.51±0.18 0.48±0.18 0.55±0.17 0.47±0.24 0.49±0.18 

P1NP (µg·L-1) 56.7±16.9 52.5±11.9 54.8±12.7 45.2±9.3*,** 55.3±14.4 50.9±15.8 

Markers of calcium metabolism 

PTH (pg·mL-1) 4.4±1.1 3.8± 0.5 4.0±0.9 3.7±0.7 4.6±1.4 4.1±0.8 

ACa (mmol·L-1) 2.30±0.05 2.31 ±0.04 2.27±0.03 2.27±0.04 2.29±0.04 2.26±0.03 

Mg (mmol·L-1) 0.83±0.02 0.82±0.03 0.81±0.03 0.81±0.06 0.81±0.03 0.82±0.04 

PO4 (mmol·L-1) 1.29±0.12 1.28±0.12 1.26±0.14 1.31±0.08 1.33± 0.15 1.20±0.10* 

Metabolic and reproductive hormones 

IGF-1  

(mmol·L-1) 

205.0± 

39.4 

225.4± 

50.1 

202.5± 

46.8 

173.3± 

29.9*, ** 

220.6± 

56.7 

169.2± 

49.6*, ** 

T3 (mmol·L-1) 1.49±0.34 1.47±0.24 1.53±0.28 1.29± 

0.17*,** 

1.53±0.31 1.40±0.21 

Leptin (ng·mL-1) 7.6±3.7 5.1±3.1* 6.7±2.2 2.7±1.9*, ** 8.0±4.9 3.0± 2.4*, ** 

Insulin (pmol·L-1) 31.6±7.7 36.7± 20.9 33.8± 8.7 28.6±15.0 36.9±18.0 20.4±11.3 

17-β oestradiol 

(pmol.L-1) 

108.9± 33.6 157.3± 

53.1 

118.9± 

29.7 

157.9± 

 62.9 

148.3± 

92.9 

167.0± 

72.1 
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 330 

Figure 2. Number of responders (out of total number of participants) for β-CTX, P1NP and bone 331 

metabolism in D-RES and E-RES. Bone metabolism1 refers to altered bone metabolism due to increased 332 

β-CTX, decreased P1NP or both. Bone metabolism2 refers to altered bone metabolism due to a 333 

simultaneous increase in β-CTX and decrease in P1NP. This analysis was based on data expressed as % 334 

BASE for each participant. (Size: 2 columns).  335 

 336 

β-CTX: C-terminal cross-linked telopeptide of type I collagen; P1NP: Amino-terminal pro-peptides of type 1 337 

procollagen; BASE: Baseline; AUC: Area under the curve; CON:Controlled EA trial; D-RES: Low EA trial 338 

through diet; E-RES: Low EA trial through exercise.339 



4. Discussion 340 

The effects of low EA on bone health in active individuals have received widespread attention in recent 341 

years due to the potential for stress fracture injury and long-term consequences for the development of 342 

osteoporosis [2, 6-8]. Most experimental studies have focused on low EA achieved by a combination 343 

of diet and exercise [9, 10, 30], whereas much less is known about the impact of low EA achieved by 344 

diet or exercise individually. By using a within participant design, our study findings show that 3-days 345 

of low EA achieved by dietary energy restriction resulted in a reduction in bone formation (P1NP, 346 

P<0.001, d=0.91), but had no effects on bone resorption. Low EA achieved by exercise energy 347 

expenditure did not significantly affect β-CTX or PINP, our measured markers of bone resorption and 348 

formation. Both low EAs were accompanied by similar reductions in metabolic hormones, suggesting 349 

that these may precede changes in bone turnover markers.  350 

The significant P1NP reduction (-17% from BASE), with no further change in β-CTX, shown in 351 

response to low EA achieved via dietary energy restriction, may reflect the degree of EA reached in this 352 

study and the short duration of low EA exposure (3 days). Ihle and Loucks [10] showed that bone 353 

resorption increased following a 5-day experimental period at the most severe level of low EA at 10 354 

kcal·kgLBM-1·d-1, but it remained unaffected at EA of 20 kcal·kgLBM-1·d-1. The importance of  the 355 

level of energy restriction for bone metabolism is also supported by a previous short-term fasting study 356 

(4 days), which resulted in synchronous reductions of bone formation (assessed by osteocalcin and 357 

P1CP-carboxyl-terminal propeptide of procollagen type I) and bone formation assessed by urinary 358 

pyridinoline and deoxypyridinoline [11] . Furthermore,  in non-obese adults, 12-month exposure to 25% 359 

restriction of dietary energy intake resulted in greater increases in CTX and tartrate-resistant acid 360 

phosphatase (markers of bone resorption) and bone-specific alkaline phosphatase (marker of bone 361 

formation), but not P1NP [31]. Comparisons between studies are, however, difficult to make, due to 362 

differences in study population, duration and selection of bone turnover markers [10, 11, 32]. We  363 

measured P1NP for bone formation, and β-CTX for bone resorption, which are the reference standard 364 

markers in the published literature [33].  365 



In our previous study [9], 5 days of low EA at 15 kcal·kgLBM-1·d-1, achieved by a combination of 366 

dietary energy restriction and exercise energy expenditure, resulted in significantly reduced bone 367 

formation (P1NP area under the curve (AUC); controlled EA: -23.1±34.9 %BASE x d , low EA: -368 

60.9±31.2 %BASE x d; P=0.01) and increased bone resorption (β-CTX AUC; controlled EA: 369 

16.9±68.1%BASE x d , low EA: 85.7±60.5 %BASE x d, P=0.03) compared to the controlled condition 370 

(45 kcal·kgLBM-1·d-1) in active eumenorrheic women. These results also support the notion that the 371 

duration of exposure is an important consideration for the negative effect of low EA on bone turnover 372 

markers, and imply that an experimental period longer than 3 days is required to elicit greater changes 373 

in bone metabolism in response to this level of low EA.  374 

Exercise-induced low EA at 15 kcal·kgLBM-1·d-1 did not significantly alter bone formation (-8% from 375 

BASE in P1NP) or bone resorption (+12% from BASE in β-CTX). Our exercise intervention involved 376 

2-2.5 h of running at a moderate intensity (70% VO2 peak) for 3 consecutive days, which is a common 377 

training routine followed by some active populations [34, 35]. Our participants were physically active 378 

and habitually performed moderate and vigorous exercise, they were, however, unaccustomed to such 379 

a prolonged duration of daily running over consecutive days. Some osteogenic effects due to the non-380 

habitual duration and frequency of mechanical loading on weight bearing sites may have occurred [36] 381 

and counterbalanced local bone loss due to low EA in other skeletal sites (e.g., non-weight bearing 382 

sites).  In our study the indirect assessment of bone metabolism (by measuring bone turnover markers 383 

in blood samples), provides insight into systemic, rather than localised, effects of low EA.  384 

There were no significant differences between the diet-induced and exercise-induced low EAs. It is 385 

uncertain, if the responses in bone turnover markers shown for diet-induced and exercise-induced low 386 

EA would persist over time or whether we were unable to capture any differences due to the short 387 

duration of our experimental protocol. Analysis of changes in bone turnover markers for each individual 388 

showed that 8 out of 10 and 5 out of 10 participants experienced increased β-CTX, decreased P1NP or 389 

both in the diet- and exercise induced low EA trial; suggesting that a subset of women may adversely 390 

respond to low EA, especially following low EA achieved by dietary energy restriction. Further research 391 



should expand upon the present study by comparing the effects of low EA achieved by dietary 392 

restriction, exercise energy expenditure, and a combination of both. 393 

Whilst we have no comparable data from short-term studies in active individuals, observational studies 394 

suggest that mechanical loading exerts beneficial effects on the skeleton, which may counteract some 395 

of the unfavourable effects of low EA [37-40]. For instance, dancers with amenorrhea (presumably 396 

energy deficient) have greater BMD at weight bearing sites (e.g., proximal femur, lumbar spine) 397 

compared to girls with anorexia nervosa with similarly low body mass, but both groups experience 398 

comparable bone loss at non-weight bearing skeletal sites [40]. Athletes participating in weight sensitive, 399 

non-weight bearing sports (e.g., cyclists, jockeys) are at a greater risk for developing low bone mass 400 

than those partaking in weight bearing activities (e.g., boxers; gymnasts) [37, 38, 39].  Collectively, 401 

these findings suggest that mechanical loading through exercise may have some bone-sparing effects 402 

under long-term energy deficiency and support the findings of this short-term study showing no change 403 

in P1NP concentrations following low EA achieved via exercise energy expenditure, but a reduction in 404 

this bone formation marker when the same of low EA was achieved through dietary energy restriction.  405 

The osteoprotective effects of exercise in weight loss programmes have been also demonstrated in 406 

interventional studies in middle-aged or eldelrly overweight/obese individuals [16-19, 41]. For example, 407 

Villareal et al. reported that the addition of exercise on a weight loss programme ameliorated diet-408 

induced weight loss reductions in hip BMD in obese older adults [19]. Parallel positive effects were 409 

seen on fat mass, and muscle mass, strength and function [19, 42]. Altough there are a number of 410 

differences between lean, active individuals and overweight/obese, mostly sedentary individuals, and 411 

the characteristics of exercise interventions targeting these groups vary greatly, these changes are 412 

suggestive of cross-talk between muscle, adipose tissue and bone under conditions of low EA. Inclusion 413 

of  body composition and muscle function measurments, but also, assessment of factors released by 414 

muscles and adipose tissue with potential osteogenic effects [43, 44] in future research in this area will 415 

provide further evidence on the adipose tissue, muscle and bone interactions in response to exercise-416 

induced low EA in active individuals.  417 



Reductions in IGF-1, leptin, T3 and insulin, indicative of energy conservation, were shown following 418 

the low EA conditions in the present study, which is in agreement with those of short-term energy 419 

deficiency experiments [9-11, 24]. Specifically, decreases in IGF-1 and leptin were shown 420 

independently of whether low EA was achieved by diet or exercise. Decreases in T3, however, occurred 421 

in the diet-induced low EA condition only and insulin decreased following exercise-induced low EA 422 

only. When comparing diet- and exercise-induced low EAs, there were no differences in regulatory 423 

hormone concentrations, which is in line with previous findings in a study in active men using the same 424 

level of low EA (15 kcal·kg LBM-1·d-1) achieved through diet only or combined with exercise [24]. 425 

Neither low EA condition caused a significant change in 17β-oestradiol concentrations. These results 426 

are in line with our 17β-oestradiol findings following 5 days at the same level of low EA achieved by 427 

dietary energy restriction combined with exercise in active women [9]. In contrast, a 15% reduction in 428 

24-h mean oestrogen concentrations that occurred in parallel with an increase in bone resorption 429 

[urinary N-terminal telopeptide] was reported following 5 days of low EA, attained through diet and 430 

exercise at 10 kcal·kgLBM-1·d-1, but not 20 kcal·kgLBM-1·d-1 [10]. The discrepancies between the 431 

studies may in part be due to our less severely reduced EA (15 vs. 10 kcal·kgLBM-1·d-1) or blood 432 

sampling schedule (single sample vs. 24-h frequent blood collection) [10]. LH pulsatility and 433 

testosterone concentrations, not determined in the current study, may also be negatively affected in 434 

response to low EA [45, 46]. LH pulsatility was suppressed following 5 days of EAs at 10 and 20 435 

kcal·kgLBM-1·d-1, with these findings suggesting that changes in gonadotrophins secreted by the 436 

anterior pituitary may occur prior to changes in ovarian production of oestrogen in states of energy 437 

deficiency [45]. In this study, we purposefully chose the  follicular phase phase of the menstrual cycle 438 

because oestrogen levels are less variable compared to other phases of the menstrual cycle. Furthermore, 439 

the initiation of this phase of the menstrual cycle can be easily identified (i.e., first day of bleeding). 440 

Future studies should explore different phases of the menstrual phase (e.g., ovulation, luteal) or include 441 

women with different menstrual status (i.e., amenorrheic or oral contraceptive users), while measuring 442 

more reproductive hormones (i.e., LH pulsatility and testosterone) in relation to bone-related outcomes.  443 



Restriction of bone-related macronutrients (i.e., protein) or micronutrients (i.e., calcium) during periods 444 

of energy restriction may contribute to changes in bone metabolism [47]. Herein the variability in 445 

macronutrient distribution within and between participants was eliminated by feeding our participants 446 

with the same food items and dietary composition. We also provided a multi-mineral, multi-vitamin 447 

supplement in the diet-induced low EA trial only to limit the influence of changes in micronutrient 448 

provision. There was, however, a small reduction in PO4, when low EA was achieved by exercise energy 449 

expenditure. Changes in systemic PO4 can have an impact on PTH secretion, with [48] showing that 450 

alterations in PO4 precede changes in PTH. That said, PTH did not change in the exercise-induced low 451 

EA condition, maybe due to the small PO4 changes or because of the short timeframe of the study.  452 

5. Conclusions 453 

The decrease in bone formation with low EA achieved by diet, but not by exercise alone, suggests that 454 

efforts to protect bone health should possibly focus on improving diet and not by modulating exercise 455 

levels. Future studies with a longer duration of reduced energy availability and a larger sample size 456 

should confirm these findings and identify the mechanisms that mediate low EA effects on bone 457 

turnover markers, since leptin and IGF-1 responded similarly to both conditions in this study.  458 
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