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Abstract

For a compact Hausdorff space X , the space SC(X ×X) of separately continuous complex valued
functions on X can be viewed as a C∗-subalgebra of C(X)∗∗⊗C(X)∗∗, namely those elements which
slice into C(X). The analogous definition for a non-commutative C∗-algebra does not necessarily
give an algebra, but we show that there is always a greatest C∗-subalgebra. This thus gives a non-
commutative notion of separate continuity. The tools involved are multiplier algebras and row/column
spaces, familiar from the theory of Operator Spaces. We make some study of morphisms and inclusions.
There is a tight connection between separate continuity and the theory of weakly almost periodic
functions on (semi)groups. We use our non-commutative tools to show that the collection of weakly
almost periodic elements of a Hopf von Neumann algebra, while itself perhaps not a C∗-algebra, does
always contain a greatest C∗-subalgebra. This allows us to give a notion of non-commutative, or
quantum, semitopological semigroup, and to briefly develop a compactification theory in this context.

Keywords: Separate continuity, Hopf von Neumann algebra, C∗-bialgebra, weakly almost periodic
function.
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1 Introduction

A semigroup which carries a topology is semitopological if the product is separately continuous. Natural
examples arise when studying semigroup compactifications of groups, or from semigroups of operators on
reflexive Banach spaces (indeed, these are linked, see [22, Theorem 4.6]). Indeed, for a locally compact
group G, we say that f ∈ Cb(G) is weakly almost periodic if the collection of (left, or equivalently, right)
translates of f forms a relatively weakly compact subset of Cb(G). The collection of all such functions,
wap(G), forms a C∗-subalgebra of Cb(G) with character space Gwap say. The product on G can be
extended to Gwap, and the resulting semigroup is compact and semitopological. Furthermore, Gwap is
the maximal compact semitopological semigroup to contain a dense homomorphic copy of G; see [4] and
references therein.

We are interested in a “quantum group” approach to such questions. A compact semigroup S canoni-
cally gives rise to a C∗-bialgebra by considering A = C(S) and the coproduct ∆ : A → A⊗A ∼= C(S×S)
defined by ∆(f)(s, t) = f(st). If S is only semitopological, then the natural codomain of ∆ is now
SC(S × S) the space of separately continuous functions. Given the tight connection between weakly al-
most periodic functions and separate continuity, it seems likely that to study a notion of “weakly almost
periodicity” for, say, C∗-bialgebras, or Hopf von Neumann algebras, we will need a good notion of “sep-
arate continuity” for general C∗-algebras. Indeed, for commutative Hopf von Neumann algebras, similar
connections were explored fruitfully in [9, Section 4]. This paper develops a suitable non-commutative
framework to attack this problem.

The most important class of Hopf von Neumann algebras are those arising from locally compact
quantum groups, [18], as these completely generalise the classical group algebras L1(G) and the “dual
picture”, the Fourier algebra A(G), [14]. For a locally compact quantum group G we consider the Hopf
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von Neumann algebra (L∞(G),∆), and use ∆ to turn the predual L1(G) into a (completely contractive)
Banach algebra. There is a notion of a weakly almost periodic element of the dual of a Banach algebra
(see Section 5 below) and thus one can talk of wap(L1(G)). When applied to L1(G) this theory exactly
recovers wap(G), see [30] for example. For the Fourier algebra, this was suggested as early as [15]; recent
work for quantum groups can be found in [25, Section 4] and [17], for example. However, outside of the
commutative situation, to our knowledge there has been little study in terms of compactifications (for
different notions of compactification, compare [8, 27, 28]). In particular, it is unknown, except in a few
cases (see Section 7 below) if wap(L1(G)) is a C∗-algebra.

Using our non-commutative notion of separate continuity, we show that wap(L1(G)) always con-
tains a greatest C∗-subalgebra (that is, a C∗-subalgebra containing all others) which we denote by
wap(L∞(G),∆), to avoid confusion. In fact, x ∈ wap(L∞(G),∆) if and only if x ∈ wap(L1(G)) and
also x∗x, xx∗ ∈ wap(L1(G)). (The reader should note that, using this definition, it is unclear why
x, y ∈ wap(L∞(G),∆) implies that xy ∈ wap(L∞(G),∆); the equivalent properties established earlier in
the paper make this clear.) We show that our notion of separate continuity is stable under completely
bounded maps, and this is used to show that wap(L∞(G),∆) is an L1(G)-submodule.

Using the notion of non-commutative separate continuity, we also make a (tentative) definition of a
quantum semitopological semigroup, and show that wap(L∞(G),∆) fits into this framework, and can
actually be interpreted as a “compactification” in this category. Thus we obtain a rather satisfactory
theory, into which our recent notion of a C∗-Eberlein algebra, [7], fits. Whether we can extend other
aspects of the C∗-Eberlein algebra theory, for example invariant means and decompositions, remains an
open problem, see Section 7.

The paper is organised as follows: we make some preliminary remarks, mostly to fix notation and
terminology. In Section 3 we motivate a tentative definition of “separate continuity” for an arbitrary C∗-
algebra, show that this doesn’t in general yield an algebra, but then give Theorem 3.1 which establishes
equivalent conditions on elements which together form the maximal C∗-subalgebra. This gives the notion

of A
sc
⊗ B, the notation chosen as C(X)

sc
⊗ C(Y ) ∼= SC(X × Y ) for compact Hausdorff spaces X,Y . In

Section 3.2 we simplify the theory in the case of von Neumann algebras. In Section 4 we study inclusions

of C∗-algebras (and establish a very simple slice map property) and also show that
sc
⊗ is stable under

completely bounded maps. We then apply this theory to Hopf von Neumann algebras in Section 5. For a
locally compact group, we have the choice as to work with L∞(G) or perhaps C0(G) (and these give the
same notion of weakly almost periodic function). Motivated by this, in Section 6 we look at C∗-bialgebras,
and show how to consistently use the Hopf von Neumann theory here. We end with some open questions.

1.1 Acknowledgments

The author is extremely grateful to Taka Ozawa who suggested to look at the conditions in Theorem 3.1.
The work was initiated at the meeting “Operator Methods in Harmonic Analysis” at Queen’s University
Belfast, organised by Ivan Todorov and Lyudmila Turowska and partially supported by the London
Mathematical Society. The author thanks Piotr So ltan and the referee for helpful comments.

2 Preliminaries

For a Hilbert space H we write the inner-product as (·|·). We write B(H) for the bounded linear maps on
H, and write B0(H) for the ideal of compact operators. Thus B0(H) is the closed span of the rank-one
operators of the form θξ,η : α 7→ (α|η)ξ. We denote by ωξ,η the normal functional B(H) → C;x 7→ (xξ|η).

We write ⊗ and ⊗ for tensor products of C∗-algebras and von Neumann algebras, respectively. For a
von Neumann algebra M we write M∗ for its predual. The multiplier algebra of a C∗-algebra A is denoted
by M(A), and we use the notion of a non-degenerate ∗-homomorphism θ : A → M(B); we always have
the strictly continuous extension θ̃ : M(A) → M(B), see [21, Appendices] for example.
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We work with the standard theory of Operator Spaces, [13, 24]. In particular, we write ⊗̂ for the
operator space projective tensor product: the main result we use is that for von Neumann algebras M,N,
the predual of M⊗N is M∗⊗̂N∗.

While we mostly work with arbitrary Hopf von Neumann algebras (or, later, C∗-bialgebras), the
motivating examples come from the theory of locally compact quantum groups, [18, 19]. We follow the
now standard notation that for a locally compact quantum group G, we write L∞(G) for the von Neumann
algebraic version, L1(G) for its predual, and C0(G) for the C∗-algebra version.

Finally, we use standard properties of weakly compact operators between Banach spaces, see [6,
Section 5, Chapter VI] for example: if T : E → F is a bounded linear map then T is weakly compact if
and only if T ∗ : F ∗ → E∗ is weakly compact, if and only if T ∗∗ : E∗∗ → F ∗∗ maps into F .

Other terminology and theory will be introduced as needed.

3 Motivation, and separate continuity

We are ultimately interested in studying analogues of “weakly almost periodic” functions, in the context
of locally compact quantum groups, or just Hopf von Neumann (or C∗-) algebras. When G is a locally
compact group, we consider the group algebra L1(G) and turn L∞(G) into an L1(G)-bimodule in the
usual way. The following are equivalent for a function F ∈ L∞(G):

1. The orbit map L1(G) → L∞(G), a 7→ a · F (or equivalently F · a) is a weakly compact operator;

2. F ∈ Cb(G) and the collection of left (or equivalently right) translates of F forms a relatively weakly
compact subset of F .

Compare [30] for example. As explained in the introduction, the collection of such F forms a unital
C∗-subalgebra of Cb(G), and the character space is the compact semitopological semigroup Gwap.

This gives some high-level motivation for looking at separately continuous functions. Furthermore,
in [9] for example, consideration of spaces of separately continuous functions proved to be a very useful
technical tool. Let X be a compact Hausdorff space and denote by SC(X ×X) the space of separately
continuous functions X × X → C. Following the clear presentation of [26, Section 2] (ultimately using
work of Grothendieck) we have that for f ∈ SC(X ×X) and µ, λ ∈ M(X), measures on X, if we define
(µ ⊗ id)f, (id⊗λ)f : X → C by

((µ ⊗ id)f)(x) =

∫

X
f(y, x) dµ(y), ((id⊗λ)f)(x) =

∫

X
f(x, y) dλ(y) (x ∈ X),

then both (µ⊗ id)f, (id⊗λ)f are in C(X), and we have a generalised Fubini-theorem,

〈λ, (µ ⊗ id)f〉 = 〈µ, (id⊗λ)f〉.

Let us write Bw∗(M(X) ×M(X),C) for the space of separately weak∗-continuous bilinear maps M(X) ×
M(X) → C. Thus we have shown that f ∈ SC(X × X) induces Φf , say, in Bw∗(M(X) × M(X),C).
Furthermore, this establishes an isometric isomorphism between SC(X×X) and Bw∗(M(X)×M(X),C),
see [26, Proposition 2.5].

Linearising the bilinear map, we get the projective tensor product M(X)⊗̂M(X) which is the pred-
ual of the commutative von Neumann algebra C(X)∗∗⊗C(X)∗∗. Then the separately weak∗-continuous
members of (M(X)⊗̂M(X))∗ ∼= C(X)∗∗⊗C(X)∗∗ are precisely those x ∈ C(X)∗∗⊗C(X)∗∗ which slice
into C(X). Hence we obtain that

SC(X ×X) ∼= {x ∈ C(X)∗∗⊗C(X)∗∗ : (µ ⊗ id)x, (id⊗µ)x ∈ C(X) (µ ∈ M(X))}.

This motivates, for a unital, but maybe noncommutative, C∗-algebra A, the definition that

SC(A×A) = {x ∈ A∗∗⊗A∗∗ : (µ ⊗ id)x, (id⊗µ)x ∈ A (µ ∈ A∗)}.
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Unfortunately, this need not be an algebra in general, as hinted at in [7, Section 3]. For example, let H be
an infinite-dimensional Hilbert space and set A = B0(H) the compact operators on H. Then A∗∗ ∼= B(H)
and A∗∗⊗A∗∗ ∼= B(H×H). Consider Σ ∈ B(H×H) the swap map. Then for ωξ,η ∈ B(H)∗ and α, β ∈ H,

(
(ωξ,η ⊗ id)(Σ)α

∣∣β
)

=
(
α⊗ ξ

∣∣η ⊗ β
)

= (α|η)(ξ|β) =
(
θξ,ηα

∣∣β
)
,

so (ωξ,η ⊗ id)(Σ) = θξ,η ∈ B0(H) and similarly (id⊗ωξ,η)(Σ) = θξ,η ∈ B0(H). By linearity and continuity,
we conclude that Σ ∈ SC(A×A). However, of course Σ2 = 1H⊗H and slices of Σ2 give all of C1H 6⊆ A.

3.1 Non-commutative separate continuity

The following idea originates from a suggestion of Taka Ozawa. For C∗-algebras A,B we define, as above

SC(A×B) = {x ∈ A∗∗⊗B∗∗ : (µ ⊗ id)x ∈ B, (id⊗λ)x ∈ A (µ ∈ A∗, λ ∈ B∗)}.

Our aim is to find a maximal C∗-subalgebra of SC(A×B), this will actually turn out to the “maximum”
C∗-subalgebra.

We first recall some definitions from [2, Section 0]. For a C∗-algebra A and for J a (closed, two-sided)
ideal in A, let M(A;J) = {x ∈ M(A) : xA + Ax ⊆ J}, which is a C∗-subalgebra of M(A), and by
restriction to J , is isomorphic to a C∗-subalgebra of M(J). Let A1 be the conditional unitisation of A,
so for an auxiliary C∗-algebra B, we can consider M(A1 ⊗B;A⊗ B). It is easy to see that this algebra
consists of those x ∈ M(A1 ⊗B) such that x(1 ⊗ b), (1 ⊗ b)x ∈ A⊗B for all b ∈ B.

In the following theorem we shall consider a C∗-algebra B ⊆ B(K) for a Hilbert space K. Using a fixed
orthonormal basis (ej)j∈J of K we can view members of B(K) as being J × J matrices, say B(K) ⊆ MJ .
Given another C∗-algebra A we can extend this identification to view members of A∗∗⊗B(K) as being
A∗∗-valued matrices, say x ∈ A∗∗⊗B(K) corresponds to (xij) ∈ MJ(A∗∗).

Theorem 3.1. Let A,B be C∗-algebras represented on Hilbert spaces H,K such that the induced maps
B(H)∗ → A∗ and B(K)∗ → B∗ are both onto (for example, these could be the universal representations).
We may then regard A∗∗⊗B∗∗ as a subalgebra of B(H⊗K). For x ∈ A∗∗⊗B∗∗ the following are equivalent:

1. x, x∗x, xx∗ ∈ SC(A×B);

2. x ∈ M(A1 ⊗ B0(K);A⊗ B0(K)) ∩M(B0(H) ⊗B1;B0(H) ⊗B);

3. we embed A∗∗⊗B∗∗ into A∗∗⊗B(K) and view x = (xij) ∈ MJ(A∗∗) as above. We require that each
xij ∈ A, and that both

∑
j xijx

∗
ij and

∑
j x

∗
jixji are norm convergent sums, for each i. Similarly

with the roles of A and B swapped.

We now proceed to prove Theorem 3.1 with an aim to prove a little more than strictly necessary.
Throughout the rest of this section, A,B will be C∗-algebras. Let πA : A → B(H), πB : B → B(K)
be arbitrary, non-degenerate, ∗-homomorphisms with normal extensions π̃A : A∗∗ → B(H), π̃B : B∗∗ →
B(K), see for example [29, Section 2, Chapter III]. Notice that under the identification of x ∈ A∗∗⊗B(K)
with (xij) ∈ MJ(A∗∗) we have that xij = (id⊗ωej,ei)(x) (observe the order of indices). In particular, if
x = (π̃A ⊗ π̃B)(y) for some y ∈ SC(A×B) then xij ∈ πA(A) for all i, j.

Proposition 3.2. Let πA, πB be as above, and let x ∈ B(H ⊗K). The following are equivalent:

1. x ∈ M(πA(A1) ⊗ B0(K);πA(A) ⊗ B0(K));

2. with x identified with (xij) we have that xij ∈ πA(A) for all i, j, and both
∑

j xijx
∗
ij and

∑
j x

∗
jixji

are norm convergent sums in B(H), and hence in πA(A), for each i.

4



Proof. Firstly, observe that (1) is equivalent to x(1 ⊗ θ), (1 ⊗ θ)x ∈ πA(A) ⊗ B0(K) for all θ ∈ B0(K).
Let us consider the case of x(1 ⊗ θ). By linearity and continuity, we need only check that x(1 ⊗ θek,el) ∈
πA(A) ⊗ B0(K) for all k, l ∈ J .

Fix k, l ∈ J and let z = x(1 ⊗ θek,el). Considering z as a matrix in MJ(B(H)) we have that

zij = (id⊗ωej ,ei)(x(1 ⊗ θek,el)) = δl,j(id⊗ωek,ei)(x) = δl,jxik ∈ πA(A).

Thus the matrix of z actually consists of one non-zero column.

Suppose that (2) holds, let J0 ⊆ J be a finite subset, and define

wij =

{
zij : i ∈ J0,

0 : otherwise

Thus w = (wij) is a finitely supported matrix and wij ∈ πA(A) for all i, j, so clearly w ∈ πA(A)⊗B0(K).
As both w and z are just single columns, we immediately see that

‖z − w‖ =
∥∥∥
∑

i∈J

(zil − wil)
∗(zil − wil)

∥∥∥
1/2

=
∥∥∥
∑

i 6∈J0

z∗ilzil

∥∥∥
1/2

=
∥∥∥
∑

i 6∈J0

x∗ikxik

∥∥∥
1/2

.

By assumption,
∑

i x
∗
ikxik converges in norm, and so for any ǫ > 0 there is J0 finite with ‖z − w‖ ≤ ǫ.

Thus z ∈ πA(A) ⊗ B0(K).

Conversely, suppose (1) holds, and let z be as before, now known to be a member of πA(A) ⊗B0(K).
As πA(A) ⊗ B0(K) ⊆ MJ(B(H)) is the norm closure of finite matrices with entries in πA(A), for each
ǫ > 0 there is such a finite matrix w = (wij) with ‖z − w‖ ≤ ǫ. As the operation of projecting onto the
lth column is (completely) contractive, we may suppose without loss of generality that wij = δl,jwij for
all i, j. Thus (z − w) has matrix consisting of just a non-zero column, and so

ǫ ≥ ‖z −w‖ =
∥∥∥
∑

i

(zil − wil)
∗(zil − wil)

∥∥∥
1/2

=
∥∥∥
∑

i

(xik − wil)
∗(xik − wil)

∥∥∥
1/2

.

If wil = 0 for i 6∈ J0 with J0 finite, then in particular

∥∥∥
∑

i 6∈J0

x∗ikxik

∥∥∥
1/2

≤ ǫ,

as required.

We have hence shown that x(1 ⊗ θ) ∈ πA(A) ⊗ B0(K) for all θ ∈ B0(K), if and only if
∑

j x
∗
jixji is

norm convergent for each i. The other case follows similarly, or from simply replacing x by x∗.

Proof of Theorem 3.1. That (2) and (3) are equivalent follows from Proposition 3.2.

Suppose that (2) holds. Let ξ, η ∈ K, let i, j ∈ J , and set y = x(1 ⊗ θei,η), z = x(1 ⊗ θej ,ξ). Then

z∗y = (1 ⊗ θξ,ej)x
∗x(1 ⊗ θei,η) = (id⊗ωei,ej)(x

∗x) ⊗ θξ,η.

By assumption, y, z ∈ A ⊗ B0(K), and so (id⊗ωei,ej)(x
∗x) ∈ A. By linearity and continuity, and using

that B(K)∗ → B∗ is onto, it follows that (id⊗µ)(x∗x) ∈ A for all µ ∈ B∗. Similarly, (id⊗µ)(xx∗) ∈ A
for all µ ∈ B∗. Furthermore, (id⊗ωξ,ej)(y) = (ξ|η)(id⊗ωei,ej)(x) ∈ A and so by a suitable choice of ξ, η,
and again by linearity and continuity, we conclude that (id⊗µ)(x) ∈ A for all µ ∈ B∗. Repeating the
argument with the roles of A and B swapped shows that (1) holds.

Conversely, suppose that (1) holds. By the discussion above, the matrix (xij) does consist of elements
of A. The matrix representation of x∗x is (x∗x)ij =

∑
k x

∗
kixkj, the sum converging strongly in B(H),
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for example. By assumption, (x∗x)ij ∈ A. For each positive µ ∈ A∗ choose ω ∈ B(H)∗ with ω|A = µ.
Writing J0 ⊂⊂ J to indicate that J0 is a finite subset of J , we see that

sup
J0⊂⊂J

〈µ,
∑

k∈J0

x∗kixkj〉 = sup
J0⊂⊂J

〈
∑

k∈J0

x∗kixkj, ω〉 = lim
J0⊂⊂J

〈
∑

k∈J0

x∗kixkj, ω〉

=
∑

k∈J

〈x∗kixkj, ω〉 = 〈(x∗x)ij, ω〉 = 〈µ, (x∗x)ij〉.

So we have an increasing net in A+ which converges, against elements of the unit ball of A∗
+, to an element

of A+. By an application of Dini’s Theorem, compare [19, Lemma A.3], it follows that
∑

k x
∗
kixkj = (x∗x)ij

with convergence in norm in A. Applying a similar argument to xx∗, and then swapping the roles of A
and B, shows that (3) holds.

Let us now define the object which we shall study for the rest of the paper.

Definition 3.3. For C∗-algebras A and B define

A
sc
⊗ B = {x ∈ SC(A×B) : x∗x, xx∗ ∈ SC(A×B)}.

Theorem 3.4. For C∗-algebras A,B we have that A
sc
⊗ B is a C∗-subalgebra of A∗∗⊗B∗∗ and every

∗-algebra contained in SC(A×B) is contained in A
sc
⊗ B.

Proof. The first claim follows immediately from the equivalence of (1) and (2) above, as (2) is stated in
terms of the intersection of two C∗-algebras. The second claim is immediate.

3.2 For von Neumann algebras

We now aim to apply this construction to von Neumann algebras M,N. By definition, this would involve
working in M

∗∗⊗N
∗∗, but the constructions in this section allow us to work with M⊗N instead. When

M,N are commutative, similar (but less general) ideas are explored in [9, Section 4].
Fix von Neumann algebras M,N with preduals M∗,N∗. Consider the canonical map from a Banach

space to its bidual κ = κM∗
: M∗ → M

∗. Then κ∗ : M
∗∗ → M is a ∗-homomorphism, normal by

construction. In fact, κ(M∗) is 1-complemented in M
∗, see [29, Section 2, Chapter III]. Thus κ∗ ⊗ κ∗ is a

normal ∗-homomorphism M
∗∗⊗N

∗∗ → M⊗N. Let θsc be the restriction of this map to SC(M× N), so θsc

further restricted to M
sc
⊗ N is a ∗-homomorphism, separately weak∗-continuous.

By analogy with the Banach algebra situation (see Section 5 below, or, if one prefers, a completely
bounded analogue of Arens’s original work, [1]) define wap(M⊗N) to be those x ∈ M⊗N such that the
maps

Lx : M∗ → N, ω 7→ (ω ⊗ id)(x), Rx : N∗ → M, ω 7→ (id⊗ω)(x)

are weakly compact. Notice that L∗
x ◦ κN∗

= Rx and R∗
x ◦ κM∗

= Lx, and so Lx is weakly compact if and
only if Rx is.

Lemma 3.5. Let x ∈ SC(M× N) and set y = θsc(x). Then y ∈ wap(M⊗N).

Proof. For ω ∈ N∗ and τ ∈ M∗ we have that

〈Ry(ω), τ〉 = 〈x, κ(τ) ⊗ κ(ω)〉 = 〈(id⊗κ(ω))(x), κ(τ)〉 = 〈(id⊗κ(ω))(x), τ〉,

as by assumption, (id⊗κ(ω))(x) ∈ M ⊆ M
∗∗.

Let (ωα) be a bounded net in N∗ and by moving to a subnet if necessary, suppose that ωα → µ ∈ N∗

weak∗ in N∗. Then for λ ∈ M
∗,

lim
α
〈λ,Ry(ωα)〉 = lim

α
〈λ, (id⊗κ(ωα))(x)〉 = lim

α
〈x, λ⊗ κ(ωα)〉 = lim

α
〈(λ⊗ id)(x), κ(ωα)〉.
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As (λ⊗ id)(x) ∈ N ⊆ N∗∗ this limit is equal to

〈(λ⊗ id)(x), µ〉 = 〈λ, (id⊗µ)(x)〉,

where (id⊗µ)(x) ∈ M. Thus Ry(ωα) → (id⊗µ)(x) ∈ M weakly. This establishes that Ry is weakly
compact, as required.

We will now proceed to show that the map θsc : SC(M × N) → wap(M⊗N) is actually a bijection.
Firstly we show it is onto, for which a further idea of Arens is required; we follow the notation of [10,
Section 3], adapted to the von Neumann algebra situation. Given x ∈ M⊗N, for µ ∈ M

∗ we define
(µ ⊗ id)(x) ∈ N by

〈(µ⊗ id)(x), ω〉 = 〈µ, (id⊗ω)(x)〉 (ω ∈ N∗).

Similarly define (id⊗λ)(x) ∈ M for λ ∈ N
∗ Then we define two completely contractive maps (M∗∗⊗N

∗∗)∗ =
M

∗⊗̂N
∗ → (M∗⊗̂N∗)

∗∗ = (M⊗N)∗ by

µ⊗ λ 7→ µ⊗✷ λ, µ⊗✸ λ,

and extending by linearity and continuity, where we define

〈µ⊗✷ λ, x〉 = 〈µ, (id⊗λ)(x)〉, 〈µ⊗✸ λ, x〉 = 〈λ, (µ ⊗ id)(x)〉.

(We note that the definition of ⊗✸ in [10, Page 16] is wrong, or at least inconsistent; one should swap
Φ,Ψ in the formula on page 16.)

The following again goes back to Arens, but we include a proof for reference and motivation.

Lemma 3.6. We have that x ∈ wap(M⊗N) if and only if 〈µ⊗✷ λ, x〉 = 〈µ⊗✸ λ, x〉 for all µ, λ.

Proof. To show “if”, let (ωα) be a bounded net in M∗ converging weak∗ to µ ∈ M
∗. For λ ∈ N

∗ we have
that

lim
α
〈λ,Lx(ωα)〉 = lim

α
〈(id⊗λ)(x), ωα〉 = 〈µ⊗✷ λ, x〉 = 〈µ⊗✸ λ, x〉 = 〈λ, (µ ⊗ id)(x)〉,

and so Lx(ωα) → (µ⊗ id)(x) ∈ N weakly. As in the proof of Lemma 3.5, it follows that x ∈ wap(M⊗N).
Conversely, let (τβ) in N∗ converge weak∗ to λ ∈ N

∗, and let (ωα) as before. Assuming that Lx is
weakly compact, we may assume that Lx(ωα) → x0 ∈ M, say, weakly. Then

〈µ⊗✷ λ, x〉 = lim
α
〈(id⊗λ)(x), ωα〉 = lim

α
〈λ,Lx(ωα)〉 = 〈λ, x0〉 = lim

β
〈x0, τβ〉 = lim

β
lim
α
〈Lx(ωα), τβ〉

= lim
β

lim
α
〈Rx(τβ), ωα〉 = lim

β
〈µ,Rx(τβ)〉 = 〈λ, (µ ⊗ id)(x)〉 = 〈µ ⊗✸ λ, x〉,

as required.

Proposition 3.7. Let x ∈ wap(M⊗N), and define y ∈ M
∗∗⊗N

∗∗ = (M∗⊗̂N
∗)∗ by 〈y, µ⊗λ〉 = 〈µ⊗✷λ, x〉 =

〈µ⊗✸λ, x〉. Then y ∈ SC(M×N); indeed, (µ⊗ id)(y) = (µ⊗ id)(x) ∈ N and (id⊗λ)(y) = (id⊗λ)(x) ∈ M.
Conversely, if y ∈ SC(M × N) and we set x = θsc(y) then (µ ⊗ id)(x) = (µ ⊗ id)(y) ∈ N and

(id⊗λ)(x) = (id⊗λ)(y) ∈ M. As such, the map θsc : SC(M× N) → wap(M⊗N) is an isomorphism.

Proof. The first claim follows from a simple calculation. Now let y ∈ SC(M × N) and set x = θsc(y).
Consider the biadjoint R∗∗

x : N∗ → M
∗∗, which satisfies that if µ ∈ N

∗ is the weak∗-limit of (ωα) ⊆ N∗ then
R∗∗

x (µ) is the weak∗-limit, in M
∗∗, of the net (Rx(ωα)). As Rx is weakly compact, this actually converges

weakly in M, and the proof of Lemma 3.6 shows that R∗∗
x (µ) = (µ ⊗ id)(x). However, from the proof of

Lemma 3.5, this net converges to (id⊗µ)(y) ∈ M, and so the result follows.

Theorem 3.8. The map θsc : M
sc
⊗ N → wap(M⊗N) is an injective ∗-homomorphism, separately normal,

and has image those x ∈ wap(M⊗N) such that also x∗x, xx∗ ∈ wap(M⊗N).
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Proof. It follows from Proposition 3.7 that θsc is injective, and it is separately normal by construction.

If y ∈ M
sc
⊗ N then also y∗y, yy∗ ∈ M

sc
⊗ N. Thus if x = θsc(y) then x∗x = θsc(y

∗y) ∈ wap(M⊗N),
and similarly xx∗ ∈ wap(M⊗N). Conversely, if x ∈ wap(M⊗N) with x∗x, xx∗ ∈ wap(M⊗N) then let
y ∈ SC(M× N) with θsc(y) = x. There is z ∈ SC(M× N) with θsc(z) = x∗x. As θsc is the restriction of
κ∗ ⊗ κ∗, which is a ∗-homomorphism to M⊗N,

(κ∗ ⊗ κ∗)(z) = x∗x = (κ∗ ⊗ κ∗)(y∗y),

and so z = y∗y. Thus y∗y, and similarly yy∗, are members of SC(M× N), and so by definition, y ∈ M
sc
⊗

N.

Hence M
sc
⊗ N is the maximum C∗-subalgebra of wap(M⊗N). However, again the space wap(M⊗N)

need not be an algebra in general. An example of M and t ∈ wap(M⊗M) such that t∗t 6∈ wap(M⊗M) may
be constructed as follows. Let M = B(H) for a separable, infinite-dimensional Hilbert space H. It is easy
to find a positive x ∈ B(H ⊗ H) = M⊗M such that the map M∗ → M;ω 7→ (ω ⊗ id)(x) is not weakly
compact. Now let u : H → H ⊗H be a unitary, and fix a unit vector ξ0 ∈ H. Then t ∈ B(H ⊗H) defined
by t(ξ) = u∗x1/2(ξ) ⊗ ξ0 has the required property. This follows as t∗t = x 6∈ wap(M⊗M), while one can
show that the maps M∗ → M;ω 7→ (ω ⊗ id)(t) and ω 7→ (id⊗ω)(t) both factor through a Hilbert space,
and so are weakly compact.

4 Morphisms and inclusions

In this section we study stability properties of
sc
⊗. We start by considering inclusions. Let A be a C∗-

algebra and let A0 ⊆ A be a C∗-subalgebra. Then the inclusion ι : A0 → A induces the inclusion
ι∗∗ : A∗∗

0 → A∗∗ which is a normal ∗-homomorphism. Indeed, if we identify A0 with a subalgebra of A,
then the restriction map A∗ → A∗

0 is a quotient map, with kernel A⊥
0 = {µ ∈ A∗ : 〈µ, a〉 = 0 (a ∈ A0)}.

Then A∗∗
0 = (A∗

0)∗ ∼= (A∗/A⊥
0 )∗ ∼= A⊥⊥

0 . If also B0 ⊆ B is an inclusion of C∗-algebras, then we have the
chain of isometric inclusions

A0

sc
⊗ B0 ⊆ SC(A0 ×B0) ⊆ A∗∗

0 ⊗B∗∗
0 ⊆ A∗∗⊗B∗∗.

The following result gives a simple “slice map” criteria to determine membership of A0

sc
⊗ B0.

Theorem 4.1. For x ∈ A∗∗⊗B∗∗ the following are equivalent:

1. x is in (the image of) A0

sc
⊗ B0;

2. x ∈ A
sc
⊗ B and x is in (the image of) SC(A0 × B0) (that is, (µ ⊗ id)(x) ∈ B0, (id⊗λ)(x) ∈ A0 for

µ ∈ A∗, λ ∈ B∗).

Proof. (1) =⇒ (2): For x ∈ A0

sc
⊗ B0 and for µ ∈ B∗, letting µ0 ∈ B∗

0 be the restriction, we have that
(id⊗µ)(x) = (id⊗µ0)(x) ∈ A0 ⊆ A. Similarly (id⊗µ)(x∗x) ∈ A and (id⊗µ)(xx∗) ∈ A. Analogously,

right slices of x, x∗x, xx∗ are in B, and so x ∈ A
sc
⊗ B. Clearly also x ∈ SC(A0 ×B0).

(2) =⇒ (1): Let B ⊆ B(K) be the universal representation and let K ∼= ℓ2(J), so we can regard
A∗∗⊗B∗∗ ⊆ MJ(A∗∗) again. From Theorem 3.1 we know that if x = (xij) then the sums

∑
j xijx

∗
ij and∑

j x
∗
jixji converge in norm. That x ∈ SC(A0 ×B0) tells us that each xij ∈ A0, and hence that the sums

actually converge in A0. We apply similar arguments with the roles and A and B swapped, and then by

Theorem 3.1 again we conclude that x ∈ A0

sc
⊗ B0.

Let us make the following simple remark. As A ⊆ A∗∗ and B ⊆ B∗∗ we have the inclusion A
sc
⊗ B ⊆

A∗∗
sc
⊗ B∗∗. As A∗∗, B∗∗ are von Neumann algebras, we can apply Theorem 3.8 to identify A∗∗

sc
⊗ B∗∗ as

a subalgebra of A∗∗⊗B∗∗. The composition gives an inclusion A
sc
⊗ B → A∗∗⊗B∗∗, and this is nothing

but the canonical inclusion.
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4.1 Completely bounded maps

In this section we show that
sc
⊗ is stable under completely bounded maps.

Theorem 4.2. Let A,B,C be C∗-algebras and let φ : A → B be a completely bounded map. Then

φ∗∗ ⊗ id : A∗∗⊗C∗∗ → B∗∗⊗C∗∗ is completely bounded, and restricts to a map φ
sc
⊗ id : A

sc
⊗ C → B

sc
⊗ C.

From the theory of operator spaces, we know that φ∗ : B∗ → A∗ is completely bounded and hence
also φ∗ ⊗ id : B∗⊗̂C∗ → A∗⊗̂C∗ is completely bounded, all with equal norms. Hence we do obtain
φ∗∗ ⊗ id : A∗∗⊗C∗∗ → B∗∗⊗C∗∗.

Alternatively, from the structure theory of completely bounded maps (see [23, Theorem 8.4] for ex-
ample) there is a Hilbert space L, a non-degenerate ∗-representation π : A → B(L) and T, S ∈ B(H ′, L)
with φ(a) = T ∗π(a)S ∈ B ⊆ B(H ′). Here we may, and will, choose B ⊆ B(H ′) to be the universal
representation. Let π̃ : A∗∗ → B(L) be the normal extension. Then a simple calculation shows that
φ∗∗ : A∗∗ → B∗∗ has the form φ∗∗(x) = T ∗π̃(x)S ∈ B∗∗ ∼= B′′ ⊆ B(H ′). Let A ⊆ B(H) be the universal
representation, so again A∗∗ ∼= A′′ ⊆ B(H). By the structure theory for normal ∗-representations, [29,
Theorem 5.5, Chapter IV], there is an auxiliary Hilbert space L′, a projection p ∈ A′⊗B(L′) ⊆ B(H ⊗L′)
and a unitary U : p(H ⊗ L′) → L such that

π̃(x) = Up(x⊗ 1L′)U∗ (x ∈ A∗∗).

Consequently, by enlarging the original L if necessary, we may actually assume that L = H ⊗L′, and
that π(a) = a⊗ 1. Thus T, S ∈ B(H ′,H ⊗ L′) and

φ(a) = T ∗(a⊗ 1)S, φ∗∗(x) = T ∗(x⊗ 1)S (a ∈ A, x ∈ A∗∗).

We remark that, even in this setting, we can always choose S, T with ‖S‖‖T‖ = ‖φ‖cb. If also C ⊆ B(K)
is the universal representation, then A∗∗⊗C∗∗ ⊆ B(H)⊗B(K) = B(H ⊗ K) and similarly B∗∗⊗C∗∗ ⊆
B(H ′ ⊗K). Then

(φ∗∗ ⊗ id)(x) = (T ⊗ 1K)∗x13(S ⊗ 1K) (x ∈ A∗∗⊗C∗∗).

Here we use the “leg numbering notation”, so x13 is x ∈ B(H ⊗K) acting on the 1st and 3rd components
of H ⊗ L′ ⊗K.

Proof of Theorem 4.2. Let x ∈ A
sc
⊗ C ⊆ A∗∗⊗C∗∗. We shall verify condition (2) of Theorem 3.1 for

(φ∗∗ ⊗ id)(x). For θ ∈ B0(K), from the above discussion,

(φ∗∗ ⊗ id)(x)(1 ⊗ θ) = (T ⊗ 1)∗x13(S ⊗ θ) = (T ⊗ 1)∗(x(1 ⊗ θ))13(S ⊗ 1)

∈ (T ⊗ 1)∗
(
A⊗ 1 ⊗ B0(K)

)
(S ⊗ 1) ⊆ T ∗(A⊗ 1)S ⊗ B0(K).

However, as φ(a) = T ∗(a ⊗ 1)S ∈ B for all a ∈ A, it follows that (φ∗∗ ⊗ id)(x)(1 ⊗ θ) ∈ B ⊗ B0(K) as
required. Similarly, (1 ⊗ θ)(φ∗∗ ⊗ id)(x) ∈ B ⊗ B0(K).

Now let θ ∈ B0(H
′) and consider

(φ∗∗ ⊗ id)(x)(θ ⊗ 1) = (T ⊗ 1)∗x13(Sθ ⊗ 1).

Notice that Sθ ∈ B0(H
′,H ⊗ L′). To simplify the proof, notice that we are always free to replace L′ by

L′⊗ ℓ2(X) for any index set X, if we also replace T by T ⊗1ℓ2(X) and similarly for S. That is, we are free
to assume that there is some isometry V : H ′ → H ⊗ L′. Let R = SθV ∗ ∈ B0(H ⊗ L′) so that Sθ = RV
and hence

(φ∗∗ ⊗ id)(x)(θ ⊗ 1) = (T ⊗ 1)∗x13(RV ⊗ 1) = (T ⊗ 1)∗x13(R⊗ 1)(V ⊗ 1).

For θ1 ∈ B0(H), θ2 ∈ B0(L
′) we have that

x13(θ1 ⊗ θ2 ⊗ 1) = (x(θ1 ⊗ 1))13(1 ⊗ θ2 ⊗ 1) ∈ B0(H) ⊗ B0(L
′) ⊗B,
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as x ∈ A
sc
⊗ B. As B0(H ⊗ L′) ∼= B0(H) ⊗B0(L

′) it follows that x13(R⊗ 1) ∈ B0(H) ⊗B0(L
′) ⊗B and so

(φ∗∗ ⊗ id)(x)(θ ⊗ 1) ∈ (T ⊗ 1)∗
(
B0(H) ⊗ B0(L

′) ⊗B
)
(V ⊗ 1) ⊆ B0(H

′) ⊗B,

as required. Similarly (θ ⊗ 1)(φ∗∗ ⊗ id)(x) ∈ B0(H
′) ⊗B and so (φ∗∗ ⊗ id)(x) ∈ B

sc
⊗ C as claimed.

While we stated this result only in the “one-sided” case, it obviously holds for maps of the form

φ1

sc
⊗ φ2.

5 Weakly almost periodic functionals

We now come to our principle application, that of studying “weakly almost periodic functionals” on
locally compact quantum groups, or more generally Hopf von Neumann algebras. Let (M,∆) be a Hopf
von Neumann algebra, so M is a von Neumann algebra and ∆ : M → M⊗M is a normal unital injective
∗-homomorphism, coassociative in the sense that (∆ ⊗ id)∆ = (id⊗∆)∆. Then the preadjoint of ∆, say
∆∗ : M∗⊗̂M∗ → M∗, turns M∗ into a completely contractive Banach algebra. We shall write ⋆ for the
product in M∗ and for the module action of M∗ on M (and denote the module action of M on M∗ simply
by juxtaposition).

We can thus import the normal Banach algebraic definition: wap(M∗) consists of those x ∈ M such
that the orbit map M∗ → M;ω 7→ ω ⋆ x = (id⊗ω)∆(x) is weakly compact. Equivalently, x ∈ wap(M∗) if
and only if ∆(x) ∈ wap(M⊗M), using the notation we introduced in Section 3.2.

Theorem 5.1. Let wap(M,∆) be the collection of those x ∈ wap(M∗) such that x∗x, xx∗ ∈ wap(M∗). Then
wap(M,∆) is a unital C∗-subalgebra of M, and any ∗-subalgebra of wap(M∗) is contained in wap(M,∆).

Proof. As ∆ is a ∗-homomorphism, x ∈ wap(M,∆) if and only if ∆(x) ∈ wap(M⊗M). The result now
follows from Theorem 3.8. As ∆(1) = 1 ⊗ 1 clearly wap(M,∆) is unital.

Notice that, by definition, x ∈ wap(M,∆) if and only if ∆(x) ∈ M
sc
⊗ M ⊆ M⊗M.

Let us recall some of the theory of Arens products on Banach algebras, for example see [10, Section 3],
[11, Section 2], and references therein. Let A be a Banach algebra, X ⊆ A∗ a closed A-submodule, and
suppose that X is “introverted”, meaning that if we define

〈Φ · µ, a〉 = 〈Φ, µ · a〉, 〈µ · Φ, a〉 = 〈Φ, a · µ〉 (a ∈ A,µ ∈ A∗,Φ ∈ A∗∗)

then Φ · µ, µ · Φ ∈ X for all µ ∈ X,Φ ∈ A∗∗. In this case, we can define products (the first and second
Arens products) on X∗ by

〈Φ✷Ψ, µ〉 = 〈Φ,Ψ · µ〉, 〈Φ✸Ψ, µ〉 = 〈Ψ, µ · Φ〉 (Φ,Ψ ∈ X∗, µ ∈ X).

If X ⊆ wap(A) then automatically X is introverted, [20, Lemma 1.2]. In fact, for either ✷ or ✸, X∗

becomes a “dual Banach algebra” (that is, the product is separately weak∗-continuous) if and only if
X ⊆ wap(A), see [11, Proposition 2.4].

When A = M∗ we have, using the notation of Section 3.2, that

〈µ✷λ, x〉 = 〈µ⊗✷ λ,∆(x)〉, 〈µ✸λ, x〉 = 〈µ⊗✸ λ,∆(x)〉 (x ∈ X ⊆ M, µ, λ ∈ X∗).

We remark that, by the Hahn-Banach Theorem, it does not matter if we work with X∗ or M
∗. Then

Lemma 3.6 immediately shows that if X ⊆ wap(M∗), then ✷ = ✸ on X∗.

Theorem 5.2. For any Hopf von Neumann algebra, wap(M,∆) is an M∗-submodule of M. As such,
wap(M,∆)∗ becomes a dual Banach algebra for either Arens product (which agree).
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Proof. Let x ∈ wap(M,∆), so by definition, ∆(x) ∈ M
sc
⊗ M ⊆ M⊗M. To be careful, let y ∈ M

sc
⊗ M be

the image of ∆(x). Let ω ∈ M∗ and consider

∆
(
ω ⋆ x

)
= ∆

(
(id⊗ω)∆(x)

)
= (id⊗ id⊗ω)(∆ ⊗ id)∆(x)

= (id⊗ id⊗ω)(id⊗∆)∆(x) = (id⊗φ)∆(x),

where φ : M → M is the (normal) completely bounded map z 7→ (id⊗ω)∆(z). Let y′ = (id
sc
⊗ φ)(y) ∈

M
sc
⊗ M thanks to Theorem 4.2. For ω1, ω2 ∈ M∗ and with κ = κM∗

: M∗ → M
∗, we have that

〈y′, κ(ω1) ⊗ κ(ω2)〉 = 〈y, κ(ω1) ⊗ φ∗κ(ω2)〉 = 〈y, κ(ω1) ⊗ κφ∗(ω2)〉

= 〈∆(x), ω1 ⊗ φ∗(ω2)〉.

Here we used the embedding of M
sc
⊗ M into M⊗M, the definition of id

sc
⊗ φ and that φ is normal with

preadjoint φ∗ : M∗ → M∗;ω2 7→ ω2 ⋆ ω. Hence

〈y′, κ(ω1) ⊗ κ(ω2)〉 = 〈x, ω1 ⋆ (ω2 ⋆ ω)〉 = 〈∆(ω ⋆ x), ω1 ⊗ ω2〉.

Thus the image of y′ ∈ M
sc
⊗ M in M⊗M is simply ∆(ω ⋆ x) and so ω ⋆ x ∈ wap(M,∆).

Analogously, to show that x ⋆ ω ∈ wap(M,∆) we show that ∆(x ⋆ ω) ∈ M
sc
⊗ M. As ∆(x ⋆ ω) =

(φ′ ⊗ id)∆(x) where φ′(z) = (ω ⊗ id)∆(z) this will follow in the same way.

5.1 In the language of compactifications

When G is a locally compact group, wap(G) = wap(L1(G)) ⊆ L∞(G) is a commutative C∗-algebra with
character space Gwap which becomes a compact semitopological semigroup. In fact, Gwap is “maximal”
in the sense that if S is a compact semitopological semigroup and φ : G → S a continuous (semi)group
homomorphism, then there is a semigroup homomorphism φ0 : Gwap → S factoring φ.

We can turn this into a statement about algebras and coproducts in the usual way (compare [8,
28]). However, in this setting, we would need a good notion of a “non-commutative” or “quantum”
semitopological semigroup. The following is now an obvious, but tentative, definition.

Definition 5.3. A compact quantum semitopological semigroup is a pair (A,∆A) where A is a unital

C∗-algebra and ∆A : A → A
sc
⊗ A is a ∗-homomorphism, “coassociative” in the sense that the induced

product on A∗ is associative.

As A
sc
⊗ A ⊆ A∗∗⊗A∗∗ by definition, the product on A∗ is simply

〈µ ⋆ λ, a〉 = 〈∆A(a), µ ⊗ λ〉 (a ∈ A,µ, λ ∈ A∗).

The “C∗-Eberlein algebras” explored in [7] fit into this framework, thanks to [7, Definition 3.6] and [7,
Section 3.3].

Theorem 5.4. Let (M,∆) be a Hopf von Neumann algebra and let wap = wap(M,∆) be as in Theo-

rem 5.1. Viewing wap
sc
⊗ wap as a subspace of M

sc
⊗ M, which in turn is a subspace of M⊗M, we have that

∆ restricts to a map ∆wap : wap → wap
sc
⊗ wap.

Proof. Let x ∈ wap and let y be the image of ∆(x) in M
sc
⊗ M. By Theorem 4.1 we need to show that

y ∈ SC(wap×wap), that is, that (µ⊗ id)y, (id⊗µ)y ∈ wap for all µ ∈ M
∗.

Let µ ∈ M
∗ and choose a bounded net (ωα) in M∗ converging weak∗ to µ. For ω ∈ M∗ we have that

〈(µ⊗ id)y, ω〉 = 〈µ, (id⊗ω)∆(x)〉 = lim
α
〈x, ωα ⋆ ω〉 = lim

α
〈x ⋆ ωα, ω〉.
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As x ∈ wap(M∗) the map M∗ → M; τ 7→ x ⋆ τ is weakly compact, and so we may assume that (x ⋆ ωα)
converges weakly. By Theorem 5.2, this net is contained in wap which is a norm closed subspace, hence
weakly closed. We conclude that (x ⋆ ωα) converges to a member of wap and hence (µ ⊗ id)y ∈ wap.
Analogously, (id⊗µ)y ∈ wap, as required.

Combining this result with Theorem 5.2 we see that (wap,∆wap) is a compact quantum semitopological
semigroup.

We can now show that wap(M,∆) has the required universal property to be a “compactification”.
Given (A,∆A) a compact quantum semitopological semigroup, let θ : A → M be a ∗-homomorphism, and

let θ̃ : A∗∗ → M be the normal extension. As ∆A maps into A
sc
⊗ A ⊆ A∗∗⊗A∗∗, the map (θ̃⊗ θ̃)∆A : A →

M⊗M makes sense. If (θ̃ ⊗ θ̃)∆A = ∆θ then we shall say that θ is a morphism. This is equivalent to the
restriction of θ∗ to M∗ being a Banach algebra homomorphism M∗ → A∗.

Theorem 5.5. Let (M,∆) be a Hopf von Neumann algebra. Let (A,∆A) be a compact quantum semi-
topological semigroup and let θ : A → M be a morphism. Then θ(A) ⊆ wap(M,∆), and wap(M,∆) is the
union of the images of all such θ. Furthermore, there is a ∗-homomorphism, intertwining the coproducts,
θ0 : A → wap which factors θ.

Proof. Notice that we simply define θ0 to be the corestriction of θ, assuming that θ does map into wap,
and that as (wap,∆wap) is itself a compact quantum semitopological semigroup, the inclusion map shows
that wap is the union of images of suitable θ.

So it remains to show that for a ∈ A, we do have that θ(a) ∈ wap, that is, that ∆(θ(a)) ∈ M
sc
⊗ M.

However, ∆(θ(a)) = (θ̃ ⊗ θ̃)∆A(a). By Theorem 4.2 we have that x = (θ
sc
⊗ θ)∆A(a) ∈ M

sc
⊗ M. Let y be

the image of x in M⊗M. Let κ = κM∗
: M∗ → M

∗ and recall that actually θ̃ = (θ∗κ)∗ = κ∗θ∗∗. Then, by
definition of the various maps,

〈y, ω1 ⊗ ω2〉 = 〈x, κ(ω1) ⊗ κ(ω2)〉 = 〈(θ∗∗ ⊗ θ∗∗)∆A(a), κ(ω1) ⊗ κ(ω2)〉 = 〈(θ̃ ⊗ θ̃)∆A(a), ω1 ⊗ ω2〉.

Thus, as required, ∆(θ(a)) is in the image of M
sc
⊗ M in M⊗M.

6 Continuous analogues

So far we have worked with Hopf von Neumann algebras, non-commutative generalisations of measure
spaces. By analogy, there should be “continuous” version of the theory, namely one which works with C∗-
bialgebras. Recall that a C∗-bialgebra is a pair (A,∆A) where A is a C∗-algebra and ∆A : A → M(A⊗A)
is a non-degenerate ∗-homomorphism which is coassociative.

In this section, we wish to treat abstract C∗-bialgebras, but also those which arise from locally compact
quantum groups, where we have more structure, and in particular good interaction with the Hopf von
Neumann theory. We hence proceed with a little generality.

Fix a C∗-bialgebra (A,∆A). Let (M,∆) be a Hopf von Neumann algebra and suppose we have an
injective ∗-homomorphism θ : A → M which is non-degenerate in the sense that if (eα) is a bounded
approximate identity for A then (θ(eα)) converges weak∗ to 1 in M. Then θ extends to θ̃ : M(A) → M

which is also injective, identifying M(A) with {x ∈ M : xθ(a), θ(a)x ∈ θ(A) (a ∈ A)}. We also denote by
θ̃ the normal extension A∗∗ → M. These maps are compatible in the sense that if we view M(A) as being
{x ∈ A∗∗ : xA,Ax ⊆ A} then θ̃ restricted to M(A) agrees with the extension of θ from A to M(A).

We shall then make the further assumption that (θ̃ ⊗ θ̃)∆A(a) = ∆M(θ(a)) for all a ∈ A; this implies
the same for all a ∈ M(A). Again, we can either interpret this formula as meaning

(θ ⊗ θ)
(
∆A(a)(b ⊗ c)

)
= ∆M(θ(a))(θ(b) ⊗ θ(c)) (a, b, c ∈ A),

or in terms of extensions to biduals, that is, including M(A⊗A) into A∗∗⊗A∗∗.
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• If (A,∆A) is an abstract C∗-bialgebra, then, for example, we may take M = A∗∗, and then form
∆M : A∗∗ → A∗∗⊗A∗∗ by first considering ∆A : A → M(A ⊗ A) ⊆ A∗∗⊗A∗∗ and then forming the
normal extension. Then θ = κA : A → A∗∗ is the canonical map.

• If A = C0(G) arises from a locally compact quantum group, then the most natural choice is to take
M = L∞(G) with its usual coproduct. Then θ is the inclusion.

Notice that if M,∆M, θ is any choice, then we always have a quotient map φ : A∗∗ → M such that
φκA = θ. Indeed, if M ⊆ B(H) then φ will map onto θ(A)′′ = M by our assumption on θ, compare [29,
Section 2, Chapter III]. Then φ will intertwine the coproducts ∆A∗∗ and ∆M. We shall verify, as we go
along, that whether we work in A∗∗ or in M is unimportant.

As motivation for the following, consider a locally compact group G and set A = C0(G),M = L∞(G)
with θ the inclusion. We wish to know when f ∈ Cb(G) = M(C0(G)) is in wap(G). One abstract approach

would be to try to embed M(A⊗A) into M(A)∗∗⊗M(A)∗∗ (so as to ask when we land in M(A)
sc
⊗ M(A)).

However, the comment after Lemma 6.2 shows that this cannot work. Instead, we map the problem into
M, and work with wap(M,∆). Our task then is to show that this is independent of the choice of M (which
it is!)

Lemma 6.1. The image of M(A) in M is an M∗-submodule.

Proof. For x ∈ M(A) and ω ∈ M∗ we will show that θ̃(x) ⋆ ω ∈ M(A) ⊆ M. As θ is non-degenerate, by
Cohen-Factorisation (see [5, Section 11] or [21, Proposition A2], for example) there exists b ∈ A,ω′ ∈ M∗

with ω = θ(b)ω′. Then, for c ∈ A,ω′′ ∈ M∗,

〈(ω ⊗ id)∆M(θ̃(x))θ(c), ω′′〉 = 〈θ̃(x), θ(b)ω′ ⋆ θ(c)ω′′〉 = 〈bθ∗(ω′) ⋆ cθ∗(ω′′), x〉

= 〈θ∗(ω′) ⊗ θ∗(ω′′), ∆̃A(x)(b⊗ c)〉

= 〈θ(d), ω′′〉,

where d = (θ∗(ω′) ⊗ id)(∆̃A(x)(b⊗ c)) ∈ A as ∆̃A(x)(b⊗ c) ∈ A⊗A. Similar remarks apply to slicing on
the other side.

Lemma 6.2. Let µ ∈ M(A)∗ and let µ0 ∈ M
∗ be a Hahn-Banach extension (that is, µ0 ◦ θ̃ = µ). For

x ∈ M(A), both (id⊗µ0)∆M(θ̃(x)) and (µ0 ⊗ id)∆M(θ̃(x)) depend only on µ.

Proof. Considering (id⊗µ0)∆M(θ̃(x)), our claim will follow if (ω ⊗ id)∆M(θ̃(x)) is a member of θ̃(M(A))
for each ω ∈ M∗. However, this follows from the previous lemma.

Unfortunately, there is no good reason why (µ ⊗ id)∆M(θ̃(x)) should be a member of θ̃(M(A)). We
instead look to work more directly with M.

Proposition 6.3. Let x ∈ M(A). Then θ̃(x) ∈ wap(M∗) if and only if x ∈ wap(A∗) where A∗ is
considered as the predual of the Hopf von Neumann algebra (A∗∗,∆A∗∗).

Proof. Let T : A∗ → A∗∗ be the map T (µ) = (µ⊗ id)∆A∗∗(x). By Lemma 6.1 applied with M = A∗∗, we
see that T maps into M(A) ⊆ A∗∗ and so x ∈ wap(A∗) if and only if T is weakly compact, if and only if the
corestriction T : A∗ → M(A) is weakly compact. Similarly let S : M∗ → M be S(ω) = (ω ⊗ id)∆M(θ̃(x))
so that θ̃(x) ∈ wap(M∗) if and only if S is weakly compact.

With φ : A∗∗ → M as above, we have the commutative diagram

A∗ T
// M(A) �

�

// A∗∗

φ
{{✇✇
✇
✇
✇
✇
✇
✇
✇
✇

M∗

θ∗|M∗

OO

S
// M
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Thus, if T is weakly compact, then so is S.
Suppose now that S is weakly compact. Let µ ∈ A∗ with ‖µ‖ < 1, so again we can find a ∈ A,µ′ ∈ A∗

with µ = aµ′ and ‖a‖‖µ′‖ < 1. Choose a net (ω′
α) in the unit ball of M∗ with θ∗(ω′

α) → µ′ weak∗ in A∗.
For each α set ωα = θ(a)ω′

α. For ω = θ(c)ω′ ∈ M∗, we have that

〈φT (µ), ω〉 = 〈θ
(
(µ′ ⊗ id)(∆A∗∗(x)(a⊗ c))

)
, ω′〉

= lim
α
〈(θ ⊗ θ)(∆̃A(x)(a ⊗ c)), ω′

α ⊗ ω′〉

= lim
α
〈∆M(θ̃(x))(θ(a) ⊗ θ(c)), ω′

α ⊗ ω′〉

= lim
α
〈S(ωα), ω〉.

As S is weakly compact, X = {S(τ) : τ ∈ M∗, ‖τ‖ ≤ 1} is relatively weakly compact in M. The above
shows that φT (µ) is in the weak∗ closure of X, but as X is relatively weakly compact and convex, this
agrees with the norm closure of X, which is a weakly compact set. We conclude that φT maps the unit
ball of A∗ into a relatively weakly compact subset of M, that is, φT is weakly compact. As T actually maps
into M(A) and φ restricted to M(A) is an isometry, it follows that T is weakly compact, as required.

Definition 6.4. Let wap(A,∆A) = {x ∈ M(A) : θ̃(x) ∈ wap(M,∆M)}, a C∗-subalgebra of M(A). By the
proposition, this space depends only on (A,∆A).

The following is the analogue of Theorem 5.4. It can again be shown that the construction is inde-
pendent of the choice of M.

Theorem 6.5. Let wap = wap(A,∆A). For x ∈ wap, we have that ∆M(θ̃(x)) is in wap
sc
⊗ wap ⊆ M(A)

sc
⊗

M(A) ⊆ M
sc
⊗ M ⊆ M⊗M. As such, ∆M restricts to a map ∆wap : wap → wap

sc
⊗ wap.

Proof. Exactly as in the proof of Theorem 5.4, this will follow if we can show that (µ⊗ id)∆M(θ̃(x)) ∈ wap
for µ ∈ M

∗ (and analoguously for id⊗µ). By weak compactness, it suffices to show this for µ ∈ M∗, that is,
that wap ⊆ M is an M∗-submodule. However, wap = M(A)∩wap(M,∆M) and we know that wap(M,∆M)
is an M∗-submodule, so the result follows from Lemma 6.1.

We could now continue to prove an analogue of Theorem 5.5 in this setting. We leave the details to
the reader.

6.1 For locally compact quantum groups

For G a locally compact group, the classical theory tells us that wap(L∞(G)) = wap(Cb(G)), see for
example [30]. We now make some remarks in this direction in the setting of locally compact quantum
groups.

We recall the notion of a locally compact quantum group G being coamenable, [3]. In our setting, the
most useful equivalent definition is that G is coamenable if and only if L1(G) has a bounded approximate
identity.

Theorem 6.6. Let G be coamenable. Then wap(L∞(G),∆) is contained in M(C0(G)) and so agrees with
wap(C0(G),∆).

Proof. If x ∈ wap(L∞(G),∆) then x ∈ wap(L1(G)), and a bounded approximate identity argument shows
that x is contained in the norm closure of {ω ⋆ x : ω ∈ L1(G)} (as in the classical case, compare [30]).
Then use that ω ⋆ x ∈ M(C0(G)) for any x ∈ L∞(G), ω ∈ L1(G), see [25, Theorem 2.4]; or see directly
[25, Remark 4.5].

We remark that similarly [25, Theorem 4.4] immediately implies that C0(G) ⊆ wap(C0(G),∆) ⊆
wap(L∞(G),∆), for any G.
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7 Questions for further study

We wrote
sc
⊗ by analogy with the theory of tensor products (compare, for example, the extended Haagerup

tensor product, [12]). It is easy to see that A
sc
⊗ B is isometrically isomorphic to B

sc
⊗ A. Is

sc
⊗ “associative”?

Firstly, (A
sc
⊗ B)

sc
⊗ C ⊆ (A

sc
⊗ B)∗∗⊗C∗∗ and A

sc
⊗ (B

sc
⊗ C) ⊆ A∗∗⊗(B

sc
⊗ C)∗∗, and we cannot directly

compare these, but we can embed both spaces into A∗∗⊗B∗∗⊗C∗∗ using the ideas of Section 3.2. However,
we have been unable to decide if the two embedded spaces agree.

Condition (3) of Theorem 3.1 is stated in terms of “rows” and “columns” of operator matrices. Such
notions are prominent in the theory of operator spaces. Is there perhaps a way these ideas could be made
to work profitably for general operator spaces, not just C∗-algebras?

The theory as applied to locally compact quantum groups gives maybe three main questions:

• Is Theorem 6.6 true without the coamenable hypothesis?

• Does wap(L∞(G),∆) always (or sometimes!) have an invariant mean?

• When does wap(L∞(G),∆) = wap(L1(G))? For an amenable discrete group G, this is true for
Ĝ, that is, wap(A(G)) = wap(V N(G),∆). This follows from [15, Proposition 2], showing that
wap(A(G)) = UCB(Ĝ), and [16, Proposition 2], which shows that UCB(Ĝ) is a C∗-algebra. As far

as we are aware, our question is open for F̂2, for example.

Finally, we studied compactifications of C∗-Eberlein algebras in [7]: these are generated by coefficients of
certain special unitary corepresentations of G. Is it true that the coefficients of any unitary corepresen-
tation of G live in wap(C0(G),∆)?
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