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Abstract. The secure transmission of data plays a signifi-
cant role in todays information era. Especially in the area
of public-key-cryptography methods, which are based on el-
liptic curves (ECC), gain more and more importance. Com-
pared to asymmetric algorithms, like RSA, ECC can be used
with shorter key lengths, while achieving an equal level of se-
curity. The performance of ECC-algorithms can be increased
significantly by adding application specific hardware exten-
sions.

Due to their fine grained parallelism, VLIW-processors
are well suited for the execution of ECC algorithms. In
this work, we extended the fourfold parallel CoreVA-VLIW-
architecture by several hardware accelerators to increase the
resource efficiency of the overall system. For the design-
space exploration we use a dual design flow, which is based
on the automatic generation of a complete C-compiler based
tool chain from a central processor specification. Using the
hardware accelerators the performance of the scalar multi-
plication on binary fields can be increased by the factor of
29. The energy consumption can be reduced by up to 90%.
The extended processor hardware was mapped on a current
65 nm low-power standard-cell-technology. The chip area of
the CoreVA-VLIW-architecture is 0.24 mm2 at a power con-
sumption of 29 mW/MHz. The performance gain is analyzed
in respect to the increased hardware costs, as chip area or
power consumption.
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1 Introduction

Nowadays, security is a vital issue to everyone, who wants
to exchange confidential or private information electroni-
cally. Especially in the area of public key schemes, ellip-
tic curve cryptography (ECC) gained increasing popularity.
Compared to other asymmetric algorithms like RSA, meth-
ods based on elliptic curves provide an equivalent security
level while using smaller key sizes. Therefore, ECC requires
less memory and is well suited for embedded devices.

The performance of algorithms for ECC can be signifi-
cantly increased by modifying the hardware architecture that
executes these algorithms. However, this performance im-
provement can only be achieved at the expense of additional
costs in terms of chip area or power consumption, respec-
tively. We define the trade-off between performance and
costs as resource efficiency. In this paper, we analyze dif-
ferent modifications of a VLIW processor, in order to accel-
erate the performance of elliptic curve cryptography over bi-
nary finite fields. More precisely, we evaluate instruction set
extensions (ISE) as well as dedicated hardware accelerator
blocks in respect to their resource efficiency. For this pur-
pose, we present a holistic methodology for the automated
evaluation of instruction set extensions. In order to acceler-
ate algorithms for elliptic curve cryptography, we focus on
the optimization of finite field arithmetic.

Finite field arithmetic is a very important issue in pub-
lic key cryptography and especially in elliptic curve cryp-
tography, as stated inHankerson et al.(2004). It is gener-
ally accepted that multiplication is one of the most resource
consuming operations in finite field arithmetic because it is
required very often in cryptographic algorithms. The finite
fields that are used in elliptic curve cryptography are typ-
ically binary finite fields, which are of the formF2m and
can be represented as vector spaces overF2 using polyno-
mial basis representation. The multiplication in polynomial
basis consists of a polynomial multiplication followed by a
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modular reduction. The latter can be done very efficiently by
using a sparse irreducible polynomial that generates the fi-
nite field. Therefore, the cost of multiplication in finite field
arithmetic is dominated by the cost of the polynomial mul-
tiplication. A less critical but also important function is the
squaring operation in finite fields. Therefore, we consider
both, the finite field multiplication as well as the finite field
squaring operation, as focus of our optimization methods.

Our analysis is based on the multiplication and squaring of
polynomials of length 233 overF2. Among others, the finite
field F2233 has been suggested by the ECCNational Institute
of Standards and Technology (NIST)(2000). There are sev-
eral proposals in the literature for multiplication of two poly-
nomials (seeKnuth (1998) or von zur Gathen and Gerhard
(2003) for a comprehensive list). Each solution is appropri-
ate for some range of polynomial degrees and is generally se-
lected according to the degree and implementation platform.
The most popular method to multiply polynomials is the clas-
sical method, whose cost is quadratic in the degree of polyno-
mials involved. Depending on the polynomial degrees, other
methods are asymptotically less expensive than the classical
algorithm. The point where an algorithm gets better than an
asymptotically more expensive method is calledcrossover
point. We choose the Karatsuba method, which is appro-
priate for our polynomial degreem= 232 and has a cost
of O(mlog23), cf. Hankerson et al.(2004). There also exist
methods, e.g. the Cantor or FFT method, which have asymp-
totically lower costs than the Karatsuba method, but their
crossover points are so high that they are only suitable for
very large polynomial degrees. Hence, in this work we want
to analyze the Karatsuba method in respect to the resource
efficiency of hardware modifications based on instruction set
extensions.

The rest of the paper is organized as follows. Section1 is
devoted to the discussion of different works in the literature,
which concern ISE in general as well as optimizations for fi-
nite field arithmetic and cryptography in particular. In Sect.2
we review elliptic curve arithmetic and algorithmic aspects.
Section3 describes our hardware extension methodology and
the architecture of our VLIW-processor. The implementation
results and analysis of the resource efficiency can be found
in Section4. Finally, Sect.5 concludes the paper.

Related work

There are several publications about instruction set exten-
sions and their applications in elliptic curve cryptography
over binary finite fields.Tillich and Großscḧadl (2004) con-
sider the integration of bit-level and word-level multiply and
shift methods into a SPARC V2 core to increase its perfor-
mance for multiplication inF2191. In Großscḧadl and Ka-
mendje(2003) a dual field adder (DFA) module augments
a 16-bit RISC architecture to increase the performance of
arithmetic in binary fields. In this way, the authors created
a unifying multiplier for both numbers and binary polynomi-

als. In Großscḧadl and Savaş(2004) a multiply and accu-
mulate (MAC) structure is integrated into a MIPS32 core.
MACs have been already used in DSP processors to in-
crease the performance of finite impulse response (FIR) fil-
ters and the authors have used the similarities between poly-
nomial multiplications and convolution methods to make use
of these structures. Finally,Kumar and Paar(2004) dis-
cuss the performance gain achieved by integrating a polyno-
mial multiplication unit into the data path of an 8-bit micro-
controller, which is equipped with a reconfigurable module.
All of the above methods use application-specific informa-
tion about classical polynomial multiplication methods and
find suitable instructions, mostly the so-calledMULGF2, and
measure the achieved improvement in execution time.

In our work, we consider the performance gain of the
Karatsuba method by means of integrating both, applica-
tion-specific and automatically generated instruction set ex-
tensions into the processor and analyze their resource effi-
ciency. The difference from existing contributions is that we
consider the energy consumption of the instruction set ex-
tensions. Also, we define resource efficiency not only as
the execution time in terms of clock cycles, but also as the
hardware costs in terms of chip area and power consump-
tion. Furthermore, our contribution evaluates the impact of
code size reduction through instruction set extension. An ex-
ample for another processor implementations of application
specific processors is presented by Tensilica. The Tensilica
tools, as shown inGonzalez(2000), offer the generation of
a tool chain and a hardware description from a single pro-
cessor specification. Their approach allows the extension of
a predefined processor architecture by application-specific
instructions. In contrast, our approach also exposes design
parameters like instruction format, 2/3-address instructions,
pipeline depth, forwarding circuit, branch prediction, etc. to
the developer. This effectively allows the exploration of a
larger design space.

2 Elliptic curve arithmetic

In this section the elliptic curve cryptography based on bi-
nary field arithmetic is introduced. The general equation for
a non-supersingular elliptic curveE over the binary finite
field F2m is given by equation:

E : y2
+xy= x3

+ax2
+b (1)

for appropriate parametersa,b ∈ F2m . The set of points
(x,y)∈F2m×F2m , which satisfy (1), together with the iden-
tity elementO, generate an additive abelian group. Let
P = (xp,yp) andQ= (xq ,yq) be two given points on the
curve in (Eq.1). The point additionP+Q as well as the
point doublingP+P are two operations defined on the el-
liptic curve E, which can geometrically be represented by
the tangent and chord operation, respectively. By applying
the point addition and point doubling operations, we are able
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Fig. 1. Arithmetic hierarchy of elliptic curve cryptography.

to multiply an integerk with a pointP, which is the result
of k−1 times adding the pointP to itself. This operation is
known as scalar or point multiplicationk ·P. Figure1 de-
picts this hierarchical structure of arithmetic operations used
for elliptic curve cryptography over finite fields.

2.1 Projective coordinates

Naturally, point addition and point doubling also require a
field inversion when using affine coordinates(x,y). Since in-
version is a very expensive operation compared to multiplica-
tion, addition and squaring in finite fields, we use projective
coordinates. In standard projective coordinates the points on
the elliptic curve are represented as a triple(X,Y,Z) in such
a way thatx→X/Z andy→ Y/Z. By using projective co-
ordinates only one finite field inversion is required at the end
of a scalar multiplication in order to transform the projective
coordinates back to affine coordinates.

2.2 Montgomery ladder algorithm

In Montgomery(1987) a very efficient method to perform
the scalar multiplication is presented, which was applied to
elliptic curve cryptography byLópez and Dahab(1999). The
method is known as montgomery ladder and is shown at point
level in Algorithm1. Since in every loop iteration the same
operations are performed, namely one point addition and one
point doubling, the montgomery ladder algorithm is shielded
against timing attacks and simple power analysis attacks.

2.3 Polynomial basis representation

As finite field arithmetic represents the base operations, an
efficient representation of the finite field elements inF2m is
important. The polynomial basis representation can be de-
scribed as a vector space of dimensionm over the fieldF2
and is one of the most common representations in ECC. Field
elements in polynomial basis representation are expressed as

Algorithm 1 The Montgomery ladder algorithm for scalar
multiplication expressed at point level.
Input: A point P on the elliptic curveE, together with the binary
representation of the scalark as(ki−1ki−2...k1k0)2.
Output: k ·P
P1←P, P2←2P
for j from i−2 downto 0 do

if kj =1 then
P1←P1+P2, P2←2P2

else
P2←P1+P2, P1←2P1

binary polynomials of degreem−1 as follows:

a(x)=

m−1∑
i=0

ai ·x
i with ai ∈ {0,1} (2)

One benefit of binary fields is that the finite field addition
is calculated by a carry-free XOR operation of corresponding
coefficients. Finite field squaring can be achieved by shifting
each bitai to a2i and filling the gaps with zeros. Similar to
finite field multiplication, the result is a binary polynomial
of degree 2m−2, which has to be reduced modulo an irre-
ducible, sparse polynomial of degreem. However, the finite
field multiplication is equivalent to the product of the corre-
sponding polynomials, which is, compared to addition and
squaring, the most computational intensive operation.

2.4 Karatsuba multiplication method

In order to reduce the complexity of polynomial multipli-
cation, the method ofKaratsuba and Ofman(1963) is ap-
plied. Whereas “classically” the coefficients of the product
(a1x+a0)(b1x+b0)= a1b1x

2
+(a1b0⊕a0b1)x+a0b0 from

the four input coefficientsa1, a0, b1, andb0 are computed
with 4 multiplications and 1 addition, the Karatsuba formula
uses only 3 multiplications and 4 additions in binary fields:

(a1x+a0)(b1x+b0)=

a1b1x
2
+((a1⊕a0)(b1⊕b0)⊕a1b1⊕a0b0)x+a0b0. (3)

By applying the Karatsuba method to larger polynomials
the costs of extra additions vanish compared to those of the
saved multiplications and an asymptotical cost ofO(m1.59)

compared to the classical cost ofO(m2) is achieved (cf.Han-
kerson et al., 2004).

3 Hardware extension approach

In this section we present our architecture, which we use for
the further design space exploration.
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Fig. 2. 6-staged pipeline of the CoreVA processor.

3.1 The CoreVA architecture

The CoreVA architecture represents a 4-issue VLIW archi-
tecture (cf.Jungeblut et al., 2007). Using the hardware
description language VHDL, CoreVA is specified as a soft
macro at register-transfer-level (RTL). The typical harvard
architecture with separated instruction and data memory pro-
vides a six-staged pipeline (instruction fetch (FE), instruc-
tion decode (DE), register read (RE), execute (EX), mem-
ory (ME), and register write (WR), cf. Fig. 2).

Besides four arithmetic-logical-units (ALUs), two dedi-
cated multiply-accumulate (MLA) units support fast multi-
plication. Divisions are accelerated by two dedicated divi-
sion step units. The register file comprises 31 general pur-
pose 32-bit registers, which can be accessed by all four is-
sue slots. The byte-wise addressable memory supports 8-bit,
16-bit and 32-bit data transmissions using natural alignment
and little-endian byte-ordering. The operations follow a two-
and three-address format and are all executed in one clock
cycle. Most instructions have a latency of one clock cycle,
except branch, MLA and load operations, which have a la-
tency of two clock cycles. In SIMD (single instruction, mul-
tiple data) mode, two 16-bit words can be processed in each
functional unit (FU), which leads to an eightfold parallelism.
Two 7-bit condition registers support conditional execution
for scalar and SIMD operations. If not all FUs can be uti-
lized, a stop bit in the opcode allows to omit empty trailing
instruction slots. This leads to more compact code and re-
duces power consumption, which is very useful for embed-
ded systems, e.g. smart cards. Still, 64% of the opcode space
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Fig. 3. Dual design-flow for design space exploration.

Fig. 4. Graphical user interface for the specification of the UPSLA
reference description.

of the CoreVA architecture is free and can be used for in-
struction set extensions.

3.2 Reference-specification-based design-flow

We propose a dual design-flow, consisting of the automatic
generation of a reference processor specification and an RTL-
based hardware development (see Fig.3).

The design-flow encompasses two domains. In the soft-
ware domain, a formal processor model is described in the
Unified Processor Specification Language (UPSLA) ofKas-
tens et al.(2004), using a graphical user interface calledVice-
UPSLA(cf. Fig. 4).
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UPSLA is a non redundant specification, which allows
the rapid generation of a complete tool chain consisting of a
ANSI-C compiler, an assembler, a linker, various debugging
tools, and an instruction set simulator (ISS). The instruction
set simulator features powerful profiling capabilities that al-
low a detailed analysis of the application, e.g. instruction dis-
tribution, memory accesses and utilization of the forwarding
circuits. Moreover, hot spots, representing frequently exe-
cuted parts of the code, can be highlighted directly in the
C-code (see Figs. 3 and 6).

In addition, frequently executed data-dependent instruc-
tion sequences can be displayed. Selected instruction se-
quences can be combined into so calledsuper instructions.
Instead of executing two (instruction pair) or more (instruc-
tion block) instructions consecutively, a super instruction per-
forms the same operation in less clock cycles. This reduces
execution time as well as code size and register pressure.
Although super instructions sometimes increase power con-
sumption, the reduced execution time leads to lower energy
demand. After the super instructions are added to the formal
model of the processor, the complete tool chain can auto-
matically be re-generated within a few minutes. After re-
compiling the software, the developer can check the utiliza-
tion of the super instructions and the reduction of code size.
To analyze the improvement with respect to execution time,
the re-compiled application can be simulated and profiled.

The hardware domain of the design-flow starts at the
VHDL specification of the processor model. The super in-
structions are implemented at register-transfer-level (RTL).
The compiler generates executables, which are reused in
RTL simulation (Mentor Graphics ModelSim) to verify the
functionality of the adapted processor. Standard cell syn-
thesis withSynopsys Design Compileris used to estimate
area requirements. Switching activities from the simulation
are back annotated to analyze gate-level power consumption.
The evaluation of the resource consumption leads to a refine-
ment of the RTL implementation and the adaption of the pro-
cessor model (e.g. instruction encoding). These two steps are
repeated until the timing and resource requirements are met.
An alternative to tightly coupled instruction set extensions,
is the integration of loosely coupled dedicated hardware ac-
celerators. These modules can be used through memory-
mapped-I/O (MMIO) access. For memory write accesses the
address is decoded in the memory stage and the data word
is send to the selected module. For read access the output of
the respective hardware accelerator is passed to the processor
pipeline and written back to the register file.

Due to the independent specifications (UPSLA vs. RTL),
a mechanism is needed to check consistency between these
two domains. In addition to commercial verification tools
(e.g. Synopsys Formality), we apply aValidation by Simu-
lation approach for hardware-software-co-design, which is
presented inJungeblut et al.(2007).

For the functional verification of the hardware implemen-
tation, we use the RAPTOR2000/X64 rapid prototyping en-

vironment (cf. Fig. 8,Porrmann et al., 2009). This modular
system offers a large selection of FPGA daughter boards and
physical interfaces (e.g. Ethernet), which enable the use in
real environments.

The evaluation of our design-flow is based on the finite
field arithmetic in binary fields (cf. Sect.2). Finite field mul-
tiplication and finite field squaring represent two of the most
time consuming operations in elliptic curve cryptography.
Using our framework, we developed two types of hardware
extensions: instruction set extensions and a set of hardware
accelerators, which are accessible via MMIO.

For the instruction set extension, we analyzed the distribu-
tion of the instructions and combined data-dependent instruc-
tions into super instructions. The result is a set of three super
instructions that are composed of two instructions each.

As hardware accelerators, we implemented two dedicated
hardware extensions for the binary field multiplication and
binary field squaring. In the next section, both types of ex-
tensions are analyzed. Thereby, we do not only consider the
speedup in execution time and reduction of code size, but
also examine the impact on chip area and power consump-
tion.

4 Implementation and analysis

As a starting point for our design space exploration we have
mapped the ECC algorithm introduced inPuttmann et al.
(2008) to our CoreVA architecture, using our framework.
Without manual optimizations, the parallelizing C-compiler
compiled the ECC algorithm to the CoreVA architecture uti-
lizing an average of two functional units. Execution time is
3.6M clock cycles, which equals a speedup of 3.1 compared
to a single processor implementation presented inPuttmann
et al. (2008). Hand-optimized assembler code enhances
the utilization to an average of three functional units and a
speedup of 3.7 compared toPuttmann et al.(2008). In the
following, these software implementations are referred to as
C andASM.

Using our framework, we identified three new instruction
set extensions:logical shift left and exclusive or (LSLXOR),
logical shift right and exclusive or (LSRXOR), andmove bits
(MVBITS). The first two obviously reflect the nature of the bi-
nary field multiplication, the last one that of the binary field
squaring. Hence, these instructions are executed in one in-
stead of two clock cycles. Changes to the hardware specifi-
cation comprise only slight changes to the decoder and the
functional units of the processor core. In the following, the
CoreVA variant, that includes the three super instructions, is
referred to asCoreVA(ISE).

While the instruction set extensions combine existing
instructions to super instructions, the second type intro-
duces dedicated hardware accelerators to the processor core
(cf. Fig. 9). The extensions are connected via an address
decoder. The hardware description of the processor core it-
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Fig. 5. Instruction distribution of finite field squaring algorithm.

Fig. 6. Hot spots highlighted directly in the C-code.

self remains unchanged. The extensions can be accessed
by ordinary memory read and write operations (MMIO). A
dedicated part of the address space is mapped to the respec-

tive accelerator module. Before computing the binary field
multiplication and squaring, the input data has to be trans-
ferred to the extensions, which requires one clock cycle per
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Fig. 8. Rapid prototyping environment RAPTOR2000/X64.

32-bit word. The result can be read in two clock cycles, be-
cause of the latency of the load-word instruction. In the fol-
lowing, three implementations of the CoreVA processor are
analyzed:

– CoreVA(SQU233)includes only one accelerator for
field squaring

– CoreVA(MUL233)includes only one accelerator for
field multiplication

– CoreVA(FF233)includes both accelerators for finite
field arithmetic

4.1 Functional verification

The hardware extensions were functionally verified using
our rapid prototyping environment RAPTOR2000/X64 (see
Sect.3).

The CoreVA processor was emulated on a Xilinx Virtex-
2 6000 FPGA. Maximum clock frequency is 25 MHz. 32 KB
on-chip-memory is used for the L1-Cache (instructions and
data). Up to 4GB SDRAM can be used for memory intensive
applications. Additionally, a 100 MBit/s ethernet interface is
used to supply realistic input data. The CoreVA processor
can be controlled by a graphical user interface. Via the RAP-
TOR interface (cf. Fig. 10) the on-chip memory and SDRAM
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Fig. 9. Hardware accelerator for the scalar multiplication.
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Fig. 10. Evaluation environment for the CoreVA processor using
RAPTOR2000/X64.

can be accessed. The processor can run in full speed or
in step-by-step mode to apply ourValidation by Simulation
methodology ofJungeblut et al.(2007).

4.2 Cost and performance analysis

After the functional verification the enhanced architecture
was mapped to a 65 nm low power standard cell technology
to analyze the area and power requirements. Table1 shows
the resource consumption of all four types of hardware ex-
tensions. The implementation achieves a clock frequency of
200 MHz and is based on a 65nm low power standard cell
CMOS technology at worst case operating conditions.

As the optimization during synthesis is a non-deterministic
process, utilization of standard cells can vary and the chip
area of some components can even decrease, which is the
case for the ISEs. The dedicated hardware extensions re-
quire an acceptable increase of area requirements (27.71%
for MUL233, 1.92% for SQU233, cf. Fig. 11). The com-
bination of both hardware accelerators leads to an impact
of 29.87% compared to the original implementation. Fig-
ure12 depicts the power consumption of the four optimized
CoreVA implementations at 200 MHz. Again, the imple-
mentations using dedicated hardware accelerators cause the
highest power consumption, whereas the instruction set ex-
tensions even cause a slightly lower switching activity.
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Table 1. Resource consumption of different hardware configurations.

Frequency [MHz] Area [µm2] Relative [%] Power [mW] Relative [%]

CoreVA 200 237 019 100.00% 5.81 100.00%
CoreVA(ISE) 200 236 704 99.87% 5.80 99.83%
CoreVA(SQU233) 200 241 577 101.92% 6.07 104.48%
CoreVA(MUL233) 200 302 714 127.72% 7.30 125.65%
CoreVA(FF233) 200 307 825 129.87% 7.53 129.60%

Table 2. Execution cycles using different types of hardware acceleration for finite field arithmetic of characteristic 2.

Scalar multiplication Field multiplication Field squaring Word multiplication

Clock cycles Relative [%] Clock cycles Relative [%] Clock cycles Relative [%] Clock cycles Relative [%]

CoreVA(C) 3 552 571 100.00 2111 100.00 353 100.00 44 100.00
CoreVA(C.ISE) 3408875 95.96 2018 95.59 344 97.45 40 90.91
CoreVA(ASM) 2 941 035 82.79 1839 87.12 185 52.41 33 75.00
CoreVA(ASM.ISE) 2 622 409 73.82 1636 77.50 162 45.89 26 59.09
CoreVA(SQU233) 3 129 187 88.08 2111 100.00 49 13.88 44 100.00
CoreVA(MUL233) 684 999 19.28 73 3.46 353 100.00 44 100.00
CoreVA(FF233) 260 615 7.34 73 3.46 49 13.88 44 100.00
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Fig. 11. Area requirements of hardware configurations [µm2].

The execution time in terms of clock cycles is shown in
Table 2. Without any additional hardware effort for the
instruction set extensions, the performance of ASM word
level multiplication is increased by 27%, ASM field mul-
tiplication by 12%, and ASM field squaring by 14% (C
implementation: 10%, 5%, 3%). The scalar multiplica-
tion (ASM) is sped up by about 12% (C implementation:
4%). Using theCoreVA(MUL233)hardware extension, the
field multiplication is computed in 73 clock cycles, which
is equivalent to a speedup of 25 compared to the ASM im-
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Fig. 12. Power dissipation of different hardware configurations
[mW].

plementation (C implementation: 29). Hardware accelera-
tion with theCoreVA(SQU233)implementation reduces cal-
culation time of the field squaring from 353 clock cycles
(C), respectively 185 (ASM) to 49 clock cycles (speedup of
7.2 respectively 3.8). The last hardware extension combines
both dedicated hardware extensions as one module, which
reduces load/store operations to transfer input- and output-
data. Using this implementation, we achieve a speedup of
about 13.6 for the scalar multiplication compared to the soft-
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Table 3. Code size using different types of hardware acceleration for finite field arithmetic of characteristic 2.

Scalar multiplication Field multiplication Field squaring Word multiplication

Code size [bytes] Relative [%] Code size [bytes] Relative [%] Code size [bytes] Relative [%] Code size [bytes] Relative [%]

CoreVA(C) 10 336 100.00 2052 100.00 528 100.00 448 100.00
CoreVA(C.ISE) 8656 83.75 1940 94.54 496 93.94 336 75.00
CoreVA(ASM) 8752 84.67 2068 100.78 464 87.88 464 103.57
CoreVA(ASM.ISE) 8576 82.97 1924 93.76 432 81.82 320 71.43
CoreVA(SQU233) 8496 82.20 2052 100.00 208 39.39 448 100.00
CoreVA(MUL233) 6988 67.61 304 14.81 528 100.00 448 100.00
CoreVA(FF233) 6732 65.13 2052 100.00 208 39.39 448 100.00

ware C implementation (speedup of 11.2 compared to ASM
software implementation). Compared to the hardware ex-
tended processor ofPuttmann et al.(2008) this is equivalent
to a speedup of 15.

Besides optimizing execution time by using hardware ac-
celeration for the ECC algorithm, code size is also reduced
significantly. Code size impacts the amount of memory
needed, which is an expensive resource in embedded sys-
tems. Table3 shows the code size of the word and field mul-
tiplication, the field squaring and the scalar multiplication
using different types of hardware acceleration. Compared to
the initial C implementation, code size of the scalar multi-
plication is reduced from 10 336 bytes to 8656 bytes using
instruction set extensions. Using theCoreVA(FF233)ded-
icated hardware accelerator this effect is even more signifi-
cant: 35% of instruction memory can be saved in this config-
uration. Power consumption depends on the memory size as
well as the number of accesses, so resource efficiency can be
increased by optimizing code size. As the total code size,
which depends on all applications (plus operating system,
etc.) can vary extremely in different environments and be-
cause the type of memory (single port or dual port) highly
effects power consumption, we only consider the energy de-
mand of processor architecture in this paper. Besides total
power consumption, energy is an even more important qual-
ity measure for mobile devices like smart cards.

Despite the higher power consumption caused by the hard-
ware extensions, energy will be decreased because of the
reduced execution time. Figures13–16 and Table4 show
the energy consumption of the original software implemen-
tations compared to the hardware accelerated versions. The
darker bars show the energy consumption of the C imple-
mentation, the brighter ones reflect the assembler implemen-
tation. Control of the hardware accelerators is only imple-
mented at C-level. Energy consumption of word level mul-
tiplication can be reduced by using the instruction set exten-
sions. As the dedicated hardware accelerators are only ap-
plicable for field arithmetic, energy consumption increases.
At field squaring level the dedicatedCoreVA(SQU233)hard-
ware accelerator causes the greatest improvement.

At field level, the dedicatedCoreVA(MUL233)hardware
accelerator causes the greatest improvement. Energy con-

0

0,2

0,4

0,6

0,8

1

1,2

1,4

C

ASM

Fig. 13. Energy consumption of the word multiplication [mW].

sumption for field multiplication reduces from 61 nJ to less
than 2.7 nJ (96%) (cf. Fig.14). Obviously,CoreVA(SQU233)
can not be used for the field multiplication, so energy con-
sumption increases because of the additional hardware inte-
grated to the processor. Energy consumption of field squar-
ing benefits especially from the ASM optimized algorithm
in conjunction with theCoreVA(ISE)instruction set exten-
sions. An energy reduction of about 50% can be achieved
(cf. Fig 15). Using theCoreVA(SQU233)hardware exten-
sion reduces energy consumption of field squaring by a fac-
tor of 6.9. Again, energy consumption increases when us-
ing CoreVA(MUL233), as it is not applicable to field squar-
ing. Figure16 shows the energy consumption for the scalar
multiplication. Energy savings for the scalar multiplica-
tion range from 26% (ASM,CoreVA(ISE)) up to 90% for
theCoreVA(FF233)hardware acceleration. Energy demand
of the ASM implementation usingCoreVA(ISE)instruction
set extensions for both field multiplication and field squar-
ing is even lower as using only theCoreVA(SQU233)hard-
ware accelerator, which only impacts execution cycles of
field squaringCoreVA(SQU233)only affects execution cy-
cles of field squaring. As field multiplication is the domi-
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Table 4. Energy consumption using different types of hardware acceleration.

Scalar multiplication Field multiplication Field squaring Word multiplication

Energy [nJ] Relative [%] Energy [nJ] Relative [%] Energy [nJ] Relative [%] Energy [nJ] Relative [%]

CoreVA(C) 103 202.19 100.00 61.32 100.00 10.25 100.00 1.281 00.00
CoreVA(C.ISE) 98 857.38 95.79 58.52 95.43 9.98 97.28 1.16 90.75
CoreVA(ASM) 85 437.07 82.79 53.42 87.12 5.37 52.41 0.96 75.00
CoreVA(ASM.ISE) 76 049.86 73.69 47.44 77.37 4.70 45.81 0.75 58.99
CoreVA(SQU233) 94 970.83 92.02 67.12 109.46 1.79 17.44 1.20 94.23
CoreVA(MUL233) 20 789.72 20.14 2.22 3.61 5.61 54.75 1.00 78.36
CoreVA(FF233) 9812.15 9.51 2.75 4.48 1.84 17.99 1.24 97.20
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Fig. 14. Energy consumption of the field multiplication [mW].

nating part of scalar multiplication energy consumption in-
creases. Only the combination of both hardware extensions
(CoreVA(FF233)) can improve energy efficiency for this al-
gorithm.

5 Conclusions

We analyzed different types of hardware extensions in re-
spect to resource efficiency, which we consider to be the ratio
of performance in terms of execution time (clock cycles) and
chip area and power consumption. These constituent charac-
teristics have been presented in detail, whereas the resource
efficiency itself should be computed in respect to the envi-
sioned application scenario. We outlined our dual design-
flow, consisting of the automatic generation of a complete
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Fig. 15. Energy consumption of the field squaring [mW].

Ansi-C-compiler tool chain based on a high level reference
specification in the UPSLA language and a common RTL-
based hardware development. Using this design-flow, we in-
troduced three instruction set extensions and two dedicated
hardware accelerators. Major components of the scalar mul-
tiplication over binary fieldsF2233 were considered, start-
ing from word multiplication up to field multiplication and
field squaring. The tightly coupled instruction set extensions
combine existing functional units, so resource consumption
is negligible. The integration of loosely coupled hardware
accelerators adds still reasonable resource overhead but re-
sults in an even higher speedup. In this case, area and power
consumption increase by about 30%, whereas the execution
time of the scalar multiplication decreases by 93% compared
to the original software implementation. Both types of hard-
ware extensions achieve an energy reduction, ranging from
27% to 90%.
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Fig. 16. Energy requirements of the scalar multiplication [mW].
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