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Abstract  

In the recent crisis, the U.S. authorities bailed out numerous banks through TARP, whilst let 

many others to fail as going concern entities. Even though both interventions fully protect 

depositors, a bail out represents an implied subsidy to shareholders, which is not yet the case 

with closures where creditors are not subsidised. We investigate this non-uniform policy, 

demonstrating that size and not performance is the decision variable that endogenously 

determines one threshold below which banks are treated as TSTS by regulators and another one 

above which are considered to be TBTF. Our results suggest that regulators do not bailout the 

shareholders or the other uninsured creditors of a distressed bank if the bank is considered to 

be TSTS. Further, that the more complex a bank is the more likely is to be bailed out and, hence, 

to have all of its creditors protected. Banks which are perceived as being TBTF are also found 

to be too-complex-to-fail. 
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1. Introduction 

In October 2008, the U.S. Congress passed the Emergency Economic Stabilization Act (EESA) 

and authorised the Department of the Treasury to launch the Troubled Asset Relief Program 

(TARP) with the purpose to offer emergency financial aid to corporate firms but, most importantly, 

to bolster the resiliency of banking institutions. Not surprisingly, many banks that had been largely 

affected by the turmoil in credit markets triggered by the U.S. subprime mortgage crisis received 

TARP funds via the Capital Purchase Program (CPP), which was the key component of TARP. 

Through CPP, the U.S. Treasury invested up to $250 billion in the preferred equity of banks to 

enhance their capital ratios. The primary aim of this rescue package was the prevention of the 

sudden and simultaneous collapse of a large number of distressed banks, which would have had 

destructive effects on the entire financial system.   

     Nonetheless, every coin has two sides: on 28 September 2007, NetBank was the first banking 

firm to fail as a going concern entity in the U.S. in the recent financial crisis. The Federal Deposit 

Insurance Corporation (FDIC) took receivership of NetBank and all the insured deposit accounts 

were transferred to an assuming institution. Some days later, on 4 October 2007, Miami Valley 

Bank was also shut down by the authorities. The collapse of Miami Valley Bank was followed by 

those of Douglas National Bank and Hume Bank in early 2008. Importantly, the number of failures 

increased rapidly from 2008 onwards. In total, more than 500 collapses were recorded during the 

recent crisis. The FDIC was appointed receiver of the bankrupt institutions and this inflicted a total 

loss of $76 billion on the system. 

     Accordingly, the U.S. federal authorities -like European and other national authorities 

worldwide- provided substantial financial aid to a number of troubled banking organisations 

during the crisis while, at the same time, allowed many others to go bankrupt as going concern 
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entities. Τhe FDIC-backed resolution mechanism is designed to cope with the insolvency of 

distressed banks under either normal or unstable economic conditions, whereas TARP is viewed 

as an emergency mechanism designed to cope with bank fragility. Even though under both 

interventions small bank depositors remain fully protected, TARP government bailouts represent 

an implicit subsidy to the bank’s shareholders, which is not yet the case with FDIC-backed failures 

where shareholders are not subsidised. As documented in Gandhi and Lustig (2015), government 

guarantees in the form of bailouts protect the shareholders of large banks, but not those of small 

banks in a financial disaster. In a similar vein, Veronesi and Zingales (2010) calculate the costs 

and benefits of TARP from the perspective of big banks’ shareholders and conclude that these 

firms receive large subsidies. Hence, the question should not be bailout vs. failure, but rather 

subsidy for stockholders (via TARP) vs. only protecting depositors (via FDIC-backed failures) 

with severe consequences for the uninsured creditors and the stockholders of the failed banks. 

     Such a differential treatment of distressed banks raises some important questions: do regulators 

consider some institutions as being very important for the system -or alternatively ‘Too-Big-To-

Fail’ (TBTF)- in the sense that a collapse of any of them has to be deterred for not to trigger 

contagious defaults in the entire banking network, whereas some others are perceived as being 

‘Too-Small-To-Survive’ (TSTS) in that their failure as going concern entities has no material 

impact on their counterparts, let alone on the system as a whole? Is it the size of financial 

institutions the key determinant that makes the authorities to treat distressed banks differently, or 

it is that the failed banks lag behind in terms of performance compared to those that the authorities 

decide to financially support via TARP? To put it differently, is it that regulators are reluctant to 

support the uninsured creditors and the shareholders of some distressed banks because they 

consider these banks as being TSTS? Crucially, is there any specific threshold size below which a 
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banking firm is viewed as TSTS by regulatory authorities? And, if so, is there a relevant threshold 

size for TBTF banks? And, finally, what is the role of bank complexity in regulators’ interventions 

in the case of financial distress and how complexity interacts with size? 

     Admittedly, size lies in the very centre of banking research. Banks of different sizes follow 

diverse business models which are related to various levels of risk, increased or reduced earnings, 

higher or lower failure probabilities and carry a different weight for the financial system. 

Notwithstanding the fact that these variations have been well-documented in the extant literature, 

the still growing crisis literature, within which our study falls, has not paid the necessary attention 

to the role that size and complexity play in the decision of regulatory authorities of how to treat a 

distressed bank and its creditors. Hence, in this paper, we focus on the recent financial crisis aiming 

to provide concrete answers to the aforementioned questions. 

     We collect data for the entire population of U.S. commercial and savings banks and distinguish 

our sample banks into two key groups: the non-distressed banks, and the distressed banks 

composed by the TARP and the FDIC-backed (failed) banks. We first conduct a univariate analysis 

to compare the average size and the performance of each banking group in the years prior to the 

onset of the crisis, accounting also for the organisational and operational complexity of banks 

given the systemic implications of complexity in resolving distressed banks and the relative 

importance of complexity vs. size. The measurement of bank performance relies on the rating 

system, which has been utilised by U.S. regulators for more than two decades now to monitor the 

safety and soundness of banks. We, then, employ a multivariate technique which can endogenously 

define one or more threshold levels of an observed variable to examine whether we can specify 

one threshold size below which banks are considered by the authorities as being TSTS and a second 

one above which banks are considered to be TBTF. To put it differently, what we are modelling is 
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whether FDIC funds or TARP funds are used to support the distressed banks in the recent crisis, 

and whether the bailout extends beyond bank debts. 

     The univariate analysis suggests that the decision of regulatory authorities to choose between a 

TARP-assisted bailout and a FDIC-backed failure is more influenced by bank’s size and less 

influenced by bank’s performance, complexity, and risk-taking profile. The regression results of 

the multivariate threshold analysis reveal that the failure and TARP probabilities are, in essence, 

determined by bank size. In this context, our threshold technique endogenously specifies two cut-

off points for size: one for the TSTS banks and another one for the TBTF banks, which are 

considered to be the two sides of the same coin. Regulators choose not to bailout the shareholders 

and the uninsured creditors of a distressed bank if the bank is considered to be TSTS. From a 

market equilibrium viewpoint, the existence of these size regimes means that the free market 

outcome cannot be reached because it is the size and not the performance of banks which is the 

key decision variable for the failure and TARP probabilities. The complexity of banks are found 

to be negatively related to the probability of failure across the different size regimes, implying that 

the more complex a bank is the more likely is to receive TARP assistance and, hence, to have all 

of its creditors protected. The impact of complexity on failure is considerably stronger in the TBTF 

regime and the estimates are highly statistically significant in this regime, showing that banks 

which are perceived as TBTF are also too-complex-to-fail.  

     The paper proceeds as follows. Section 2 reviews the importance of size and complexity in the 

banking literature. The aim of this Section is not to provide an extensive review of the past and the 

current literature; rather, its key purpose is to present how size is intertwined with bank 

performance, and discuss the relevance of bank size and complexity through the lenses of the most 

influential studies. Section 3 presents our data set and outlines how it is constructed; the relevant 
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key variables and the univariate analysis we conduct are also presented in this Section. The 

multivariate threshold econometric technique we employ is fully described in Section 4. The 

regression results are presented and discussed in Section 5; a set of interesting policy implications 

drawn from the results are also offered. Section 6 is devoted to sensitivity analysis, whereas 

Section 7 provides a brief summary of our main findings and offers some concluding remarks.  

 

2. Bank size and complexity  

In September 1984, the Office of the Comptroller of the Currency (OCC) in U.S. made, for the 

first time, a public distinction between TBTF and non-TBTF banking institutions. It, specifically, 

announced that the biggest 11 from a total of approximately 14,000 banks that were in operation 

at that time were considered as being TBTF and as such they would be offered a full deposit 

insurance, whereas all the other banks would remain only partially covered. After that 

announcement, the spotlight of the relevant literature turned to shine large banking organisations 

and to examine the importance of size for the smooth functioning of the whole financial system. 

Of the most prominent studies in the early TBTF banking literature were those of O’Hara and 

Shaw (1990), Boyd and Runkle (1993), Demsetz and Strahan (1997), and Galloway et al. (1997).  

     A significant part of the current banking literature, which has been sparked by the emergence 

of the global financial crisis, focuses on the relevance of TBTF banks in the propagation of the 

crisis and its subsequent dissemination throughout the global economy. For instance, Huang et al. 

(2009) construct a framework for measuring and stress testing the systemic risk of 12 U.S. major 

commercial and investment banks. Adrian and Shin (2010) examine the procyclicality in leverage 

of the 5 biggest U.S. investment banks before the outbreak of the crisis. Patro et al. (2013) uses 

the 22 largest commercial and investment banks in U.S. to analyse the relevance of stock return 
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correlations in assessing the level of systemic risk. In a similar context, Papanikolaou and Wolff 

(2014) focus on 20 U.S. systemically important banks to study how the aforementioned modern 

activities affect the overall risk profile of banks as well as the level of systemic risk before and 

after the onset of the global financial crisis. More recently, Kanno (2015) focuses on banks with 

over $50 billion in total assets to assess systemic risk based on interbank exposures in the global 

financial system. 

     From a somewhat different perspective, De Haan and Poghosyan (2012) investigate whether 

the volatility of bank earnings during the recent crisis depends on the size of banks and the level 

of concentration in the banking industry. They document that larger banking institutions, which 

are located in highly concentrated markets are those that experience higher volatility. In a similar 

vein, Bertay et al. (2013) use an international sample of banks to examine the extent to which a 

bank’s risk profile, profitability, activity mix, funding strategy, and the level of market discipline 

depend on both its absolute and systemic size. They conclude that bank returns increase with 

absolute size and decrease with systemic size; also, that large banks are subjected to greater market 

discipline compared to smaller banks. Gandhi and Lustig (2015) investigate the asset pricing 

implications of financial shocks based on historical data of bank stock returns in the U.S. They 

document the existence of a factor in the component of bank returns, which measures the size-

dependent exposure to bank-specific tail risk. 

     Size is also employed in the literature to investigate the likely differences in the business models 

and the performance between the large banking firms and their smaller counterparts. For instance, 

size has been found to be amongst the key factors in the decision of a bank to follow a specific 

business model. Focusing on the U.S. banking market and classifying banks into different size 

classes, DeYoung et al. (2004) show that the deregulation process and the technological changes 
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of the ’80s and the ’90s gave birth to two main bank size groups: the first group consists of big 

banks, whose operation is characterised by the use of ‘hard’ information, impersonal relationships 

with their customers, low unit costs, and standardised loans; the second group contains small banks 

that collect and make use of ‘soft’ information, develop more personal relations with their 

customers, face higher unit costs, offer non-standardised loans, and provide the bulk of financing 

to small business firms. By the same token, Berger et al. (2005) find that small banks have a 

comparative advantage in making loans based on ‘soft’ information and this is due to the different 

sets of incentives in the organisational structures of small and large banks. Further, Carter and 

McNulty (2005) document an inverse relationship between the size of banking firms and the net 

return on small business lending, suggesting that smaller banks perform better than larger banks 

in the relevant loan market. On the other hand, larger banks are found to have a comparative 

advantage in credit card lending, a market characterised by impersonal relationships and 

standardised loans. 

     Over the past two decades or so, banks have turned to adopt sophisticated organisational 

structures and to follow complex business models. In the U.S., the spectrum of banking activities 

has been expanded dramatically into near- and non-bank business lines since the repeal of the 

Gramm-Leach-Bliley Act in 1999. Indeed, banks have been diversified away from the traditional 

intermediation services of deposit-taking and loan-granting into structured, market-based products 

like securitised assets and financial derivatives. Rime and Stiroh (2003) show that large banks are 

very prone to the so-called ‘universal activities’ in contrast to small and mid-sized institutions, 

which are less diversified and resemble single-line businesses. Indeed, banking activities are 

nowadays characterised by a higher degree of complexity and duress, and the business models of 

banks have become more opaque. Moreover, a number of banking institutions have multiple 
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branches across regions and prefectures and are largely involved in cross-border activity areas and, 

hence, are subject to different legal and regulatory jurisdictions. An important policy implication 

is that these complex operational and organisational structures do not facilitate the orderly 

resolutions of troubled institutions. 

     The literature on bank complexity is rather scarce. Interest on complexity has been sparked only 

after the outbreak of the global financial crisis. Caballero and Simsek (2013) conceptualise 

complexity as the uncertainty of banks about their cross exposures: banks know their own 

exposures but they are uncertain about the exposures and the health of their counterparties in their 

business network. DeYoung et al. (2013) examine the relationship between the complexity of 

failed banks and the relevant resolution process. They document a too-complex-to-fail resolution 

strategy, which lies in the inability of regulators to credibly commit to closing insolvent complex 

banks thus encouraging banks to increase their level of complexity. Cetorelli et al. (2014) introduce 

two broad measures of organisational complexity and business diversification and empirically 

assess the complexity of a large set of global banks. Their results reveal a steady growth in the 

average complexity over time. As regards the studies of Berger and Bouwman (2013) and Berger 

and Roman (2015), they both account for the degree of complexity of their sample banks in their 

empirical analyses using measures that rely on the number of bank branches and the number of 

U.S. states that a bank is active. Recently, Eisenbach et al. (2016) examined the trade-offs between 

the benefits and costs of supervision to interpret the relationship that holds between supervisory 

efforts and bank characteristics. Their findings show that more supervisory resources are spent on 

larger, more complex, and riskier banks. 
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3. Data, key variables, and univariate analysis 

3.1. Data 

We focus on U.S. commercial and savings banking institutions that file a Report on Condition and 

Income (also known as Call Report). Thrifts -i.e., savings and loans associations- are excluded 

from our empirical analysis because they file a different report (the Thrift Financial Report).1 Data 

are of quarterly frequency and extend from the beginning of 2002 (2002q1) to the end of 2012 

(2012q4) when the banking crisis in the U.S. is generally thought to have come to a halt. We 

consider the fourth quarter of 2007 (2007q4) to be the starting point of the crisis. Indeed, that was 

the time when the TED spread (the difference between the yield on the three-month London 

Interbank Offered Rate -i.e., LIBOR- and the yield on three-month U.S. Treasury bills) which is 

one of the most widely-used indicators of credit risk, widened to almost 200 basis points relative 

to a historically stable range of 10-50 basis points. We do not examine the years prior to 2002 

because the two international financial crises which erupted in East Asia and in Russia towards 

the end of the ’90s combined with the Long Term Capital Management (LTCM) crisis in late 1998 

and the dot-com bubble crisis of the early 2000s all had a considerable destabilising impact on the 

operation of international financial markets and on the U.S. banking system. 

     We begin with 8,905 active commercial and savings banking institutions that filed a Call Report 

in 2002q1. We make a distinction between non-distressed and distressed (failed and TARP) banks 

in the crisis period. After checking the data for reporting errors and other inconsistencies, we end 

up with a total of 7,704 banks of which 6,431 are non-distressed and the remaining 1,273 are 

distressed banks. Of the distressed banks, in turn, 449 were allowed to fail as going concern entities 

and 824 survived as going concern entities through TARP government support. 

                                                 
1 With the implementation of the Dodd-Frank Act and the establishment of the Office of Thrift Supervision in July 

2011, all thrifts were required to file and submit a Call Report from March 2012. 
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3.2. Non-distressed banks  

The group of non-distressed banks consists of all the banking firms that stayed afloat as going 

concern entities during the recent financial meltdown. More specifically, these banks neither 

failed, nor received a TARP assistance, nor merged with or acquired by some other institution 

throughout the entire sample period. It is important to mention here that the 46 banks which either 

failed or merged with or acquired by another bank at some later point in time that is not covered 

in our data period -that is, from 2013q1 to 2015q4- are excluded from our set of non-distressed 

banks.  

 

3.3. Distressed banks  

Distressed banks are those which either failed as going concern entities during the crisis or received 

TARP assistance as we discuss below. 

 

3.3.1. Failed banks  

Failed banks are defined as the insured commercial and savings banks that were closed requiring 

disbursements by the FDIC from the onset of the crisis in mid-to-late 2007 through the end of our 

data period. Generally, a bank is closed when regulatory authorities determine that it is critically 

undercapitalised and deem it unable to meet its obligations to depositors and others. The FDIC 

acts as a receiver and is in charge of the failure resolution process. There are two main failure 

resolution mechanisms: the ‘purchase-and-assumption’ transaction and the ‘deposit payoff’. Under 

the former one, which is the preferred and the most common resolution mechanism, the failed 

banking institution’s insured deposits are transferred to a successor institution, and its charter is 
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closed. The acquiring bank may also assume additional liabilities (mainly part or all of the 

uninsured deposits) and purchase the assets (primarily, loans) of the failed bank. Insured depositors 

become depositors of the assuming bank and obtain immediate access to their insured funds. The 

FDIC usually provides assistance to the acquirer most often in the form of loan loss sharing 

agreements. In the case of remaining assets and liabilities, these are liquidated and the liquidation 

costs are internalised. In several purchase-and-assumption transactions, the acquiring bank 

compensates the FDIC for the franchise value from the failed bank’s established customer 

relationships, which helps reduce the insurer’s resolution cost. In a deposit payoff, on the other 

hand, the FDIC pays depositors the full amount of their insured deposits directly and the failed 

bank’s charter is closed. Deposit payoffs occur when there is no bank acquirer. Accordingly, 

insured depositors are fully protected under both failure resolution mechanisms even though the 

failed bank’s charter is terminated. Typically, after insured depositors are paid, uninsured 

depositors are paid next, followed by creditors and then stockholders. In most failure cases, 

however, general creditors and stockholders are not protected, thus realising little or no recovery. 

     In total, for the period starting from 2007q4 and extending to 2012q4, there have been recorded 

396 failures of commercial banks and 53 failures of savings banks based on the relevant data 

collected from the FDIC web site.2 Out of these 449 failures, 427 were purchase-and-assumption 

transactions and 22 were deposit payoff transactions. Hence, in the vast majority of failures, the 

distressed bank was acquired by another bank via FDIC assistance. 

 

 

                                                 
2 The names of the banks, their distribution across the U.S. states and cities, the date that every failed institution ceased 

to exist as a privately-held going concern entity, the estimated assets and deposits of each institution at the time of 

failure, and the cost of every individual failure for FDIC are all available upon request. 
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3.3.2. TARP banks  

TARP has been the largest U.S. government bailout programme in history. It authorised the 

Treasury to inject loads of capital into distressed banks by purchasing senior preferred shares. 

Those injections were intended to restore the health and increase the soundness of the participated 

banks by helping them to address liquidity shortages and strengthen their capital base. Banks were 

scheduled to repay or redeem the preferred stock at an undetermined time, but the programme 

required them to pay an established dividend rate and interest rate to the Treasury as long as the 

securities were outstanding. In the context of TARP, the bailout extended beyond the debts of the 

bank in the sense that it not only protected depositors as a whole, but also sheltered creditors and 

shareholders who enjoyed implicit government guarantees.  

     The literature identifies two key phases of TARP.3 In the first phase, nine of the largest financial 

institutions were arm twisted by the authorities to participate in the programme. Indeed, on October 

14, 2008 that the Treasury announced CPP, the nine banks, which together accounted for the 55 

percent of US banks’ assets, announced that they would subscribe to the facility in a total amount 

of $125 billion. The nine institutions were Bank of America, Citigroup, JP Morgan Chase, Wells 

Fargo, Morgan Stanley, Goldman Sachs, Bank of New York Mellon, State Street, and Merrill 

Lynch. During the second phase of TARP which ended in November 14, 2008, all other publicly 

held financial institutions were eligible to apply for financial assistance. Accordingly, in the first 

phase, participation in CPP was mandatory, whereas, in the second phase, banks were not forced 

but chose to issue preferred stock after having voluntarily applied and being approved for issuance.  

     To construct the sample of TARP banks, we refer to the complete list of TARP recipients (i.e., 

both voluntary and involuntary recipients) as obtained from the U.S. Department of the Treasury. 

                                                 
3 See Calomiris and Kahn (2015) and Kim and Stock (2012) for a thorough analysis of the different phases of TARP.  
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This list discloses all the financial institutions that received TARP funds via CPP together with the 

respective transaction dates and investment amounts. We trace all commercial and savings banks 

which participated in the programme either directly, or through their parent (bank holding) 

companies. In total, we identify 736 TARP investment transactions excluding any multiple 

transactions, i.e., transactions in which a bank is involved in more than once. Out of these 736 

institutions that received capital injections, 47 were thrifts which, as earlier mentioned, are 

excluded from our analysis. This leaves 689 institutions in our sample, out of which 596 are Bank 

Holding Companies (BHCs) and 93 are commercial and savings banks. We assume that if a BHC 

was approved to participate in TARP, its subsidiary banks would have received some fraction of 

TARP funds. Out of 596 BHCs that participated in TARP, 56 were multi-BHCs, while the 

remaining 540 were mono-BHCs. We match all BHCs to their subsidiary commercial and savings 

banks by hand-matching the relevant information found in the Consolidated Financial Statements 

for Bank Holding Company Report (FR Y9-C Report) to the ‘higher-holder’ codes of the examined 

banks found in Call Reports. By doing so, we obtain a total of 731 FDIC-insured banks that 

received TARP funds via their parent holding companies. We add to this figure the 93 commercial 

and savings banks which are not linked to some BHC to construct the final sample of 824 banks 

that received TARP support.4 

 

3.4. Key variables  

We can now turn to describe the key variables that we employ in our empirical analysis. All the 

balance sheet variables are of quarterly frequency and are collected from Call Reports as found in 

the website of the Federal Reserve Bank of Chicago and that of the Federal Financial Institutions 

                                                 
4 The detailed list of these banks is available upon request. 
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Examination Council (FFIEC) Central Data Repository's Public Data Distribution. Interest rates 

and yields are collected from the Federal Reserve Board and the U.S. Department of the Treasury 

and are also of quarterly frequency. All variables and the relevant data sources are summarised in 

Appendix A. 

     Bank performance relies on the individual components of the CAMELS rating system, which 

has been utilised by U.S. regulators for more than two decades now to monitor the safety and 

soundness of individual banks. CAMELS system consists of the following six components: Capital 

adequacy, Asset quality, Management expertise, Earnings strength, Liquidity, and Sensitivity to 

market risk. We follow the relevant literature (see, e.g., Stojanovic et al., 2008; Duchin and 

Sosyura, 2012; Klomp and de Haan, 2012) to construct a vector of bank performance and risk-

taking measures, which is designed to resemble the original CAMELS components. We use the 

standard equity-to-assets ratio as an indicator of bank capital strength (CAP1); asset quality is 

measured by the ratio of non-performing loans to total loans and leases (ASSETQLT1); the quality 

of bank management is measured by managerial efficiency as calculated by the input-oriented Data 

Envelopment Analysis (MNGEXP1);5 the return on assets expressed as the ratio of total net income 

(given by the difference between total interest plus non-interest income and total interest plus non-

interest expense) to total assets is applied as a measure of earnings strength (EARN1); the ratio of 

cash and balances due from depository institutions to total deposits reflects the degree of bank 

liquidity (LQDT1); lastly, sensitivity to market risk (SENSRISK1) is proxied by the change in the 

slope of the yield curve (given by the change in the quarterly difference between the 10-year U.S. 

T-bill rate and the 3-month U.S. T-bill rate) divided by total earning assets. 

                                                 
5 The calculation of MNGEXP1 is described in Appendix B.  
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     Further, we adopt two metrics of bank complexity. We measure organisational complexity 

(ORGCOMPL) by the log of the product of the number of branches that each sample bank has and 

the number of U.S. states in which the bank has branches because banks which are more 

decentralised with a greater number of branches are characterised by more complex organisational 

structures (see Berger and Bouwman, 2013; Berger and Roman, 2015). Our second measure of 

complexity (BUSINCOMPL) captures the scope and diversity of bank business lines and relies 

upon the Bank for International Settlement methodology for the designation of globally 

systemically important banks that measures complexity using the notional value of Over-The-

Counter (OTC) derivatives, the balance sheet presence of “Level 3” assets (i.e., assets for which 

prices cannot be inferred by either markets or models), and the size of the trading and available-

for-sale securities (BCBS, 2014). We measure BUSINCOMPL as the sum of the notional amount 

of outstanding derivative contracts and the amount of credit exposure arising from recourse or 

other credit enhancements provided to the purchasers of the securitised loans, leases, and other 

assets divided by total assets (BUSINCOMPL).  

 

3.5. Univariate analysis 

We present and discuss the summary statistics on CAMELS components (i.e., CAP1, ASSETQLT1, 

MNGEXP1, EARN1, LQDT1, and SENSRISK1), bank complexity (ORGCOMPL, BUSINCOMPL) 

as well as on bank size (SIZE) measured by the book value of total assets. We proceed to make 

pairwise comparisons between the three groups of banks prior to the onset of the crisis. Towards 

this, we conduct a univariate analysis of the mean differences of the aforementioned variables 

among the three bank groups based on average quarterly data over the pre-crisis period (2002q1-

2007q3).  
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Table 1 

Summary statistics and univariate analysis 

 Non-

distressed 

(obs=6,431) 

Failed 

 

(obs=449) 

TARP 

 

(obs=824) 

Non-distressed 

vs  

Failed 

Non-

distressed 

vs  

TARP 

Failed 

vs  

TARP 

Variable 
Mean 

(Stdev) 

Mean 

(Stdev) 

Mean 

(Stdev) 

Mean diff. 

(t-statistics) 

Mean diff. 

(t-statistics) 

Mean diff. 

(t-statistics) 

CAP1 (%) 12.82 

(6.50) 

10.20 

(4.31) 

9.23 

(6.79) 

     2.62*** 

    (5.32) 

      3.59*** 

     (6.34) 

      0.97*** 

     (7.40) 

ASSETQLT1 (%) 
0.51 

(8.90) 

1.38 

(11.34) 

1.92 

(16.73) 

    -0.87*** 

   (-4.98) 

     -1.41*** 

    (-6.71) 

     -0.54*** 

    (-7.30) 

MNGEXP1 
0.76 

(2.38) 

0.75 

(1.75) 

0.64 

(9.41) 

      0.01 

    (1.34) 

      0.12** 

    (1.99) 

       0.11** 

      (1.86) 

EARN1 (%) 
0.84 

(3.04) 

0.29 

(1.43) 

0.14 

(7.87) 

     0.55*** 

    (3.48) 

     0.70*** 

    (4.51) 

       0.15*** 

      (3.65) 

LQDT1 (%) 
4.92 

(4.52) 

3.04 

(5.64) 

2.01 

(10.43) 

     1.88*** 

    (3.28) 

     2.91*** 

    (3.87) 

       1.03*** 

      (4.53) 

SENSRISK1 (%) 
10.68 

(7.43) 

10.63 

(7.99) 

17.18 

(10.63) 

      0.05 

    (1.54) 

    -6.50** 

   (-2.54) 

      -6.55** 

     (-2.51) 

SIZE (in $bn) 
0.74 

(241.84) 

0.82 

(368.89) 

9.39 

(529.23) 

    -0.08 

   (-1.43) 

    -8.65*** 

   (-8.10) 

      -8.57*** 

   (-10.53) 

ORGCOMPL 
1.25 

(144.29) 

1.42 

(113.24) 

1.64 

(91.59) 

    -0.17 

   (-1.98)** 

    -0.39 

   (-3.61)*** 

      -0.22 

    (-1.72)* 

BUSINCOMPL (%) 
17.98 

(96.30) 

18.92 

(87.50) 

35.80 

(17.38) 

    -0.94 

   (-1.67)* 

   -17.82 

   (-6.42)*** 

    -16.88 

    (-2.38)** 

This table presents the summary statistics, reporting the means of the six components of CAMELS ratings, i.e., capital 

strength (CAP1), asset quality (ASSETQLT1), quality of management (MNGEXP1), earnings strength (EARN1), 

degree of liquidity (LQDT1), sensitivity to market risk (SENSRISK1), as well as those of size (SIZE), organisational 

complexity (ORGCOMP), and business complexity (BUSINCOMP). The standard deviations of means for the 

aforementioned variables are reported in parentheses. The table also presents the results of a univariate analysis of the 

mean differences for the six CAMELS components, size, and complexity among the groups of non-distressed, failed, 

and TARP banks; the values of a t-test which captures the statistical differences in the means are reported in 

parentheses. All observations are on bank level and constitute average bank-quarter observations over the pre-crisis 

period (2002q1-2007q3). The description of variables and the relevant data sources are provided in Appendix A. 

***, **, and * correspond to 1%, 5%, and 10% significance levels for a two-tailed test, respectively. 

 

     As reported in Table 1, the non-distressed banks were on average well-capitalised in the years 

preceding the crisis with a mean equity capital ratio (CAP1) of 12.82%. The mean value for the 

capital ratio of failed banks is equal to 10.20%, while that of TARP banks is 9.23%, showing that 

the latter group experienced a relatively lower capital cushion compared to their peers prior to the 

crisis. The mean differences are all statistically significant at the 1% level. Turning to examine the 

asset quality indicator (ASSETQLT1), figures reveal that the asset portfolio of non-distressed banks 
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was the least risky compared to the relevant portfolios of the other two groups. In specific, the 

mean of ASSETQLT1 was equal to 0.51% for non-distressed banks, 1.38% for failed banks, and 

1.92% for TARP banks. Therefore, failed banks experienced a better asset quality if compared to 

that of TARP banks as they had 0.54% less non-performing loans compared to TARP institutions. 

The pairwise differences in means for ASSETQLT1 are all significant at the 1% level. Moreover, 

non-distressed banks shared very similar managerial efficiency scores (MNGEXP1) with failed 

banks (0.76 and 0.75, respectively); the reported difference of 0.01 points is found not to be 

statistically significant. On the other hand, the management of TARP banks is found to be less 

efficient by 0.12 points and 0.11 points than that of non-distressed and failed banks respectively, 

where the mean differences are statistically significant at the 5% level. Focusing on EARN1, we 

observe that TARP banks were the least profitable institutions amongst the examined ones prior 

to the outbreak of the financial crisis: they earned 0.70% less than non-distressed banks and 0.15% 

less than failed banks. Both mean differences are significant at the 1%. Further, the profitability of 

failed banks was significantly lower by 0.55% if compared to that of non-distressed banks. In 

specific, failed banks earned 0.55% less than non-distressed banks. As regards the mean liquidity 

ratio (LQDT1), this was equal to 4.92% for non-distressed banks, 3.04% for failed banks, and 

2.01% for TARP banks. That is, failed banks held fewer liquid assets than non-distressed banks, 

while TARP banks held the most illiquid portfolio of assets amongst its peers. The corresponding 

mean differences are all significant at the 1% level. To continue, non-distressed banks were, on 

average, almost equally sensitive to market risk with failed institutions the years prior to the crisis 

with an average SENSRISK1 of 10.68% and 10.63%, respectively. The reported mean difference 

of 0.05% is not found to be statistically significant. On the other hand, the average sensitivity of 

TARP banks to market risk was equal to 17.18%, revealing that this group of banks was highly 
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exposed to market-based activities. The mean differences (-6.50% and -6.55%) are significant at 

the 5%.  

     Importantly, non-distressed banks had almost the same average size (SIZE) with the failed 

institutions: $0.74 billion and $0.82 billion, respectively. In fact, the mean difference of $0.08 is 

not statistically significant. As regards TARP banks, they had total assets of $9.39 billion, being, 

on average, more than 11 times larger compared to the non-distressed or the failed banks. The 

relevant differences in means are found to be highly significant. It is no surprise that size was a 

crucial factor in providing a troubled institution with TARP money. We know that TARP -and, 

mostly, its first phase- specifically targeted only the largest banking firms to avoid any problems 

of continuity in their operations, or departures of their staff. This reflects the fact that it would 

have been very hard for the FDIC to arrange timely acquisitions of these large and complex banks 

(although it seems that they were able to do so for some very large banks during the crisis, so long 

as they were not very complex in their activities).6 

     As regards the organisational complexity (ORGCOMPL) of the three groups of banks, TARP 

banks are found to be the most complex ones, whereas non-distressed banks are the least complex 

institutions. Notably, the level of organisational complexity of failed banks, even though it is lower 

compared to that of TARP banks in numerical terms, it is not substantially different from a 

statistical viewpoint. This shows that the two groups of banks shared some similarities in their 

organisational structure in the years preceding the crisis. Turning to the business model complexity 

(BUSINCOMPL), failed banks are found to have been engaged in derivatives and securitisation 

activities to an almost equal degree with non-distressed banks. More concretely, the mean 

proportion of BUSINCOMPL is equal to 17.98% for non-distressed banks. This percentage is only 

                                                 
6 We are thankful to Charles Calomiris for making this comment.   
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0.94% lower compared to that of failed banks (18.92%) and the reported difference is marginally 

statistically significant. On the other hand, the mean value of BUSINCOMPL for TARP institutions 

equals to 35.80%, which is 17.82% and 16.88% higher than the relevant means for the groups of 

non-distressed and failed banks, respectively. The reported mean differences are highly 

statistically significant. 

     In sum, we can postulate that the size and performance of TARP banks were significantly 

different from those of their peers during the pre-crisis period. TARP banks were much larger 

institutions, which experienced lower capital ratios, riskier portfolios of assets, weaker managerial 

efficiency, lower profitability, increased illiquid assets, and higher degree of sensitivity to market 

risk. In terms of complexity, TARP banks demonstrated more complex organisational and business 

structures compared to the non-distressed banks, but not so highly different structures from a 

statistical perspective compared to those of the failed banking firms.  

     Accordingly, TARP banks were less financially sound compared to the non-distressed banks in 

the years prior to the outburst of the crisis, but, most importantly, less sound than failed banks. 

Therefore, regulators appear to have put a less heavy weight on the overall performance and 

soundness of banks in their decision to save a distressed bank or to let it go down as a going 

concern entity. As regards the level of complexity, this seems to have played an important role in 

the decision of authorities to choose between a TARP-assisted bailout and a FDIC-backed failure, 

but it does not appear to be the key determinant for this decision. Rather, authorities have put a 

heavier weight on size in taking the relevant decision, as size is considered to be the most crucial 

determinant of systemic importance. Our findings are in line with Buiter (2009) who argues that 

“…the real issue is size; a complex but small business is no threat to systemic stability; neither is 

a highly international but small business; size is the core of the problem.”  
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     The evidence provided by the univariate analysis we conduct paves the way for our research to 

employ a multivariate technique which can endogenously define one or more size threshold levels 

and can help us to examine the following two questions which are viewed as being the two sides 

of the same coin: how small a bank should be so as to be classified as TSTS by regulators, and 

how big should be in order to be considered as TBTF. 

 

4. The threshold regression model  

Threshold models, whose origins can be traced in the threshold autoregressive model of Tong 

(1983), have become increasingly popular in econometric practice both in time series and cross-

section as well as in panel data applications. Much of the relevance of threshold modelling in 

empirical research is explained by the preference policy makers have for threshold-related policies. 

To give some examples, Lensink and Hermes (2004) demonstrate how the entry of foreign banks 

in a domestic banking market depends on a threshold development level of the domestic economy. 

Fatum and Yamamoto (2014) conduct a threshold analysis on the impact of policy interventions 

of various intensities on the JPY/USD exchange rate over a twenty-year period and find that only 

interventions above some specific threshold are effective. In a very recent study, Hossfeld and 

MacDonald (2015) show that a currency can qualify as ‘safe haven currency’ on the basis of 

different country-specific threshold values for financial stress. A thorough review of papers which 

either contribute to the theory of threshold estimation and inference, or provide significant 

applications in economics and finance is provided by Hansen (2011).   

     Threshold regression models specify that individual observations can be divided into distinct 

regimes based on the value of some observed variable. In our research, we ask how small a bank 

should be to be classified as TSTS by regulators, and how big should be in order to be classified 
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as TBTF. That is, bank size is our threshold variable. The panel threshold technique we employ in 

our empirical analysis relies on that of Hansen (1999), which is appropriate for panel data and 

considers multiple thresholds. This technique allows us to divide our sample of failed and TARP 

banks into zero, one, two or more different regimes based on the certain threshold values of size. 

We first consider the single threshold model and then extend our analysis to its multiple threshold 

counterpart.  

     Our single threshold structural model has the following form:  

 

y𝑖𝑡 = 𝑎𝑖 + 𝛽′1𝑥𝑖𝑡𝐼(𝑞𝑖𝑡 ≤ 𝛾) + 𝛽′
2

𝑥𝑖𝑡𝐼(𝑞𝑖𝑡 > 𝛾)+𝛿′𝑤𝑖𝑡 + 휀𝑖𝑡        (1) 

 

An alternative way of writing Eq. (1) is: 

 

                                      y𝑖𝑡 = {
𝑎𝑖 + 𝛽′1𝑥𝑖𝑡+𝛿′𝑤𝑖𝑡 + 휀𝑖𝑡,      𝑞𝑖𝑡 ≤ 𝛾 

𝑎𝑖 + 𝛽′2𝑥𝑖𝑡+𝛿′𝑤𝑖𝑡 + 휀𝑖𝑡,      𝑞𝑖𝑡 > 𝛾
    (2) 

 

In Eqs. (1) and (2), it holds that: i=1, 2,…, N individuals and t=1, 2,…, T time periods; y𝑖𝑡is a 

scalar; the regressor 𝑥𝑖𝑡is a k-dimensional vector; 𝑤𝑖𝑡is a m-dimensional vector; the threshold 

variable 𝑞𝑖𝑡 is a scalar; γ stands for the threshold; 𝑎𝑖 is the individual fixed-effects;  휀𝑖𝑡 is the 

unobserved error term with mean zero and finite variance 𝜎2; finally, in Eq. (1), 𝐼(∙) is an indicator 

function that takes the value of 1 or 0 depending on whether 𝑞𝑖𝑡 falls short of or exceeds γ.  

     In Eqs. (1) and (2), the observations are divided into two distinct regimes depending on whether 

the value of the threshold variable, 𝑞𝑖𝑡, is smaller or larger than the threshold γ. The two regimes 

are characterised by different regression slopes, 𝛽1and 𝛽2. To identify 𝛽1and 𝛽2, it is required that 

the elements of 𝑥𝑖𝑡 are not time invariant. In a similar vein,  𝑞𝑖𝑡 and 𝑤𝑖𝑡 are also assumed not to be 
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time invariant. If 𝑞𝑖𝑡is below or above a certain value of γ, then 𝑥𝑖𝑡 has a different impact on the 

dependent variable of the model, y𝑖𝑡, with 𝛽1 ≠  𝛽2.  

     If we set x𝑖𝑡(𝛾) = (𝑥𝑖𝑡𝛪(𝑞𝑖𝑡≤𝛾)

𝑥𝑖𝑡𝛪(𝑞𝑖𝑡>𝛾)
) and 𝛽 = (𝛽1

′ , 𝛽2
′ )′, Eq. (1) can be rewritten as follows: 

 

   y𝑖𝑡 = 𝑎𝑖 + 𝛽′𝑥𝑖𝑡(𝛾)+휀𝑖𝑡               (3) 

  

After eliminating the individual bank fixed effects 𝑎𝑖 by removing the individual-specific means, 

the slope coefficient β can be estimated for any given γ by Ordinary Least Squares (OLS): 

 

     �̂�(𝛾) = (𝑋∗(𝛾)′𝑋∗(𝛾))−1𝑋∗(𝛾)′𝑌∗       (4) 

 

where 𝑋∗(𝛾) and 𝑌∗denote the data stacked over all individual banks. The vector of regression 

residuals is given by: 

 

휀̂∗(𝛾) = 𝑌∗ − 𝑋∗(𝛾)′�̂�(𝛾)        (5) 

 

Hence, the sum of squared errors can be written as follows: 

 

𝑆1(𝛾) = 휀̂∗(𝛾)′휀̂∗(𝛾) = 𝑌∗′(𝛪 − 𝑋∗(𝛾)′(𝑋∗(𝛾)′𝑋∗
(𝛾))−1𝑋∗(𝛾)′)𝑌∗      (6) 

 

The estimation of γ by least squares can be achieved by the minimisation of the concentrated sum 

of squared errors: 
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                  𝛾 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾𝑆1(γ)                       (7) 

 

Once we obtain 𝛾 ̂, we can estimate the slope coefficient by �̂� = �̂�(𝛾). The residual vector is 휀̂∗ =

휀̂∗(𝛾) and the residual variance is defined as follows: 

 

   �̂�2 =
1

𝛮(𝛵−1)
휀̂∗′휀̂∗ =

1

𝛮(𝛵−1)
𝑆1(�̂�)                     (8) 

 

To determine whether the threshold effect is statistically significant, we test the hypothesis of no 

threshold effect 𝐻0: 𝛽1 = 𝛽2. Under the null hypothesis, the model is: 

 

    y𝑖𝑡 = 𝑎𝑖 + 𝛽′1𝑥𝑖𝑡+휀𝑖𝑡                           (9) 

 

Based on the fixed effects transformation, Eq. (9) can be written as: 

 

       𝑦𝑖𝑡
∗ = 𝛽′1𝑥𝑖𝑡

∗ + 휀𝑖𝑡
∗                           (10) 

 

The OLS estimator of 𝛽1is 𝛽1, the residuals are 휀̃𝑖𝑡
∗ , and the sum of squared errors is 𝑆0 = 휀�̃�𝑡

∗′휀�̃�𝑡
∗ . 

Then, the likelihood ratio test of 𝐻0 is based on: 

 

 𝐹1 =
𝑆0−𝑆1(�̂�)

�̂�2
                        (11) 

 

Hansen (1996) suggests a bootstrap methodology to simulate the asymptotic distribution of the 

likelihood ratio test. He shows how to attain the first-order asymptotic distribution, so p-values 
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constructed from the bootstrap are asymptotically valid. For the bootstrap procedure, the regressor 

𝑥𝑖𝑡 and the threshold variable 𝑞𝑖𝑡 are given, in that their values are fixed in repeated bootstrap 

samples. We obtain a sample of size nT with replacement from the empirical distribution and create 

a bootstrap sample under the null of no threshold. This bootstrap sample is used to estimate Eq. 

(1) under 𝐻0 and 𝐻1 and to calculate the bootstrap value of the likelihood ratio statistic 𝐹1. This 

procedure is frequently repeated and the bootstrap estimate of the asymptotic p-value for 𝐹1under 

𝐻0 is the percentage of draws for which the simulated likelihood ratio statistic exceeds the actual 

statistic. If the p-value is smaller than the desired critical value, then 𝐻0 is rejected implying that 

a threshold exists. 

     In case of a threshold effect, (𝛽1 ≠ 𝛽2), the estimate 𝛾 ̂is consistent for the true value of γ, say 

𝛾0. Since the asymptotic distribution of the threshold estimate  𝛾 ̂is highly non-standard, Hansen 

(2000) uses the likelihood ratio statistic for tests on γ to form the relevant confidence intervals for 

γ. The null hypothesis is 𝐻0: 𝛾 = 𝛾0 and the likelihood ratio statistic is: 

 

𝐿𝑅1(𝛾) =
𝑆1(𝛾)−𝑆1(�̂�)

�̂�2                      (12) 

 

The null is rejected for large values of 𝐿𝑅1(𝛾0). In specific, the test rejects  𝐻0: 𝛾 = 𝛾0 at the 

asymptotic level α if 𝐿𝑅1(𝛾0)>0. The asymptotic (1 - α) confidence interval for γ is the set of 

values of γ with 𝐿𝑅1(𝛾) ≤ 𝑐(𝛼). 

     In several applications of the Hansen (1999) threshold technique, more than one thresholds are 

identified. For instance, Wang and Huang (2009) estimate the cost efficiency scores of the 

Taiwanese commercial banking sector and find that the technologies that the banks employ in their 

production function can be splitted into three different regimes based on a double threshold they 
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specify. Similarly, Ben Cheikh and Louhichi (2016) examine the role of inflation in explaining the 

degree of exchange-rate pass through into import prices and the related monetary policy issues 

based on 63 economies and provide evidence of two inflation threshold levels. In what follows, 

we extend the single threshold model (Eq. 1) to its double threshold counterpart in order to test the 

existence of a TSTS and a TBTF double size threshold. Our double threshold model takes the 

following form: 

 

y𝑖𝑡 = 𝑎𝑖 + 𝛽′1𝑥𝑖𝑡𝐼(𝑞𝑖𝑡 ≤ 𝛾1) + 𝛽′
2

𝑥𝑖𝑡𝐼(𝛾1 < 𝑞𝑖𝑡 ≤ 𝛾2) + 𝛽′3𝑥𝑖𝑡𝐼(𝛾2 < 𝑞𝑖𝑡) + 𝛿′𝑤𝑖𝑡 + 휀𝑖𝑡     (13) 

 

The two thresholds, 𝛾1and 𝛾2, are ordered so that 𝛾1 < 𝛾2. Eq. (13) can be estimated by OLS, since 

it is linear in slopes (𝛽1, 𝛽2, 𝛽3) for given (𝛾1, 𝛾2).The sum of squared errors S(𝛾1, 𝛾2) can be 

calculated based on Eq. (6) in the single threshold model and the joint least squares estimates of 

(𝛾1, 𝛾2) are by definition the values that jointly minimise S(𝛾1, 𝛾2). More concretely, the following 

sequential estimation procedure is proposed by Hansen (1999). 

     Let 𝑆1(𝛾)be the single threshold sum of squared errors as defined in Eq. (6) and let 𝛾1 be the 

threshold estimate that minimises 𝑆1(𝛾). Fixing the first-stage estimate �̂�1, the criterion for the 

second stage is: 

 

           𝑆2
𝑟(𝛾2) = {

 𝑆(𝛾1, 𝛾2)                  𝑖𝑓 𝛾1 < 𝛾2 

𝑆(𝛾2, 𝛾1)                 𝑖𝑓 𝛾2 < 𝛾1
        (14) 

 

Hence, the second-stage threshold estimate is: 

 

𝛾2
𝑟 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾2

𝑆2
𝑟(𝛾2)         (15) 
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If we hold the second-stage estimate 𝛾2
𝑟 fixed, we obtain the following criterion: 

 

                   𝑆1
𝑟(𝛾1) = {

 𝑆(𝛾1, 𝛾2
𝑟 )                  𝑖𝑓 𝛾1 < 𝛾2

𝑟 

𝑆(𝛾2
𝑟, 𝛾1)                  𝑖𝑓 𝛾2

𝑟 < 𝛾1
        (16) 

 

and the relevant estimate is: 

 

𝛾1
𝑟 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾1

𝑆1
𝑟(𝛾1)         (17) 

 

     We can now turn to determine the number of thresholds in Eq. (13): there will be either no 

thresholds, one threshold, or two thresholds. The same process applies if more than two thresholds 

are to be determined. Like we did in the single threshold case, we resort to 𝐹1as given by Eq. (11) 

to test the null of no threshold. If the null hypothesis is rejected, we need an additional test to 

distinguish between one or two thresholds. The minimised sum of squared errors form the second 

stage threshold estimate is 𝑆2
𝑟(�̂�2

𝑟) with variance estimate: 

 

      �̂�2 =
𝑆2

𝑟(�̂�2
𝑟)

𝑁(𝑇−1)
                     (18) 

 

     Therefore, the likelihood ratio statistic for a test of one versus two thresholds is:  

 

𝐹2 =
𝑆1(�̂�1)−𝑆2

𝑟(�̂�2
𝑟)

�̂�2                         (19) 
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     A bootstrap procedure is followed that produces the relevant sample. From the bootstrap 

sample, 𝐹2 is calculated, and this procedure is repeated multiple times to calculate the bootstrap p-

value. The hypothesis of one threshold is rejected in favour of two thresholds if 𝐹2is large. 

     We finally turn to construct the confidence intervals for the two threshold parameters (𝛾1, 𝛾2). 

Let:  

𝐿𝑅2
𝑟(𝛾) =

𝑆2
𝑟(𝛾)−𝑆2

𝑟(�̂�2
𝑟)

�̂�2                      (20) 

 

and 

𝐿𝑅1
𝑟(𝛾) =

𝑆1
𝑟(𝛾)−𝑆1

𝑟(�̂�1
𝑟)

�̂�2           (21) 

 

where 𝑆2
𝑟(𝛾)and 𝑆1

𝑟(𝛾)are defined in Eq. (14) and Eq. (16), respectively. The asymptotic (1 - α) 

confidence intervals for the threshold estimates are the set of values of γ with 𝐿𝑅2
𝑟(𝛾) ≤

𝑐(𝛼) and 𝐿𝑅1
𝑟(𝛾) ≤ 𝑐(𝛼). 

 

5. Estimation and results 

Our estimates are produced using the sample of distressed banks (i.e., failed and TARP banks). To 

avoid violating the exogeneity assumption of the regressors in our estimation as imposed by 

Hansen (1999), our threshold variable as well as the rest of our regressors are introduced in Eq. 

(13) with their past realisations under the thought that the latter are given before the current values 

are realised. In fact, Hansen (1999) also uses lagged regressors to ensure that the exogeneity 

condition is met in his empirical application.7 The lag structure in our analysis is determined by 

                                                 
7 A recent application of Hansen’s threshold model technique that also resorts to past realisations of regressors is that 

of Hossfeld and MacDonald (2015). 
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two of the most popular selection criteria, namely the Akaike Information Criterion and the 

Schwarz-Bayesian Information Criterion. Both criteria specify a 4-quarter lag (i.e., t – 4) structure 

to be followed. Hence, Eq. (13) is written as follows: 

 

y𝑖𝑡 = 𝑎𝑖 + 𝛽′
1

𝑥𝑖𝑡−4𝐼(𝑞𝑖𝑡−4 ≤ 𝛾1) + 𝛽′
2

𝑥𝑖𝑡−4𝐼(𝛾1 < 𝑞𝑖𝑡−4 ≤ 𝛾2) + 

+𝛽′3𝑥𝑖𝑡−4𝐼(𝛾2 < 𝑞𝑖𝑡−4) + 𝛿′𝑤𝑖𝑡−4 + 휀𝑖𝑡               (22) 

 

where i=1, 2,…, N (N=1273) distressed banks, i.e., 449 failed and 824 TARP banks, and t=1, 2,…, 

T (T=44) quarters; y𝑖𝑡is a binary scalar, which is equal to 1 if the sample bank i failed as a going 

concern entity at t and 0 if it received TARP money at t and survived the crisis; the vector 

𝑥𝑖𝑡 contains the six components of CAMELS ratings (CAP1, ASSETQLT1, MNGEXP1, EARN1, 

LQDT1, and SENSRISK1) as well as the two complexity measures (ORGCOMPL and 

BUSINCOMPL); 𝑤𝑖𝑡 contains a set of bank-specific control variables that we present below; the 

size (SIZE) threshold variable is given by 𝑞𝑖𝑡; 𝛾1and 𝛾2 stand for the two thresholds of SIZE; 𝑎𝑖 is 

the individual bank fixed-effects; 휀𝑖𝑡 is the unobserved error term with mean zero and finite 

variance 𝜎2; and, 𝐼(∙) is an indicator function that takes either the value of 1 or 0 depending on 

whether the size threshold variable 𝑞𝑖𝑡is higher or lower than 𝛾1, 𝛾2.8 

     In what follows, we present the bank-specific control variables which are included in 𝑤𝑖𝑡. 

Appendix A provides a description of these variables and the relevant data sources. To begin with, 

the relevant literature has demonstrated that connections with regulators and policy-makers have 

a considerable impact on the decision of authorities to save a bank through the extension of a 

TARP facility. We use a set of variables to capture these connections. First, we follow Blau et al. 

                                                 
8 The notation followed herein fully complies with those in Eqs. (1) and (2). 
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(2013) and resort to the Center for Responsive Politics (CRP)’s Revolving Door database to 

construct an indicator variable (POLCON) to proxy the connections that our sample banks may 

have with policy-makers. POLCON is equal to unity if a sample bank has employed, or is currently 

employing an individual who is also employed or has been employed in the federal government or 

appointed to a government advisory board, a congressional or presidential cabinet entity, or an 

independent commission. Second, we identify any connections that banks may have with 

regulatory and supervisory authorities. We follow Bayazitova and Shivdasani (2012), Duchin and 

Sosyura (2012), Li (2013), and Berger and Roman (2015) to construct an indicator variable 

(FEDCON) that is equal to unity if an executive at a sample bank was on the board of directors of 

one of the 12 Federal Reserve Banks or one of their branches either in 2008 or 2009. We first 

obtain the relevant data on the top executives of our sample BHCs from BoardEx and then match 

them to the list of directors from the Fed’s website. Third, we use House of Representatives 

committee data and follow Berger and Roman (2015) and Duchin and Sosyura (2014) to construct 

a dummy variable (COMMIT) that equals one if a sample bank is headquartered in a district of a 

House member who served on the key finance committees involved in drafting and amending 

TARP, i.e. the Subcommittee on Financial Institutions, or the Subcommittee on Capital Markets 

of the House Financial Services Committee, either in 2008 or 2009. We resort to data from the 

U.S. Census Bureau and the U.S. Library of Congress to match the sample banks with the relevant 

congressional districts using the zip codes of their headquarters. And, forth, as an additional 

measure of the ties that may exist between the financial services industry and politicians, we refer 

to the contributions of banks to federal political campaigns (CAMP). We collect data from the 

Federal Election Commission that cover contributions from Political Action Committees (PACs) 

to candidates’ election campaigns. Following Duchin and Sosyura (2012) and Bayazitova and 
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Shivdasani (2012), CAMP is an indicator that takes the value of one if a sample bank has made 

PAC contributions in the election cycle for the 2008 congressional election to the members of the 

Subcommittee on Financial Institutions and the Subcommittee on Capital Markets. 

    A number of TARP banks played the role of acquirers in the M&A deals that took place during 

the examined period but, mainly, after the outbreak of the crisis. We, therefore, resort to the 

relevant files of the Federal Reserve Bank of Chicago to investigate whether a bank has been 

involved in a M&A transaction as an acquirer to control for the effect on our dependent variable.9 

Towards this, we introduce a dummy variable in our model (MA), which is equal to unity when 

the acquirer bank i is involved in a M&A transaction and remains equal to one until the end of our 

data period. For example, if an acquisition occurred on April 15 2008 then this transaction is 

recorded in the second quarter of 2008, meaning that the binary variable MA takes the value of one 

in 2008q2 and remains as such for all the subsequent quarters. 

     Based on the geographical characteristics of our sample banks, we note that TARP banks are 

headquartered and located in terms of branching activity near salt water, that is, near the West and, 

mostly, the East U.S. Coasts. As regards the distribution of failures, the states of Arizona, 

California, Georgia, and Nevada are amongst those with the highest number of FDIC-supported 

bankruptcies. Most of the Northeastern and Southeastern states (excluding California) had either 

no or a few bank failures, whereas the Western U.S. states, which experienced a relatively larger 

decline in economic performance as measured by the GDP growth rate and the unemployment 

rate, had the highest failure rates. Further, a number of failed banks are located in rather distant, 

sparsely populated geographical districts. We, therefore, follow Jordan et al. (2011) and Berger 

and Roman (2015) and introduce a dummy indicator (MSA) which is equal to one if a bank is 

                                                 
9 The relevant data can be found in the following web page: https://www.chicagofed.org/banking/financial-institution-

reports/merger-data  

https://www.chicagofed.org/banking/financial-institution-reports/merger-data
https://www.chicagofed.org/banking/financial-institution-reports/merger-data
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located in a Metropolitan Statistical Area -an integrated economic and social unit with a recognised 

large population nucleus- and zero otherwise. The geographical location of each sample bank is 

identified through Call Reports; detailed data for the Metropolitan Statistical Areas are taken from 

the U.S. Office of Management and Budget. 

     It is well-documented in the banking literature that the behaviour and performance of the newly 

chartered banks substantially differ from those of banks in operation over a relatively long period 

of time. More specifically, once a bank first enters the market, its financial performance tends to 

lag by a considerable margin compared to that of the existing banking firms.10 That said, we 

account for the so-called de novo banks, defined as banks less than five years old by including a 

dummy (DENOVO) in our model. 

     We follow Berger and Roman (2015) and construct an indicator variable (PUBLIC) that 

captures if a bank is listed on the stock exchange. Since the decision-making units we examine are 

not holding companies, the subsidiaries of publicly traded BHCs are considered to be public. 

Banks with private placements of shares with a Committee on Uniform Securities Identification 

Procedures (CUSIP) number, banks without a stock exchange listing, and banks whose bank 

holding company is not listed at the stock exchange are treated as non-public. The data on trading 

and listing are derived from the Center for Research in Security Prices (CRSP) database. Lastly, a 

dummy variable (BHC) showing whether a sample bank is a subsidiary of a BHC is also considered 

in our empirical analysis as in Jordan et al. (2011) and Berger and Roman (2015). 

     The summary statistics which are shown in Table 2 reveal substantial and statistically 

significant differences between TARP and failed banks. We find that POLCON is significantly 

larger at the 1% level for banks that received TARP money than those that were backed by the 

                                                 
10 See, e.g., DeYoung and Hasan (1998), and DeYoung (2003) for a thorough analysis on the operational behaviour 

of de novo banks. 
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FDIC. Specifically, 7.38% of TARP institutions have employed, or are currently employing at 

least one individual, who is affiliated or has been affiliated with the federal government or some 

other cabinet entity, whereas the relevant percentage for the FDIC-backed banks is only 1.84%. 

Similarly, if we turn to examine FEDCON, we observe that TARP banks are more closely linked 

to Fed regulators and supervisors compared to their failed peers (6.31% and 1.93%, respectively). 

The difference in the means is found to be statistically significant at the 1% level. Further, 9.36% 

of the TARP banks and 3.12% of the failed banks are headquartered in a district of a House 

member who served on the key finance committees (COMMIT); the reported difference is 

significant at the 5% level. Regarding the contributions of the two groups of banks to federal 

political campaigns (CAMP), 5.42% of the TARP banks and 1.13% of the failed banks made such 

contributions and the relevant difference is highly significant.  

     An average of 27.24% of TARP banks has been involved in at least one M&A transaction as 

acquirer during the sample period, whereas the relevant percentage of failed banks is only 3.20%. 

The difference in the means of MA for the two groups of banks is significant at the 5% level. To 

continue, roughly half of the failed banks (52.27%) are located in a Metropolitan Statistical Area 

(MSA). The relevant percentage for banks that received TARP money is significantly higher at the 

5% level and is equal to 71.41%. An additional considerable difference of failed compared to 

TARP banks is that more than twice of the former group of banks are newly-chartered banks 

(DENOVO) compared to the latter group (7.61% vs. 3.20%, respectively), and that the reported 

difference in means is significant at the 1% level. Moreover, the summary statistics for PUBLIC 

show that the percentage of listed failed banks is equal to 3.29%, whereas that of listed TARP 

banks is equal to 7.56%; the mean difference is found to be statistically significant at the 5% level. 

Lastly, 12.80% of the failed banks are, on average, affiliated with a Bank Holding Company 
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(BHC). The corresponding percentage for the assisted institutions is much higher and equals to 

62.68%; the reported difference in the relevant means is significant at the 5% level. 

 

Table 2 

Summary statistics for the control variables.  

  Failed banks (obs=449) TARP banks (obs=824) 

Variable Mean Median Stdev Mean Median Stdev 

POLCON 0.0184*** 0.0000 6.73 0.0738     0.0000    12.54 

FEDCON 0.0193*** 0.0000 14.60 0.0631     0.0000    10.95 

COMMIT 0.0312** 0.0000 19.02 0.0936    0.0000    7.68 

CAMP 0.0113*** 0.0089 4.20 0.0542    0.0493    3.15 

MA 0.0032** 0.0000 2.29 0.2724 1.0000 3.02 

MSA 0.5227** 0.0000 7.45 0.7141 1.0000 10.69 

DE NOVO 0.0761*** 0.0000 27.90 0.0320    0.0000     31.84 

PUBLIC 0.0329** 0.0000 9.43 0.0756 0.0000 12.70 

BHC 0.1280** 0.0000 7.85 0.6268 1.0000 5.62 

This table presents the summary statistics, reporting the means, medians, and standard deviations 

for the control variables, which are contained in the vector 𝑤𝑖𝑡: a dummy capturing the political 

connections of banks (POLCON); a dummy for the connections of banks with the regulatory and 

supervisory authorities (FEDCON); a dummy that shows if a sample bank is headquartered in a 

district of a House member who served on the key finance committees (COMMIT); a dummy for 

banks which made PAC contributions in the 2008 elections (CAMP); a dummy for the acquirer 

banks in M&A transactions (MA); a dummy showing whether a bank is located in a MSA or in a 

rural county (MSA); a dummy for newly-chartered banks (DENOVO); a dummy for banks which are 

listed on the stock exchange (PUBLIC); and a dummy indicating whether a bank is a subsidiary of 

a BHC (BHC). The description of the control variables and the relevant data sources are provided in 

Appendix A. 

** The mean of failed banks is significantly different from that of TARP banks at the 5% level. 

*** The mean of failed banks is significantly different from that of TARP banks at the 1% level. 
 

      

We estimate Eq. (22) by linear probability OLS regression, which is robust to model 

misspecifications and, importantly, allows us to accommodate the fixed effects nature of Hansen 

(1999)’s panel threshold model. A limitation is that the error term of the linear probability model 
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휀𝑖𝑡 is heteroskedastic. We deal with this problem by obtaining estimates of the standard errors that 

are robust to heteroskedasticity by employing the White (1980)’s heteroskedasticity-consistent 

covariance matrix.  

     The number of thresholds as well as the levels of our threshold variable (SIZE) are 

endogenously determined. For the number of thresholds to be determined, our estimation allows 

for (sequentially) zero, one, two, and three thresholds. The test statistics 𝐹1, 𝐹2, and 𝐹3for testing 

zero against one, one against two, and two against three thresholds along with their bootstrap p-

values, are reported in Table 3 below. We follow Hansen (1999) and apply 300 bootstrap 

replications for each of the three bootstrap tests.   

 

Table 3 

Tests for determining the number of thresholds. 

𝐻0: no threshold vs one threshold   

𝐹1  29.830 

p-value    0.001 

(10%, 5%, 1% critical values)            (11.97, 15.18, 30.17) 

𝐻0: one threshold vs two thresholds   

𝐹2  25.620 

p-value    0.008 

(10%, 5%, 1% critical values)  (12.81, 16.04, 31.26) 

𝐻0: two vs three thresholds   

𝐹3   9.005 

p-value   0.461 

(10%, 5%, 1% critical values)  (10.05, 11.70, 20.18) 

The test statistics 𝐹1, 𝐹2, 𝐹3, their asymptotic bootstrap p-values, and the relevant critical values at 

10%, 5%, 1% levels are presented in this Table. 300 bootstrap replications are applied for each of 

the three bootstrap tests. 

 

     The test for a single threshold 𝐹1is strongly statistically significant with a bootstrap p-value of 

0.001. The test for a double threshold 𝐹2 is also highly significant with a bootstrap p-value of 

0.008. However, the test for a third threshold 𝐹3 is far from being significant since the relevant 

bootstrap p-value is equal to 0.461. In sum, the sequential test procedure provides robust evidence 

for two thresholds for bank size in our model. We will, therefore, work with this double threshold 

model in the remainder of our analysis. 
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     We now turn to obtain the estimates of the two threshold levels for our threshold variable. These 

estimates are obtained by searching through values of γ that equal the distinct values of SIZE in 

our sample. Following Hansen (1999, 2000), we ensure that a minimum number of observations 

fall into one or the other regime. We thus restrict the search to values of SIZE such that not less 

than 5% of the observations lie in each regime. The 𝛾  ̂which minimises the sum of squared 

residuals is selected.  

     As presented in Table 4 that follows, the point estimates of the two thresholds for SIZE are 

$0.402bn and $2.850bn, respectively. Hence, two thresholds are endogenously specified: one for 

the TSTS banks which is equal to $0.402bn and a second one for the TBTF banks that equals to 

$2.850bn. Accordingly, our sample banks are allocated to the following three size regimes: a TSTS 

regime that contains all banks with total assets up to $0.402bn; an intermediate regime that consists 

of all banks with total assets from $0.402bn to $2.850bn; and a TBTF regime, which includes all 

institutions with more than $2.850bn. In the TSTS regime, it is only the insured depositors and, in 

some cases, a part of uninsured depositors, debtholders, and other stakeholders who are fully bailed 

out. In the TBTF regime, on the other hand, all the stakeholders together with the shareholders are 

fully bailed out. The asymptotic 95% confidence intervals for each threshold shown in Table 4 are 

tight, reflecting little uncertainty about the nature of this clustering. 

 
Table 4 

Threshold estimates.  

    Estimate 95% confidence interval 

𝛾1    $0.402bn [0.329, 0.456] 

𝛾2    $2.850bn [2.644, 3.039] 

This Table reports the point estimates of the two size thresholds and their asymptotic 95% 

confidence interval. Estimates are expressed in US$ bn. 

 

     To obtain a graphical representation of the threshold estimates, we can draw the plots of the 

concentrated likelihood ratio functions 𝐿𝑅1(𝛾)¸ 𝐿𝑅2
𝑟(𝛾), and 𝐿𝑅1

𝑟(𝛾) against �̂�1, �̂�2
𝑟, and 𝛾1

𝑟, 
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respectively. The point estimates are the values of γ as shown in the horizontal axis in Figures 1-

3; the vertical axis displays the values of the likelihood ratio. The 95% confidence intervals 

for 𝛾2and 𝛾1can be obtained from 𝐿𝑅2
𝑟(𝛾) and 𝐿𝑅1

𝑟(𝛾)by the values of γ for which the likelihood 

ratio lies beneath the bold line. Figure 1 presents the first-step likelihood ratio function 𝐿𝑅1(𝛾) 

that is computed when we test for a single threshold. As earlier mentioned, the first-step threshold 

estimate  �̂�1is equal to $0.402bn. At this particular size level 𝐿𝑅1(𝛾) is zero, which confirms the 

existence of a single threshold at this point. A second major dip in the likelihood ratio occurs 

around the second-step threshold estimate which equals to $2.850bn. Hence, the single threshold 

likelihood estimation, as reflected in Figure 1, suggests that there is a second threshold size in the 

regression. The existence of the second threshold is confirmed in Figure 2: the relevant likelihood 

ratio is equal to zero for  �̂�2= $2.850bn. Figure 3, in turn, suggests that a third threshold is not 

likely to exist. 

Figure 1 

Graphical representation of a single threshold.  

 

In this Figure, the concentrated likelihood ratio function 𝐿𝑅1(𝛾) is plotted 

against �̂�1. The point estimates are the values of γ as shown in the horizontal axis; 

the vertical axis displays the values of the likelihood ratio. The 95% confidence 

intervals for 𝛾2and 𝛾1can be found from 𝐿𝑅2
𝑟(𝛾) and 𝐿𝑅1

𝑟(𝛾)by the values of γ for 

which the likelihood ratio lies beneath the bold line. 
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Figure 2 

Graphical representation of a double threshold.  

 

In this Figure, the concentrated likelihood ratio function 𝐿𝑅2
𝑟  is plotted against �̂�2

𝑟. 

The point estimates are the values of γ as shown in the horizontal axis; the vertical 

axis displays the values of the likelihood ratio. The 95% confidence intervals 

for 𝛾2and 𝛾1can be found from 𝐿𝑅2
𝑟(𝛾) and 𝐿𝑅1

𝑟(𝛾)by the values of γ for which the 

likelihood ratio lies beneath the bold line. 
 

Figure 3 

Graphical representation of a triple threshold. 

 

In this Figure, the concentrated likelihood ratio function 𝐿𝑅1
𝑟(𝛾) is plotted 

against �̂�1
𝑟. The point estimates are the values of γ as shown in the horizontal axis; 

the vertical axis displays the values of the likelihood ratio. The 95% confidence 

intervals for 𝛾2and 𝛾1can be found from 𝐿𝑅2
𝑟(𝛾) and 𝐿𝑅1

𝑟(𝛾)by the values of γ for 

which the likelihood ratio lies beneath the bold line. 
 

     As shown in Table 5, a total of 302 failed banks (67.26%) and a total of 98 TARP banks 

(11.90%) are classified in the TSTS regime; 122 failed banks (27.17%) and 231 TARP banks 
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(5.57%) fall into the intermediate regime, whereas 25 failed banks (28.03%) and 495 TARP banks 

(60.07%) are classified in the TBTF regime. 

 

Table 5 

Threshold size clustering of failed and TARP banks.  

Size regime Failed banks TARP banks 

TSTS regime: SIZE  ≤ $0.402bn 302 98 

 (67.26%) (11.90%) 

Intermediate regime: $0.402bn < SIZE ≤ $2.850bn 122 231 

 (27.17%) (28.03%) 

TBTF regime: $2.850bn < SIZE 25 495 

 (5.57%) (60.07%) 

This Table reports the number of failed and TARP banks which are classified into each of the three size 

regimes. The relevant percentages are reported in parentheses. 
 

In Table 6, we present the OLS estimation of our linear probability regression model (Eq. 22). The 

most commonly recognised flaw in the linear probability model (LPM) is that the fitted 

probabilities may not be bounded on the unit interval in that they can take values below zero or 

above unity. Wooldridge (2002) suggests that a straightforward check on the LPM is to test how 

many of the fitted values do not lie between zero and one. In our model, there are not more than 

1.4% of the total fitted values that lie outside the unit interval.  

 
Table 6 

Threshold regression results.  

 TSTS regime       Intermediate regime TBTF regime  

 SIZE ≤ $0.402bn $0.402bn < SIZE ≤ $2.850bn   $2.850bn < SIZE  

Variable     

CAP1 
  -0.049** 

(0.024) 

    -0.050*** 

(0.010) 

  -0.071** 

(0.032) 
 

ASSETQLT1 
   0.133** 

(0.062) 

      0.138*** 

(0.037) 

    0.086** 

(0.040) 
 

MNGEXP1 
   -0.041** 

 (0.020) 

  -0.038** 

(0.017) 

  -0.059** 

(0.029) 
 

EARN1 
  -0.103** 

(0.047) 

    -0.095*** 

(0.024) 

  -0.147** 

(0.073) 
 

LQDT1 
-0.033* 

(0.018) 

    -0.035*** 

(0.010) 

  -0.069** 

(0.033) 
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SENSRISK1 
   0.102** 

(0.047) 

     0.098*** 

(0.022) 

 0.052* 

(0.028) 
 

ORGCOMPL 
-0.054* 

(0.029) 

-0.032 

 (0.038) 

     -0.115*** 

(0.017) 
 

BUSINCOMPL 
-0.071 

(0.052) 

-0.040 

 (0.037) 

     -0.144*** 

(0.025) 
 

POLCON    
      -0.108*** 

      (0.025) 

FEDCON    
      -0.129*** 

      (0.037) 

COMMIT    
      -0.052** 

      (0.023) 

CAMP    
      -0.042** 

      (0.017) 

MA    
      -0.026** 

      (0.010) 

MSA    
      -0.074*** 

      (0.020) 

DENOVO    
       0.040** 

      (0.017) 

PUBLIC    
       -0.054*** 

       (0.008) 

BHC    
       -0.010 

       (0.013) 

𝑅2 0.19 

This table presents the estimation results of the multiple threshold regression model (Eq. 22) for the three bank size 

(SIZE) regimes which are endogenously determined by our model: SIZE ≤ $0.402bn, $0.402bn < SIZE ≤ $2.850bn, 

and $2.850bn < SIZE. The dependent variable is equal to 1 if a sample bank failed as a going concern entity and 0 if 

it received TARP money and survived the crisis. The main explanatory variables are: capital strength (CAP1), asset 

quality (ASSETQLT1), quality of management (MNGEXP1), earnings strength (EARN1), degree of liquidity (LQDT1), 

and sensitivity to market risk (SENSRISK1). The set of control variables includes: organisational complexity of banks 

(ORGCOMPL); bank business model complexity (BUSINCOMPL); a dummy capturing the political connections of 

banks (POLCON); a dummy for the connections of banks with the federal regulatory and supervisory authorities 

(FEDCON); a dummy that shows if a sample bank is headquartered in a district of a House member who served on 

the key finance committees (COMMIT); a dummy for the banks which made PAC contributions in the 2008 election 

cycle (CAMP); a dummy for acquirer banks in M&A transactions (MA); a dummy showing whether a bank is located 

in a MSA or in a rural county (MSA); a dummy for newly-chartered banks (DENOVO); a dummy variable for banks 

which are listed on the stock exchange (PUBLIC); and a dummy indicating whether a bank is a subsidiary of a BHC 

(BHC). All observations are on bank level, constitute bank-quarter observations, and cover the entire data period, 

which extends from 2002q1 to 2012q4. All the explanatory variables are lagged by four quarters to address possible 

endogeneity concerns. The description of each variable and the relevant data sources are included in Appendix A. 

White heteroskedasticity-robust standard errors are reported in parentheses. 

***, **, * correspond to 1%, 5%, and 10% level of significance respectively for a two-tailed distribution 
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     As Table 6 displays, the estimated coefficients on CAMELS components are all statistically 

significant and their signs remain unchanged across the three size regimes. Considering that a 

positive (negative) sign indicates an increase (decrease) in failure probability, the regression results 

demonstrate that more capitalised banks are less likely to fail, or, to put it differently, banks which 

are highly levered are more likely to go bankrupt. Further, low asset quality is found to increase 

the failure probability, while managerial efficiency has a negative impact on the examined 

probability. The latter relationship is also true for banks which are more profitable as well as for 

those that hold a larger proportion of liquid assets in their portfolios. Lastly, increased sensitivity 

to market risk is found to be positive linked with the likelihood of failure.  

     The linear probability model has the advantage of allowing a straightforward interpretation of 

the regression coefficients. The estimated parameters measure the percentage change in the 

probability of failure resulting from a unit change in the variable under scrutiny, holding all other 

factors fixed. This can be interpreted as the partial effect on the failure probability. If we focus our 

discussion of the regression results on the two size regimes of primary interest, that is, the TSTS 

and the TBTF regimes, we note that, although the estimates of the CAMELS components share 

the same signs in both regimes, the magnitude of the estimates of each of the six components 

substantially differs between the two regimes. In specific, TSTS banks experience higher estimated 

coefficients on the CAMELS components which are positively related with the failure probability 

(i.e., ASSETQLT1 and SENSRISK1), and lower coefficients on the components which are 

negatively related with the relevant probability (i.e., CAP1, MNGEXP1, EARN1, and LQDT1). For 

instance, if ASSETQLT1 increases by 1 unit, the failure probability is enhanced by 13.3% for TSTS 

banks but only by 8.6% for TBTF banks. On the other hand, if CAP1 increases by 1 unit, the 

probability of failure decreases by 4.9% for TSTS banks and by 7.1% for TBTF banks. This is to 
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say, a TSTS bank which has exactly the same overall performance with a TBTF bank based on the 

examined regulatory ratings system is more likely to fail due to the different weights put on each 

CAMELS component and which are in favour of TBTF banks. Our threshold variable, bank size 

(SIZE), which specifies the three size regimes is the one that provides us with the different weights 

that regulators implicitly assign to CAMELS components for each regime. Hence, regulators are 

viewed as using these inferred weights to prune out the TSTS banks as going concern entities by 

assigning a higher weight to all the ‘bad’ CAMELS components (i.e., ASSETQLT1 and 

SENSRISK1) and a lower weight to all the ‘good’ CAMELS components (i.e., CAP1, MNGEXP1, 

EARN1, and LQDT1) of these banks. In the case of TBTF banks, on the other hand, they assign 

the opposite weights to the relevant CAMELS components in order to keep TBTF banks alive as 

going concerns, thus bailing out their shareholders together with other creditors. Hence, we can 

argue that the regulatory framework unduly affects the TSTS banks and their shareholders, even 

though these banks have performed relatively better compared to TBTF banks as demonstrated 

earlier in our univariate analysis.  

     We further observe that the estimates of the CAMELS components in the TSTS and TBTF 

regimes are less statistically significant if compared with the relevant estimates in the intermediate 

regime. This shows that the overall performance of banks plays a slightly less important role for 

the failure and TARP probabilities in the two extreme regimes compared to the role that 

performance indicators play in the intermediate regime.  

     Importantly, the existence of the two extreme size regimes implies that market clearance is not 

likely to occur in the case of a financial turmoil under the existing bank resolution and intervention 

mechanisms. The market outcome is indeed expected to be distorted as it is not the performance 

of banks that mainly determines the probability of a bank to fail or to stay afloat. Poorly performed 
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banks remain alive due to an exogenous intervention, banishing others that perform relatively 

better. In other words, performance is not the key indicator for a bank to survive or to fail; to the 

contrary, it is bank size, or, more accurately, the size regime in which a bank is clustered, which 

essentially determines the failure probability. 

     In sum, we document that size is the key determinant that classifies banks into the two different 

regimes and makes the authorities to treat distressed banks differently. Indeed, regulators appear 

to follow different standards in supporting distressed banks based on their size. They appear to be 

reluctant to help some distressed banks to survive as going concern entities since they consider 

them as being TSTS regardless of their relative performance. On the other hand, they provide 

financial support to some other banks, which are perceived as being TBTF thereby helping them 

to survive as going concern entities even though their performance is relatively worse compared 

to that of TSTS banks. This key finding is in line with the main argument of Goodhart and Huang 

(2005) according to which it is optimal for supervisory and regulatory authorities to rescue those 

banks whose size is above some threshold level. We thus suggest that regulators should revise their 

implied weighting scheme on the ratings system they utilise to evaluate banks’ overall performance 

so as to “push” banks above the TSTS threshold and below the TBTF threshold. 

     As regards the complexity variables (ORGCOMPL, BUSINCOMPL), both are negatively 

linked to the probability of failure across the three size regimes. This implies that the more complex 

a bank is, the more likely is to receive TARP assistance thus having all of its creditors protected. 

However, the magnitude of complexity on failure is considerably higher in the TBTF regime. 

Indeed, the organisational (operational) complexity of a TBTF bank reduces the failure likelihood 

by 11.5% (14.4%), whereas the relevant percentages for TSTS banks are 5.4% and 7.1%, 
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respectively. Notably, estimates are highly statistically significant only for the TBTF regime, 

showing that banks which are perceived as TBTF are also too-complex-to-fail.  

     Banks have lately turned to be too complex for insiders, but mostly for outsiders like regulators 

to understand. Bank officers, having to deal with these complexities, may struggle to manage every 

aspect of their business effectively. Generating a report that an outsider could comprehend and use 

as the basis for regulation may not be an easy task, so that additional agency problems are 

introduced into complex financial companies. Further, considering that shareholders are those who 

affect the risk appetite of their banks as evidence in the literature shows that boards’ decisions 

create value for shareholders and largely represent their risk preferences, the latter agents may not 

only tolerate but also support the increase in size and complexity, as they feel that in case their 

bank gets into trouble, regulators will be more likely to keep their bank afloat. It is indeed unclear 

to regulators what the consequences of complex bank failures would be, so that, when push comes 

to shove, complex TBTF banks are more likely to be bailed out in full as we demonstrate in our 

model, which is not what happens for complex TSTS financial institutions. In short, the too-

complex-to-fail problem may exacerbate the problems caused by the TBTF problem. This issue 

can be addressed partly through improved resolution procedures for TBTF distressed banks based 

on the relevant size threshold specified in our model; yet, it is rather unlikely that very large and 

extremely complex fragile banks will ever be treated precisely as small institutions are. 

     A serious problem stemming from the difficulty of regulators to implement formal resolution 

practices on TBTF financial institutions as a result of the size and the complexity of these 

institutions. The implicit subsidy which is encrypted in TARP-type bailouts creates strong 

incentives to the shareholders in TBTF banks to ask for even higher risks and for leverage 

maximisation. Our results show that this moral hazard phenomenon has been further amplified in 
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recent years as banks have been able to push into modern and more complex organisational 

structures and activities thus broadening their scope. The nature of these complexities has made it 

very difficult for regulatory authorities to keep pace with the changes and analyse the implications 

of the failure of a TBTF bank thus choosing to keep these banks alive at the expense of 

shareholders of TSTS banks for which a FDIC-backed intervention is deemed to be preferable.  

     In a similar vein, bank managers also have strong incentives to respond to the existence of 

TSTS and TBTF size regimes by adopting a moral hazard behaviour. More specifically, it is in the 

interest of managers to shape and follow strategies that focus on the aggressive size growth of their 

banks knowing that the bigger and the more complex a bank becomes the more likely is to receive 

a TARP-style and not a FDIC-backed assistance and, therefore, not losing its charter. In line with 

this, Hakenes and Schnabel (2010) establish a link between size and performance by showing that 

banks which are not considered by authorities to be systemically important may turn to take higher 

risk, especially when the bailout probability of those banks which are protected by the system is 

increased.  

     We now turn to examine the effect of control variables on the likelihood of failure. A bank’s 

political connections as captured by POLCON exert a significantly negative impact on failure as 

they lower the relevant probability by 10.8%. In line with this finding, Dunchin and Sosyura (2012) 

suggest that the political connections of distressed banks was a major determinant in the 

distribution of TARP funds. By the same token, Bayazitova and Shivdasani (2012) find that the 

TARP infusions were provided to those banks that posed systemic risk, faced high expected 

financial distress costs, and were politically well-connected. Hence, the shareholders of banks 

which are involved in the political process to a greater extent are more likely to receive a 

favourable treatment and being bailed out by the authorities together with uninsured depositors 



46 

 

and other junior creditors. Along the same lines, we find that when a bank is more connected to 

regulators (FEDCON) then the failure probability of this banks is significantly reduced by 12.9%. 

Moreover, a connection to a House member serving on key finance committees involved in 

drafting and amending TARP (COMMIT) is associated with a statistically significant decrease of 

5.2 percentage points in the likelihood of failure. In addition, our results reveal that contributions 

to political parties campaigns (CAMP) significantly lower the chance of a bank being let to fail as 

a going concern by 4.2%. 

     When a bank is involved as an acquirer in a M&A transaction (MA), this significantly reduces 

its failure likelihood by 2.6%. If a sample bank is located in some MSA, then it is less likely to 

fail. Indeed, the failure likelihood is reduced by 7.4%. The latter finding is confirmed by the 

geographical characteristics of our data set: a large number of failed banks is located in rural 

counties and not near the East and West Coasts of the U.S. These banks concentrate their activity 

in the mainland and, more specifically, in states like Iowa, Nebraska, and Utah. Most of the 

Northeastern and Southeastern states (excluding California) had either no or a few bank failures, 

whereas the Western U.S. states, which experienced a relatively larger decline in economic 

performance as measured by the GDP growth rate and the unemployment rate, had the highest 

bank failure rates. 

     As expected, newly-chartered banks are more likely to fail (4.0%), whereas banks which are 

publically traded are found to be less likely to fail (-5.4%). The latter result is in line with the 

results obtained thus far: TBTF banks are those which are typically publically traded in contrast 

with their TSTS counterparts which are not listed on the stock exchange market. Further, there is 

no statistically significant relation between a bank which is a subsidiary of a BHC and the 

probabilities under scrutiny. 
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6. Sensitivity analysis  

We now move to examine the sensitivity of our baseline regression results. To this end, we use a 

set of alternative variables to construct CAMELS ratings. The main reason of doing so is because 

the components of CAMELS are kept confidential from regulators and, hence, it is crucial to test 

the sensitivity of our baseline regression results to a set of alternative CAMELS variables. Capital 

adequacy is measured by the ratio of Tier 1 regulatory capital to total risk-weighted assets (CAP2); 

asset quality is captured by the restructured and outstanding balances of loans and lease financing 

receivables that the bank has placed in nonaccrual status divided by total loans and leases 

(ASSETQLT2); management expertise is proxied by the total operating income calculated by the 

sum of interest income and non-interest income as a fraction of the total earning assets 

(MNGEXP2) which is a typical measure of operating efficiency in the banking literature (see, e.g., 

Lane et al., 1986); the return on equity given by the ratio of total net income to total equity capital 

is utilised to measure banks’ earnings (EARN2); the ratio of federal funds purchased and securities 

sold under agreements to repurchase to total assets (LQDT2) is employed to measure the degree 

of liquidity of the sample banking firms; and the sensitivity to market risk (SENSRISK2) is proxied 

by the market interest rate risk defined as the quarterly standard deviation of the day-to-day 3-

month U.S. T-bill rate divided by total earning assets. We also replace ORGCOMPL and 

BUSINCOMPL with a measure of complexity that accounts for the cross-border activities of the 

sample banks. This is given by the ratio of balances due from banks in foreign countries and foreign 

central banks to cash and balances from depository institutions (CROSSCOMPL). 

     Clearly, the first phase of TARP was driven by the very large size of banks and perhaps the 

interaction of size and complexity. We account for the impact of the involuntary participation in 

TARP by excluding the nine banks of the first phase from our analysis to alleviate any concerns 
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that the decision of U.S. Treasury to force those banks to receive financial assistance was based 

on different motivations. Hence, our sample now consists of 815 instead of 824 TARP banks. 

     We again estimate Eq. (22) by linear probability OLS regression based on heteroskedasticity-

robust standard errors ensuring that not less than 5% of the total observations would fall into any 

of the estimated regimes.11 Instead of 300 bootstrap applications, we now apply 1,000 replications 

for each of the three bootstrap tests. As Table 7 reveals, the test for a single threshold 𝐹1and that 

of a double threshold 𝐹2 are both significant with bootstrap p-values of 0.001, and 0.009, 

respectively. However, as in our baseline regression analysis, the test for a third threshold 𝐹3 is far 

from being significant since the relevant bootstrap p-value equals to 0.527. We, therefore, confirm 

the existence of two thresholds for bank size in our model. 

Table 7 

Tests for determining the number of thresholds. 

𝐻0: no threshold vs one threshold   

𝐹1  27.104 

p-value    0.001 

(10%, 5%, 1% critical values)            (11.86, 13.79, 28.96) 

𝐻0: one threshold vs two thresholds   

𝐹2  21.792 

p-value    0.009 

(10%, 5%, 1% critical values)  (11.05, 14.74, 25.28) 

𝐻0: two vs three thresholds   

𝐹3   7.017 

p-value   0.527 

(10%, 5%, 1% critical values)  (8.33, 10.08, 17.53) 

The test statistics 𝐹1, 𝐹2, 𝐹3, their asymptotic bootstrap p-values, and the relevant critical values at 

10%, 5%, 1% levels are presented in this Table. 1,000 bootstrap replications are applied for each of 

the three bootstrap tests. 

 

     Further, as shown in Table 8, the point estimates of the two thresholds for SIZE we obtain are 

equal to $0.384bn and $2.919bn, respectively. Therefore, our sample banks are endogenously 

allocated to the following three size regimes: a TSTS regime that contains all banks with total 

                                                 
11 As an additional robustness test, we allow the minimum number of observations that lie in each regime to be equal 

to the 2.5% of total observations. The results we obtain are very similar to those obtained in the baseline analysis. The 

estimated TSTS size threshold is found to only slightly decrease, whist the TBTF threshold is found to slightly 

increase. 
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assets up to $0.384bn; an intermediate regime that consists of all banks with total assets from 

$0.384bn to $2.919bn; and a TBTF regime which includes all institutions with more than 

$2.919bn.  

 

Table 8 

Threshold estimates.  

    Estimate 95% confidence interval 

𝛾1    $0.384bn [0.305, 0.418] 

𝛾2    $2.919bn [2.659, 3.024] 

This Table reports the point estimates of the two size thresholds and their asymptotic 95% 

confidence interval. Estimates are expressed in US$ bn. 

 

     As presented in Table 9, 296 failed banks (65.92%) and 93 TARP banks (11.41%) are classified 

in the TSTS size regime; 128 failed banks (28.51%) and 242 TARP banks (29.69%) fall into the 

intermediate regime; and, 25 failed banks (5.57%) and 480 TARP banks (58.90%) are classified 

in the TBTF regime. 

Table 9 

Threshold size clustering of failed and TARP banks. 

Size regime Failed banks TARP banks 

TSTS regime: SIZE  ≤ $0.384bn 296 93 

 (65.92%) (11.41%) 

Intermediate regime: $0.384bn < SIZE ≤ $2.919bn 128 242 

 (28.51%) (29.69%) 

TBTF regime: $2.919bn < SIZE 25 480 

 (5.57%) (59.90%) 

This Table reports the number of failed and TARP banks which are classified into each of the three size 

regimes. The relevant percentages are reported in parentheses. 
 

     The estimation results of our sensitivity analysis are consistent with those of our baseline 

analysis. As Table 10 reports, the estimates of the CAMELS components are all statistically 

significant and their signs remain homogeneous across the three size regimes showing that banking 

firms with illiquid and risky assets, inadequate equity capital, poor management, low levels of 

earnings, and high sensitivity to market risk are more likely to fail as going concerns. Importantly, 

the TSTS banks are found to experience higher estimated coefficients on the CAMELS 

components which are positively linked to the failure probability and lower coefficients on the 
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components which are negatively related with the relevant probability. This implies that regulators 

treat TSTS banks differently from TBTF banks: the failure probability is higher for a TSTS bank 

compared to that of a TBTF bank even if the performance of the two banks is the same. This is 

due to the different weights that regulators implicitly put on each CAMELS component and which 

are in favour of the TBTF banks. Moreover, in line with the results of our baseline analysis, the 

estimates of the CAMELS components in the TSTS and TBTF size regimes are found to be less 

statistically significant if compared with the relevant estimates in the intermediate regime. This 

implies that size -and not performance- is the key factor that makes the authorities to treat 

distressed banks differently. Overall, size appears to be the most important determinant of failure 

and TARP probabilities in the two extreme regimes.   

     The complexity variable (CROSSCOMP) is negatively linked to failure probability across the 

three size regimes, showing that banks which are more involved in cross-country transactions are 

more likely to receive TARP money and to remain alive as going concerns. The impact of 

complexity on failure is substantially higher in the TBTF regime compared to the other two 

regimes, and estimates are statistically significant only for banks that belong to this regime. Citi is 

maybe the most tangible example that provides strong support to our results. It had nearly 2,500 

subsidiaries prior to the crisis and operated in 84 countries (Herring and Carmassi, 2010). It was 

so troubled that it was allowed by regulators to participate in both phases of TARP and also to 

receive additional funding through more junior forms of investment by the government.12 

     Our estimation results remain robust in respect to all the control variables we employ in our 

model. Importantly, we corroborate that better-connected banks are significantly more likely to 

receive TARP money. A bank’s connections with politicians, political parties, or regulators exert 

                                                 
12 Calomiris and Khan (2015) describe the Treasury’s investments in Citi in detail.  
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a significantly negative impact on failure as they lower the relevant probability. This is to say, 

regulators are more likely to provide a TARP support to a distressed banking firm which is well-

connected, thus saving all of its creditors. This result holds for all the four relevant variables either 

at the 1% level of significance (POLCON and FEDCON), or at the 5% level (COMMIT and 

CAMP).  

 

Table 10 

Threshold regression results-sensitivity analysis. 

 TSTS regime       Intermediate regime TBTF regime  

 SIZE ≤ $0.384bn $0.384bn < SIZE ≤ $2.919bn   $2.919bn < SIZE  

Variable     

CAP2 
  -0.052** 

(0.025) 

    -0.050*** 

(0.012) 

  -0.080** 

(0.038) 
 

ASSETQLT2 
   0.130** 

(0.053) 

      0.129*** 

(0.025) 

    0.076** 

(0.033) 
 

MNGEXP2 
  -0.044** 

(0.021) 

  -0.035** 

(0.017) 

  -0.068** 

(0.032) 
 

EARN2 
  -0.111** 

(0.052) 

    -0.110*** 

(0.027) 

-0.155* 

(0.083) 
 

LQDT2 
-0.029* 

(0.016) 

    -0.031*** 

(0.008) 

  -0.070** 

(0.029) 
 

SENSRISK2 
   0.109** 

(0.039) 

     0.104*** 

(0.016) 

    0.058** 

(0.028) 
 

CROSSCOMPL 
-0.078 

(0.049) 

-0.053 

 (0.044) 

     -0.130*** 

(0.036) 
 

POLCON    
      -0.126*** 

      (0.034) 

FEDCON    
      -0.132*** 

      (0.041) 

COMMIT    
      -0.049** 

      (0.024) 

CAMP    
      -0.051** 

      (0.022) 

MA    
      -0.020** 

      (0.009) 

MSA    
      -0.073*** 

      (0.017) 
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DENOVO    
        0.042** 

       (0.019) 

INVOL     

PUBLIC    
       -0.050*** 

       (0.013) 

BHC    
       -0.011 

       (0.015) 

𝑅2 0.22 

This table presents the estimation results of the multiple threshold regression model (Eq. 22) for the three bank size 

(SIZE) regimes which are endogenously determined by our model: SIZE ≤ $0.384bn, $0.384bn < SIZE ≤ $2.919bn, 

and $2.919bn < SIZE. The dependent variable is equal to 1 if a sample bank received no TARP funds and went 

bankrupt and 0 if a bank received TARP money and survived the crisis. The alternative explanatory variables we use 

in the sensitivity analysis we conduct are: capital strength (CAP2), asset quality (ASSETQLT2), quality of management 

(MNGEXP2), earnings strength (EARN2), degree of liquidity (LQDT2), and sensitivity to market risk (SENSRISK2). 

The set of control variables includes: cross-border bank complexity (CROSSCOMPL); a dummy capturing the political 

connections of banks (POLCON); a dummy for the connections of banks with the federal regulatory and supervisory 

authorities (FEDCON); a dummy that shows if a sample bank is headquartered in a district of a House member who 

served on the key finance committees (COMMIT); a dummy for the banks which made PAC contributions in the 2008 

election cycle (CAMP); a dummy for acquirer banks in M&A transactions (MA); a dummy showing whether a bank 

is located in a MSA or in a rural county (MSA); a dummy for newly-chartered banks (DENOVO); a dummy variable 

for banks which are listed on the stock exchange (PUBLIC); and a dummy indicating whether a bank is a subsidiary 

of a BHC (BHC). All observations are on bank level, constitute bank-quarter observations, and cover the entire data 

period, which extends from 2002q1 to 2012q4. All the explanatory variables are lagged by four quarters to address 

possible endogeneity concerns. The description of each variable and the relevant data sources are included in Appendix 

A. White heteroskedasticity-robust standard errors are reported in parentheses. 

***, **, * correspond to 1%, 5%, and 10% level of significance respectively for a two-tailed distribution     

 

7. Concluding remarks  

In the recent financial crisis, the U.S. regulatory authorities provided substantial financial support 

to some distressed banks through TARP, whilst at the same time let several others to go bankrupt 

as going concern entities via FDIC-backed failures. Even though under both government 

interventions small retail depositors do not lose a penny, TARP government bailouts represent an 

implicit subsidy to the bank’s shareholders, which is not yet the case with FDIC-backed failures 

where shareholders as well as other creditors are not subsidised. In this paper, we aim to shed 

ample light on this non-uniform policy by focusing on size as well as the complexity, performance 

and risk profile of distressed banks with the utmost purpose to establish a double size threshold 

that can explain why these banks are treated differently by regulators. 
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     The results of the univariate analysis we conduct confirm that authorities do not follow a 

homogeneous treatment of distressed banks. We demonstrate that banks that the FDIC took down 

have performed better than those that received TARP assistance and remained afloat. Further, we 

show that the latter banks were larger and more complex compared to the former ones, even though 

their degree of complexity was not highly significantly different from that of failed banks. Taken 

together, our results suggest that the decision of regulatory authorities to choose between a TARP-

assisted bailout and a FDIC-backed failure is more influenced by the bank’s size and whether this 

falls below some threshold level and less influenced by the bank’s complexity, performance and 

risk appetite.  

     Our multivariate threshold regression analysis lends strong support to the aforementioned 

postulate by revealing that the failure and TARP probabilities are essentially determined by bank 

size, where two size thresholds are endogenously specified: one for the TSTS banks and a second 

one for the TBTF banks, which are considered to be the two sides of the same coin. Our threshold 

variable, bank size, provides us with the different weights that regulators implicitly assign to 

CAMELS components. A TSTS bank that has the same overall performance with a TBTF bank is 

more likely to fail as a going concern entity due to the different weights put on each CAMELS 

component and which are in favour of TBTF banks. That is, regulators appear to be reluctant to 

bailout the shareholders and the uninsured creditors of a distressed bank if the bank is considered 

to be TSTS. From a market equilibrium point of view, the existence of the two extreme size 

regimes means that the free market outcome cannot be reached. This occurs because it is the size 

of banks and not their performance which is the key decision variable for the failure and TARP 

probabilities, implying that banks of lower performance remain alive due to an exogenous 

intervention, banishing others that perform relatively better. 
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     The organisational and operational complexity of banks are found to be negatively linked to 

the probability of failure across the different size regimes, implying that the more complex a bank 

is the more likely is to receive TARP assistance and, hence, to have all of its creditors fully 

protected. However, the magnitude of complexity on failure is considerably higher in the TBTF 

regime. In addition, estimates are highly statistically significant only in the TBTF regime, showing 

that banks which are perceived as TBTF are also too-complex-to-fail. The latter findings combined 

with those on bank size provide strong incentives to bank managers to shape strategies towards 

the size expansion and the increase in complexity of their banks thus adopting a moral hazard 

pattern of management and administration. In other words, banks are incentivised to make 

themselves big and complex enough not to be left to fail by regulators as going concern entities. 

In fact, this moral hazard implication is twofold: on the one hand, managers will deliberately try 

to escape placing their banks into the TSTS regime, and, on the other, the shareholders and the 

institutional creditors of big and complex banks will reward them with lower borrowing costs for 

being placed in the TBTF regime.  

     When bank size takes values smaller than the critical TSTS threshold size or exceeds the TBTF 

threshold, the banking sector enters a zone of vulnerability. In the case of a considerable financial 

turmoil, like that of 2007-8, regulatory authorities may confront the dilemma to let a number of 

TSTS banks to collapse which incurs a considerable cost for the economy or to provide substantial 

financial support to TBTF banks. In view of this dilemma, authorities can resort to the two size 

thresholds we determine in our research to formulate the necessary regulatory and supervisory 

policies to reduce the bankruptcy and bailout burdens and mitigate the relevant risks that exert a 

considerable destabilising impact on the entire system by taking pre-emptive measures to avoid 

bank size from crossing the specified critical threshold values. 
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Appendix A 

Variables and data sources.  

Variable  Abbreviation Definition Data source 
    

CAMELS components    

Capital adequacy 
CAP1 The ratio of book equity capital to total assets 

Call Reports  

CAP2 The ratio of regulatory (Tier 1) capital to total risk-weighted assets 

   

Asset quality 

ASSETQLT1 The ratio of non-performing loans to total loans and leases  

ASSETQLT2 
The ratio of restructured and outstanding balances of loans and lease financing 

receivables that the bank has placed in nonaccrual status to total loans and leases 

   

Management expertise 

MNGEXP1 Managerial efficiency calculated using the input-oriented DEA model  

MNGEXP2 
The ratio of total operating income calculated as the sum of interest income and 

non-interest income to total earning assets 

   

Earnings strength 

EARN1 
The ratio of total net income given by the difference between total interest plus 

non-interest income and total interest plus non-interest expense to total assets 

EARN2 

The ratio of total net income given by the difference between total interest plus 

non-interest income and total interest plus non-interest expense to total equity 

capital 

   

Liquidity 

LQDT1 The ratio of cash and balances due from depository institutions to total deposits 

LQDT2 
The ratio of federal funds purchased and securities sold under agreements to 

repurchase to total assets 

Sensitivity to market risk SENSRISK1 

The change in the slope of the yield curve (given by the change in the quarterly 

difference between the 10-year U.S. T-bill rate and the 3-month U.S. T-bill rate) 

divided by total earning assets. 

Federal Reserve Board  

& 

U.S. Department of the 

Treasury 

  SENSRISK2 
Market interest rate risk (defined as the quarterly standard deviation of the day-

to-day 3-month U.S. T-bill rate) divided by total earning assets. 
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Threshold variable    

Bank size SIZE The book value of total assets Call Reports 

Bank complexity    

Organisational complexity ORGCOMPL 
The log of the product of the number of branches that each sample bank has and 

the number of U.S. states in which the bank 

Call Reports Business complexity BUSINCOMPL 

The sum of the notional amount of outstanding derivative contracts and the 

amount of credit exposure arising from recourse or other credit enhancements 

provided to the purchasers of the securitised loans, leases, and other assets 

divided by total assets 

Cross-border complexity CROSSCOMPL 
The ratio of balances due from banks in foreign countries and foreign central 

banks to cash and balances from depository institutions 

Managerial efficiency    

Total loans u1 The sum of commercial, construction, industrial, individual and real estate loans 

Call Reports 

Total deposits u2 
The sum of total transaction deposit accounts, non-transaction savings deposits, 

and total time deposits 
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Other earning assets u3 
The sum of income-earned assets other than loans and the net deferred income 

taxes 

Total non-interest income u4 

The sum of income from fiduciary activities, service charges on deposit 

accounts, trading fees and income from foreign exchange transactions and from 

assets held in trading accounts, and other non-interest income 

Securitisation activity u5 

The value of the outstanding principal balance of loans, leases, and all relevant 

assets securitised and sold to other financial institutions with recourse or other 

credit enhancements divided by total assets 

Price of borrowed funds v1 The ratio of total interest expense to total deposits and other borrowed money 

Price of labour v2 The ratio of total salaries and benefits to the number of full-time employees 

Price of physical capital v3 
The ratio of expenses for premises and fixed assets to the dollar amount of 

premises and fixed assets 

 

Control variables    

Political connections POLCON 

A dummy that equals one if a bank has employed, or is currently employing an 

individual who is also employed or has been employed in the federal 

government or appointed to a government advisory board, a congressional or 

presidential cabinet entity, or an independent commission 

Centre for Responsive 

Politics (CRP)’s Revolving 

Door 

    

Federal connections FEDCON 

A dummy that is equal to unity if an executive at a sample bank was on the 

board of directors of one of the 12 Federal Reserve Banks or one of their 

branches either in 2008 or 2009 

Federal Reserve 

& 

BoardEx 
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Political commitments COMMIT 

A dummy that equals one if a sample bank is headquartered in a district of a 

House member who served on the key finance committees involved in drafting 

and amending TARP either in 2008 or 2009 

House of Representative, 

U.S. Census Bureau 

& 

U.S. Library of Congress 

Campaign contributions CAMP 

A dummy that takes the value of one if a sample bank has made PAC 

contributions in the election cycle for the 2008 congressional election to the 

members of the Subcommittee on Financial Institutions and the Subcommittee 

on Capital Markets 

Federal Election 

Commission 

Political Action Committees 

(PACs) 

M&A transactions MA 
A dummy which is equal to unity if a bank is involved in a M&A transaction as 

an acquirer 

M&As database/Federal 

Reserve Bank of Chicago 

Bank location MSA 
A dummy showing whether a bank is located in a Metropolitan Statistical Area 

or not 

Call Reports &  

U.S. Office of Management 

and Budget 

Newly-chartered bank DENOVO A dummy capturing the banks which are less than five years old Call Reports 

Listed bank PUBLIC A dummy which is equal to unity if bank i is listed on the exchange market 

Call Reports &  

Center for Research in 

Security Prices (CRSP) 

BHC affiliation BHC 
A dummy variable indicating whether a sample bank is a subsidiary of some 

BHC 
Call Reports 

This Appendix presents all the variables that we use in the baseline econometric analysis as well as in the sensitivity analysis. The abbreviation of each variable and the 

sources we use to collect the data are reported. 

 

 

 

 



Appendix B 

To calculate managerial efficiency (MNGEXP1), we employ the Data Envelopment Analysis 

(DEA) model. DEA model can be computed either as input- or output-oriented. The input-oriented 

DEA model shows by how much input quantities can be reduced without varying the output 

quantities produced. Similarly, the output-oriented DEA model assesses by how much output 

quantities can be proportionally increased without changing the input quantities used. Both output- 

and input-oriented models identify the same set of efficient/inefficient bank management. 

Nevertheless, even though the two approaches provide the same results under constant returns to 

scale, they give different values under variable returns to scale.13  

     We assume that for the N sample banks, there exist P inputs producing M outputs. Hence, each 

bank i uses a nonnegative vector of inputs denoted by 𝑣𝑖 = (𝑣1
𝑖 ,  𝑣2

𝑖 , … , 𝑣𝑝
𝑖 )𝑅+

𝑃 to produce a 

nonnegative vector of outputs, denoted by 𝑢𝑖 = (𝑢1
𝑖 ,  𝑢2

𝑖 , … , 𝑢𝑚
𝑖 )𝑅+

𝑀, where: i = 1, 2,…, N; p = 1, 

2,…, P; and, m = 1, 2,…, M. The production technology, 𝐹 =  {(𝑢, 𝑣): 𝑣 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑢}, 

describes the set of feasible input-output vectors. The input sets of production technology, 𝐿(𝑦) =

{𝑣: (𝑢, 𝑣) ∊ 𝐹 }, describe the sets of input vectors which are feasible for each output vector. 

To measure the variable returns to scale managerial cost efficiency (MNGEXP1), we resort to 

the following input-oriented DEA model, where inputs are minimised and outputs are held at 

constant levels. Below, we sketch out the optimisation (minimisation) problem of bank1’s (i=1) 

cost inefficiency. Note that each bank i faces the same optimisation problem. 

 

𝑀𝑁𝐺𝐸𝑋𝑃11
∗ = min(−𝑀𝑁𝐺𝐸𝑋𝑃11),   𝑠. 𝑡.  ∑ 𝜆𝑖𝑣𝑖𝑝 ≤ (𝑀𝑁𝐺𝐸𝑋𝑃11)(𝑣1𝑝)𝑁

𝑖=1       (B1)                                        

                                                 
13 For a detailed discussion on the differences between input- and output-oriented DEA models, the interested reader 

can refer to Coelli et al. (2005). 
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                                 ∑ 𝜆𝑖𝑢𝑖𝑚 ≥ 𝑢1𝑚
𝑁
𝑖=1     (B2)         

               ∑ 𝜆𝑖 = 1𝑁
𝑖=1           (B3) 

            𝜆𝑖 ≥ 0           (B4) 

 

In Eq. (B1- B4), 𝑣1𝑝and 𝑢1𝑚are the pth input and mth output for bank1, respectively; the convexity 

constraint, ∑ 𝜆𝑖 = 1𝑁
𝑖=1 , accounts for variable returns to scale, where 𝜆𝑖 stands for the activity 

vector and denotes the intensity levels at which the total observations are conducted. This 

approach, through the convexity constraint, forms a convex hull of intersecting planes, since the 

frontier production plane is defined by combining a set of actual production planes. 

If 𝑀𝑁𝐺𝐸𝑋𝑃11
∗  is equal to unity, then the optimal efficiency score is achieved for bank1. This 

shows that the levels of inputs used cannot be proportionally improved given the output levels, 

indicating that bank1 lies upon the cost efficiency frontier. If, on the other hand, 𝑀𝑁𝐺𝐸𝑋𝑃11is less 

than unity the management of bank1 is considered to be inefficient. The more 𝑀𝑁𝐺𝐸𝑋𝑃11 deviates 

from the unity, the less efficient the management of bank1 becomes.  

     An important concern in the estimation of MNGEXP1 is the definition of inputs and outputs. 

This essentially depends on the specific role that deposits play in the overall business model of 

banks. The relevant literature addresses this issue by traditionally referring to two approaches: the 

intermediation (or asset) approach, and the production (or value-added) approach.14 Under the 

former approach, financial firms are viewed as intermediaries which transform deposits and 

purchased funds into loans and other earning assets. That is, liabilities and physical factors are 

treated as inputs, while assets are treated as outputs. The production approach, on the other hand, 

                                                 
14 See Berger and Humphrey (1997) for a detailed analysis of the advantages and disadvantages of each of the two 

approaches.  
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regards financial institutions as producers of services for account holders, measuring output with 

the number of transactions or documents processed over a given period of time. Therefore, deposits 

are encompassed in the output and not in the input vector, which exclusively consists of physical 

entities. 

     Berger and Humphrey (1991) proposed a third approach, the modified production approach, 

which, contrary to the aforementioned traditional approaches, captures the dual role of bank 

deposits. This third approach is regarded as a combination of the intermediation and production 

approaches, as it enables the consideration of both the input and output characteristics of deposits 

in the cost function. More specifically, the price of deposits is considered to be an input, whereas 

the volume of deposits is accounted as an output. Under this specification, banks are assumed to 

provide intermediation and loan services as well as payment, liquidity, and safekeeping services 

at the same time. Hence, it can be argued that the latter approach describes the key bank activity 

of deposit-taking in a more complete manner thereby providing a closer representation of reality. 

     We adopt the modified production approach to define inputs and outputs in the estimation of 

MNGEXP1. We specify five variable outputs in total of which traditional banking activities are 

captured by three outputs, namely, total loans (u1) calculated as the sum of commercial, 

construction, industrial, individual and real estate loans; total deposits (u2) which is the sum of 

total transaction deposit accounts, non-transaction savings deposits, and total time deposits; and, 

other earning assets (u3), expressed as the sum of income-earned assets other than loans and the 

net deferred income taxes. Non-traditional banking activities are proxied by two outputs: total non-

interest income (u4), which is the sum of income from fiduciary activities, service charges on 

deposit accounts, trading fees and income from foreign exchange transactions and from assets held 

in trading accounts augmented by any other non-interest income; and, securitisation activity (u5) 
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measured as the value of the outstanding principal balance of loans, leases, and all relevant assets 

securitised and sold to other financial institutions with recourse or other credit enhancements 

divided by total assets.  

     Regarding the inputs we employ in the estimation of MNGEXP1, we consider borrowed funds, 

labour, and physical capital. The price of borrowed funds (v1) is defined as the ratio of total interest 

expense scaled by total deposits and other borrowed money; the price of labour (v2) is calculated 

by dividing total salaries and benefits by the number of full-time employees; and, lastly, the price 

of physical capital (v3), which is equal to the expenses for premises and fixed assets divided by the 

dollar amount of premises and fixed assets. 

 

 

 


