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Abstract. The secure transmission of data plays a signifi-1 Introduction

cant role in todays information era. Especially in the area

of public-key-cryptography methods, which are based on el-Nowadays, security is a vital issue to everyone, who wants
liptic curves (ECC), gain more and more importance. Com-to exchange confidential or private information electroni-

pared to asymmetric algorithms, like RSA, ECC can be usectally. Especially in the area of public key schemes, ellip-

with shorter key lengths, while achieving an equal level of se-tic curve cryptography (ECC) gained increasing popularity.

curity. The performance of ECC-algorithms can be increasedCompared to other asymmetric algorithms like RSA, meth-
significantly by adding application specific hardware exten-ods based on elliptic curves provide an equivalent security
sions. level while using smaller key sizes. Therefore, ECC requires

Due to their fine grained parallelism, VLIW-processors less memory and is well suited for embedded devices.
are well suited for the execution of ECC algorithms. In The performance of algorithms for ECC can be signifi-
this work, we extended the fourfold parallel CoreVA-VLIW- cantly increased by modifying the hardware architecture that
architecture by several hardware accelerators to increase thgxecutes these algorithms. However, this performance im-
resource efficiency of the overall system. For the design-provement can only be achieved at the expense of additional
space exploration we use a dual design flow, which is basedosts in terms of chip area or power consumption, respec-
on the automatic generation of a complete C-compiler basegively. We define the trade-off between performance and
tool chain from a central processor specification. Using thecosts as resource efficiency. In this paper, we analyze dif-
hardware accelerators the performance of the scalar multiferent modifications of a VLIW processor, in order to accel-
plication on binary fields can be increased by the factor oferate the performance of elliptic curve cryptography over bi-
29. The energy consumption can be reduced by up to 90%nary finite fields. More precisely, we evaluate instruction set
The extended processor hardware was mapped on a curregktensions (ISE) as well as dedicated hardware accelerator
65 nm low-power standard-cell-technology. The chip area ofplocks in respect to their resource efficiency. For this pur-
the CoreVA-VLIW-architecture is 0.24 mivat a power con-  pose, we present a holistic methodology for the automated
sumption of 29 MW/MHz. The performance gain is analyzedevaluation of instruction set extensions. In order to acceler-
in respect to the increased hardware costs, as chip area @te algorithms for elliptic curve cryptography, we focus on
power consumption. the optimization of finite field arithmetic.

Finite field arithmetic is a very important issue in pub-
lic key cryptography and especially in elliptic curve cryp-
tography, as stated iHankerson et al(2004. It is gener-
ally accepted that multiplication is one of the most resource
consuming operations in finite field arithmetic because it is
required very often in cryptographic algorithms. The finite
fields that are used in elliptic curve cryptography are typ-
ically binary finite fields, which are of the forfi,» and
can be represented as vector spaces Byausing polyno-

Correspondence tar. Jungeblut mial basis representation. The multiplication in polynomial
BY (j@hni.upb.de) basis consists of a polynomial multiplication followed by a
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modular reduction. The latter can be done very efficiently byals. In Gro3sciadl and Sava$2004 a multiply and accu-
using a sparse irreducible polynomial that generates the fimulate (MAC) structure is integrated into a MIPS32 core.
nite field. Therefore, the cost of multiplication in finite field MACs have been already used in DSP processors to in-
arithmetic is dominated by the cost of the polynomial mul- crease the performance of finite impulse response (FIR) fil-
tiplication. A less critical but also important function is the ters and the authors have used the similarities between poly-
squaring operation in finite fields. Therefore, we considernomial multiplications and convolution methods to make use
both, the finite field multiplication as well as the finite field of these structures. FinalljKumar and Paaf2004) dis-
squaring operation, as focus of our optimization methods. cuss the performance gain achieved by integrating a polyno-
Our analysis is based on the multiplication and squaring ofmial multiplication unit into the data path of an 8-bit micro-
polynomials of length 233 ovélf,. Among others, the finite  controller, which is equipped with a reconfigurable module.
field Fp233 has been suggested by the EQ@tional Institute  All of the above methods use application-specific informa-
of Standards and Technology (NIS{B00Q. There are sev- tion about classical polynomial multiplication methods and
eral proposals in the literature for multiplication of two poly- find suitable instructions, mostly the so-calldt/LGF2and
nomials (seeKnuth (1999 or von zur Gathen and Gerhard measure the achieved improvement in execution time.
(2003 for a comprehensive list). Each solution is appropri- In our work, we consider the performance gain of the
ate for some range of polynomial degrees and is generally se<aratsuba method by means of integrating both, applica-
lected according to the degree and implementation platformtion-specific and automatically generated instruction set ex-
The most popular method to multiply polynomials is the clas- tensions into the processor and analyze their resource effi-
sical method, whose cost is quadratic in the degree of polynoeiency. The difference from existing contributions is that we
mials involved. Depending on the polynomial degrees, otherconsider the energy consumption of the instruction set ex-
methods are asymptotically less expensive than the classicé¢nsions. Also, we define resource efficiency not only as
algorithm. The point where an algorithm gets better than arthe execution time in terms of clock cycles, but also as the
asymptotically more expensive method is caltrdssover hardware costs in terms of chip area and power consump-
point We choose the Karatsuba method, which is appro-tion. Furthermore, our contribution evaluates the impact of
priate for our polynomial degree =232 and has a cost code size reduction through instruction set extension. An ex-
of 0(m'°%3), cf. Hankerson et al(2004. There also exist ample for another processor implementations of application
methods, e.g. the Cantor or FFT method, which have asympspecific processors is presented by Tensilica. The Tensilica
totically lower costs than the Karatsuba method, but theirtools, as shown ifonzalez(2000, offer the generation of
crossover points are so high that they are only suitable fora tool chain and a hardware description from a single pro-
very large polynomial degrees. Hence, in this work we wantcessor specification. Their approach allows the extension of
to analyze the Karatsuba method in respect to the resource predefined processor architecture by application-specific
efficiency of hardware modifications based on instruction setinstructions. In contrast, our approach also exposes design
extensions. parameters like instruction format, 2/3-address instructions,
The rest of the paper is organized as follows. Secti@  pipeline depth, forwarding circuit, branch prediction, etc. to
devoted to the discussion of different works in the literature,the developer. This effectively allows the exploration of a
which concern ISE in general as well as optimizations for fi- larger design space.
nite field arithmetic and cryptography in particular. In Séct.
we review elliptic curve arithmetic and algorithmic aspects. - . .
Section3 describes our hardware extension methodology anc12 Elliptic curve arithmetic

the architecture of our VLIW-processor. The implementationm this section the elliptic curve cryptography based on bi-

results and anaI)I/IS|s of the resc?u(rjce e:lmency can be found, v field arithmetic is introduced. The general equation for
in Sectiord. Finally, Sect5 concludes the paper. a non-supersingular elliptic curvE over the binary finite

Related work field Fo is given by equation:

E:y2+xy:x3+ax2+b D)
There are several publications about instruction set exten-
sions and their applications in elliptic curve cryptography for appropriate parameteisb € Fon. The set of points
over binary finite fieldsTillich and Grof3schdl (2004 con- (x,y) € Fon x Fom, which satisfy (), together with the iden-
sider the integration of bit-level and word-level multiply and tity element®, generate an additive abelian group. Let
shift methods into a SPARC V2 core to increase its perfor-P = (x,,y,) and Q = (x;,y,) be two given points on the
mance for multiplication inf,i91. In GroRRscldl and Ka-  curve in (Eg.1). The point addition? + Q as well as the
mendje (2003 a dual field adder (DFA) module augments point doubling? + P are two operations defined on the el-
a 16-bit RISC architecture to increase the performance ofiptic curve E, which can geometrically be represented by
arithmetic in binary fields. In this way, the authors createdthe tangent and chord operation, respectively. By applying
a unifying multiplier for both numbers and binary polynomi- the point addition and point doubling operations, we are able
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Algorithm 1 The Montgomery ladder algorithm for scalar
multiplication expressed at point level.
Input: A point P on the elliptic curveE, together with the binary
representation of the scalals(k; _1k;_2...k1kg)2.
Output: k-P

P <P, Pp<2P

for j from i —2 downto 0 do

if kj =1then
P« P1+P2, Pp < 2P,

scalar
multiplication

point
addition

point
doubling

finite field finite field finite field else
addition squaring multiplication P« P1+P2, P1 < 2P1
Fig. 1. Arithmetic hierarchy of elliptic curve cryptography. binary polynomials of degrea — 1 as follows:
m—1 )
. . . . . a(x)=>» a;-x' with ge{0,1} 2
to multiply an integerk with a pointP, which is the result ; ' @

of k— 1 times adding the poirP to itself. This operation is

known as scalar or point multiplicatioh- P. Figurel de- One benefit of binary fields is that the finite field addition
picts this hierarchical structure of arithmetic operations useds calculated by a carry-free XOR operation of corresponding
for elliptic curve cryptography over finite fields. coefficients. Finite field squaring can be achieved by shifting

each bita; to ap; and filling the gaps with zeros. Similar to
finite field multiplication, the result is a binary polynomial
of degree & — 2, which has to be reduced modulo an irre-
, . , ) ) ducible, sparse polynomial of degree However, the finite
Naturally, point addition and point doubling also require a fg|q multiplication is equivalent to the product of the corre-

field inversion when using affine coordinatesy). Sincein-  ¢ho4ing polynomials, which is, compared to addition and
version is a very expensive operation compared to m“”'p"ca'squaring, the most computational intensive operation.
tion, addition and squaring in finite fields, we use projective

coordinates. In standard projective coordinates the points o® 4 Karatsuba multiplication method

the elliptic curve are represented as a trigte Y, Z) in such

a way thatt — X/Z andy — Y/Z. By using projective co- In order to reduce the complexity of polynomial multipli-
ordinates only one finite field inversion is required at the endcation, the method oKaratsuba and Ofma(l963 is ap-

of a scalar multiplication in order to transform the projective plied. Whereas “classically” the coefficients of the product

2.1 Projective coordinates

coordinates back to affine coordinates. (a1x 4 ag) (b1x + bo) = a1b1x2+ (a1bo®agh1)x + agbo from
the four input coefficientas, ag, b1, andbg are computed
2.2 Montgomery ladder algorithm with 4 multiplications and 1 addition, the Karatsuba formula

uses only 3 multiplications and 4 additions in binary fields:

In Montgomery(1987) a very efficient method to perform (4, + ag)(b1x + bo) =

the scalar multiplication is presented, which was applied to 2

elliptic curve cryF;)tography t?y()pez and Dahaf1999. FEIPhe a1b1x"+ ((a1Bao) (b1Bbo)Barba®aobo)x +dobo. ®
method is known as montgomery ladder and is shown at point By applying the Karatsuba method to larger polynomials
level in Algorithm 1. Since in every loop iteration the same the costs of extra additions vanish compared to those of the
operations are performed, namely one point addition and ongaved multiplications and an asymptotical costuin’->%)
point doubling, the montgomery ladder algorithm is shieldedcompared to the classical cost@fm?) is achieved (cfHan-
against timing attacks and simple power analysis attacks. kerson et al.2004).

2.3 Polynomial basis representation 3 Hardware extension approach

As finite field arithmetic represents the base operations, amn this section we present our architecture, which we use for
efficient representation of the finite field elementsfin is  the further design space exploration.

important. The polynomial basis representation can be de-

scribed as a vector space of dimensierover the fieldF,

and is one of the most common representations in ECC. Field

elements in polynomial basis representation are expressed as
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Fig. 2. 6-staged pipeline of the CoreVA processor. (sbcr I o texs) )
ool [ )
3.1 The CoreVA architecture ; © ok e

0 a m
The CoreVA architecture represents a 4-issue VLIW archi- |; :
tecture (cf.Jungeblut et al.2007. Using the hardware | é—. I_- .
description language VHDL, CoreVA is specified as a soft |. :
macro at register-transfer-level (RTL). The typical harvard | 2 .

architecture with separated instruction and data memory pro

vides a six-staged pipeline (instruction fetch (FE), instruc- | s a j
tion decode (DE), register read (RE), execute (EX), mem-| _ . .
ory (ME), and register write (WR), cf. Fig. 2). ¢ )

Besides four arithmetic-logical-units (ALUS), two dedi-
cated multiply-accumulate (MLA) units support fast multi-
plication. Divisions are accelerated by two dedicated divi- Fig. 4. Graphical user interface for the specification of the UPSLA
sion step units. The register file comprises 31 general purfeference description.
pose 32-hit registers, which can be accessed by all four is-
sue slots. The byte-wise addressable memory supports 8-bit,
16-bit and 32-hit data transmissions using natural alignmen@f the CoreVA architecture is free and can be used for in-
and little-endian byte-ordering. The operations follow a two- Struction set extensions.
and three-address format and are all executed in one clock e .
cycle. Most instructions have a latency of one clock cyc:le,3'2 Reference-specification-based design-flow
except branch, MLA and load operations, which have a la
tency of two clock cycles. In SIMD (single instruction, mul-
tiple data) mode, two 16-bit words can be processed in eacl&
functional unit (FU), which leads to an eightfold parallelism.
Two 7-bit condition registers support conditional execution

for scalar and SIMD operations. If not all FUs can be uti-  .co4 processor Specification Language (UPSLAKas-

!|zed, a'stop bit in thg opcode allows to omit empty trailing tens et al(2004, using a graphical user interface calldde-
instruction slots. This leads to more compact code and re'UPSLA(cf Fig. 4)

duces power consumption, which is very useful for embed-
ded systems, e.g. smart cards. Still, 64% of the opcode space

"We propose a dual design-flow, consisting of the automatic
eneration of a reference processor specification and an RTL-
ased hardware development (see B)g.

The design-flow encompasses two domains. In the soft-
ware domain, a formal processor model is described in the

Adv. Radio Sci., 8, 295305, 2010 www.adv-radio-sci.net/8/295/2010/



T. Jungeblut et al.: Resource efficiency of hardware extensions 299

UPSLA is a non redundant specification, which allows vironment (cf. Fig. 8 Porrmann et al.2009. This modular
the rapid generation of a complete tool chain consisting of asystem offers a large selection of FPGA daughter boards and
ANSI-C compiler, an assembler, a linker, various debuggingphysical interfaces (e.g. Ethernet), which enable the use in
tools, and an instruction set simulator (ISS). The instructionreal environments.
set simulator features powerful profiling capabilities that al- The evaluation of our design-flow is based on the finite
low a detailed analysis of the application, e.g. instruction dis-field arithmetic in binary fields (cf. Se@). Finite field mul-
tribution, memory accesses and utilization of the forwardingtiplication and finite field squaring represent two of the most
circuits. Moreover, hot spots, representing frequently exetime consuming operations in elliptic curve cryptography.
cuted parts of the code, can be highlighted directly in theUsing our framework, we developed two types of hardware
C-code (see Figs. 3 and 6). extensions: instruction set extensions and a set of hardware

In addition, frequently executed data-dependent instruc-accelerators, which are accessible via MMIO.
tion sequences can be displayed. Selected instruction se- For the instruction set extension, we analyzed the distribu-
quences can be combined into so calegber instructions  tion of the instructions and combined data-dependent instruc-
Instead of executing twar(struction paif) or more {nstruc-  tions into super instructions. The result is a set of three super
tion blocK) instructions consecutively, a super instruction per- instructions that are composed of two instructions each.
forms the same operation in less clock cycles. This reduces As hardware accelerators, we implemented two dedicated
execution time as well as code size and register pressurgardware extensions for the binary field multiplication and
Although super instructions sometimes increase power conbinary field squaring. In the next section, both types of ex-
sumption, the reduced execution time leads to lower energyensions are analyzed. Thereby, we do not only consider the
demand. After the super instructions are added to the formagpeedup in execution time and reduction of code size, but

model of the processor, the complete tool chain can autoglso examine the impact on chip area and power consump-
matically be re-generated within a few minutes. After re- tion.

compiling the software, the developer can check the utiliza-

tion of the super instructions and the reduction of code size.

To analyze the improvement with respect to execution time4 Implementation and analysis
the re-compiled application can be simulated and profiled.

The hardware domain of the design-flow starts at theAs a starting point for our design space exploration we have
VHDL specification of the processor model. The super in- mapped the ECC algorithm introduced Ruttmann et al.
structions are implemented at register-transfer-level (RTL).(2008 to our CoreVA architecture, using our framework.
The compiler generates executables, which are reused iWvithout manual optimizations, the parallelizing C-compiler
RTL simulation Mentor Graphics ModelSipmo verify the ~ compiled the ECC algorithm to the CoreVA architecture uti-
functionality of the adapted processor. Standard cell syndizing an average of two functional units. Execution time is
thesis withSynopsys Design Compilés used to estimate 3.6M clock cycles, which equals a speedup of 3.1 compared
area requirements. Switching activities from the simulationto a single processor implementation presentelitimann
are back annotated to analyze gate-level power consumptioret al. (200§. Hand-optimized assembler code enhances
The evaluation of the resource consumption leads to a refinethe utilization to an average of three functional units and a
ment of the RTL implementation and the adaption of the pro-speedup of 3.7 compared Ruttmann et al(2008. In the
cessor model (e.g. instruction encoding). These two steps ar®llowing, these software implementations are referred to as
repeated until the timing and resource requirements are mefc andASM
An alternative to tightly coupled instruction set extensions, Using our framework, we identified three new instruction
is the integration of loosely coupled dedicated hardware acset extensiondpgical shift left and exclusive or (LSLXOR)
celerators. These modules can be used through memoryegical shift right and exclusive or (LSRXORNdmove bits
mapped-1/0 (MMIO) access. For memory write accesses th€MVBITS) The first two obviously reflect the nature of the bi-
address is decoded in the memory stage and the data womBry field multiplication, the last one that of the binary field
is send to the selected module. For read access the output sfjuaring. Hence, these instructions are executed in one in-
the respective hardware accelerator is passed to the processgiead of two clock cycles. Changes to the hardware specifi-
pipeline and written back to the register file. cation comprise only slight changes to the decoder and the

Due to the independent specifications (UPSLA vs. RTL), functional units of the processor core. In the following, the
a mechanism is needed to check consistency between the§oreVA variant, that includes the three super instructions, is
two domains. In addition to commercial verification tools referred to aoreVA(ISE)

(e.g. Synopsys Formality), we apply\alidation by Simu- While the instruction set extensions combine existing
lation approach for hardware-software-co-design, which isinstructions to super instructions, the second type intro-
presented idungeblut et al(2007). duces dedicated hardware accelerators to the processor core

For the functional verification of the hardware implemen- (cf. Fig. 9). The extensions are connected via an address
tation, we use the RAPTOR2000/X64 rapid prototyping en-decoder. The hardware description of the processor core it-
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Fig. 5. Instruction distribution of finite field squaring algorithm.

Ox006e
Ox006f
Ox0070
0x0071
0x0072

ooaooaan
ooaooaan
noooooaon
ooaoooan
ooooovoz

A[6] = a6;
A[7] = a7;

lo = A[kb & 7];

Ox0078

ooooovoz

t = A[(b >> 18) & 7]; hi *= £t >> 14; lo *= t << 18;

0x007=a

0x007h

0x00380
Ox0081

nooooyoz
ooooovaz

ooaooaan
noooooaon

t = Al(b = 24) &£ 7]; hi *= t >> 8; lo *= t << 24;
t = Al(b > 27) & 7]; hi *= £t >> 5; lo *= t «<< Z7;

}

Fig. 6. Hot spots highlighted directly in the C-code.

self remains unchanged. The extensions can be accessée accelerator module. Before computing the binary field
by ordinary memory read and write operations (MMIO). A multiplication and squaring, the input data has to be trans-
dedicated part of the address space is mapped to the respderred to the extensions, which requires one clock cycle per
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@
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Fig. 10. Evaluation environment for the CoreVA processor using
RAPTOR2000/X64.

Fig. 8. Rapid prototyping environment RAPTOR2000/X64.

can be accessed. The processor can run in full speed or
32-bit word. The result can be read in two clock cycles, be-in step-by-step mode to apply oMalidation by Simulation
cause of the latency of the load-word instruction. In the fol- methodology oflungeblut et al2007).
lowing, three implementations of the CoreVA processor are

analyzed: 4.2 Cost and performance analysis
— CoreVA(SQU233)ncludes only one accelerator for . o )
field squaring After the functional verification the enhanced architecture
was mapped to a 65 nm low power standard cell technology
— CoreVA(MUL233jncludes only one accelerator for to analyze the area and power requirements. Talsleows
field multiplication the resource consumption of all four types of hardware ex-

tensions. The implementation achieves a clock frequency of
200 MHz and is based on a 65nm low power standard cell
CMOS technology at worst case operating conditions.
4.1 Functional verification As the optimization during synthesis is a non-deterministic
process, utilization of standard cells can vary and the chip
The hardware extensions were functionally verified usingarea of some components can even decrease, which is the
our rapid prototyping environment RAPTOR2000/X64 (see case for the ISEs. The dedicated hardware extensions re-
Sect.3). quire an acceptable increase of area requirements (27.71%
The CoreVA processor was emulated on a Xilinx Virtex- for MUL233, 1.92% for SQU233, cf. Fig. 11). The com-
2 6000 FPGA. Maximum clock frequency is 25 MHz. 32 KB bination of both hardware accelerators leads to an impact
on-chip-memory is used for the L1-Cache (instructions andof 29.87% compared to the original implementation. Fig-
data). Up to 4GB SDRAM can be used for memory intensiveure 12 depicts the power consumption of the four optimized
applications. Additionally, a 100 MBit/s ethernet interface is CoreVA implementations at 200 MHz. Again, the imple-
used to supply realistic input data. The CoreVA processomentations using dedicated hardware accelerators cause the
can be controlled by a graphical user interface. Via the RAP-highest power consumption, whereas the instruction set ex-
TOR interface (cf. Fig. 10) the on-chip memory and SDRAM tensions even cause a slightly lower switching activity.

— CoreVA(FF233)ncludes both accelerators for finite
field arithmetic

www.adv-radio-sci.net/8/295/2010/ Adv. Radio Sci., 8, 2805- 2010
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Table 1. Resource consumption of different hardware configurations.

Frequency [MHz] Area[uf] Relative [%] Power [mW] Relative [%]

CoreVA 200 237019 100.00% 5.81 100.00%
CoreVA(ISE) 200 236704 99.87% 5.80 99.83%
CoreVA(SQU233) 200 241577 101.92% 6.07 104.48%
CoreVA(MUL233) 200 302714 127.72% 7.30 125.65%
CoreVA(FF233) 200 307825 129.87% 7.53 129.60%

Table 2. Execution cycles using different types of hardware acceleration for finite field arithmetic of characteristic 2.

Scalar multiplication Field multiplication Field squaring Word multiplication

Clock cycles Relative [%] Clock cycles Relative [%] Clock cycles Relative [%] Clock cycles Relative [%]

CoreVA(C) 3552571 100.00 2111 100.00 353 100.00 44 100.00
CoreVA(C.ISE) 3408875 95.96 2018 95.59 344 97.45 40 90.91
CoreVA(ASM) 2941035 82.79 1839 87.12 185 52.41 33 75.00
CoreVA(ASM.ISE) 2622409 73.82 1636 77.50 162 45.89 26 59.09
CoreVA(SQU233) 3129187 88.08 2111 100.00 49 13.88 44 100.00
CoreVA(MUL233) 684999 19.28 73 3.46 353 100.00 44 100.00
CoreVA(FF233) 260615 7.34 73 3.46 49 13.88 44 100.00
350000 8
300000 7 —
250000 6 I —
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200000 +— |
= 4 +— I
150000 —
= 3
100000 +——
—— 2 — = —— —
50000 1 4 |
0 0 7 7 : ; )
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I 1é
Fig. 11. Area requirements of hardware configurations fim Fig. 12. Power dissipation of different hardware configurations

[mw].

The execution time in terms of clock cycles is shown in

Table 2. Without any additional hardware effort for the plementation (C implementation: 29). Hardware accelera-
instruction set extensions, the performance of ASM wordtion with the CoreVA(SQU233)mplementation reduces cal-
level multiplication is increased by 27%, ASM field mul- culation time of the field squaring from 353 clock cycles
tiplication by 12%, and ASM field squaring by 14% (C (C), respectively 185 (ASM) to 49 clock cycles (speedup of
implementation: 10%, 5%, 3%). The scalar multiplica- 7.2 respectively 3.8). The last hardware extension combines
tion (ASM) is sped up by about 12% (C implementation: both dedicated hardware extensions as one module, which
4%). Using theCoreVA(MUL233)hardware extension, the reduces load/store operations to transfer input- and output-
field multiplication is computed in 73 clock cycles, which data. Using this implementation, we achieve a speedup of
is equivalent to a speedup of 25 compared to the ASM im-about 13.6 for the scalar multiplication compared to the soft-
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Table 3. Code size using different types of hardware acceleration for finite field arithmetic of characteristic 2.

Scalar multiplication Field multiplication Field squaring Word multiplication

Code size [bytes] Relative [%] Code size [bytes] Relative [%] Code size [bytes] Relative [%] Code size [bytes] Relative [%)]

CoreVA(C) 10336 100.00 2052 100.00 528 100.00 448 100.00
CoreVA(C.ISE) 8656 83.75 1940 94.54 496 93.94 336 75.00

CoreVA(ASM) 8752 84.67 2068 100.78 464 87.88 464 103.57
CoreVA(ASM.ISE) 8576 82.97 1924 93.76 432 81.82 320 71.43

CoreVA(SQU233) 8496 82.20 2052 100.00 208 39.39 448 100.00
CoreVA(MUL233) 6988 67.61 304 14.81 528 100.00 448 100.00
CoreVA(FF233) 6732 65.13 2052 100.00 208 39.39 448 100.00

14

ware C implementation (speedup of 11.2 compared to ASM
software implementation). Compared to the hardware ex- ,, | |
tended processor &futtmann et al(2008 this is equivalent
to a speedup of 15. 1
Besides optimizing execution time by using hardware ac-
celeration for the ECC algorithm, code size is also reduced
significantly. Code size impacts the amount of memory
needed, which is an expensive resource in embedded sys
tems. Table shows the code size of the word and field mul- 4
tiplication, the field squaring and the scalar multiplication
using different types of hardware acceleration. Compared tc 0.2 {—
the initial C implementation, code size of the scalar multi-
plication is reduced from 10336 bytes to 8656 bytes using
instruction set extensions. Using tlmreVA(FF233)ded- S & Of?’\ S o
icated hardware accelerator this effect is even more signifi- < W &
cant: 35% of instruction memory can be saved in this config- ¥ s ¢
uration. Power consumption depends on the memory size as
well as the number of accesses, so resource efficiency can bgg. 13. Energy consumption of the word multiplication [mWw].
increased by optimizing code size. As the total code size,
which depends on all applications (plus operating system,
etc.) can vary extremely in different environments and be-sumption for field multiplication reduces from 61 nJ to less
cause the type of memory (single port or dual port) highly than 2.7 nJ (96%) (cf. Fid.4). Obviously,CoreVA(SQU233)
effects power consumption, we only consider the energy decan not be used for the field multiplication, so energy con-
mand of processor architecture in this paper. Besides totalumption increases because of the additional hardware inte-
power consumption, energy is an even more important qualgrated to the processor. Energy consumption of field squar-
ity measure for mobile devices like smart cards. ing benefits especially from the ASM optimized algorithm
Despite the higher power consumption caused by the hardin conjunction with theCoreVA(ISE)instruction set exten-
ware extensions, energy will be decreased because of thgions. An energy reduction of about 50% can be achieved
reduced execution time. Figurd8-16 and Table4 show  (cf. Fig 15). Using theCoreVA(SQU233hardware exten-
the energy consumption of the original software implemen-sion reduces energy consumption of field squaring by a fac-
tations compared to the hardware accelerated versions. Ther of 6.9. Again, energy consumption increases when us-
darker bars show the energy consumption of the C imple-ing CoreVA(MUL233) as it is not applicable to field squar-
mentation, the brighter ones reflect the assembler implemening. Figurel6 shows the energy consumption for the scalar
tation. Control of the hardware accelerators is only imple-multiplication. Energy savings for the scalar multiplica-
mented at C-level. Energy consumption of word level mul- tion range from 26% (ASMCoreVA(ISE) up to 90% for
tiplication can be reduced by using the instruction set extenthe CoreVA(FF233hardware acceleration. Energy demand
sions. As the dedicated hardware accelerators are only amf the ASM implementation usinGoreVA(ISE)instruction
plicable for field arithmetic, energy consumption increases.set extensions for both field multiplication and field squar-
At field squaring level the dedicaté&breVA(SQU233hard-  ing is even lower as using only tieoreVA(SQU233hard-
ware accelerator causes the greatest improvement. ware accelerator, which only impacts execution cycles of
At field level, the dedicate@€oreVA(MUL233)hardware  field squaringCoreVA(SQU233pnly affects execution cy-
accelerator causes the greatest improvement. Energy comiles of field squaring. As field multiplication is the domi-

Bc

ASM
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Table 4. Energy consumption using different types of hardware acceleration.

Scalar multiplication

Field multiplication

Field squaring

Word multiplication

Energy [nJ] Relative [%] Energy[nJ] Relative [%] Energy [nJ] Relative [%] Energy [nJ] Relative [%]
CoreVA(C) 103202.19  100.00 61.32 100.00 10.25 100.00 1.281 00.00
CoreVA(C.ISE) 98857.38 95.79 58.52 95.43 9.98 97.28 1.16 90.75
CoreVA(ASM) 85437.07 82.79 53.42 87.12 5.37 52.41 0.96 75.00
CoreVA(ASM.ISE) 76 049.86 73.69 47.44 77.37 4.70 45.81 0.75 58.99
CoreVA(SQU233)  94970.83 92.02 67.12 109.46 1.79 17.44 1.20 94.23
CoreVA(MUL233) 20789.72 20.14 2.22 3.61 5.61 54.75 1.00 78.36
CoreVA(FF233) 9812.15 9.51 2.75 4.48 1.84 17.99 1.24 97.20
70 12
=]9 Bc
60 —% g ASM [~ 10 ASM |-
TTE = .
wle B —
= = s
= ‘T
% 2 z %
0 — I — I I E I E I 0 i %
K\ 2 o N N
&y \\@ &O;»,\ O“;»,\ ¢ {,;)\ o AV\\% 0\){9 00’5 ‘(@%
8 S N I\ & g N R
@ ©° & K\ S N \3 ¢
<& N N\a X & & &
& & ) ¢ ¢ C
® &

Fig. 14. Energy consumption of the field multiplication [mW].

nating part of scalar multiplication energy consumption in-

Fig. 15. Energy consumption of the field squaring [mW].

Ansi-C-compiler tool chain based on a high level reference
specification in the UPSLA language and a common RTL-
based hardware development. Using this design-flow, we in-
troduced three instruction set extensions and two dedicated
hardware accelerators. Major components of the scalar mul-

creases. Only the combination of both hardware extensionsiplication over binary fielddF,23s were considered, start-

(CoreVA(FF233) can improve energy efficiency for this al-
gorithm.

5 Conclusions

ing from word multiplication up to field multiplication and
field squaring. The tightly coupled instruction set extensions
combine existing functional units, so resource consumption
is negligible. The integration of loosely coupled hardware
accelerators adds still reasonable resource overhead but re-
sults in an even higher speedup. In this case, area and power

We analyzed different types of hardware extensions in re-consumption increase by about 30%, whereas the execution
spect to resource efficiency, which we consider to be the ratidime of the scalar multiplication decreases by 93% compared

of performance in terms of execution time (clock cycles) and

to the original software implementation. Both types of hard-

chip area and power consumption. These constituent charagvare extensions achieve an energy reduction, ranging from
teristics have been presented in detail, whereas the resourey % to 90%.

efficiency itself should be computed in respect to the envi-

sioned application scenario. We outlined our dual design-

flow, consisting of the automatic generation of a complete

Adv. Radio Sci., 8, 295305 2010
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Fig. 16. Energy requirements of the scalar multiplication [mW].
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