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Abstract. Due to growing concerns about climate change, policy-makers from all
around the world establish measures, such as carbon taxes, to lower electricity de-
mand and energy consumption in general. Drawing on household panel data from
the German Residential Energy Consumption Survey (GRECS) that span over nine
years (2006-2014) and employing the sum of regulated price components as an instru-
ment for the likely endogenous electricity price, we gauge the response of residential
electricity demand to price increases on the basis of the dynamic Blundell-Bond es-
timator to account for potential simultaneity and endogeneity problems, as well as
the Nickell bias. Estimating short- and long-run price elasticities of -0.44 and -0.66,
respectively, our results indicate that price measures may be effective in dampening
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1 Introduction

Due to growing concerns about climate change, policy-makers from all around the

world establish measures that aim at cutting greenhouse gas emissions. By 2030, the

European Union (EU), for instance, strives for a 40% reduction in greenhouse gas emis-

sions relative to 1990. To this end, many EU countries have implemented promotion

schemes for renewable energy technologies, whose costs are borne by electricity con-

sumers (REN21, 2017). As an alternative instrument, a few countries, such as France

and Great-Britain, have implemented carbon taxes on fossil fuels (RES, 2018) to dimin-

ish the use of fossil fuels and fossil-fuel-based electricity alike.

The effectiveness of such price measures, however, critically hinges on the mag-

nitude of the demand response to increasing electricity prices. Although the demand

for electricity has been analyzed for decades, a consensus on the magnitude of its price

elasticity has never been reached. In fact, the empirical literature reports a wide range

of price elasticity estimates of electricity demand, spanning from 0 to -2.50 (Espey

et al., 2004; Krishnamurthy and Kriström, 2015).

This wide range is due to numerous reasons among which are discrepancies across

empirical studies with respect to investigation periods, regional foci, the level of data

aggregation, the specification of the price variable, and, not least, the econometric

method employed (Alberini et al., 2011; Bernard et al., 2011; Fell et al., 2014). In this

respect, it bears noting that standard OLS and panel estimation methods fail to ad-

dress the particularities of electricity demand, specifically the endogeneity of prices

(Borenstein, 2009; Ito, 2014; Taylor et al., 2004) and the sluggishness in the adjustment

of the appliance stock (e.g. Reiss and White, 2005).

Drawing on household panel data from the German Residential Energy Consump-

tion Survey (GRECS) that span over nine years, from 2006 to 2014, and using the sum

of the regulated price components as an instrument to cope with the likely endogene-

ity of electricity prices, this paper estimates the response of household electricity de-

mand to price changes on the basis of the dynamic system estimator developed by
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Blundell and Bond (1998). By comparing these estimates with those resulting from

both OLS and standard panel methods, we demonstrate that price elasticity estimates

may be biased if the methodological challenges due to the sluggishness of demand

response and endogeneity issues are not adequately addressed.

Our short- and long-run price elasticity estimates of -0.44 and -0.66, respectively,

are in line with the scarce empirical evidence that is available for Germany: Using

expenditure rather than consumption data, Nikodinoska and Schröder (2016) and

Schulte and Heindl (2017) estimate long-run price elasticities of -0.81 and -0.43, respec-

tively. Moreover, based on a single survey wave of the GRECS comprising the years

2011 and 2012, Frondel and Kussel (2018) obtain a short-run price elasticity estimate

of -0.52. Yet, exploiting information on households’ knowledge about electricity price

levels, these authors find that only those households that are informed about prices are

sensitive to price changes, whereas uninformed households are entirely price-inelastic.

Our results indicate that, at least to some extent and particularly in the log run,

price measures may be effective instruments to dampen the electricity consumption

of the residential sector, which accounts for a substantial share of about 30% in the

EU’s electricity consumption (Eurostat, 2018). Furthermore, exploiting the abundance

of our data set by estimating dynamic models for specific groups of households indi-

vidually, a distinguishing feature of our study is the finding that price responses are

heterogeneous across household groups: Wealthy households, for instance, exhibit a

particularly strong demand reaction, while we do not find any price response for some

other groups, such as low-income households. These results suggest that increasing

electricity prices, for instance via introducing or raising a carbon tax, may not be a

universally effective means. Therefore, to reduce energy consumption and the result-

ing greenhouse gas emissions alike, in addition to price measures, targeted energy

conservation programs may be implemented that include non-pricing measures, such

as subsidies for the purchase of energy-efficient appliances, and focus on low-income

households.

Given its ambitious climate policy goals, prominently reflected by the aim to in-
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crease the share of renewable-based electricity in gross consumption to 35% by 2020,

Germany suggests itself as an interesting case study for the analysis of demand reac-

tions to power price increases. As a consequence of Germany’s cost-intensive climate

policy (Frondel et al., 2015), with about 30 cents per kilowatt-hour (kWh), German

households face the highest electricity prices in the EU in terms of purchasing power

standards (Andor et al., 2017). Since the introduction of Germany’s feed-in-tariff sys-

tem to promote renewable energy technologies in 2000, household electricity prices

have more than doubled (BDEW, 2017). The major driver of this price increase was

the levy with which electricity consumers have to bear the cost of supporting renew-

able energy technologies (BDEW, 2017). While Germany’s support scheme has proven

highly successful in raising the share of “green” electricity in (gross) electricity con-

sumption, which increased from below 7% in 2000 to about 36% in 2017 (BMWi, 2018),

the levy for the support of renewable technologies rose substantially, from 0.30 to 6.79

cents per kWh in 2018, now contributing to household electricity prices by more than

a fifth (BDEW, 2017).

The subsequent section describes the database underlying our research, while Sec-

tion 3 explains the empirical methodology employed. Section 4 presents the estimation

results. The last section summarizes and concludes.

2 Data

This empirical research on electricity demand responses to price changes draws

on a large household panel data set originating from the German Residential Energy

Consumption Survey (GRECS), a survey that has been regularly commissioned by the

Federal Ministry of Economics and Energy (BMWi) for more than a decade (RWI and

forsa, 2018) – for more information on the GRECS, see www.rwi-essen.de/GRECS.

The survey data was jointly gathered by RWI and the professional survey institute

forsa, using forsa’s household panel that is representative for the German population

aged 14 and above – for more information, see www.forsa.com. In five surveys span-
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ning the period 2006 to 2014, each among 6,500 to 8,500 households, participants –

the household heads in this case – reported information on their household’s electric-

ity consumption, prices, and costs. This information is drawn from the households’

most recent electricity bills, covering the years prior to each survey year. In the best

case, a household head reported electricity information for up to T = 9 years. Yet,

this was the case for only 3 households, but about 60% of the respondents reported

electricity information at least twice (see Table A1 in the Appendix). Respondents also

provided numerous details on socio-economic and other household characteristics,

such as household size and household net income, age and education of the house-

hold head, as well as location and ownership of the household’s residence.

All this information is self-reported under close guidance of a state-of-the art sur-

vey tool that provides visual assistance to the respondents, particularly with respect to

electricity bills. For example, after being asked to indicate their electricity provider, re-

spondents received a picture of the respective billing sheet, with the position of the re-

quired information being highlighted on the billing sheet (RWI and forsa, 2018). forsa’s

survey tool allows respondents to interrupt and continue the survey at any time and

to complete the questionnaire either online or, if internet access is not available, using

a television.

The billing information include marginal prices per kWh, monthly fixed fees, total

electricity expenditures, and consumption levels for the billing period. In the frequent

case that a bill does not cover the entire calender year, we have extrapolated the an-

nual consumption on the basis of the mean consumption per day for the period for

which information is available. To exclude seasonal impacts, we only use information

from electricity bills with a duration of more than 180 days. Owing to possible typing

errors, we clean the data set via an iterative process that, separated by household size,

drops observations whose consumption figure and average price do not lie in intervals

that span two standard deviations around the respective means. Despite the fact that

we generously have sacrificed observations, our analysis benefits from an abundant

database: Overall, our estimation sample consists of 24,336 valid observations on elec-
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tricity consumption levels and prices originating from 10,915 households, implying a

mean number of 2,23 observations per household (see Table A1 in the Appendix).1

While 31% of the respondents have a college degree (Table 1), about one third of

them are female and, thus, women are considerably less frequent in the sample than

men. This circumstance is a consequence of our decision to ask only household heads

to participate in the survey, as, by definition, they typically make financial decisions

at the household level and are more likely to report billing data. The high share of

respondents with a college degree in our sample indicates that it is not representative

for German households (see Table A2 in the Appendix). This conclusion is further

substantiated by the fact that single-person households are less prevalent in our sam-

ple.

Table 1: Descriptive Statistics

Variable Explanation Mean Std. Dev.

Age Age of respondent 52.66 13.27
College degree Dummy: 1 if respondent has college degree 0.310 –
Female Dummy: 1 if female household head 0.321 –
Household size = 1 Dummy: 1 if household comprises one member 0.213 –
Household size = 2 Dummy: 1 if household comprises two members 0.446 –
Household size = 3 Dummy: 1 if household comprises three members 0.163 –
Household size = 4 Dummy: 1 if household comprises four members 0.131 –
Household size > 4 Dummy: 1 if household comprises five or more members 0.047 –
Homeowner Dummy: 1 if household lives in an own dwelling 0.647 –
East Germany Dummy: 1 if household resides in East Germany 0.204 –
Income Monthly net household income in e 2,748 1,181
Consumption y Annual electricity consumption in kWh 3,487 1,673
p Average electricity price in cent per kWh 24.52 4.28
z Sum of fees, taxes, and levies in cent per kWh 11.89 2.23

Note: Number of observations and households employed for estimations: 24,336 and 10,915, respec-
tively. Income information was provided ine500 intervals, from which a continuous variable has been
derived by assigning the mid-point of the interval reported.

As marginal prices are much less frequently reported from the household heads

than expenditure and consumption figures, the key variable employed in our analysis

is the average electricity price, calculated by dividing electricity expenditures by con-

sumption figures. The choice of the average, rather than the marginal price, however,

has hardly any bearing on our key results and conclusions: In qualitative terms, using

marginal, rather than average prices yields similar estimation results (see Table A3 in

1Households with night storage heating systems, which represent a small minority of about 3% of
the German household population (RWI and forsa, 2015), have been excluded from our sample, as their
electricity consumption is substantially above average and they enjoy a separate low tariff for heating
purposes.
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the Appendix). Moreover, although a central assumption in economic theory is that

consumers optimize with respect to marginal prices, recent empirical findings suggest

that consumers tend to react to average prices because of limited attention to complex

pricing schedules (Borenstein, 2009; Ito, 2014).

The average price is clearly an endogenous measure, as, by definition, it is a func-

tion of electricity consumption, the dependent variable of our analysis. Yet, endogene-

ity problems do afflict both average and marginal prices, as nowadays consumers are

free to choose from a broad range of electricity tariffs: since the liberalization of Ger-

many’s electricity market in 1998, changing both suppliers and tariffs is a common

phenomenon. Therefore, a simultaneity problem may arise (Taylor et al., 2004): while,

on the one hand, consumption levels tend to be affected by prices, on the other hand,

households’ tariff selection may depend on consumption levels. In short, as house-

hold electricity consumption levels and electricity prices are jointly determined, one

must recognize that both marginal and averages prices are likely to be endogenous.

Figure 1 provides a first notion on the relationship between average household

prices and their annual electricity consumption as resulting from our sample in the

survey period 2006-2014. Mean annual electricity consumption decreased from 3,807

kWh in 2006 to 3,111 kWh in 2014, whereas the average electricity price rose from 19.7

to 29.9 cents per kWh in the same period. Using these values, a first reference point

for our price elasticity estimates presented in Section 4 can be obtained by dividing

the relative consumption decrease by the percentage price increase. This crude back-

of-the-envelope calculation yields an estimate of the long-run price elasticity of -0.489

for the period 2006 to 2014.

The average prices resulting from the sample closely match the mean prices that

are reported by the German Association of Energy and Water Industries (BDEW, 2017)

for households consuming 3,500 kWh per year (Figure 2). According to BDEW (2017),

for this household type, the mean electricity price more than doubled between 2000

and 2016 and rose from 13.94 to 28.69 cents per kWh. Fees, levies, and taxes, intro-

duced and increased by the German government over time, are blamed to be major
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Figure 1: Mean Household Electricity Consumption per Year and Average Household Elec-
tricity Prices in Cents per Kilowatt-hour Resulting from the German Residential Energy Con-
sumption Survey (GRECS).

drivers of this sharp increase (BDEW, 2017). For instance, the so-called EEG levy for

the promotion of renewable technologies, which was introduced in 2000 at the level of

0.3 cents per kWh, skyrocketed to 6.35 cents in 2016 and, including value-added tax,

accounted for about a quarter of the household electricity price reported by BDEW

(2017).

Another substantial electricity price component are grid fees, which have moder-

ately increased over time, but vary substantially across regions. Grid fees are raised to

cover maintenance costs, as well as the costs that grid operators arise when connecting

consumers and new power plants to the grid. As grid operators are regional monop-

olies, they are regulated by the federal grid agency (Bundesnetzagentur, BNetzA) and

allowed to pass on their costs to the customers. Currently, there are 884 grid operators

in Germany (BNetzA, 2017), which operate in regions that typically cover multiple zip

codes.

As instrumental variable z for the endogenous average price p, we employ the

sum of regulated price components, consisting of grid and concession fees, levies, and

the German eco-tax, a tax on electricity use of 2.05 cents per kWh. Hence, except for
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Figure 2: Composition of Household Electricity Prices for a Household Consumption of 3,500
kWh per Year (Source: BDEW, 2017).

generation and transport cost, as well as the VAT, instrumental variable z comprises

all other elements illustrated by Figure 2. This sum of the regulated price components

averaged 11.9 cents per kWh over the period 2006-2014 and remained relatively stable

around 10 cents per kWh between 2006 and 2010, but then rose up to 15 cents by 2014,

mainly caused by a strong deployment of renewable energy installations that resulted

in both a higher EEG levy and higher costs for connecting new installations (Andor

et al., 2017).

Figure 3 illustrates that the regulated price components as captured by instrument

z exhibits strong regional variation, both across, but also within federal states, and

varied between 12.7 and 19.1 cents per kWh in 2014. z is higher in East and North Ger-

many than in South Germany, most notably because of a relatively high deployment

of windmills.

With a correlation coefficient of ρ = 0.68 that reflects the expected positive cor-

relation between the average price p and our instrument z, there is evidence that

the first assumption for the validity of instrumental variables holds: Cov(p, z) 6= 0.

Moreover, while grid fees are regional-specific and taxes and levies are uniform for
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Figure 3: Regional Variation of the Regulated Electricity Price Components (Grid Fees, Levies,
and the German Eco-Tax) in Germany in 2014.

all households, the sum of these price components is the same for all households of a

region and is exogenous to households. Thus, it is highly warranted to assume that

our instrument z satisfies the second identification assumption for valid instruments:

Cov(z, ν) = 0, that is, z is uncorrelated with the error term ν of any regression equa-

tion.

3 Methodology

To provide for a reference point for the results obtained from employing dynamic

panel estimation methods, we first use a static model and estimate the double-log

specification that is typically employed for the estimation of demand elasticities:

ln yit = β + βp ln pit + βT
x xit + τt + µi + νit, (1)
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where yit refers to the electricity demand of household i in year t, pit denotes the

average electricity price that household i had to pay in t, vector x comprises household

characteristics, and βx is the corresponding parameter vector. βp is the coefficient of

interest that reflects the demand elasticity with respect to prices, τt and µi are year- and

individual fixed effects, respectively, and νit designates the idiosyncratic error term.

To cope with the likely endogeneity of prices p, we pursue a panel IV approach

and employ the sum of regulated price components as instrumental variable z, thereby

following the suggestion of McFadden et al. (1977), who argue that in such a setting,

the natural set of instruments are components of the price schedule itself. Employing

the common two-stage procedure (2SLS), in the first stage of our IV approach, we

regress the logged average price p on the log of instrument z, as well as the set of

household characteristics x:

ln pit = γ + γz ln zit + γT
x xit + τt + µi + uit. (2)

In the second stage, the price prediction p̂ obtained from Equation (2), rather than the

actual price p, is employed to estimate Equation (1).

The static model given by Equation (1) assumes that households instantaneously

adjust their utilization behavior and their appliance stock as a response to varying

electricity prices. Implying that short- and long-run elasticities are identical (Alberini

and Filippini, 2011), this is a heroic assumption, however, given that electric appli-

ances have long life cycles and households often have to incur substantial costs to

adapt their appliance stock.

To account for sluggish appliance stock adjustments and, hence, utilization behav-

ior that is rather inflexible in the short run, the lagged value yi,t−1 of the dependent

variable is included among the regressors, being characteristic for dynamic panel data

models:

ln yit = β + βy ln yi,t−1 + βp ln pit + βT
x xit + τt + µi + νit, (3)

with νit designating another idiosyncratic error term and βy denoting the coefficient
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on the lagged dependent variable. Dynamic panel data models are characterized by

two sources of persistence over time: Autocorrelation due to the presence of a lagged

dependent variable among the regressors and individual effects µi reflecting the het-

erogeneity among individuals.

Estimating dynamic Model (3) on the basis of OLS methods yields inconsistent

estimates, as the individual effect µi enters all values of the dependent variable y,

implying that the lagged dependent variable cannot be independent of the composite

error process µi + νit. For the same reason, estimating Equation (3) using random-

effects estimation methods yields inconsistent estimates as well. In what follows, for

comparison purposes, we nonetheless report random-effects estimates, in addition to

the results based on the dynamic Blundell-Bond estimator that is employed to account

for potential simultaneity and endogeneity problems.

Moreover, when Equation (3) is estimated using fixed-effects methods, the result-

ing estimates suffer from the Nickell bias, particularly in short panels (Nickell, 1981),

that is, for small T (see e. g. Baltagi, 2005, p.136f.). As Nickell (1981) demonstrates,

this bias arises because the within transformation that is typically employed for fixed-

effects estimations creates a correlation between the regressors and the error term.

Note therefore that the Nickell bias is not due to an autocorrelated error process, but

arises even if the error terms νit were to be independent and identically distributed.

One alternative to consistently estimate Equation (3) involves taking first differ-

ences of the original Model (1) to eliminate the problems arising from the individual

effects µi:

∆ ln yit = βy∆ ln yi,t−1 + βp∆ ln pit + βT
x ∆xit + ∆τt + ∆εit, (4)

and to use either ∆yi,t−2 := yi,t−2 − yi,t−3 or yi,t−2 as an instrument for ∆yi,t−1 :=

yi,t−1 − yi,t−2 (Anderson and Hsiao, 1982). These instruments will not be correlated

with ∆νit := νit− νi,t−1 as long as the error terms νit are not serially correlated (Baltagi,

2005, p.136f.).

Yet, Arellano and Bond (1991) argue that, albeit consistent, this estimator is not
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necessarily efficient, because it does not make use of all the available moment condi-

tions. Instead, these authors advocate for employing what is now frequently called

the Arellano-Bond difference GMM estimator, which uses the generalized method of

moments (GMM) and exploits all orthogonality conditions between the lagged values

of yit and the error term νit (Blundell and Bond, 1998, p.118): E(yi,t−s∆νit) = 0 for

t = 3, . . . , T and s ≥ 2. For instance, for T = 3, yi1 is a valid instrument for ∆yi2,

since it is highly correlated with yi2 − yi1, but uncorrelated with (νi3 − νi2) as long as

the error terms are not serially correlated. Next, for T = 4, both yi1 and yi2 are valid

instruments for ∆yi4 := yi4 − yi3. One can continue in this fashion, adding an extra

valid instrument for each forward period, so that the set of valid instruments becomes

yi1, yi2, . . . , yi,T−2 for any period T.

According to Blundell and Bond (1998), however, the Arellano-Bond estimator can

have a large finite sample bias and poor precision, because lagged levels of yit are weak

instruments for first differences. Building upon Arellano and Bover (1995), Blundell

and Bond (1998) develop a system GMM estimator that uses both lagged differences

of yit to instrument for levels and lagged levels of yit as instruments for differences.

This results in a (stacked) system of T− 2 equations in first differences as well as T− 2

equations in levels, as for the periods 3, . . . T, valid instruments are available. Hence,

the Blundell-Bond estimator builds on a system of two sets of equations: the origi-

nal equation and that in first differences. In short, Blundell and Bond (1998) augment

the Arellano-Bond estimator by invoking the additional assumption that first differ-

ences of instrument variables are uncorrelated with the fixed effects, which allows the

introduction of more instruments and can dramatically improve efficiency.

To deal with gaps in unbalanced panels, we follow Arellano and Bover’s (1995)

suggestion and use forward orthogonal deviations, that is, the average of all future

available observations of a variable. Furthermore, following Roodman (2009a), we

use all valid lags of the untransformed variables as instruments, but limit the number

of instruments employed to prevent over-fitting.
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4 Empirical Results

Presenting the estimation results of various model specifications and estimators,

this section serves to demonstrate how model design and the choice of the estima-

tion method may vary price elasticity estimates. Common to all specifications is the

set of socioeconomic characteristics, as well as the inclusion of year and federal state

dummies to capture differences in weather, geography, etc.

4.1 Results from the Static Model

Using the results originating from static Model (1) as a reference case for the out-

comes obtained from dynamic Model (3), we first report the OLS estimates (Table 2).

Ignoring the endogeneity of average prices and failing to account for individual effects

µi yields an OLS estimate of the price elasticity that exceeds minus unity, a magnitude

that is well-know from the literature (Taylor et al., 2004). Taking the endogeneity of

the electricity price into account by using the sum of regulated price components as an

instrument, the 2SLS estimation provides for a price elasticity estimate of about -0.64,

which is much lower in magnitude than the OLS estimate.

Table 2: Estimation Results for Static Model (1) on Electricity Demand based on various Esti-
mation Methods.

OLS 2SLS Random Effects Random Effects 2SLS

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

ln(p) -1.403*** (0.024) – – -0.706*** (0.024) – –
l̂n(p) – – -0.639*** (0.203) – – -0.209 (0.222)
ln (Income) 0.064*** (0.005) 0.076*** (0.006) 0.061*** (0.007) 0.063*** (0.008)
Household size = 2 0.355*** (0.007) 0.414*** (0.017) 0.354*** (0.012) 0.402*** (0.021)
Household size = 3 0.571*** (0.008) 0.652*** (0.023) 0.530*** (0.013) 0.590*** (0.025)
Household size = 4 0.661*** (0.009) 0.752*** (0.027) 0.634*** (0.014) 0.696*** (0.029)
Household size > 4 0.833*** (0.013) 0.922*** (0.029) 0.748*** (0.024) 0.823*** (0.036)
College degree -0.028*** (0.005) -0.032*** (0.006) -0.019*** (0.007) -0.020*** (0.008)
Age 0.004*** (0.000) 0.005*** (0.000) 0.004*** (0.000) 0.005*** (0.000)
Female -0.001 (0.005) -0.006 (0.005) -0.013* (0.006) -0.013* (0.007)
Homeowner 0.137*** (0.005) 0.152*** (0.007) 0.178*** (0.009) 0.186*** (0.011)
Constant 11.091*** (0.089) 8.642*** (0.648) 9.060*** (0.097) 7.491*** (0.705)

Year Dummies Yes Yes Yes Yes
State Dummies Yes Yes Yes Yes

Number of observations 21,918 19,026 21,918 19,026

Note: Standard errors are clustered at the individual level. ***,**, and * denote statistical significance at the 1 %, 5 %, and 10 %
level, respectively.
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When exploiting the panel structure of our data, we prefer reporting random-

effects, rather than fixed-effects estimation results, even though the null hypothesis

of equal sets of coefficient estimates of the Hausman (1978) specification test is re-

jected. While the short-run price elasticity estimate obtained from the random-effects

estimator amounts to about -0.71 (Table 2), we argue that applying fixed-effects es-

timation methods is not appropriate for our IV approach, because our instrumental

variable consists of uniform price components, such as the EEG levy, that only vary

inter-temporally, as well as regional-specific fees that mainly exhibit spatial variation,

but are rather constant over time. Hence, accounting for both time- and individual ef-

fects would eliminate much of the variation in our instrument. As a consequence, the

fixed-effects estimation results reported in Table A4 in the Appendix are considerably

lower than those obtained by using random-effects methods, with the price elasticity

estimates resulting from both the static and dynamic 2SLS fixed-effects estimations

being statistically insignificant.

By additionally instrumenting our price variable to address simultaneity issues,

the resulting 2SLS random-effects estimate of the short-run price elasticity is as low

as -0.21 and, given the standard error of 0.22, not significantly different from zero in

statistical terms. For the remaining covariates, coefficient estimates do not vary much

across estimation methods. In addition to prices, to a large extent, electricity con-

sumption is driven by a couple of major factors, such as household size and income.

For instance, based on the random-effects 2SLS estimates, the average electricity con-

sumption of a household with two members is about 100[exp(0.402)− 1] =49% higher

than that of a single-person household. Likewise, homeowners and households with

elder individuals tend to have a higher consumption than other households. Further-

more, a 10% increase in income leads to a 0.63% increase in electricity demand. While

at first glance this income elasticity estimate appears particularly low, it may be the

result of two opposing effects: as is characteristic for normal goods, the demand for

electric services increases with income. However, a higher income allows to invest in

new and more efficient appliances, thereby dampening electricity demand (Spees and
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Lave, 2007).

4.2 Results from the Dynamic Model

As static models fail to account for sluggish adjustments of the appliance stock, we

continue reporting the estimates from dynamic Model (3), in which lagged electricity

consumption is included as an additional variable to control for adjustments in the ap-

pliance stock. Referring to the 2SLS estimates, the short-run price elasticity of demand

amounts to about -0.23 (Table 3), an estimate that is substantially lower in magnitude

than the static price elasticity estimate of about -0.64 reported in Table 2. The small

magnitude of the short-run price elasticity is due to the fact that in dynamic Model (3),

the price variable merely captures short-run changes in utilization behavior, but not

any long-run adjustment.

Using the estimate of 0.864 of the coefficient βy on the lagged consumption vari-

able, the long-run price elasticity can be computed by dividing the short-run price

elasticity estimate of -0.229 by 1 − βy: βp/(1 − βy) = -0.229/(1-0.864) = -1.684. The

corresponding standard error of 0.820 is computed using the delta method (Greene,

2003, p. 68). Accounting for the panel character of our data by using random-effects

estimation methods yields estimation results that are close to those obtained by 2SLS.

Given that in a dynamic setting fixed-effects estimation methods suffer from the

Nickell bias, we present the results originating from the Blundell-Bond GMM system

estimator.2 Both the coefficient estimates on the price and lagged consumption are

statistically different from zero, resulting in short- and long-run elasticity estimates of

-0.44 and -0.66, respectively. The long-run elasticity of -0.66 is in line with the few other

estimates that are available for Germany: Based on expenditure data, Nikodinoska

and Schröder (2016) as well as Schulte and Heindl (2017) find long-run elasticities of

-0.81 and -0.43, respectively.

2To this end, the Stata command xtabond2 written by Roodman (2009a) has been employed. Table
A5 of the Appendix presents robustness checks in which we vary the way in which the endogenous
lagged variable is instrumented. The long-run price elasticity estimates originating from these estima-
tion variants are somewhat larger, but the differences across variants are not significantly different from
zero in statistical terms.
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Table 3: Estimation Results for Dynamic Model (3) on Electricity Demand based on various
Estimation Methods.

2SLS Random Effects 2SLS Blundell-Bond
Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

l̂n(p) -0.229* (0.137) -0.247* (0.131) -0.444* (0.236)
ln(yt−1) 0.864*** (0.016) 0.844*** (0.016) 0.330*** (0.104)
ln (Income) 0.002 (0.004) 0.003 (0.004) 0.042*** (0.011)
Household size = 2 0.063*** (0.007) 0.070*** (0.007) 0.292*** (0.047)
Household size = 3 0.094*** (0.009) 0.107*** (0.009) 0.455*** (0.072)
Household size = 4 0.103*** (0.009) 0.118*** (0.010) 0.514*** (0.082)
Household size > 4 0.126*** (0.010) 0.144*** (0.011) 0.624*** (0.101)
College degree -0.002 (0.004) -0.002 (0.004) -0.018** (0.008)
Age -0.000 (0.000) -0.000 (0.000) 0.003*** (0.001)
Female -0.002 (0.003) -0.002 (0.003) -0.003 (0.007)
Homeowner 0.015*** (0.004) 0.017*** (0.004) 0.095*** (0.018)
Constant 1.728*** (0.590) 1.924*** (0.567) 6.002*** (1.204)

Year Dummies Yes Yes Yes
State Dummies Yes Yes Yes

Number of observations 8,096 8,096 8,096
Number of instruments – – 40
Arellano-Bond test for AR(1) – – z=-4.48; p=0.000
Arellano-Bond test for AR(2) – – z=1.15; p=0.249
Hansen test of overid. restrictions – – χ2(6)=4.22; p=0.647

Long-run price elasticity -1.684*** (0.820) -1.583** (0.700) -0.663** (0.338)

Note: Standard errors are clustered at the individual level. ***,**, and * denote statistical significance at the 1 %, 5 %, and 10 %
level respectively. Standard errors for the long-run elasticities are computed using the delta method.

Statistical tests indicate the validity of the Blundell-Bond estimates, with the re-

sults benefitting from the large number of N = 8, 096 observations that are available

for the estimations. Relative to this large data base, the number of 40 instruments is

low. Arellano and Bond (1991) proposed a test for the null hypothesis that there is no

second-order serial correlation for the disturbances of a first-differenced model, such

as Model (4). (This test is important because the consistency of the GMM estimator

relies upon the fact that E[∆νit∆νi,t−2] = 0.) The p-value of p = 0.249 reported in Table

3 indicates that the test statistic for the AR(2) test on the lack of second-order corre-

lation in the first-differenced residuals is not different from zero in statistical terms,

providing evidence that it would not be appropriate to include a second-order lag of

the dependent variable in Model (3). In contrast, the corresponding statistic for the

AR(1) test hints to the appropriateness of including a first-order lag of the dependent

variable as a regressor in Model (3). Finally, the Hansen test of overidentifying restric-

tions indicates that the null hypothesis of the joint validity of the instruments cannot

be rejected. This test does not only show that our set of instruments is valid, but also
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that the model is correctly specified (Roodman, 2009b).

4.3 Heterogeneous Effects

Building upon our preferred estimation method, the Blundell-Bond estimator, and

exploiting the abundance of our data set with respect to socioeconomic characteristics

by estimating dynamic Model (3) for specific groups of households individually, we

find a large heterogeneity in price responses across household groups (Table 4). Focus-

ing first on the group of high-income households, defined here by a monthly house-

hold net income above e3,500, the results reported in Table 4 suggest that their price

responsiveness is substantially higher than that of other households, with short- and

long-run price elasticity estimates amounting to -0.86 and -1.29, respectively, for such

high-income households. Being in line with Schulte and Heindl (2017) and Nikodi-

noska and Schröder (2016), the finding that high-income households are highly re-

sponsive to price changes reflects the fact that, in contrast to other household groups,

they can more easily react to price increases by adjusting their appliance stock towards

less electricity-intensive equipment.

A similar argument can be made for homeowners, as opposed to tenants, when

assuming that homeowners tend to have a higher rent-corrected income than tenants.

And, in fact, we find strong and statistically significant price responses for homeown-

ers, yet not for tenant households. This effect can also be caused by the so-called

landlord-tenant problem (Allcott and Greenstone, 2012): If landlords bear the tenants’

marginal cost of electricity consumption, tenants have little incentive to use electric-

ity efficiently (Levinson and Niemann, 2004). Conversely, if tenants themselves face

electricity costs, landlords can choose to equip the rental apartments with energy-

inefficient appliances. Both ideas provide an explanation for Davis’ (2011) finding

that tenants are less likely to have energy-efficient appliances.

In addition, there is evidence that households whose head has a college degree

strongly react to prices, but there is no price responsiveness among household heads
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Table 4: Heterogeneous Electricity Demand Responses to Price Changes across various House-
hold Groups

ln(yt−1) l̂n(p) Long-run Price Elasticity No. of
Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error observations

Low-income household 0.251 (0.413) -0.424 (0.628) -0.57 (0.887) 1,232
High-income household 0.336* (0.155) -0.855** (0.352) -1.29*** (0.477) 2,215
Tenant 0.311 (0.259) -0.281 (0.418) -0.41 (0.593) 2,899
Homeowner 0.337*** (0.103) -0.715*** (0.210) -1.08*** (0.278) 5,197
No college degree 0.210 (0.133) -0.334 (0.296) -0.42 (0.367) 5,552
College degree 0.499** (0.130) -0.645** (0.279) -1.29** (0.508) 2,554

Note: Standard errors are clustered at the individual level. ***,**, and * denote statistical significance at the 1 %, 5 %, and 10 % level
respectively. Standard errors for the long-run elasticities are computed using the delta method. All models include socioeconomic
characteristics as well as year and state dummies.

without a college degree (Table 4). Assuming that individuals with a college degree

are better informed about electricity prices than others, these results confirm those of

Jessoe and Rapson (2014) and Frondel and Kussel (2018), who find that the electricity

demand of uninformed households is entirely price-inelastic.

5 Summary and Conclusions

The residential sector accounts for a substantial share of electricity demand in in-

dustrialized countries, for example being responsible for about a quarter of Germany’s

total electricity consumption (AGEB, 2016). Establishing incentives to reduce house-

hold electricity demand, such as raising a carbon tax, thus appears to be a promising

avenue to reach climate policy targets by diminishing the residential sector’s green-

house gas emissions. One has to bear in mind, though, that any endeavor to con-

serve electricity via increasing prices may have substantially adverse regressive effects

for low-income households (Frondel et al., 2015; Heindl and Schüssler, 2015; Neuhoff

et al., 2013). From a social policy perspective, it is therefore advisable that any such en-

deavor is accompanied by support schemes to alleviate the resulting burden for poor

households. Moreover, the effectiveness of such price measures critically hinges on

the magnitude of the price elasticity of household demand.

Drawing on household panel data from the German Residential Energy Consump-

tion Survey (GRECS) that span over nine years (2006-2014), in this paper, we have
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estimated the response of household electricity demand to price changes using the

composite of regulated price components, including the levy raised for the promotion

of renewable technologies, as an instrument to cope with the likely endogeneity of

electricity prices. By comparing the results obtained from a dynamic model based on

the GMM system estimator developed by Blundell and Bond (1998) with those result-

ing from standard panel methods and a classic instrumental variable approach, we

have demonstrated that the estimates of price elasticity may be biased if the resulting

methodological challenges resulting from the particularities of the residential demand

for electricity are not adequately addressed.

On the basis of the Blundell-Bond estimator for dynamic panel models, we find

short- and long-run price elasticity estimates of -0.44 and -0.66, respectively. These

results suggest that, at least to some extent and in the long run, reductions in the

residential electricity demand can be triggered by increasing prices, for instance by

raising Germany’s eco-tax on electricity use introduced in 1999. Furthermore, our

long-run price elasticity estimate of -0.66 implies that, to reach Germany’s aim to lower

electricity consumption by 10% relative to 2008 by 2020, the average electricity price

needs to be 15.2% higher in 2020 than in 2008.

This requirement is most likely to be more than fulfilled by 2020 for our sample

households, as the average electricity price in the sample increased from 21.8 cents per

kWh in 2008 to 29.9 cents in 2014, that is, by almost 40%, not least due to Germany’s

strong promotion of renewable energy technologies. In the same period, the mean an-

nual consumption of our sample households fell by around 13%, from 3,586 to 3,111

kWh, while based on our long-run elasticity estimate of -0.66, we would expect the

residential consumption to have shrank by about 26%. This discrepancy between the

actual and inferred percentage reductions is likely the result of several secular trends

that ceteris paribus increase the electricity consumption of the residential sector, such as

the increase in households’ appliance stock and, most notably, the ever-growing num-

ber of single- and two-person households, whose per-capita consumption is higher

than for households with more members.
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Moreover, exploiting the abundance of our data set by estimating dynamic models

for specific groups of households individually, a distinguishing feature of our study is

the finding of a large heterogeneity in household responses. According to our results,

in contrast to wealthy and highly educated households, in particular, low-income

households do not adjust their electricity demand as a response to increasing prices.

These results suggest that increasing electricity prices, for instance via raising a carbon

tax, may not be a universally effective means, calling for additional non-pricing mea-

sures to reduce the greenhouse gas emissions originating from fossil-based electricity

consumption.

Yet, the absence of any price responses among certain household groups has im-

portant implications for energy conservation programs that include non-pricing mea-

sures, such as energy audits and subsidies for the purchase of energy efficient appli-

ances (Allcott et al., 2015; Fowlie et al., 2015): These programs may target at household

groups that do not seem to respond to price increases, such as low-income households.

Targeted programs that focus on these groups may ensure a more effective usage of

resources than unspecific programs.
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Appendix

Table A1: Frequency in the Response of Households and Number of Observations

Number of Number of
Responses Frequency Share Cumulated Observations

1 4,421 40.50 40.50 4,421
2 3,100 28.40 68.91 6,200
3 1,682 15.41 84.32 5,046
4 727 6.66 90.98 2,908
5 486 4.45 95.43 2,403
6 235 2.15 97.58 1,410
7 194 1.78 99.36 1,358
8 67 0.61 99.97 536
9 3 0.03 100.00 27

Total 10,915 100.00 24,336

Table A2: Comparison of our Sample with the Population of German Households

2006 2014

Variable Sample Population Sample Population

Age under 25 years 3.3% 5.0% 0.4% 4.7%
Age 25 – 64 years 83.6% 67.7% 67.3% 67.0%
Age 65 years and more 13.1% 27.2% 32.3% 28.1%
College degree 33.7% 15.7% 35.7% 19.0%
Female 32.3% 34.1% 31.0% 35.4%
Household size = 1 19.4% 38.8% 22.7% 40.8%
Household size = 2 38.6% 33.6% 53.0% 34.4%
Household size = 3 19.0% 13.5% 12.2% 12.4%
Household size = 4 16.7% 10.3% 9.0% 9.1%
Household size > 4 6.3% 3.7% 3.1% 3.3%
East Germany 21.7% 21.5% 19.3% 21.0%
High income 12.0% 5.9% 12.7% 11.0%

Note: Population data is drawn from Destatis (2008, 2015). This data source asks the main earner to complete the questionnaire,
whereas we ask the household member who usually makes the financial decisions for the household. Furthermore, the variable
High income is top-coded at 4,500 EUR, while in our sample the upper threshold is at 4,700 EUR.
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Table A3: Estimation Results for Dynamic Model (3) based on various Estimation Methods
Using Marginal Prices mp.

2SLS Random Effects 2SLS Blundell-Bond

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

̂ln(mp) -0.157 (0.186) -0.186 (0.182) -0.562 (0.348)
ln(yt−1) 0.887*** (0.008) 0.863*** (0.009) 0.412*** (0.106)
ln (Income) 0.001 (0.005) 0.002 (0.005) 0.034*** (0.013)
Household size = 2 0.070*** (0.008) 0.081*** (0.009) 0.283*** (0.050)
Household size = 3 0.100*** (0.010) 0.119*** (0.011) 0.437*** (0.077)
Household size = 4 0.108*** (0.011) 0.128*** (0.012) 0.481*** (0.085)
Household size > 4 0.129*** (0.013) 0.155*** (0.014) 0.580*** (0.103)
College degree -0.002 (0.005) -0.001 (0.005) -0.018* (0.010)
Age -0.000* (0.000) -0.000 (0.000) 0.002*** (0.001)
Female -0.003 (0.004) -0.003 (0.004) -0.006 (0.008)
Homeowner 0.013*** (0.004) 0.015*** (0.005) 0.085*** (0.019)
Constant 1.276** (0.650) 1.531** (0.639) 5.759*** (1.474)

Year Dummies Yes Yes Yes
State Dummies Yes Yes Yes

Number of observations 5,485 5,485 5,485
Number of instruments – – 40
Arellano-Bond test for AR(1) – – z=-5.43; p=0.000
Arellano-Bond test for AR(2) – – z=-0.16; p=0.873
Hansen test of overid. restrictions – – χ2(6)=5.76; p=0.450

Long-run price elasticity -1.389 (1.691) -1.358 (1.314) -0.956* (0.567)

Note: Standard errors are clustered at the individual level. ***,**, and * denote statistical significance at the 1 %, 5 %, and 10 % level
respectively. Standard errors for the long-run elasticities are computed using the delta method. The marginal price is conmputed
by dividing the difference between total expenditures and the fixed fee by the amount of electricity consumed.

Table A4: Fixed-Effects Estimation Results

Fixed Effects Fixed Effects 2SLS Fixed Effects 2SLS (dynamic)
Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

ln(p) -0.486*** (0.026) – – – –
l̂n(p) – – 0.076 (0.288) -0.093 (0.325)
ln(yt−1) – – – – 0.188*** (0.039)
ln (Income) 0.000 (0.012) -0.006 (0.013) 0.003 (0.017)
Household size = 2 0.225*** (0.023) 0.261*** (0.033) 0.251*** (0.049)
Household size = 3 0.347*** (0.025) 0.390*** (0.037) 0.392*** (0.056)
Household size = 4 0.414*** (0.027) 0.449*** (0.040) 0.431*** (0.056)
Household size > 4 0.437*** (0.043) 0.486*** (0.054) 0.407*** (0.074)
College degree 0.009 (0.015) 0.006 (0.016) 0.008 (0.019)
Age 0.002 (0.002) 0.002 (0.002) 0.003 (0.002)
Female -0.004 (0.019) 0.003 (0.018) 0.017 (0.022)
Homeowner 0.128*** (0.031) 0.144*** (0.036) 0.041 (0.036)
Constant 9.107*** (0.165) 7.424*** (0.886) 6.328*** (1.233)

Year Dummies Yes Yes Yes
State Dummies Yes Yes Yes

Number of observations 21,918 19,026 9,391

Long-run price elasticity – – – – -0.115 (0.398)

Note: Standard errors are clustered at the individual level. ***,**, and * denote statistical significance at the 1%, 5%, and 10% level,
respectively. Standard errors for the long-run elasticities are computed using the delta method.
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Table A5: Estimation Robustness Checks for Dynamic Model (3) based on the Blundell-Bond
Estimator using Various Ways to Instrument the the Lagged Consumption Variable

First-Differences First-Differences Orthogonal-Deviations
Instruments Not Collapsed Instruments Collapsed Instruments Not Collapsed
Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

ln(p) -0.461** (0.187) -0.508** (0.240) -0.511** (0.204)
ln(yt−1) 0.465*** (0.111) 0.384*** (0.102) 0.366*** (0.112)
ln (Income) 0.032*** (0.012) 0.037*** (0.012) 0.038*** (0.012)
Household size = 2 0.229*** (0.048) 0.262*** (0.045) 0.271*** (0.052)
Household size = 3 0.353*** (0.075) 0.406*** (0.068) 0.420*** (0.080)
Household size = 4 0.405*** (0.084) 0.462*** (0.078) 0.476*** (0.090)
Household size > 4 0.488*** (0.106) 0.560*** (0.097) 0.578*** (0.112)
College degree -0.012 (0.008) -0.016* (0.008) -0.016** (0.008)
Age 0.002*** (0.001) 0.002*** (0.001) 0.002*** (0.001)
Female -0.003 (0.007) -0.003 (0.007) -0.003 (0.007)
Homeowner 0.072*** (0.019) 0.086*** (0.018) 0.087*** (0.019)
Constant 5.113*** (1.089) 5.805*** (1.190) 6.004*** (1.094)

Year Dummies Yes Yes Yes
State Dummies Yes Yes Yes

Number of observations 8,096 8,096 8,096
Number of instruments 68 41 61
Arellano-Bond test for AR(1) z=-4.80; p=0.000 z=-5.50; p=0.000 z=-4.26; p=0.000
Arellano-Bond test for AR(2) z=1.30; p=0.194 z=1.30; p=0.195 z=1.13; p=0.258
Hansen test of overid. restrictions χ2(34)=26.38; p=0.821 χ2(7)=2.98; p=0.887 χ2(27)=24.93; p=0.579

Long-run price elasticity -0.862** (0.337) -0.825** (0.366) -0.8061** (0.331)

Note: Standard errors are clustered at the individual level. ***,**, and * denote statistical significance at the 1 %, 5 %, and 10 %
level respectively. Standard errors for the long-run elasticities are computed using the delta method
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